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Thomas Bonalda, Léonce Mekindab, Luca Muscarielloc

aTELECOM ParisTech, 23 Avenue d’Italie, 75013 Paris, France
bEuropean XFEL, Holzkoppel 4, 22869 Schenefeld, Germany

cCisco Systems, 11 Rue Camille Desmoulins, 92130 Issy-les-Moulineaux, France

Abstract

Cache networks are the cornerstones of today’s Internet, helping it to scale by an ex-
tensive use of Content Delivery Networks (CDN). Benefiting from CDN’s successful
insights, ubiquitous caching through Information-Centric Networks (ICN) is increas-
ingly regarded as a premier future Internet architecture contestant. However, the use of
in-network caches seems to cause an issue in the fairness of resource sharing among
contents. Indeed, in legacy communication networks, link buffers were the principal
resources to be shared. Under max-min flow-wise fair bandwidth sharing [14], con-
tent throughput was not tied to content popularity. Including caches in this ecosystem
raises new issues since common cache management policies such as probabilistic Least
Recently Used (p-LRU) or even more, Least Frequently Used (LFU), may seem detri-
mental to low popularity objects, even though they significantly decrease the overall
link load [3]. In this paper, we demonstrate that globally achieving LFU is a first stage
of content-wise fairness. Indeed, any investigated content-wise α-fair throughput al-
location permanently stores the most popular contents in network caches by ensuring
them a cache hit ratio of 1. As ICN caching traditionally pursues LFU objectives,
content-wise fairness specifics remain only a matter of fair bandwidth sharing, keeping
the cache management intact.

Keywords: ICN, Caching, Fairness, Network Performance Analysis.

1. Introduction

Today’s Internet owes its scalability to caching. Indeed, most of Internet contents
cross Content Delivery Networks and significant research is pushing for a better so-
lution, Information-Centric Networks. In ICN, and more specifically, Named-Data
Networking (NDN) and Content-Centric Networking (CCN) [9], two leading ICN ar-
chitectures, content objects are identified by their unique name. At every node/router,
content Data packets are requested via matching Interest packets, through egress inter-
faces. Interests and their satisfying Data counterparts follow rigorously the same path.
This feature would not be possible without the Pending Interest Table (PIT) structure
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that keeps track of every requesting interface and requested content. Naming Data
packets allows storing them, on every traversed node, in a finite memory referred to as
Content Store (CS) or cache and managed by an object eviction policy.

Caches and their eviction or management policies are the disruption that drives this
paper. Traditionally, networks are modeled as interconnected queues with fair sched-
ulers. The penetration of caching into the network layer clearly favors a few content
objects, the most popular ones in case of the Least Frequently Used management pol-
icy (LFU) and its approximations such as (p-)LRU or LRU+Leave-Copy-Down [13].
Filling caches steadily with the most popular items, meaning keeping their hit ratio to
their maximum i.e., one, and letting other hit ratios be zero, entails the sacrifice of less
popular objects [3]. This is at least a view discussed by state-of-art contributions on
content-wise cache fairness [25] [6]. These works observed the hit ratio on a single
cache or a network of caches and prescribed an adaptation of the cache management
policy for the purpose of fairness. For example, in [6], content-wise max-min fairness
is only achievable if the hit ratios are forced to be equal for all content objects. In
the same vein, proportional fairness requires that content hit ratio be proportional to
their popularity. A consequence of this is that ICN cannot be fair to contents without
revising its caching algorithms. From the viewpoint of these works, LFU is definitely
unfair to lower popularity contents. By the way, remember flow-wise fairness means
allocating resources such that every flow/route gets its fair share. On the other hand, by
content-wise fairness, we denote allocating resources in such a way every content gets
its fair share. This is the type of fairness this paper addresses.

Our paper analyzes the fairness of content delivery throughput in accounting for
both cache hit ratio and link service rates, and comes up with a different and optimistic
conclusion. ICN’s traditional caching optimum leads to content-wise fairness as it
is. The better the convergence to LFU, the better the feasible content-wise fairness.
The remaining task would consist in implementing content-wise fairness at the packet
scheduling stage in ICN, similarly to flow-wise fairness in other networks [10]. Taking
a network of caches as a whole, links and caches, the paper sheds new light on content-
wise fair cache allocation. While previous works only considered caches and concluded
that caching policies have to be adapted to be α-fair to contents, this work shows that
LFU and its approximations are sufficient as they are, and content-wise α-fairness is
the responsibility of network packet schedulers. This contribution brings α-fairness in
ICN and α-fairness in traditional networks closer. Our results owe to the link service
to the majority of contents that balances the rather permanent cache presence of a
few contents. It is rather commonplace that persisting the most popular contents frees
a maximal upstream link capacity to convey less popular objects. Another striking
insight we got, is that a throughput-optimal content delivery network ends up being
made up of autonomous caches that never forward their miss traffic. Such a network
would not be committed to locally satisfy requests.

