
 

Accepted Manuscript

Distributed Construction of Minimum Connected Dominating Set in
Wireless Sensor Network Using Two-Hop Information

Jasaswi Prasad Mohanty, Chittaranjan Mandal, Chris Reade

PII: S1389-1286(17)30217-7
DOI: 10.1016/j.comnet.2017.05.017
Reference: COMPNW 6211

To appear in: Computer Networks

Received date: 4 November 2016
Revised date: 14 May 2017
Accepted date: 15 May 2017

Please cite this article as: Jasaswi Prasad Mohanty, Chittaranjan Mandal, Chris Reade, Distributed
Construction of Minimum Connected Dominating Set in Wireless Sensor Network Using Two-Hop
Information, Computer Networks (2017), doi: 10.1016/j.comnet.2017.05.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.comnet.2017.05.017
http://dx.doi.org/10.1016/j.comnet.2017.05.017


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Distributed Construction of Minimum Connected
Dominating Set in Wireless Sensor Network Using

Two-Hop Information

Jasaswi Prasad Mohanty1, Chittaranjan Mandal1, Chris Reade2

Abstract

In a wireless sensor network (WSN), neither there is any fixed infrastructure nor any

centralized control. Therefore, for efficient routing, some of the nodes are selected to

form a virtual backbone. Minimum Connected Dominating Set (MCDS) can be used

as a virtual backbone. However, MCDS construction is an NP-Hard problem. In this

paper, we propose a novel distributed greedy approximation algorithm for CDS con-

struction which reduces the CDS size effectively. The proposed method constructs

the CDSs of smaller sizes with lower construction cost in comparison to existing CDS

construction algorithms for both uniform and random distribution of nodes. The per-

formance ratio of the proposed algorithm, which is the best at the current moment, is

(4.8 + ln 5)|opt|+ 1.2, where |opt| is the size of an optimal CDS of the network. Its

time complexity is O(D), where D is the diameter of the network. Its message com-

plexity is O(nR) which is linear, where n is the network size and R is the maximum

between number of rounds needed to construct the PDS and number of rounds needed

to interconnect the PDS nodes. Our simulation shows that ours is the most size optimal

distributed CDS construction algorithm.

Keywords: Connected Dominating Set (CDS), Maximal Independent Set (MIS),

Virtual Backbone, Unit Disk Graph (UDG), Steiner Tree

2015 MSC: 00-01, 99-00

∗Corresponding author
Email address: jasaswiprasad@gmail.com (Jasaswi Prasad Mohanty)

1Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, India.
2Kingston University, London, UK.

Preprint submitted to Journal of Computer Networks May 16, 2017



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

A Wireless Sensor Network (WSN) is formed by the wireless links of the sensor

nodes deployed in an area. The sensor nodes are spatially distributed to monitor phys-

ical or environmental conditions such as temperature, pressure, sound etc. and send

their data to the base station cooperatively. Generally, WSNs are used in monitoring of5

patients, environment, industry, food, agriculture etc. It is also used in earth sensing,

search and rescue, disaster control [1] etc. Each node of a WSN has typically sev-

eral parts: a radio transceiver, a microcontroller, a battery. The network may contain

only static nodes, only mobile nodes or a mixture of both depending on the application.

Each node of the network helps in routing by forwarding data of other nodes and which10

node will forward the data is decided dynamically based on the state of the network.

WSN is ad-hoc because it does not depend on any existing infrastructure such as router

in wired network. In WSN, nodes can communicate efficiently through the use of a vir-

tual backbone. A virtual backbone is a connected subset of nodes deployed in the entire

network which helps in routing. A pair of nodes in the network can communicate each15

other through the backbone nodes. As there is no fixed infrastructure and centralized

control in a WSN, a Connected Dominating Set (CDS) can work as a virtual backbone

for efficient routing and connectivity [2].

A Dominating Set (DS) of a network is formed by any subset of nodes of the entire

network such that, each node either belong to the subset or neighbour of some element20

of that subset. If the nodes of a DS are connected, then they form a CDS. The CDS is

responsible for transmitting messages from any node to any other node. A source node

which does not belong to the CDS, sends its message to the destination node by first

sending it to one of its neighbouring CDS nodes. If the destination node belongs to the

CDS, it gets the message directly, otherwise it gets the message from one of its neigh-25

bours which belongs to the CDS. During routing, a CDS node forwards the message

to its CDS neighbours only. So, these CDS nodes only maintain the routing informa-

tion. Therefore, reduction of CDS size can save the storage space and also makes the

routing easier and faster. Also by using a smaller sized CDS as virtual backbone the

total energy consumption of the network can be reduced, if the non-CDS nodes switch30

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

off their radio when they don’t have any data to send. Therefore, construction of mini-

mum connected dominating set (MCDS) of the network is desirable. However, MCDS

construction is an NP-complete problem [3]. For this reason researchers are interested

for polynomial time approximation algorithms for CDS construction. As there is no

centralized management in WSN, distributed algorithms can be useful for finding the35

MCDS. Energy is vital in WSN because the nodes can’t be recharged. Therefore, the

distributed approximation algorithms should construct smaller CDSs with low compu-

tation and communication costs. The quality of CDS is measured by its performance

ratio, which is the ratio of the size of the constructed CDS (by the proposed algorithm)

to the size of MCDS. The construction cost is also measured by the overall message40

and time complexities. To extend the lifetime of the network, in spite of relying on

a single CDS, the network should switch between disjoint CDSs [4, 5]. Therefore, to

switch between CDSs quickly the computation time of CDS construction algorithm

should be small enough. In this article, our focus is on constructing size optimal CDS

as a virtual backbone of the WSN.45

We can construct a CDS either in centralized or in distributed manner. Although

centralized algorithms provide more accurate information than distributed algorithms,

they suffer from scalability problem and hence not feasible for large size WSNs. In

centralized algorithms, the reliability of the information accumulated at a centralized

processor is low because of the losses involved in multihop transmission. Distributed50

algorithms are difficult to design. They require only local information exchange be-

tween neighbouring nodes. For any WSN in which the average number of hops from

any node to central processor is greater than the number of iterations required to per-

form a task, distributed algorithms are more energy efficient than centralized algo-

rithms [6]. In this paper, we propose a new distributed degree-based greedy approxi-55

mation algorithm which we name as Distributed Construction of Minimum Connected

Dominating Set (DCMCDS) to construct smaller CDSs.

The proposed scheme DCMCDS works in three phases and constructs the CDS using

2-hop information only. In the first phase, it constructs maximal independent set (MIS)

in a distributed manner. The MIS is designated as a pseudo-dominating set (PDS)60

because some of the elements may be omitted in the final dominating set. In the second

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

phase, the algorithm constructs a Steiner Tree by adding some more nodes to the PDS,

which are needed to interconnect the PDS nodes. In the last phase, the algorithm

drops some of the selected PDS nodes to reduce the CDS size further without any

loss in coverage or connectivity. Simulation results show that DCMCDS is better than65

existing CDS construction algorithms in terms of CDS size and construction costs. The

performance ratio of the proposed algorithm, which is the best at the current moment,

is (4.8 + ln 5)|opt|+ 1.2, where |opt| is the size of an optimal CDS of the network.

Its time complexity is O(D), where D is the diameter of the network. It has a linear

message complexity of O(nR), where n is the network size and R is the maximum70

between number of rounds needed to construct the PDS and number of rounds needed

to interconnect the PDS nodes.

The remaining of the article is organized as follows. In Section 2, we provide some

basic definitions which we use in the entire paper. Section 3, provides a review of the

works on CDS construction. In the next section (Section 4), we discuss the motivation75

behind our work and our major contributions. In Section 5, we discuss the central-

ized version of our proposed scheme in brief. Section 6 discusses the distributed CDS

construction algorithm in detail. The analysis of our proposed distributed algorithm is

discussed in Section 7. Supporting simulation results are given in Section 8. Finally

we presented the conclusion in Section 9.80

2. Background

In this section, we discuss some of the fundamental concepts that are useful to un-

derstand our work.

Definition 2.1 (DOMINATING SET). In graph theory, a dominating set (DS) for a

graphG(V,E) is a subset V ′ ⊆ V such that for each node v ∈ V −V ′,Adj[v]⋂V ′ 6=85

φ, where Adj[v] denotes set of adjacent nodes of v. The nodes in the dominating set,

V ′ are called dominators.

Definition 2.2 (CONNECTED DOMINATING SET). A dominating set which forms

a connected subgraph is a connected dominating set (CDS). So, a CDS of a graph is a

set of vertices with the following properties:90

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Every vertex of the graph is either belongs to the CDS or is adjacent to atleast

one vertex of the CDS.

2. We can reach from any node in the CDS to any other node in CDS by a path

which stays entirely within CDS.

The nodes which does not belongs to the CDS are called as dominatees.95

Definition 2.3 (INDEPENDENT SET). In a graph, a set of vertices in which none of

two are adjacent, is called as an independent set or stable set.

Definition 2.4 (MAXIMAL INDEPENDENT SET). An independent set to which by

adding any vertex outside the independent set disturbs the property of independent set

is called as maximal independent set (MIS) or maximal stable set. In other words, a100

maximal independent set cannot be a sub set of any other independent set.

Definition 2.5 (UNIT DISK GRAPH). A unit disk graph (UDG) is the intersection of

unit disks (of unit radii) in the Euclidean plane. The centre of each disks is a node. So

the disk represent the communication range of the node which is same for all nodes.

Two nodes are connected by an edge if the Eucledian distance between the two nodes105

is less than one unit.

Definition 2.6 (STEINER TREE). In a graph G = (V,E), for a given subset of ver-

tices I ⊆ V , a Steiner Tree is a tree which interconnects the nodes in I using a set of

nodes (known as Steiner nodes) not in I .

3. Related Work110

For connectivity and coverage in wireless network, CDS can be used as virtual back-

bone. In 1987, Ephermides first proposed this idea [7]. Since then the research on

CDS has never been interrupted. Many researchers proposed different algorithms to

construct the CDS. The CDS construction approaches found in the literature can be

broadly classified as centralized, distributed and localized algorithms.115

In a centralized CDS construction algorithm, the topology information of the entire

network is needed at a particular node where the CDS construction algorithm runs.

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Guha and Khullar [8] [2] first proposed two polynomial time centralized algorithms in

1998 . The approximation ratio and time complexities of both these algorithms were

O(ln∆) and O(n2) respectively, where ∆ is the maximum node degree and n is the120

network size. Later on in 2005, Adjih [9] proposed a localized algorithm for CDS

construction which was based on multipoint relays (MPR).

In WSN getting the entire topology information at one node is not easy. Therefore,

distributed algorithms are very useful for CDS construction. In 1999, Wu and Li [10]

proposed the first distributed CDS construction algorithm and Alzoubi [11] reported125

its approximation ratio as O(n). Later on Stojmenovic et al. [12] and Das et al. [2]

proposed different distributed algorithms of approximation ratio O(n) and O(log n)

respectively. However, the time and message complexities of these algorithms are quite

high.

Most of the distributed CDS construction algorithms first construct the MIS and130

then connect these MIS nodes to form a CDS. In 2002, for a UDG, Wan [13] pro-

posed a two phase distributed leader initiated CDS construction algorithm of perfor-

mance ratio 8|opt|+ 1. It has the time complexity of O(n), and message complexity

of O(n log n), where |opt| is the size of an optimal CDS. Later on, Cardei et al. [14]

improved the approximation factor to 8|opt|. The time and message complexity of135

Cardei’s algorithm is O(∆n) and O(n) respectively. Cardei’s algorithm grows from

a single leader and uses 1-hop neighbours’ information for identifying Steiner nodes.

The first two phase multiple leaders based distributed algorithm of approximation ra-

tio 192|opt|+ 48 was proposed by Alzoubi [11]in 2002. Li et al. in [15] proposed a

similar distributed algorithm with a better approximation ratio of 172 in 2004. Among140

all the distributed approximation algorithms found in the literature, the best approxi-

mation ratio of (4.8 + ln5)|opt|+ 1.2 is achieved by Li’s S-MIS algorithm [16], Das’s

PSCASTS [17] and Misra’s collaborative cover heuristic [18]. All these algorithms

first construct an MIS and then connect these MIS nodes to form a Steiner Tree, by us-

ing some non-MIS nodes as connectors. The collaborative cover heuristic which uses145

effective coverage as a metric for MIS construction, constructs CDS of smaller sizes in

comparison to other distributed CDS construction algorithm. However the algorithm

has a high message and time complexities of O(n∆2) and O(n) respectively. More

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

recently, we find another two phase distributed algorithm for UDG by Jallu et al. [19]

with time complexity O(∆) and message complexity O(n). Although the algorithm150

outperforms the existing algorithms in terms of running time but its approximation

ratio 104|opt|+ 52 is quite high.

In 2006, Neiberg and Hurink [20] proposed a localized algorithm in which each

vertex decides itself whether to be a part of the dominating set or not depending on

the vertices which are a constant number of hops away from it. The proposed poly-155

nomial time approximation scheme (PTAS) computes the dominating set with (1 + ε)

approximation (ε > 0). The processing time is upper bounded by the number of ver-

tices present in the radius to be explored. In that work, we find a concept of 2-separated

collection which emphasizes that the size of the dominating set can be reduced if the

topology can be divided into local 2-separated collections. Hence, we tried to develop160

this idea by investigating the balance needed between the performance ratio and the

locality that needs to be surveyed.

Currently people are also working on k-connected m-dominating set problem. As the

nodes may fail due to energy depletion or external damage, k-connected m-dominating

sets are really useful for their extended life time. In [21], Zhang et al. proposed an165

algorithm for minimum 3-connected m-dominating set (m ≥ 3) problem and in [22]

Wang et al. constructed a minimum 4-connected m-dominating set in UDG. Ding et al.

[23] defined a special type of CDS named as α minimum routing cost connected CDS

(α-MOC-CDS) in which between any pair of nodes there is at least one path in which

all intermediate nodes belong to α-MOC-CDS and the number of the intermediate170

nodes is smaller than α times of that on the shortest path in the original network. Liu et

al. [24] constructed a special Strongly Connected Bidirectional Dominating Set which

forms a virtual backbone of the network in which the nodes have different transmission

ranges. Shi et al. [25] defined a unique problem named as Energy Harvest CDS (EH-

CDS) to discover the maximum number of CDSs in a static network which takes the175

advantages of rechargeable nodes to become energy harvest networks. Also in the

literature we find a biology-inspired algorithm for Steiner Tree construction by Liu et

al. [26]. Although the algorithm has a lower performance ratio, its running time is

quite high (quadratic) and no message complexity is reported by the authors.

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Beside using CDS, another way of achieving connectivity and coverage in wireless180

networks at minimal cost is by using geographic routing [27] which depends on geo-

graphic location of each node to forward packets greedily. In case greedy forwarding

fails in geographic routing schemes, routing can also be possible through coverage tree

based routing. A coverage tree can be formed either in top-down or bottom-up fashion.

The coverage tree based routing is a NP-Hard problem. In [28], Das et al. presented the185

approximation algorithms for Coverage Tree based routing in wireless networks. They

proposed both centralized and distributed coverage tree based approximation which

incorporates an additional strategy to solve the minimum distance topology (MDT)

problem in wireless network having approximation ratio 1 + lnm, where m is the

number of elements. Although we can achieve connectivity and coverage of WSNs190

at minimal cost by using geographic routing, it requires that each node know their lo-

cation information. Therefore, researchers have proposed virtual coordinate systems

where each node is assigned with some coordinate which is not the actual location or

geographic coordinates but in order to serve as a basis of routing, they reflect the under-

lying connectivity. Virtual coordinates helps in building network overlays (geographic195

hash tables) to support P2P routing protocols. Virtual coordinate system is useful in

low density networks. It can achieve higher success rate and lower hop count when

virtual coordinate assignment using dominating set algorithm is used with geographic

routing. In [29], Shukla et al. proposed a virtual coordinate assignment protocol which

uses dominating set algorithm, to assign virtual coordinates to nodes that have no ge-200

ographic information having approximation ratio (4.8 + ln5)|opt|+ 1.2, where opt is

the minimum size dominating set.

In this work, we proposed a distributive CDS construction algorithm which mini-

mizes the CDS size. Out of the various CDS construction algorithms discussed in this

section, we compare the performance of our proposed algorithm with the general CDS205

construction algorithms which use CDS size as their performance metric.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Network showing an alternative MIS construction technique

4. Motivations and Contributions

Most of the distributive CDS construction algorithms like [13, 14, 16, 18] to achieve

a good performance ratio, construct MIS with a property mentioned in [16]. The prop-

erty says that distance between a MIS and its complement is exactly two hops. This210

property helps in interconnecting the nodes present in the MIS to form the CDS. How-

ever, we observe that in any MIS, each node is maximum three hops away from its

nearest MIS node. Therefore, by selecting MIS nodes with three hop separation we

can reduce the MIS size. Also reduction in MIS size may reduce the CDS size and

hence also improve the ratio of number connectors to number of independent nodes.215

This ratio has a high impact on the network life time. To demonstrate the above point,

let us consider the graph shown in fig. 1. If we select the nodes to form the MIS such

that every node is separated from its nearest neighbour in the MIS by two hops then 1,

3, 5, 7, 9, 11 can form the MIS. However, the MIS can also be formed by the nodes 1,

4, 9. In the latter case each MIS node is separated from its nearest MIS neighbour by220

three hops. Although the MIS size is smaller in this case, but to construct this type of

MIS in a distributed fashion each node needs to know its 2-hop neighbours connectiv-

ity information. Furthermore, in the later stage to construct the Steiner Tree [16], [30]

more message exchanges are needed which increases the overhead.

Further, we also observed that after the construction of Steiner Tree, some of the225

dominators from the MIS can be downgraded to dominatees without any coverage or

connectivity loss. A MIS node can be downgraded to a dominatee if all of its neigh-

bours (if any) can be covered either by some Steiner nodes or by some other MIS nodes.

To demonstrate this point let us consider a graph shown in fig. 2. In this network, the

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: Network illustrating how PDS can improve CDS size over MIS

minimum size MIS is formed by the nodes 1, 4 and 7. Then to connect these MIS230

nodes we need nodes 2 and 3 as connectors. Thus, nodes 1, 2, 3, 4 and 7 form the

CDS. Now, we can observe that, node 1 in the CDS is redundant, because nodes 2, 3, 4

and 7 can also form a CDS. For this reason, we may call this dominating set as pseudo

dominating set (PDS), since in the later stage some of the MIS nodes may be removed

from the CDS for reduction of CDS size further. Motivated with the above discussed235

issue we tried to reduce the CDS size with minimum number of message exchanges

during the CDS construction. We designed a new distributed CDS construction algo-

rithm DCMCDS, which improves the CDS size further over previous approximation

algorithms.

The major contributions of our work are as follows:240

• A greedy distributed approximation algorithm for minimum connected dominat-

ing set problem is proposed where there is no specific initiating node.

• Smaller size MISs are identified using pseudo-dominating set (PDS) constructed

in a distributed manner

• Steiner Tree is constructed to connect the PDS nodes in a distributed manner. In245

the later stage, the algorithm selectively removes some nodes of the Steiner Tree

to minimize the CDS size.

• The proposed distributed algorithm DCMCDS has the time complexity of O(D),

where D is the diameter of the network. The message complexity of the proposed

algorithm is linear.250

• DCMCDS identifies non-trivial CDSs of smaller sizes for both uniform and ran-

dom distribution of nodes.

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5. Centralized CDS Construction by DCMCDS

In this section we briefly discuss DCMCDS, a centralized approach to MCDS forma-

tion [31] to motivate our distributed MCDS construction described in the next section.255

DCMCDS works in the following three phases:

A. Pseudo-dominating set construction

B. Improved Steiner tree construction

C. Removal of redundant dominators

5.1. PDS Construction260

In the first phase of our algorithm, we construct a PDS as an MIS in a greedy manner.

The construction of the PDS is through a simple degree based algorithm which uses

1-hop and 2-hop neighbours’ information of each node. As discussed in the previous

section, an MIS node can be separated from its nearest MIS node by at most three hops,

the algorithm checks only the 1-hop and 2-hop neighbours’ information of each node.265

Before the start of the algorithm, all the nodes are coloured white. The algorithm finds

the dominators and virtual dominators and colours them black and grey respectively. In

each round, the algorithm chooses a node u as the dominator if u has a degree higher

than its 1-hop and 2-hop neighbours. In case of tie, first the original degree and then

the node ID is considered to break the tie. The algorithm can select multiple nodes270

as dominators in a particular round. The colour of the nodes selected as dominators

become black. In a particular round, after the selection of dominators, all the adjacent

nodes of the dominators become dominatees and these dominatees with their incident

edges are deleted from the topology. The degree (effective degree) of the remaining

nodes are updated at the end of each round. The algorithm repeats the above procedure275

round after round until there is no white node with degree greater than zero. At the

end, the nodes with degree zero are considered as virtual dominators and are coloured

grey.