The main contributions of this paper are that: (i) it unifies caches and network
queues into a single content service rate model; (ii) it tackles for the first time content
throughput fairness in ICN in formulating that as a tractable nonlinear optimization
problem; (iii) it provides closed-form expressions of α-fair hit ratios and link service
rates; (iv) it indicates that today’s LFU-approximating caches policies do not need to
be replaced for ICN to become fair. We articulate these contributions throughout the
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paper as follows: Sec.2 recapitulates previous contributions on fairness in the context
of cache networks. In Sec.3, we model the per-content throughput in unifying cache
and network link contributions. Then we formalize α-fair allocations, key properties
such as their Pareto-efficiency, and that LFU is an α-fair cache management policy, an
important result. To ground the theory, a few trivial examples are analyzed in Sec.4.
They are followed in Sec.5 with numerical evaluations that confirmed, by means of a
nonlinear problem solver, our analytic insights.

2. Related work

Very few papers address the issue of fairness in networks of caches. In a paper
dedicated to the subject some time ago [25], authors analyze the fairness in Content-
Centric Networks from the viewpoint of object dissemination across the network. They
expressed content-wise fairness as the total space contents occupy with respect to
their popularity. The study concluded that medium-popularity content were favored
as they spread linearly with their popularity whereas the most popular items spread
sub-linearly. This approach is definitely useful to map the asymptotic replica spatial
distribution. However, it does not capture the throughput fairness. [21] and [22] tack-
led the impact of fairness on delivery time in large scale CDN but ignored the cache
specifics. That work modeled cache networks as classical networks of file-serving
queues. Files were assumed to have been pre-fetched and their long-term popularity
was not taken into account.

Quite recently, [6] reverse-engineered popular LRU and LFU policy and found the
utility function each policy optimizes. These utility functions achieve various classes
of hit ratio α-fairness. Authors also provided algorithms for adapting Time-to-Live
(TTL)-based caches to any given α-fair objective. Rapidly, [16] applied this work’s
reverse engineering approach to a special case of a novel class of latency-aware caching
(LAC) policies previously introduced by [5]. In [16], authors show that LAC policies
converge to the solution of a fractional knapsack problem (LFU) when their latency
exponent tends to infinity.

Most of the existing literature on the subject, because of its focus on hit ratio,
concluded that caching policies had to adapt to the content-wise fair objective. Our
contribution is novel because it joins cache and link queue occupation in order to ana-
lyze the QoE-expressive throughput fairness. The QoE considered in the paper refers
to how fair the user may perceive the throughput of the most popular content compared
to those of less popular contents. We show that cache networks, and ICN in particular,
can be α-fair, for any α ≥ 0, as soon as they couple the classical highest popular-
ity content persistence i.e., the global LFU cache management policy, with a proper
content-aware α-fair packet scheduler.

3. Cache Network Model

First, we present a mathematical model that captures the dynamics of the entire
network. The model views the latter as a network of queues where caches contribute
to increase the network service rate. We aim at maximizing a utility function of the
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Figure 1: Network conveying content k through cache n.

admissible exogenous traffic rate. Refer to Table 1 for the notation and to Fig.1 for the
model used hereinafter.

3.1. Model assumptions

• Let the stochastic process {λk,n,b(t)}0≤t≤T be content k exogenous rate on link
(n, b) at time t. Let the stochastic process {µk,n,b(t)}0≤t≤T be content k service
rate on the link (b, n) at time t. Let the stochastic process {hn,k(t)}0≤t≤T be
content k hit ratio on node n at time t. These processes are independent.

• The network routes based on a single prefix.

• Same object sizes. This is a widely adopted assumption in the caching literature
[7]. It lies on the idea that the actual disparities among content sizes are embod-
ied by the popularity factor qk, which multiplies a content quantum (e.g., a mean
chunk size)

• Cache size is never zero.