We illustrate the PDS construction process with a distribution of nodes shown in

fig. 3(a), in which the nodes 1, 2, 5, 7, 9, 11 and 12 form the PDS. Fig. 3(b) - 3(f)280

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) Initial Network (b) Node 7 becomes dominator

(c) Adjacent nodes of node 7 with

their edges removed

(d) Node 11, 12 become dominators

(e) Adjacent nodes of node 11, 12

with their edges removed

(f) Nodes 1, 2, 5, 9 becomes virtual

dominator

Figure 3: Example showing PDS construction (Phase 1 of DCMCDS)

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

50 100 150 200
6

7

8

9

10

11

12

Network Size

C
ar

di
na

lit
y

MIS by Collaborative Cover
PDS by DCMCDS

Figure 4: Performance comparison of PDS construction phase with MIS selection scheme

shows the construction of the PDS in step wise. In the first round, node 7 is selected

as dominator as it is having highest degree among all its 1-hop neighbours (3, 4, 6,

8) and 2-hop neighbours (1, 2, 5, 9, 11, 12). Node 10 and 13 are not selected as

dominators because they have degree lesser than their 1-hop neighbours 11 and 12

respectively. After the selection of node 7 as dominator, all its 1-hop neighbours with285

their incident edges are removed from the network. In the next round, among the

nodes with effective degree greater than zero (10, 11, 12, 13), node 11 and 12 are

selected as dominators. Although node 11 has the effective degree same as that of

node 10, node 11 is selected because of its higher original degree. Similarly, node

12 is chosen over 13. After the selection of dominator (7, 11, 12), the remaining290

white nodes 1, 2, 5, 9 are with effective degree zero. So, these nodes are selected

as virtual dominators and are coloured grey. We also perform a simple experiment to

substantiate that our PDS has smaller cardinality than the MIS selected from other CDS

construction schemes. To show that the size of the PDS constructed by our proposed

is smaller than the MIS selected from other CDS construction schemes we conducted295

an experiment. We compare the size of the PDS constructed by our algorithm with

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the sizes of MISs obtained from collaborative cover heuristic [18] for various sizes

of connected networks. Note that collaborative cover heuristic [18] produces smaller

MISs than previous MIS selection techniques [13], [14]. We run each of the approaches

for 100 times and the average result is shown in fig. 4 which shows that our PDS has300

smaller sizes in comparison to collaborative cover heuristic [18].

5.2. Improved Steiner Tree Construction

In the second phase, to connect all dominators and virtual-dominators, the algorithm

selects the Steiner nodes from the dominatees in a greedy manner. The main objective

of this phase is to select a minimum number of dominatees as Steiner nodes to con-305

struct the CDS. At the beginning of this phase, each of the nodes present in the CDS

(dominators and virtual-dominators), forms separate components. For each dominatee,

the algorithm calculates connection-load which is the current count of number of com-

ponents it is connected with. In each round, the algorithm selects a dominatee as the

connector if the dominatee has a connection-load higher than its rival dominatees. In310

case of a tie, first the node degree and then the node ID is considered to break the tie.

The selected dominatees become connectors by changing their colour to blue. It forms

a new component by combining the components it is connecting with itself. After each

round, the algorithm updates the connection-load of each remaining dominatees. The

procedure is repeated until all the dominators and virtual-dominators do not form a315

single component.

We illustrate the Steiner Tree construction phase through the PDS computed in Phase

1 of this algorithm. Post PDS construction is shown in fig. 5. Fig. 5(a) shows the PDS

in which we find the nodes 7, 11, 12 are dominators and nodes 1, 2, 5, 9 are virtual-

dominators. The remaining nodes 3, 4, 6, 8, 10, 13 are dominatees. The dominators and320

virtual-dominators form individual components. The connection-load of the domina-

tees 3, 4, 6, 8, 10, 13 are 3, 2, 3, 3, 1, 1 respectively. In the first round, node 3 is chosen

as the connector although its rival dominatees 6 and 8 have same connection-load (3)

and degree (3), however node 3 is with least node-ID. Node 3 forms a new component

1-2-3-7. Now the connection-load of the remaining dominatees 4, 6, 8, 10 becomes 1,325

3, 3, 1, 1 respectively. So, among nodes 6 and 8, node 6 is chosen as the connector

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) PDS of the initial network (b) Node 3 becomes connector

(c) Node 6 becomes connector (d) Node 8 becomes connector

Figure 5: Example showing Steiner Tree construction (Phase 2 of DCMCDS)

in the second round since it has smaller node-ID (connection-load and degree are the

same as node 8). Node 6 forms a new component 1-2-3-6-7-11. In a similar way, in the

next round, node 8 is chosen as the connector and forms a single component consisting

of all the dominators and virtual-dominators.330

5.3. Removal of redundant dominators

This phase of DCMCDS reduces the CDS size by removing redundant dominators

and virtual-dominators (if any). A node in the PDS (dominator or virtual-dominator) is

redundant if after removing it from the CDS, the resultant CDS is still connected and

dominates all other non-CDS nodes. A virtual-dominator is downgraded to a dominatee335

in two cases: (1) it is connected to the CDS through only one connector or (2) it is

connected to the CDS through two connectors and they are adjacent. In all other cases,

it is upgraded to a dominator. If the dominatees of a dominator x are adjacent to some

other dominators or connectors, then x can be downgraded or not according to: If x

is connected to the CDS by one connector or if it is connected to the CDS by two340

connectors and they are adjacent, then the dominator is downgraded to a dominatee.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6: Final CDS after removing redundant nodes

Otherwise, the status of the node x remains as it is.

After getting the initial CDS as shown in fig. 5(d), we can reduce the size of it by

downgrading the virtual-dominators 1, 2, 5 and 9 as they are connected to the CDS by

one connector. The final CDS is shown in fig. 6345

6. Distributed DCMCDS scheme

In this section, we discuss the details of the distributed algorithm of DCMCDS

scheme. During the execution of the algorithm, each node of the network u, main-

tains the following variables:

• colour (ucolour): This variable shows the current status of the node. The initial350

colour of each node is white. The nodes change their colors either to black, grey,

yellow or blue when their status changes to either dominator, virtual-dominator,

dominatee or connector respectively.

• nodeID (uID): An ID, which is unique for each node.

• originalDegree (uodegree): This variable stores the initial degree of the node in355

the graph.

• effectiveDegree (uedegree): This variable stores the effective degree of a node

u in the graph. Effecive degree of a node varies from time to time. Effective

degree of a node at a particular moment is the number of white nodes adjacent

to that node at that particular moment.360

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• componentID (ucID): An ID to demarcate nodes belonging to different compo-

nents. All nodes in the same component have the same componentID , which is

the least nodeID of all the dominators / connectors forming the component.

• 1HopNebsTable (N1(u)): A table stored at node u which records the nodeID ,

colour, originalDegree and effectiveDegree of all its adjacent nodes.365

• 2HopNebsTable (N2(u)): A table stored at node u which records the nodeID ,

colour, originalDegree, effectiveDegree, mutualNeighbor , mnColor for its

distance-2 neighbours (excluding itself). N2(u) contains even those 2-hop neigh-

bours of uwhich are also adjacent to u. The multi-valued attribute mutualNeighbor

in N2(u), corresponding to a 2-hop neighbour v, contains the nodeIDs of all the370

nodes that are adjacent to both u and v. The multi-valued attribute mnColor

stores the colour of the corresponding mutualNeighbour .

• cdsList (ucdsList): This list contains the nodeIDs of the members (dominators /

virtual-dominators / connectors) of the component, to which node u belongs.

• connectionCount (uccnt): This variable records the number of independent375

components adjacent to u.

• rivalList (urivalList): This list contains the nodeIDs of the dominatees which

are adjacent to the same component, to which node u is adjacent.

In the following sub-sections, first we discuss each of the phases of our distributed

DCMCDS scheme in detail. At the end of this section, we discuss the phase transition380

of the proposed distributed algorithm.

6.1. Node Initialization and neighbourhood table creation

In this phase of the distributed DCMCDS, each of the nodes initialize their variables

and neighbourhood tables by sending and receiving the following messages:

• HELLO: Each node broadcasts this message to inform about its presence to its385

neighbours.

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• OWN INFO: Through this message a node informs its originalDegree to its

neighbours.

• NEB INFO: This message is sent by a node, to pass on its detailed neighbour

information, to all of its neighbours.390

Algorithm 1 describes the detail initialization procedure.

Algorithm 1 Node Initialization
1: Each node u, initializes its variables as 〈ucolour ← white〉, 〈ucID ← nil〉, 〈uodegree ← 0〉,
〈uedegree ← 0〉, 〈uccnt ← 0〉, 〈N1(u)← nil〉, 〈N2(u)← nil〉.

2: Each node broadcasts a HELLO message.

3: After a lapse of time τ , every node u ascertains its number of neighbours from the number of HELLO messages

received and updates its state variable originalDegree and effectiveDegree as uodegree ← uedegree ←
number of HELLO messages received.

4: A nodeu after updating its state variable originalDegree, broadcasts a message OWN INFO = 〈uID, uodegree〉.
5: A node v adjacent to u, on receiving OWN INFO message from u, adds a tuple

〈uID, white, uodegree, uodegree〉 toN1(v).

6: When all the OWN INFO messages are delivered, each node v broadcasts a message NEB INFO = 〈vID, N1(v)〉.
7: Every node w, which is a distant-2 neighbour of u, on receiving message NEB INFO from v, adds all tu-

ples in N1(v) − {〈wID, white, wodegree, wodegree〉} to N2(w) with mutualNeighbor ← vID and

mnColor ← white.

6.2. Distributed PDS construction

In this phase, each node uses its neighbourhood information (stored in its 1HopNebTable

and 2HopNebTable) to decide whether it can become a dominator or not. A node on

becoming a dominator, virtual-dominator or a dominatee, spread its new status infor-395

mation up to two hops, so that its 1-hop and 2-hop neighbours can update their tables.

In each round, one or more nodes become either a dominator or a virtual-dominator.

At the beginning of each round, the white nodes check their updated 1HopNebsTable

and 2HopNebsTable , to decide whether they can become a dominator in the current

round or not. When all the nodes change their colour from white to some other colour,400

the PDS construction is over. This phase constructs the PDS in a distributed manner

using the following messages:

• DOMINATOR: A node broadcasts this message when it becomes a dominator.

• DOMINATEE: A node broadcasts this message when it becomes a dominatee.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• VIRTUAL DOMINATOR: A node broadcasts this message when it becomes a405

virtual-dominator.

• UPDATE NEB INFO: When the effectiveDegree of a node is changed, it in-

forms this to its neighbours through this message.

• UPDATE NODE COL: This message is sent by a dominatee node, to inform

about the change in colour of any of its neighbours to its other neighbours.410

The detail procedure for distributed PDS construction is given in Algorithm 2.

6.3. Distributed Steiner Tree construction

At the beginning of this phase, nodes are coloured either black, grey, or yellow. Each

of the black and grey node forms a separate component and stores its own nodeId

in its cdsList as it is the only node of its component so far. In each round of this415

phase, the CDS members (black / grey / blue nodes) of each component send a request

message to their adjacent yellow nodes (dominatees) to get their connectionCount

(number of independent components they are connected to). The dominatees after get-

ting all the request messages, reply to their adjacent CDS members with their own

connectionCount . The CDS members of each component after getting these reply420

messages, prepare a list of their adjacent dominatees (known as rivalList). They circu-

late their own rivalList among other CDS members of the same component to prepare

the complete rivalList of the whole component. Once the CDS members of a compo-

nent prepare the complete rivalList , they send this rivalList along with their cdsList

together, to their yellow neighbours. The rivalList contains the the nodeIds of the rival425

members along with their original degree. Each of the yellow dominatees, after getting

the rival information (rivalList) of the components they are connected with, arranges

the rival nodes in non-increasing order of connectionCount . After this, it also decides

to participate in this process or not. If a yellow node finds all its rivals are connected

to the same component to which it is connected, and each of its 2-hop black neigh-430

bours are present in one of the received cdsLists, then it decides not to participate in

this process anymore. If a yellow node decides to participate and finds itself ranked

first in its rivalList , then it becomes a connector. A node on becoming a connector,

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2 Distributed PDS Construction
Input: A connected graphG(V,E).

Output: PDS of the graphG(V,E) formed by black and grey nodes.

1: Each white node u, checks itself after each period of time, τ to decide whether it can be a dominator or not, till it is no

longer white in colour.

2: A white node u, elects itself as a dominator, if any of the following conditions apply:

(i) uedegree > vedegree∀ white nodes v ∈ N1(u) ∪N2(u).

(ii) uedegree ≥ vedegree∀ white nodes v ∈ N1(u) ∪ N2(u), but uodegree > wodegree∀ white nodes

w ∈ N1(u) ∪N2(u) where uedegree = wedegree.

(iii) uedegree ≥ vedegree and uodegree ≥ vodegree∀ white nodes v ∈ N1(u)∪N2(u), but uID < wID∀
white nodes w ∈ N1(u) ∪N2(u) where uedegree = wedegree and uodegree = wodegree.

3: A white node u on becoming a dominator, performs the following operations:

(i) Updates its colour as 〈ucolour ← black〉.

(ii) Updates the colour of each of its 1-hop white neighbours to yellow inN1(u)

(iii) Update its componentID as 〈ucID ← uID〉.

(iv) Broadcasts message DOMINATOR(uID).

4: A white node v on receiving DOMINATOR(uID) message from a node u, performs the following operations:

(i) Updates its state variable as 〈vcolour ← yellow〉

(ii) Updates the colour of node u inN1(v) andN2(v) as 〈ucolour ← black〉.

(iii) Changes the colour of the node x ∈ N2(v) to yellow if xcolour = white and the mutualNeighbour of

x is u.

(iv) Broadcasts message DOMINATEE(vID, uID).

5: A white node w on receiving DOMINATEE(vID, uID) message from node v, performs the following operations:

(i) Updates its effectiveDegree as 〈wedegree ← wedegree − 1〉

(ii) Updates the colour of node v inN1(w) andN2(w) as 〈vcolour ← yellow〉.

(iii) Updates the colour of node u inN2(w) as 〈ucolour ← black〉.

(iv) Updates the colour of the mutualNeighbor v inN2(w).

[Note that when v becomes a dominatee it is deleted from the network (refer to Step 12 of Algorithm 1 in [31]). So,

the 2-hop neighbours of w, only through v, are no more the 2-hop neighbours. Henceforth, the 2-hop neighbours

with non-white mutual neighbour only are not considered as 2-hop neighbours of w during dominator election

process in the next round (Step 2).]

(v) Broadcasts UPDATE NEB INFO (wID, wedegree, vID) message .

6: A yellow node w on receiving DOMINATEE(vID, uID) message from node v, performs the following operations:

(i) Updates the colour of node v inN1(w) as 〈vcolour ← yellow〉.

(ii) Updates the colour of node u inN2(w) as 〈ucolour ← black〉.

(iii) Broadcasts UPDATE NODE COL (vID, yellow) message.

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7: A node p on receiving UPDATE NEB INFO (wID, wedegree, vID) message from

w, performs the following operations:

(i) Updates the colour of node v in N1(p) and N2(p) as 〈vcolour ← yellow〉.

(ii) Updates the effectiveDegree of w in N1(p) as wedegree.

8: At any instance, when the effectiveDegree of a white node u gets decremented to

zero, it become a virtual-dominator and updates its colour as 〈ucolour ← grey〉. It

informs its new role by broadcasting VIRTUAL DOMINATOR (uID) message to

its neighbours.

9: A yellow dominatee v on receiving the DOMINATOR message from u:

(i) Updates the colour of node u in N1(v) as 〈ucolour ← black〉.

(ii) Broadcasts UPDATE NODE COL (uID, black) message.

10: A yellow node v on receiving the VIRTUAL DOMINATOR message from u:

(i) Updates the colour of node u in N1(v) as 〈ucolour ← grey〉.

(ii) Broadcasts UPDATE NODE COL (uID, grey) message.

11: A node p on receiving UPDATE NODE COL (nid, ncolor) message, updates the

colour of node x ∈ N1(p) ∪N2(p) with xID = nid as 〈xcolour ← ncolor〉.
12: Each white node u after waiting for a period of time τ , broadcasts the message

NEB INFO = 〈uID, N1(u)〉, if the effective degree of any of its 1-hop neighbours

has changed in the last round.

13: A node v on receiving NEB INFO = 〈vID, N1(u)〉 message from u updates its

2-hop neighbours’ information present in N2(u).

14: Phase-I terminates when eventually all nodes change their colour from white to

some other colour.

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

changes its colour to blue, forms a new component by merging the components it con-

nects with itself. It assigns the componentID of the new component as the minimum435

of the componentIDs of the merged components and its own nodeID . The cdsList of

the new component contains all the existing CDS member of the merged components

and the connector. The connector sends the updated component information to all its

neighbours which in turn spread the component information to all the members of the

same component. The colour of the connector is also sent to its 2-hop neighbours. Af-440

ter waiting for a period of time, all the CDS nodes start their next round by sending the

request messages for getting the connectionCount of their yellow neighbours. This

phase continues until there is no yellow node that can still participate in this phase.

This phase uses the following messages to constructs the Steiner Tree:

• CONN INFO REQ: The black/grey/blue nodes of a component broadcast this445

message to their yellow neighbours to get their connectionCount .

• CONN INFO REP: The yellow dominatees send their connectionCount to their

blue/grey/black neighbours through this message.

• COMP RIVAL INFO: The black/grey/blue nodes of a component broadcast this

message, to inform the yellow nodes about their rivalList . They also send their450

cdsList with this message, which is used by the yellow nodes to decide whether

to participate in this phase or not.

• RIVAL INFO: The black/grey/blue nodes of a component, send this message

to their component members, to prepare the complete rivalList of the whole

component to which they belongs.455

• CONNECTOR: A yellow node broadcasts this message, when it becomes a con-

nector to notify its neighbours about its new role.

• UPDATE COMP INFO: Black/grey/blue nodes of a component, send this mes-

sage to their component members, to update their componentID and cdsList .

• UPDATE NODE COL: This message is sent by a dominatee node, to inform460

about the change in colour of any of its neighbours to its other neighbours.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 3 Distributed Steiner Tree Construction
Input: A connected graphG(V,E) with its PDS formed by the black and grey nodes.

Output: Connected Dominating set of the graphG(V,E) formed by black, grey and blue nodes.

1: At the end of PDS construction phase, each black and grey node x, forms isolated separate components and initiates the

Steiner Tree construction phase as follows:

(i) Updates its cdsList as 〈xcdsList ← {xID}〉.

(ii) Initializes its componentID as its ID by 〈xcID ← xID〉

(iii) Broadcasts the CONN INFO REQ(xID, xcID, xcdsList) message.

2: Each yellow node u, after getting the CONN INFO REQ messages from all of its black/grey/blue neighbours:

(i) Calculates its connectionCount (uccnt), which is the count of number of independent components it is con-

nected to.

(ii) Broadcasts a reply message CONN INFO REP(uccnt, uID, uodegree) to all its black / grey / blue neigh-

bours.

3: Each black / grey / blue node w, on receiving a CONN INFO REP message from one of its yellow neighbours u,

updates its rivalList by including the node u in it with its details.

4: Each black / grey / blue node w, after receiving CONN INFO REP messages from all of its yellow neighbours:

(i) Circulates its rivalList among other component members (if any) to prepare the rivalList of the whole compo-

nent.

(ii) After preparing the complete rivalList of the whole component, it broadcasts the message

COMP RIVAL INFO(wID, wRivalList, wcdsList).

5: Each black / grey / blue node w, to prepare the complete rivalList of the whole component, circulates its rivalList

among other component members in the following way:

(i) If it is the only member of the component, then its rivalList is the rivalList of the whole component.

(ii) Else if it has only one component neighbour, then it sends the message RIVAL INFO(wcID, wRivalList) to

that component neighbour.

(iii) Else it waits to receive the RIVAL INFO message from all its component neighbours except one.

6: Each black / grey / blue node z, on receiving RIVAL INFO(wcID, wrivalList) message from the same component

neighbour w:

(i) Updates its cdsList as 〈zrivalList ← zrivalList ∪ wrivalList〉.

(ii) If it has received the RIVAL INFO message from all its component neighbours except one, then it sends the

message RIVAL INFO(zcID, zrivalList) to the component neighbour from which it has not received the

RIVAL INFO message.

(iii) Else if it has received the RIVAL INFO message from all its component neighbours, then it sends the message

RIVAL INFO(wcID, wRivalList) to the component neighbours to which it has not sent the RIVAL INFO

message.

7: Each yellow node after receiving COMP RIVAL INFO messages from all its adjacent black / grey / blue nodes, orders

its received rival nodes according to the following criteria:

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(i) All the dominatees are arranged in non-increasing order of their connectionCount .

(ii) If two dominatees have the same connectionCount , then the one with a higher originalDegree is ranked

higher.

(iii) If two dominatees have the same connectionCount and originalDegree, then the one with a smaller

nodeID is ranked higher.

8: Each yellow node w, after preparing the rivalList , decides whether to further participate in this phase or not. It

participates no longer in the process, if it satisfies the following two conditions:

a) The conectionCount of itself and its rivals is 1. This indicates that the yellow node and its rivals are adjacent to

the same component.

b) There is no black node in its 2HopNebsTable that does not occur in any of the received cdsLists from their

black/grey/blue nodes.