• Content servers are not clients.

• The exogenous traffic on a given node is the one generated by a local application
that is not satisfied by the local cache.

• We assume hop-by-hop congestion control i.e., interests are sent in average at a
rate equivalent to the link service rate.

Let us define a Pending Interest Queue (PIQ) size as the number of pending interests
per content and per interface. An interest queued in a PIQ is served when the matching
data packet comes back.
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n ∈ N ICN node identifier. N ⊆ N.
t ∈ R+ Instant a content retrieval occurs.
k ∈ K Content popularity rank. The one ranking first is the most

popular, while rank |K| indicates the least popular object.
Γ−(n) Set of node n’s ingress nodes.
Γ+(n) Set of node n’s egress nodes.
µ̄k,n,b Long-term average of the service rate for content k on link

(b, n)
λ̄n Long-term average of exogenous interest rate at node n.
λ̄n,k Long-term interest rate for content k at node n.
qk Content k popularity. It is the probability that a requested

content is content k. It is strictly ordered: qk+1 < qk .
1{·} Indicator function.
Λ̄n,k Upper bound for the long-term average of exogenous in-

terest rate for content k at node n .
ς(k) Set of content k servers.
h̄n,k hit ratio of content k at node n
Cb,n Link (b, n) capacity in chunks/s.
xn Cache n capacity in objects.

Table 1: Notation.

Let Qk,n,b(t) be the size of the Pending Interest Queue for content k at time t for
link (n, b). hn,k(t) ≡ 1{k in cache n at t} indicates whether content k was found in cache
n at time t. The time evolution upper bound of the PIQ size of content k for egress
nodes b ∈ Γ+(n) at node n follows:

Qk,n,b(0) = 0,∀b ∈ Γ+(n) and∑
b∈Γ+(n)

d

dt
Qk,n,b(t) ≤ λn,k(t) + (1− hn,k(t))

∑
a∈Γ−(n)

1{Qk,a,n(t)>0}µk,a,n(t)

−
∑

b∈Γ+(n)

1{Qk,n,b(t)>0}µk,n,b(t). (1)

The service rate µk,a,b(t) of the PIQ is the data rate for content k on link (b, a) at time
t. λn,k(t) ≡ qkλn(t) is the exogenous interest rate for content k at node n at time t.
After some algebra, the maximum admissible rate Λ̄n,k is given by:

Λ̄n,k ≡
∑

b∈Γ+(n)

µ̄k,n,b − (1− h̄n,k)
∑

a∈Γ−(n)

µ̄k,a,n,∀n, k (2)

constrained by the following bounds:∑
k∈K

µ̄k,a,n ≤ Cn,a, ∀n, a ∈ Γ−(n) (3)∑
k∈K

h̄n,k = xn, ∀n (4)

0 ≤ h̄n,k ≤ 1, ∀n, k (5)

µ̄k,a,n ≥ 0, ∀n, k, a ∈ Γ−(n) (6)
λ̄n,k ≤ Λ̄n,k, ∀n, k. (7)
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We ignore throughout the paper constraint (7) that imposes a lower bound to the content
service rate. It means that the network will not guarantee that some content requested
on a given node will be satisfied. This will entirely depend on the optimality of serving
that content.

3.2. Cache network capacity
The network provides a content delivery service through the coupling of dissemi-

nated caches and the links interconnecting them. The following equation unifies in a
single expression the maximum service rate the network can deliver given cache hit
ratios and link capacities.

It arises by first summing all maximum admissible rates at node n:∑
k

Λ̄n,k =
∑
k

[ ∑
b∈Γ+(n)

µ̄k,n,b − (1− h̄n,k)
∑

a∈Γ−(n)

µ̄k,a,n

]
=

∑
k,b∈Γ+(n)

µ̄k,n,b −
∑

k,a∈Γ−(n)

(1− h̄n,k)µ̄k,a,n.

Define µ̄−n as the ingress rate matrix (µ̄k,a,n)k,a and h̄n as the column vector
(h̄n,k)k. It follows that∑

k,a∈Γ−(n)

µ̄k,a,nh̄n,k = ‖tµ̄−n h̄n‖1 ≤ ‖tµ̄−n ‖1‖h̄n‖1

≤ sup
k

{ ∑
a∈Γ−(n)

µ̄k,a,n

}
xn,

where tµ̄−n is the transpose of the ingress rate matrix and ‖tµ̄−n ‖1 is the operator norm
[2] associated to the Banach space `1 i.e., (R|K|, ‖ ‖1), applied to the ingress rate ma-
trix.