9: If a yellow node w decides to participate in the process and finds itself ranked first in its rivalList , then it becomes a

connector and executes the following actions:

(i) Updates its state variable as 〈wcolour ← blue〉

(ii) wcdsList ← union of cdsList of the black/blue nodes it is connected with and its own ID, wID .

(iii) wcID ← minimum of componentIDs of the black / blue nodes it is connected with and its own ID, wID .

(iv) Broadcasts CONNECTOR(wID , wcID , wcdsList) message for its neighbours to notify them about its new

role.

10: A node x, on receiving CONNECTOR (wID , wcID , wcdsList) message from w, executes the following:

(i) Update the colour of w as 〈wcolour ← blue〉 in itsN1(x).

(ii) Broadcasts UPDATE NODE COL (wID, blue) to its neighbours.

(iii) If xID ∈ wcdsList

a) Update its componentID as 〈xcID ← wcID〉

b) Update its cdsList as 〈xcdsList ← wcdstList〉

c) Broadcast UPDATE COMP INFO (wcID , wcdsList) to its neighbours if it has not send the same

〈wcID, wcdsList〉 before through any of the CONNECTOR or UPDATE COMP INFO message.

11: A node y, on receiving UPDATE COMP INFO (wcID , wcdsList) message from w, executes the following: If it

has not send the same 〈wcID, wcdsList〉 before through either of the CONNECTOR or UPDATE COMP INFO

message and yID ∈ wcdsList then

(i) Update its componentID as 〈ycID ← wcID〉.

(ii) Update its cdsList as 〈ycdsList ← wcdstList〉.

(iii) Broadcasts UPDATE COMP INFO (wcID , wcdsList) message.

12: After waiting for a certain period of time τ , each black / grey / blue node sends the CONN INFO REQ(xID , xcID ,

xcdsList) message to all its neighbours again and the procedure from step 2 onwards is repeated.

13: This phase of connector selection ends when no yellow dominatee participates further. When no yellow node partic-

ipates further, no new connectors will be created. Due to which no more UPDATE COMP INFO messages will be

sent. So black / grey / blue nodes will not send any more CONN INFO REQ messages.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The detail procedure for distributed construction of Steiner Tree is given in the Al-

gorithm 3.

6.4. Distributed removal of redundant dominators

In this phase, each grey and black node checks whether to downgrade itself or not465

to reduce the overall CDS size. If a grey node finds that either it is connected to

the CDS by only one CDS node or the CDS nodes (in case of multiple connection

with CDS nodes) are connected without it, then it downgrades itself to a dominatee,

otherwise it upgrades itself to a dominator. After it upgrades / downgrades it sends its

new role to its neighbours, which in turn inform their neighbours. However, if a black470

node satisfies the same condition (as discussed above for a grey node), it has to check

whether all its dominatees have some alternative dominators or not. If it finds that all its

dominatees have some alternative dominators, then it downgrades itself to a dominatee

and informs its neighbours, which in turn inform their neighbours, otherwise it remains

as a dominator. A black node, to find out the availability of the alternative dominators of475

its dominatees, sends a request message to its dominatees and waits for their replies. If

it gets the TRUE reply from all of them, then it downgrades itself, otherwise it cancels

its previous request by sending a cancel message to all of them. A dominatee which

gets a request message to check its alternative dominators, sends a TRUE reply to the

first dominator from which it has received the request. After that, it waits for either the480

change in status of that dominator (to which it has sent the TRUE reply), or the cancel

message from it. If it finds that the dominator has downgraded to a dominatee, it sends

a FALSE reply to all of the alternative dominator requests after that. However, if it

gets a cancel message from the dominator to which it has already sent the TRUE reply,

then it sends the TRUE reply to the next dominator out of the dominators waiting in485

the queue for its reply. This phase removes some of the redundant dominating nodes in

a distributed manner by using the following messages:

• UPGRADE DOM: A grey virtual-dominator broadcasts this message to its neigh-

bours when it decides to change its role from a virtual-dominator to a dominator.

• DOWNGRADE DOM: This message is sent by either a virtual-dominator or a490

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

dominator when it decides to downgrade itself to a dominatee.

• ALT DOMINATOR REQ: A black node sends this request message to its dom-

inatees to know whether they have some alternative dominators or not.

• ALT DOMINATOR REP: A yellow dominatee sends TRUE reply with this

message if it is adjacent to some dominator/connector other than the domina-495

tor from which it received the ALT DOMINATOR REQ message. Otherwise, it

returns FALSE reply with this message.

• ALT DOMINATOR REQ CANCEL: If a black node receives FALSE message

from any one of the yellow nodes through the ALT DOMINATOR REP message

it sends this message to all its yellow neighbours.500

The detail distributed procedure for removing the redundant dominating nodes is given

in the Algorithm 4.

6.5. Phase Transition

In any distributed algorithm, phase transition is very important. We handle the phase

transition of our distributed algorithm in the following way. Each node after creating505

its 1HopNebTable and 2HopNebTable should start the Distributed PDS Construction

phase. A non-white node can begin the Distributed Steiner Tree Construction phase

if it finds all its neighbours are non-white. The Distributed Steiner Tree Construc-

tion phase messages are queued by any node that still has white neighbours, until all

its neighbours become non white. These queued messages are handled by the node510

when it finds all its neighbours have become non white. In the Distributed Steiner Tree

Construction phase, each black dominator and grey virtual-dominator keeps on send-

ing CONNECTION INFO REQ messages while they find some of the yellow nodes

participate in this phase (See the Line 8 of Algorithm 3 for yellow node participation

condition). If none of the yellow nodes participate in this phase, then the black or grey515

nodes will not receive any UPDATE COMP INFO messages. So, if the black or grey

nodes do not receive the UPDATE COMP INFO messages up to a period of time, then

it can be sure that the Distributed Steiner Tree Construction phase is over. Any black

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 4 Distributed removal of redundant dominators
Input: A connected graphG(V,E) with its CDS formed by the black, grey and blue nodes.

Output: A potentially smaller CDS of the graph G(V,E) after removing some of the redundant dominators and virtual-

dominators.

1: Each grey node v changes its state according to the following (Steps 2 - 10):

2: if there exists only one connector x ∈ N1(v) with xcolour = blue or there exists at least two connectors x, y

∈ N1(v) ∩ N2(v) with xcolour = ycolour = blue and mutualNeighbour corresponding to x being y and

vice-versa then

3: Updates its colour as 〈vcolour ← yellow〉.
4: Broadcasts the UPDATE NODE COL(vID, yellow) message.

5: Broadcasts the DOWNGRADE DOM(vID) message.

6: else

7: Updates its colour as 〈vcolour ← black〉
8: Broadcasts the UPDATE NODE COL(vID, black) message.

9: Broadcasts the UPGRADE DOM(vID) message.

10: end if

11: Each black node v may changes its state according to the following (Steps 12 - 21):

12: if there exists only one connector x ∈ N1(v) with xcolour = blue or there exists at least two connectors x, y

∈ N1(v) ∩ N2(v) with xcolour = ycolour = blue and mutualNeighbour corresponding to x being y and

vice-versa then

13: Node v broadcasts a request message ALT DOMINATOR REQ for all its yellow neighbours and wait for their

replies.

14: if It receives ALT DOMINATOR REP(TRUE) message from all its yellow neighbours then

15: Updates its colour as 〈vcolour ← yellow〉.
16: Broadcasts the UPDATE NODE COL(vID, yellow) message.

17: Broadcasts the DOWNGRADE DOM(vID) message.

18: else

19: Broadcasts the ALT DOMINATOR REQ CANCEL message.

20: end if

21: else

22: The black node v does not change its state.

23: end if

24: A yellow node after receiving the first ALT DOMINATOR REQ message, sends the

ALT DOMINATOR REP(TRUE) message to that node and enters into the waiting state if it is connected to

some other dominator or connector. Otherwise, it sends the ALT DOMINATOR REP(FALSE) message.

25: A yellow node in the waiting state remains in that state until it receives either ALT DOMINATOR REQ CANCEL

or DOWNGRADE DOM message from the node to which it has already sent the ALT DOMINATOR REP(TRUE)

message.

26: A yellow node in the waiting state, inserts the new nodes in a queue from which it receives the new

ALT DOMINATOR REQ messages.

27: When a yellow node in the waiting state receives the DOWNGRADE DOM(vID) message:

(i) It sends ALT DOMINATOR REP(FALSE) message to the nodes in the queue and comes out of the waiting

state.

(ii) After this if it receives ALT DOMINATOR REQ messages from any node, it sends the

ALT DOMINATOR REP(FALSE) message to that node immediately.

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28: When a yellow node in the waiting state receives

the ALT DOMINATOR REQ CANCEL message, it sends

ALT DOMINATOR REP(TRUE) message to the first nodes in the queue

(if the queue is non-empty) and remains in the waiting state. In case of empty

queue it comes out of the waiting state.

29: A node x on receiving DOWNGRADE DOM(vID) from node v:

(i) Updates the colour of node v in N1(x) ∪N2(x) as 〈vcolour ← yellow〉

(ii) Broadcasts the UPDATE NODE COL(vID, yellow) message..

30: A node x on receiving UPGRADE DOM(vID) from node v:

(i) Updates the colour of node v in N1(x) ∪N2(x) as 〈vcolour ← black〉

(ii) Broadcasts the UPDATE NODE COL(vID, black) message.

dominator or grey virtual-dominator which finds the Distributed Steiner Tree Construc-

tion phase is over can start the last phase of the distributed CDS construction algorithm520

to remove the redundant dominators or virtual-dominators.

7. Algorithm Analysis

In this section, first we find the performance ratio of our proposed distributed algo-

rithm. Later we also find the time and message complexity of our proposed scheme.

To do this, we use certain lemmas and theorems. The detail proofs of all of these can525

be found in this section.

Lemma 7.1. At the end of distributed PDS construction phase, an MIS is formed by

the black and grey nodes resulting from the Algorithm 2.

Proof. The distributed PDS construction terminates when each white node changes its

colour. Algorithm 2 ensures that every yellow node is adjacent to at least one black530

node. Hence, by definition 1, the set of black and grey nodes form a Dominating Set.

We can also observe that when a node changes its colour to black all its neighbours

become yellow. Similarly, a node changes its colour to grey when it finds that all its

neighbours have changed their colour to yellow. So, no node in the DS will find its

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

neighbour in the set. So, the DS is independent. Also, DS is maximal because every535

omitted (yellow) node in the graph is dominated. Hence, by definition 2, the set of

black and grey nodes form an MIS.

Theorem 7.2. Distributed DCMCDS constructs a PDS with the property: the distance

between any pair of complementary subsets of the PDS have a distance of exactly two

or three hops.540

Proof. In order to prove this property about our constructed PDS, we first need to

show that for a |PDS| > 1, if u ∈ PDS, then the nearest black or grey neighbour of

u in terms of number of hops is separated from u by at most three hops. We prove

this by contradiction for any PDS whose cardinality is greater than 1. Let us assume

that u ∈ PDS and the nearest black or grey node to u, in terms of number of hops, is545

separated from u by more than three hops. Let v be a strictly 2-hop neighbour of u

which is not adjacent to u. If such a v does not exist, then it implies that all 2-hop

neighbours of u are also its 1-hop neighbours, which in turn indicates that u dominates

the whole connected graph. This contradicts |PDS| > 1. So, for |PDS| > 1, let v be a

non-adjacent 2-hop neighbour of u.550

Case I: v is either a dominator or a virtual-dominator. This implies that v is in PDS.

So, we have a node v ∈ PDS which is two hops away from u. This contradicts our

assumption. So this case is not possible.

Case II: v is neither a dominator nor a virtual-dominator. By lemma 7.1, the PDS,

which comprises all the black and grey nodes, is a maximal independent set. This555

implies that v is adjacent to at least one node in the PDS. Let w ∈ PDS be adjacent to

v. This means that u and w are 3-hop neighbours. This also contradicts our assumption.

So, this case is not possible as well. Thus, our assumption does not hold true for any

u ∈ PDS. This implies that u is separated from its nearest black or grey neighbour by

at most three hops. Again, from lemma 7.1, it follows that any two nodes in the PDS560

are separated by at least two hops. Therefore, any pair of complementary subsets of

the PDS have a distance of exactly two or three hops.

Lemma 7.3. The Distributed Steiner Tree construction phase of the proposed scheme

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(Algorithm 3) constructs a single connected component from the PDS obtained from

the Distributed PDS Construction phase.565

Proof. Here, we focus on the situation at the end of the connector selection phase.

From the step 8 of Algorithm 3, we know that at the end of the connector selection

phase, each yellow node w satisfies:

(i) The conectionCount of itself and its rivals is 1.

(ii) There is no black node in its 2HopNebsTable that does not occur in wcdsList.570

We show by contradiction that all black, blue and grey nodes are in one component.

Suppose otherwise, let A be one component and let B be a nearest different compo-

nent (minimum number of hops away). Since, we have considered the network as a

connected graph, A and B must be connected by one or a chain of yellow nodes. Let

us consider the shortest chain joining A and B.575

Case I: A and B are joined by a single yellow node, let u be that node. So, the

connectionCount of u will be 2, which violates the above condition (i).

Case II: A and B are joined by a chain of two yellow nodes, say u (adjacent to A) and

v (adjacent to B). Dominatee u must be adjacent to at least one black node. If a black

node is adjacent to u belongs to B, then A and B can be joined only by u. In that case,580

the shortest chain length joining components A and B will be one which contradicts

the assumption of this case. In the other hand, if the dominator adjacent to u belongs

to a separate component (other than A and B), then B no longer remains the nearest

component to A. Therefore, these contradictions imply that u is adjacent to at least

one black node that belongs to component A. Similarly, v is adjacent to at least one585

black node that belongs to component B. Hence, without any loss of generality, we can

consider the end nodes in both components A and B to be black. Let u be adjacent to a

black node x of component A and v be adjacent to a black node y of component B. So

y is a 2-hop neighbour of u. In this case, as y belongs to a different component, u will

not find y in its cdsList. This violates the above condition (ii).590

Case III: A and B are joined by a chain of yellow nodes with a chain length greater

than two. Let us consider the second yellow node from the end (nearest to component

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A). If the second yellow node is adjacent to a black node belonging to A, then we

could have made this the first node in the chain contradicting this as our choice of a

shortest chain. If the second yellow node is not adjacent to A, then it must have a black595

node in its 1-hop neighbourhood that is not in A. Either this node is in B (contradicting

that the shortest chain is more than 2), or it is in some other component different from

both A and B (contradicting B being the nearest neighbouring component). So, in all

these cases we have a contradiction. Therefore, we conclude that there is only one

component at the end of the process. This concludes the proof.600

Theorem 7.4. From a given a network, DCMCDS constructs a CDS in finite time

period.

Proof. We present the correctness proof of our proposed scheme in two parts. First, we

show that DCMCDS operates in finite time and then, we prove that a CDS is definitely

obtained. In order to prove that DCMCDS works in finite time, we individually prove605

that all three phases of the algorithm namely distributed PDS construction, distributed

Steiner Tree construction and distributed removal of redundant dominating nodes all

takes finite time. In each round, the distributed PDS construction algorithm searches

for a potential dominator locally from the remaining white nodes in the local 2-hop

neighbourhood. At every round, a white node is selected as dominator and its colour610

is updated to black and all its adjacent nodes are updated as dominatees by changing

their colours to yellow. When any white node discovers all its adjacent nodes to be

yellow, it updates itself as virtual-dominator by changing its colour to grey. The PDS

construction algorithm terminates when there is no white node left. We now prove by

contradiction that this terminating condition must results in termination of the algo-615

rithm after a few rounds. Let u be a node which is still white.

Case I: If all adjacent nodes of u are yellow, then u must be a virtual-dominator.

Hence, u must change its colour to grey.

Case II: If a black node v is adjacent to u, then u is a dominatee. Hence, u must

change its colour to yellow.620

Case III: If there are one or more white nodes around u, then one white node among

them can be selected as dominator. If u is selected, then u changes its colour to black,

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

otherwise cases I, II and III are followed until u changes its colour after a few rounds.

Therefore, u will eventually change its colour from white. Thus, each white node will

eventually change its colour either to black, yellow or grey accordingly completing the625

PDS construction. Lemma 7.3 shows that distributed Steiner Tree construction post-

PDS selection results in a single connected component after a finite number of opera-

tions. Now, the selective removal of virtual-dominators and dominators (Algorithm 4)

takes constant time as each grey node performs these steps independently. Hence,

DCMCDS completes execution in finite time. We next show that the proposed algo-630

rithm determines a CDS. Lemma 7.1 proves that the set of all black and grey nodes,

obtained from PDS construction, is an independent dominating set (MIS). Lemma 7.3

shows that the Steiner Tree construction forms one connected black-blue-grey compo-

nent. The latter itself is a CDS as it connects all the nodes in the PDS. It can also be

shown that after the removal of the selected virtual-dominators and dominators the re-635

sulting component is still a CDS as the algorithm takes care of connection and coverage

while removing these nodes from the CDS. This concludes the proof.

Lemma 7.5. In any UDG, each MIS size is upper-bounded by 3.8|opt|+ 1.2, where

|opt| is the size of the MCDS.

Proof. Directly from the result found in [32].640

Lemma 7.6. Maximum number of Steiner nodes obtained from distributed DCMCDS

is (1 + ln 5)|opt|, where |opt| is the size of any optimal CDS.

Proof. The proof is direct from the theorem 2 of [16].

Theorem 7.7. The size of the CDS obtained by DCMCDS is upper bounded by

(4.8 + ln 5)|opt|+ 1.2, where |opt| is the size of the MCDS.645

Proof. In the first phase, DCMCDS constructs the PDS as an MIS. In the second phase,

it finds the Steiner nodes to construct the Steiner Tree. In the last phase, it removes the

redundant dominating nodes (both dominators and virtual-dominator) to reduce the

CDS size.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Therefore, we have,

|CDS| ≤ |PDS|+ |Steinernodes|

As PDS is an MIS, from lemma 7.5 and 7.6 we have:

|CDS| ≤ 3.8|opt|+ 1.2 + (1 + ln 5)|opt|

= (4.8 + ln 5)|opt|+ 1.2

Therefore, the performance ratio of DCMCDS is (4.8 + ln 5)|opt|+ 1.2.

Theorem 7.8. The time complexity of DCMCDS is O(D) time and O(D) rounds, where

D is the network diameter.

Proof. In the proposed distributed scheme multiple dominators are selected in a single650

round. After the selection of a dominator from its 2-hop neighbours all its adjacent

neighbours become dominatees. In the next round the algorithm selects the dominators

from the remaining white nodes. The worst case occurs when in each round only one

node is selected as the dominator or virtual-dominator, that means the dominator are

selected one after another. The longest stretch of dominators and virtual-dominators655

should exist along the network diameter. Note that network diameter is the largest of

all the shortest distances between any pair of nodes. In the worst case as discussed,

the number of rounds is at most O(D). Therefore, the time complexity for PDS con-

struction is O(D) time and O(D) rounds. However, in the proposed scheme there is a

chance of selection of multiple dominators in each round. So in average the time com-660

plexity is much lower that O(D). Also in the second phase of distributed Steiner Tree

construction, there is a chance of selection of multiple Steiner nodes in each round.

After the selection of each single connector number of component decrease by one.

By the similar argument, the Steiner Tree construction will also need O(D) time and

O(D) rounds. In the last phase each dominators and virtual-dominators checks itself665

whether to upgrade or downgrade. All the dominators and virtual-dominators can do

this checking simultaneously. Therefore, only one round is needed to do this. Hence

the overall running time of the proposed algorithm is O(D) time and O(D) rounds.

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Theorem 7.9. DCMCDS has message complexity of O(nR), where n is the network

size and R is the maximum between number of rounds needed to construct the PDS and670

number of rounds needed to interconnect the PDS nodes.