Then we sum all maximum admissible rates. Rates that are both egressing from a
node and ingressing to another node vanish. We obtain:∑

n,k

Λ̄n,k ≤
∑

k,b∈ς(k)

n∈Γ−(b)

µ̄k,n,b +
∑
n

sup
k

{ ∑
a∈Γ−(n)

µ̄k,a,n

}
xn

≤
∑

b∈∪kς(k)

n∈Γ−(b)

Cb,n +
∑
n

sup
k

{ ∑
a∈Γ−(n)

µ̄k,a,n

}
xn. (8)

3.3. Problem formulation
We now plug the admissible rate into a fair utility functionU(·). Define the network

wide allocated rate for content k as

φk ≡
∑
n∈N

Λ̄n,k =
∑

b∈∪kς(k)

n∈Γ−(b)

µ̄k,b,n +
∑
n∈N

a∈Γ−(n)

h̄n,kµ̄k,a,n. (9)
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The problem’s objective is to find the optimal link service rates and hit ratios that

maximize
µ̄,h̄

∑
k∈K

qkU(φk/qk), (10)

given the α-fair utility function U(·). Weighted α-fairness was first introduced in [15],
and later adapted for cache allocation by [6]. However, as expressed in Eq.10, we
advocate for a formulation of weighted α-fairness that operates on rates per weight
unit. The reason for this is its convergence to weighted max-min fairness as α → ∞,
whereas the original Mo and Walrand’s weighted formulation decays into max-min
fairness [15]. Interestingly, as shown later in the paper, our formulation gives solutions
that are independent of α, shaping as such, just fair allocations.

Since qkU(φk/qk) ≡ qk
(φk/qk)1−α

1− α
= qαk

φ1−α
k

1− α
, α 6= 1,

the objective simplifies to

Maximize
µ̄,h̄ 

∑
k∈K

qαkU(φk), if α 6= 1∑
k∈K

qk log(φk/qk), otherwise.
(11)

Special cases this weighted α-fairness framework encompasses are:

• for α = 1, the objective is then said to be weighted-proportional fair [10].

• for an infinite value ofα, the objective is weighted max-min fair i.e., max min(φk/qk)
[17].

In the rest of the document, the attribute weighted will be implied when ommitted.
Define the vectors of decision variables µ̄ ≡ (µ̄k,b,n) and h̄ ≡ (h̄n,k). Also, de-

fine the vector of multipliers ν ≡
(
ν

(i)
· ≥ 0

)
where (i) identifies the constraint. The

Lagrangian of the problem is

L(µ̄, h̄,ν) =
∑
k

qαkU(φk)−
∑

n,a∈Γ−(n)

ν(1)
n,a

[∑
k

µ̄k,a,n − Cn,a
]

−
∑
n,k

ν(2)
n

[∑
k

h̄n,k − xn
]
−
∑
n,k

ν
(3)
n,kh̄n,k(h̄n,k − 1)

+
∑
n,a,k

ν
(4)
k,a,nµ̄k,a,n. (12)

AlthoughU(·) is non-decreasing and concave, as φk is non-concave, the Karush-Kuhn-
Tucker (KKT) conditions are simply necessary for optimality. The first-order KKT
conditions command that

∇µ̄,h̄L(µ̄∗, h̄∗,ν∗) = ~0, (13)
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where ∇µ̄,h̄L is the gradient of function L with respect to vectors µ̄ and h̄. µ̄∗ ≡
(µ̄∗k,b,n), h̄∗ ≡ (h̄∗n,k), ν∗ ≡ (ν

(i)∗
· ) are the optimal counterparts of the aforementioned

vectors.

3.4. Solution
3.4.1. General α-fair allocation

For any α ≥ 0, the Lagrangian expands as follows:

L(µ̄, h̄,ν) =
1

1− α
∑
k

qαk

[ ∑
b∈∪kς(k)

n∈Γ−(b)

µ̄k,b,n +
∑
n∈N

a∈Γ−(n)

h̄n,kµ̄k,a,n

]1−α

−
∑

n,a∈Γ−(n)

ν(1)
n,a

[∑
k

µ̄k,a,n − Cn,a
]
−
∑
n,k

ν(2)
n

[∑
k

h̄n,k − xn
]

−
∑
n,k

ν
(3)
n,kh̄n,k(h̄n,k − 1) +

∑
n,a,k

ν
(4)
k,a,nµ̄k,a,n.