Proof. We present the message complexity of each phase of the distributed DCM-

CDS to find out the message complexity of the whole algorithm. In the initialization

and neighbourhood table creation phase, each node broadcasts the messages HELLO,

OWN INFO and NEB INFO once each. Therefore, the message complexity of this675

phase is Θ(n). In the distributed PDS construction phase, the total number of DOMINATOR

and VIRTUAL DOMINATOR messages broadcast is Θ(|PDS|). Similarly, the num-

ber of DOMINATEE messages sent is Θ(n− |PDS|). So, for each DOMINATOR or

VIRTUAL DOMINATOR message, a total of ∆ DOMINATEE and UPDATE NODE COL

messages are generated in the worst case, where ∆ is the maximum degree of all the680

nodes. As we have a total of |PDS| dominators/virtual-dominators, the total number

of DOMINATEE and UPDATE NODE COL messages generated will be ∆|PDS|. For

each DOMINATEE message, a total of ∆ UPDATE NEB INFO and UPDATE NODE COL

messages are generated in the worst case. For n− |PDS| DOMINATEE messages, a

total of ∆(n− |PDS|) number of UPDATE NEB INFO and UPDATE NODE COL685

messages will be generated. Therefore, the total number of UPDATE NEB INFO and

UPDATE NODE COL messages = ∆(n− |PDS|) + ∆|PDS| − (n− |PDS|) =
|PDS|+ ∆n− n = O(n∆). At the end of each round of this phase, some of the

white nodes (those who find a change in effective degree of their 1-hop neighbours

in last round) broadcast their updated neighbour information through the NEB INFO690

message. So, the message count of this message will be O(nRPDS), where RPDS is

the number of rounds needed to construct the PDS. Hence, the message complexity

of this phase is O(nRPDS), assuming RPDS is greater than ∆. To find out the mes-

sage complexity of distributed Steiner Tree construction phase, let us assume the al-

gorithm runs for RST rounds to interconnect the PDS nodes. In each round, the total695

number of CONN INFO REQ and CONN INFO REP messages sent is n. So the to-

tal count of these two messages in all rounds is O(nRST). The COMP RIVAL INFO

messages are sent by each node of the components once in each round. In the first

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

round, the count of this message is |PDS|. It keeps on increasing up to |CDS| in the

last round. So, the total count of this message in all rounds is O(RST|CDS|). As the700

RIVAL INFO message is sent by the component members twice in each round, the total

count of this message in all rounds is O(RST|CDS|). The number of CONNECTOR

messages sent in all rounds is Θ(|CDS| − |PDS|). The UPDATE COMP INFO mes-

sage is sent by the component members once in each round. So, the total number of

UPDATE COMP INFO messages sent in all rounds is O(RST|CDS|). For each domi-705

nator, ∆ UPDATE NODE COL messages are sent. Total UPDATE NODE COL mes-

sages sent in all rounds is O(n∆). Hence, the total message complexity of this phase

is O(nRST) assuming RST is greater than ∆. In the last phase of removing redundant

dominating nodes, some of the virtual-dominators who want to upgrade themselves

to dominators, send the UPGRADE DOM message, only once. So, the total count of710

this message sent is O(|VD|). Similarly, the dominators or virtual-dominators who

want to downgrade themselves to dominatees send the DOWNGRADE DOM mes-

sage only once. So, the total count of this message is O(|CDS|). A dominator to

downgrade itself, needs to send the ALT DOMINATOR REQ message once to its

dominatees. The dominatees send the ALT DOMINATOR REP message for their715

dominators. So, the total count of these two messages is O(|DS|). The dominators

which do not receive the TRUE reply through the ALT DOMINATOR REP messages

from all their dominatees, withdraw their intent to become dominatees by sending the

ALT DOMINATOR REQ CANCEL message. So, the count of this cancel message

sent is O(|DS|). For each upgrade / downgrade of virtual-dominators, and downgrade720

of dominators, ∆ number of

UPDATE NODE COL messages are sent. So, the total UPDATE NODE COL mes-

sages sent is O(|DS|∆). Hence, the message complexity of this phase is O(n∆). Thus,

the overall message complexity for DCMCDS is O(nR), where R is the maximum of

RPDS and RST. This completes the proof.725

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

50 100 150 200

0.4

0.6

0.8

1

Network Size

N
o

of
St

ei
ne

r
no

de
s/

N
o

of
in

de
pe

nd
en

tn
od

es Collaborative Cover
DCMCDS

Figure 7: Performance comparison of number of Steiner nodes and number of independent nodes.

8. Simulation Results

In this section we present the results of the simulations conducted by us to compare

our proposed scheme with the existing approaches. The WSN is modelled in a fixed

area of dimension 100× 100 square units. We have generated the hosts randomly by

choosing their abscissa and ordinate using a uniform random number generator. The730

transmission range of each node was taken as R for each node. Two nodes are con-

nected if their distance is less than equal to R. In the entire experimentation we consid-

ered connected networks only. In the simulation we considered R = 25. The proposed

algorithm is run for 100 times for different network sizes from 50 to 250. The average

results are reported in the figures and table. We conducted the entire simulation in NS-735

2, a network simulator for wireless networks. The simulation experiments considered

for analysing the performance are: (i) performance comparison of Stenier nodes with

independent set nodes (ii) performance comparison of Stenier nodes against ignored

connectors (iii) performance comparison with related techniques.

In our first experiment, we found the average effective degree of a connector. It is the740

ratio of total number of connectors to the number of accepted PDS nodes (connector

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

50 100 150 200 250

0.85

0.9

0.95

1

Network Size

N
o.

of
ig

no
re

ed
vi

rt
ua

l-
do

m
in

at
or

s
/

N
o

of
vi

rt
ua

l-
do

m
in

at
or

s
in

PD
S

DCMCDS

Figure 8: Ratio of ignored virtual-dominators to total virtual-dominators in pseudo-dominating set for dif-

ferent network sizes

and virtual-connector). We calculated the same ratio for the best existing algorithm,

collaborative cover heuristic [18], for the network sizes varying from 25 to 225. The

results are shown in fig. 7. We found that the average effective degree for collaborative

cover is 0.3 and for our proposed scheme it is 0.5. That means in the collaborative745

cover a Steiner node connects more than three PDS nodes whereas in our algorithm

a Steiner node connects nearly two PDS nodes. This is a significant result and it has

many positive consequences. Less effective degree of a connector indicates that the

connector is less loaded. This enhances the life time of the network.

In our second experiment, we did an analysis on how much PDS nodes change their750

status in post-Steiner Tree construction phase and what is its impact on reduction of

overall CDS size. For varied network sizes from 25 to 250 we determine the ratio of

total virtual-dominators being downgraded to dominatee and its impact on the reduc-

tion of CDS size. The results in fig. 8 shows that almost all of the virtual-dominators

are downgraded to dominatee. Very few of them retained their earlier state because755

they are actually bridging two disjoint components of the CDS. The results found in

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

50 100 150 200 250

10

12

14

16

18

Network Size

R
ed

uc
tio

n
of

C
D

S
in

Pe
rc

en
ta

ge
DCMCDS

Figure 9: Reduction in CDS size after discarding redundant dominators and virtual-dominators post-Steiner

Tree construction for different network sizes

fig. 9 implies that for networks of larger sizes, by changing the status of some of the

PDS nodes from dominator or dominatee according to the specified criteria reduces the

CDS size by 10%.

In the next experiment, we compare the performance of our proposed scheme with760

the existing CDS constructions techniques found in [13], [14], [16], [18], [33] in two

steps. Firstly, we found the CDS for the network where the nodes are distributed ran-

domly. We considered the network of sizes 20, 40, 60, 80 and 100. The results found

are shown in fig. 10. It is clear from the result that our scheme outperforms all above

mentioned CDS construction techniques in identifying smaller CDSs. Our result is at765

least 16% better than the collaborative cover heuristic which is best among the above

mentioned algorithms. We are getting better results because of our “Steiner Tree Con-

struction” phase and “Removal of redundant dominator” phase. During Steiner Tree

construction we select the connectors which connects maximum number of compo-

nents. In the redundant dominator removal phase it omits the redundant dominating770

nodes cleverly without any loss in coverage or connectivity.

38



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 40 60 80 100
5

10

15

20

25

30

35

Network Size

C
D

S
Si

ze
Collaborative Cover

Y. Li
Cardei

Alzoubi
DCMCDS

GOC-MCDS-D

Figure 10: Performance comparison of CDS construction algorithms

Secondly, we compare our proposed scheme with the collaborative cover based

heuristic [18], for ideal uniform distribution of nodes. Illustrations provided in [18]

shows that the coverage based heuristic achieves significantly better results in optimiz-

ing CDS size for uniform hexagonal distributions by identifying optimal sub-structures775

than previously reported degree-based schemes. We vary the network size from 50

to 250 and determine the ratio of CDS sizes obtained by the DCMCDS scheme and

collaborative cover heuristic for uniform hexagonal distribution. The results summa-

rized in Table 1 illustrate that DCMCDS produces smaller CDS sizes for the above

discussed distribution.780

Table 1: Comparison with Collaborative Cover for uniform distribution of nodes

Distribution
CDS size by DCMCDS / CDS size by

Collaborative Cover for network size

50 100 150 200 250

Uniform 0.74 0.75 0.67 0.78 0.91

A good CDS construction algorithm not only should constructs the CDSs of smaller

sizes but also should construct it in less time. In our next experiment, we compare

39



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

50 100 150 200 250

10

15

20

25

No. of nodes

N
o.

of
ro

un
ds

8-approximate CDS Algorithm
DCMCDS

Figure 11: Performance comparison of number of rounds in CDS construction

100 200 300 400 500

200

400

600

800

1,000

Network Size

M
ea

n
nu

m
be

r
of

m
es

sa
ge

s

Other degree based
Collaborative Cover

DCMCDS

Figure 12: Comparison of message exchanges in CDS construction algorithms

40



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the number of rounds needed to construct a CDS by our proposed scheme with 8-

approximate CDS algorithm [14]. We use the number of rounds as the metric to com-

pare the performance of our scheme with the existing approaches where, a round is785

the total time needed by the nodes to receive messages from their neighbours in the

previous round, execute local computations and consequently send messages to their

neighbours. The reason for comparing with only 8-approximate CDS algorithm [14]

is, it represents the class of CDS construction techniques which first forms an MIS and

then connect the MIS nodes greedily using different techniques. The S-MIS approach790

[16] and collaborative cover heuristic [18] belongs to this class of algorithms. How-

ever, the number of rounds required by all of the algorithms is hardly any different. For

the comparative study, we varied the size of the networks from 25 to 250. For each

of the network size, we find the number of rounds for constructing the CDS both by

DCMCDS and 8-approximate CDS algorithm. The comparison is shown in fig. 11.795

Theoretically the upper bound of both these algorithm is O(D) rounds, D, being the net-

work diameter. However, our proposed scheme needs fewer rounds than 8-approximate

CDS. For large network sizes the number of rounds required by the proposed algorithm

is nearly ( 23 )rd of that required by 8-approximate CDS. This reduces 33% execution

time. We also observe that the slope of the curve representing the proposed scheme800

is significantly smaller than that for 8-approximate CDS. This means with increase in

network size, the corresponding increment in the number of rounds is much smaller for

the proposed scheme than other CDS construction techniques.

Next, we analyse the message exchanges needed for CDS construction of DCM-

CDS by comparing with previous degree-based [14] and collaborative cover [18] ap-805

proaches. We vary the network size N from 100 to 500 and compare the mean number

of messages required. From the Fig. 12, one can observe that, the mean number

of broadcasted messages by our proposed algorithm is closer to degree-based approach

[14] and better than the collaborative cover heuristic [18]. The result is justified because

the message complexity of 8-approximate degree based CDS scheme is O(n∆) and that810

of collaborative cover is O(n∆2), where n is the number of nodes in the network and

∆ is the maximum degree of a node. The message complexity of DCMCDS is O(nR),

where R is the number of rounds. Although the message complexity of both degree-

41



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 40 60 80 100

9

10

11

12

13

14

Network Density

C
D

S
Si

ze
DCMCDS

Figure 13: CDS Size corresponding to DCMCDS for different network densities

based 8-approximate CDS algorithm [14] and DCMCDS are linear, but the former

requires slightly fewer messages than the latter. This is because 8-approximate CDS815

technique [14] uses only 1-hop connectivity information whereas DCMCDS uses 2-

hop neighbourhood knowledge to obtain a better CDS. So from this experiment we can

conclude that DCMCDS constructs the CDSs of smaller sizes using a slightly higher

expense of number of messages exchanged as compared to previous degree-based CDS

construction techniques.820

The advantages of DCMCDS is that it identifies much smaller CDSs than 8-approximate

CDS or collaborative cover for all network sizes. In fact after the network density

crosses a certain threshold, the CDS size will hardly change much irrespective of how

many nodes more added to the fixed deployment area. Fig. 13 explains this sce-

nario. For DCMCDS this threshold is reached earlier than collaborative cover or 8-825

approximate CDS. Therefore a significant increment in average dominator degree cou-

pled with a marginal increment in CDS size for DCMCDS would lead to a slower rise

in energy dissipation for small as well as large scale networks.

42



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9. Conclusion

In this paper, we studied various techniques of CDS construction in the wireless net-830

work. We proposed a novel distributed degree-based greedy approximation algorithm.

The time and message complexities of our algorithm are O(D) and O(nR) respectively,

where n is the network size, D is the diameter of the network and R is the maximum be-

tween number of rounds needed to construct the PDS and number of rounds needed to

interconnect the PDS nodes. The approximation ratio of our proposed scheme is found835

to (4.8 + ln 5)|opt|+ 1.2, where |opt| is the size of any optimal CDS. The simula-

tion results shows that the proposed algorithm constructs smaller CDSs in comparison

to all other existing CDS construction algorithms. The localized nature of our algo-

rithm makes it useful for situations where a centralised approach is not suitable. The

proposed algorithm can construct the CDS construction in the network of nodes with840

different transmission ranges.

References

[1] A. Salhieh, J. Weinmann, M. Kochhal, L. Schwiebert, Power efficient topologies

for wireless sensor networks, in: Parallel Processing, 2001. International Confer-

ence on, IEEE, 2001, pp. 156–163.845

[2] B. Das, R. Sivakumar, V. Bharghavan, Routing in ad hoc networks using a spine,

in: Computer Communications and Networks, 1997. Proceedings., Sixth Interna-

tional Conference on, IEEE, 1997, pp. 34–39.

[3] B. N. Clark, C. J. Colbourn, D. S. Johnson, Unit disk graphs, Discrete Mathemat-

ics 86 (1-3) (1990) 165–177.850

[4] R. Misra, C. Mandal, Rotation of cds via connected domatic partition in ad hoc

sensor networks, IEEE Transactions on Mobile Computing 8 (4) (2009) 488–499.

[5] R. Misra, C. Mandal, Efficient clusterhead rotation via domatic partition in self-

organizing sensor networks, Wireless Communications and Mobile Computing

9 (8) (2009) 1040–1058.855

43



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[6] M. Rabbat, R. Nowak, Distributed optimization in sensor networks (2004) 20–27.

[7] A. Ephremides, J. E. Wieselthier, D. J. Baker, A design concept for reliable mo-

bile radio networks with frequency hopping signaling, Vol. 75, IEEE, 1987, pp.

56–73.

[8] S. Guha, S. Khuller, Approximation algorithms for connected dominating sets,860

Algorithmica 20 (4) (1998) 374–387.

[9] C. Adjih, P. Jacquet, L. Viennot, Computing connected dominated sets with mul-

tipoint relays, Ad Hoc and Sensor Wireless Networks 1 (1-2) (2005) 27–39.

[10] J. Wu, H. Li, On calculating connected dominating set for efficient routing in

ad hoc wireless networks, in: Proceedings of the 3rd international workshop on865

Discrete Algorithms and Methods for Mobile Computing and Communications,

ACM, 1999, pp. 7–14.

[11] K. M. Alzoubi, P.-J. Wan, O. Frieder, Message-optimal connected dominating

sets in mobile ad hoc networks, in: Proceedings of the 3rd ACM international

Symposium on Mobile ad hoc Networking & Computing, ACM, 2002, pp. 157–870

164.

[12] I. Stojmenovic, M. Seddigh, J. Zunic, Dominating sets and neighbor elimination-

based broadcasting algorithms in wireless networks, IEEE Transactions on Paral-

lel and Distributed Systems 13 (1) (2002) 14–25.

[13] P.-J. Wan, K. M. Alzoubi, O. Friede, Distributed construction of connected domi-875

nating set in wireless ad hoc networks, in: INFOCOM 2002. Twenty-First annual

joint conference of the IEEE computer and communications societies. Proceed-

ings. IEEE, Vol. 3, IEEE, 2002, pp. 1597–1604.

[14] M. Cardei, M. X. Cheng, X. Cheng, D.-Z. Du, Connected domination in multihop

ad hoc wireless networks. (2002) 251–255.880

[15] Y. L. S. Zhu, M. T. D.-Z. Du, Localized construction of connected dominating set

in wireless networks, in: Proceedings of US National Science Foundation Inter-

44



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

national Workshop Theoritical Aspects of Wireless Ad Hoc, Sensor and Peer-to-

Peer Networks, 2004.

[16] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, D.-Z. Du, On greedy construction885

of connected dominating sets in wireless networks, Wireless Communications

and Mobile Computing 5 (8) (2005) 927–932.

[17] A. Das, M. Aasawat, C. Mandal, C. Reade, An improved greedy construction

of minimum connected dominating sets in wireless networks, in: Wireless Com-

munications and Networking Conference (WCNC), 2011 IEEE, IEEE, 2011, pp.890

790–795.

[18] R. Misra, C. Mandal, Minimum connected dominating set using a collaborative

cover heuristic for ad hoc sensor networks, IEEE Transactions on Parallel and

Distributed Systems 21 (3) (2010) 292–302.

[19] R. K. Jallu, P. R. Prasad, G. K. Das, Distributed construction of connected domi-895

nating set in unit disk graphs, Journal of Parallel and Distributed Computing 104

(2017) 159–166.

[20] T. Nieberg, J. Hurink, A ptas for the minimum dominating set problem in unit

disk graphs (2005) 296–306.

[21] Z. Zhang, J. Zhou, Y. Mo, D.-Z. Du, Performance-guaranteed approximation900

algorithm for fault-tolerant connected dominating set in wireless networks, in:

Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE In-

ternational Conference on, IEEE, 2016, pp. 1–8.

[22] W. Wang, B. Liu, D. Kim, D. Li, A new constant factor approximation to construct

highly fault-tolerant connected dominating set in unit disk graph, IEEE/ACM905

Transactions on Networking (99) (2016) 1.

[23] L. Ding, W. Wu, J. Willson, H. Du, W. Lee, D.-Z. Du, Efficient algorithms

for topology control problem with routing cost constraints in wireless networks,

IEEE Transactions on Parallel and Distributed Systems 22 (10) (2011) 1601–

1609.910

45



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[24] C. Liu, H. Huang, H. Du, X. Jia, Performance-guaranteed strongly connected

dominating sets in heterogeneous wireless sensor networks, in: Computer Com-

munications, IEEE INFOCOM 2016-The 35th Annual IEEE International Con-

ference on, IEEE, 2016, pp. 1–9.

[25] T. Shi, S. Cheng, Z. Cai, Y. Li, J. Li, Exploring connected dominating sets in915

energy harvest networks, IEEE/ACM Transactions on Networking.

[26] L. Liu, Y. Song, H. Zhang, H. Ma, A. V. Vasilakos, Physarum optimization: A

biology-inspired algorithm for the steiner tree problem in networks, IEEE Trans-

actions on Computers 64 (3) (2015) 818–831.

[27] F. Cadger, K. Curran, J. Santos, S. Moffett, A survey of geographical routing920

in wireless ad-hoc networks, IEEE Communications Surveys & Tutorials 15 (2)

(2013) 621–653.

[28] D. Das, R. Misra, A. Raj, Approximating geographic routing using coverage tree

heuristics for wireless network, Wireless Networks 21 (4) (2015) 1109–1118.

[29] S. Shukla, R. Misra, A. Agarwal, Virtual coordinate system using dominating925

set for gps-free adhoc networks, Annals of Telecommunications 72 (3-4) (2017)

199–208.

[30] D.-Z. Du, L. Wang, B. Xu, et al., The euclidean bottleneck steiner tree and steiner

tree with minimum number of steiner points 1 (2001) 509–518.

[31] J. P. Mohanty, C. Mandal, C. Reade, A. Das, Construction of minimum connected930

dominating set in wireless sensor networks using pseudo dominating set, Ad Hoc

Networks 42 (2016) 61–73.

[32] W. Wu, H. Du, X. Jia, Y. Li, S. C.-H. Huang, Minimum connected dominating sets

and maximal independent sets in unit disk graphs, Theoretical Computer Science

352 (1-3) (2006) 1–7.935

[33] H. Du, W. Wu, Q. Ye, D. Li, W. Lee, X. Xu, Cds-based virtual backbone construc-

tion with guaranteed routing cost in wireless sensor networks, IEEE Transactions

on Parallel and Distributed Systems 24 (4) (2013) 652–661.

46



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Biography

940

Jasaswi Prasad Mohanty is a Ph.D. candidate in the Department of Computer Sci-

ence & Engineering, IIT Kharagpur, India. He received his Master Degree in Com-

puter Science from Utkal University, Bhubaneswar, India in 2006. He is working as

a senior Assistant Professor with the Department of Computer Science and Engineer-

ing, Silicon Institute of Technology, Bhubaneswar, India. His current research interests945

includes wireless networks and algorithms.

47



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Chittaranjan Mandal received his Ph.D. from the Indian Institute of Technology

(IIT), Kharagpur in 1997. He is currently working as a Professor with the department

of Computer Science & Engineering, IIT Kharagpur. Prior to joining IIT, he served as950

a reader with Jadavpur University, Calcutta. His research interests include networked

systems, formal modeling and design and web technologies. Professor Mandal has

been an Industrial Fellow of Kingston University, London, U.K., since 2000. He was a

recipient of a Royal Society Fellowship in 2006.

48



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

955

Chris Reade received his Ph.D. in 1984 and lectured in Computer Science until

1999. He became head of Department of Informatics and Operations Management

at Kingston University from 2000 to 2013 and is now a consultant in mathematics

and computing. His interests are in formal modelling, functional programming, finite

methods, geometric modelling and networked systems.960

49