The first property of content-wise α-fair allocations in cache networks is their Pareto
efficiency. An allocation is said to be Pareto efficient if any attempt to increase one
content’s share decreases the share of another content. In our optimization problem,
this translates into link capacity being fully allocated.

Property 1 (Pareto efficiency for any α ≥ 0). The α-fair bandwidth allocation is
Pareto efficient as the optimal resource uses the whole link capacities to serve content
items i.e., ∑

k∈K

µ̄∗k,a,n = Cn,a, ∀n ∈ N ,∀a ∈ Γ−(n). (14)

Proof. See in Appendix Appendix A.

Then comes our main result. It established that ICN, in adopting the Least Fre-
quency Used as the caching policy maximizing content hit ratio, has de facto adopted
an optimal caching for content throughput fairness.

Proposition 1 (LFU leads to α-fairness). LFU is a cache management policy for a
network seeking α-fairness, for any α ≥ 0.

Proof. See in Appendix Appendix B.

This result is important as it shows that the LFU algorithm and its heuristics (LRU,
p-LRU, LRU-k, LRU-LCD) can lead to α-fair networks, ∀α ≥ 0. Packet schedulers
would be in charge of the other part of the optimal solution: bandwidth sharing that
is fair to contents. We refer to the latter as content-wise α-fair bandwidth sharing. It
is mathematically tractable thanks to the concavity of the problem, given binary hit
ratios, as concavity is a sufficient condition for the existence of a global optimum.
Furthermore, content-wise α-fair bandwidth sharing is practically achievable within
the ICN paradigm as packets are uniquely named after the content they carry.
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We may also emphasize the novelty of this result, since previous works [6] reached
very different conclusions. This is because they only looked at isolated caches, found
that fairness required fractional hit ratio for each value of the fairness parameter α
greater than zero, and suitably designed algorithms for TTL-based caches. Their caching
algorithms consist in adjusting every content Time-To-Live (TTL) via gradient descent.

To summarize, the following algorithm (Alg.1, Alg.2) is an example of distributed
content-wise weighted max-min fairness implementation. It relies on a Deficit Round-
Robin scheduler [24] to achieve content-wise max-min fair bandwidth allocation, given
the LFU caching substrate.

Algorithm 1: Content-wise α-fair allocation in ICN
Input: Data packet, α
Cache.Insert(packet, Policy::LFU);
FairQueuing.Shape(packet, α);

Algorithm 2: Content-wise weighted max-min fair bandwidth sharing
function FairRate.Shape(Data packet, α)

FairQueuing.Queue[packet.ContentName()].Push(packet);
if α == ∞ then

FairQueuing.SendData(Policy::DEFICIT ROUND ROBIN);
end

end

4. Toy examples

We analyze two trivial cases to foster some further insight on the preceding results,
and preclude limit case quandaries. We tackle the case of a connected client/server
tandem network then we illustrate the fairness problem on a client/cache/server bus.

4.1. Client/Server tandem network

𝜆 1,𝑘 

2 1 
𝜇 𝑘,1,2 

Figure 2: Client/server topology.

A communication link conveys some exogenous traffic from a client node num-
bered 1 to a content server numbered 2. There is no cache in between. The α-fair
objective is:

Maximize
∑
k

qαk
(µ̄k,1,2)1−α

1− α
.
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The optimal allocation for every content k, for any value of α ≥ 0, is

µk,1,2 = qkC2,1.

4.2. Client/Cache/Server bus

2 
𝜆 1,𝑘 

ℎ 2,𝑘 

𝜇 𝑘,2,3 

3 1 
𝜇 𝑘,1,2 

𝜆 2,𝑘 

Figure 3: Client/Cache/Server bus topology.

In this toy scenario, exogenous traffic at a client node 1 is conveyed towards a
content server 3 through an intermediate cache 2.

4.2.1. Proportional fairness
The related objective is

Maximize ∑
k

qk log
h̄2,kµ̄k,1,2 + µ̄k,2,3

qk
.

Assume that µ̄k,2,3 = 0. , i.e., the server’s egress link capacity is zero. Then, the
following two concave terms have to be independently maximized:∑

k

qk log
h̄2,k

qk
+
∑
k

qk log
µ̄k,1,2
qk

.

The optimal solutions are h̄2,k = qkx2 and µ̄1,k = qkC2,1.

If µ̄k,2,3 > 0. we are in a situation where the server can deliver data through its ingress
link. The following demonstration shows LFU is the cache heuristics that always finds
the unique optimum if one exists. By the way, this claim is later confirmed numerically
in Sec.5.1.
•Assuming that the optimal h̄2,k ∈ {0, 1}, we can deduce the optimal link services

rates.
To that aim, first define the two sets Ki ≡ {k ∈ K : h̄2,k = i}, ∀i ∈ {0, 1}. K0

is the set of objects that are not stored in the cache, K1 is the set of object that are
permanently cached. As such, |K1| = x2. So, the concave objective yields

Maximize∑
k∈K0

qk log
µ̄k,2,3
qk

+
∑
k∈K1

qk log
µ̄k,1,2 + µ̄k,2,3

qk
. (15)
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Define β as an optimal multiplier tied to the constraint upon the capacity of the link
to the server. If the KKT conditions hold,

µ̄k,2,3 =
qk
β
,∀k ∈ K0, and

µ̄k,2,3 =
qk
β
− µ̄k,1,2,∀k ∈ K1.

As ∑
k

µ̄k,2,3 = C3,2 =
1

β

[ ∑
k∈K0

qk +
∑
k∈K1

qk

]
−
∑
k∈K1

µ̄k,1,2,

we obtain

1

β
= C3,2 +

∑
k∈K1

µ̄k,1,2 ≤ C3,2 + C2,1.

Hence, the optimal rates satisfy

µ̄k,2,3 = qk

[
C3,2 +

∑
k∈K1

µ̄k,1,2

]
,∀k ∈ K0, (16)

µ̄k,1,2 + µ̄k,2,3 = qk

[
C3,2 +

∑
k∈K1

µ̄k,1,2

]
,∀k ∈ K1. (17)

• We insert that solution into Eq.15 to outline the sets Ki. At the optimum, the
objective function reaches its supremum

S ≡ sup
K1

{
log(C3,2 +

∑
k∈K1

µ̄k,1,2) : |K1| = x2 and
∑
k∈K1

µ̄k,1,2 ≤ C2,1

}
. (18)

Define the network capacity κ ≡ C2,1 + C3,2. The upper bound of S, denoted as Smax

equals log κ. As illustrated in Fig.4, a greedy algorithm finds the supremum S ≤ Smax
by piggybacking the x2-most popular objects in K1. LFU is this greedy heuristics. As
such, it greedily chooses the most popular contents as those worth being stored into
the cache. Optimally, that also implies sharing the entire cache’s ingress link capacity
among these contents. The following observations can be made:

2obj. 

K1 K0 

Figure 4: Example of greedy resolution of Eq.18 with x2 = 2. Piggybacking into K1 the two most signifi-
cant contents, as LFU does, is optimal.
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Observation 1 (Maximal solution existence). The greedy algorithm finds a cache al-
location and fair service rates such that the objective function equals its upper bound

Smax iif
x2∑
k=1

qk ≥ C2,1/κ.

This happens when the cumulative fair service rate for the objects in cache exceeds
the capacity of the link to that cache. Even if that solution might not be unique, (for
example, in case of C2,1/κ being too small), whenever Smax is reachable, the greedy
algorithm finds a solution achieving it.

Observation 2 (Maximal solution uniqueness). There exists a unique combination of
cache allocation and fair service rates such that the objective function equals its upper
bound Smax iif

∑x2−1
k=1 qk + qx2+1 < C2,1/κ.

Indeed, if one can not replace the least popular object stored in the cache by some
other object and get a fair service rate exceeding the capacity of the cache’s ingress
link, then the LFU-provided cache configuration is the unique optimum.

Conversely, if the cumulative fair service rate of the x2-most popular objects re-
mains lower than the capacity of the cache’s ingress link:

∑
k∈K1

µk,1,2 < C2,1. This
happens when the cache’s ingress link (2, 1) is over-provisioned. Consequently, the
link service rates of never-cached objects k ∈ K0, µk,1,2 > 0, and the fair objective
function can not reach its upper bound Smax as the network carries some miss traffic.
By miss traffic, we denote content retrievals that are triggered by cache miss events.
• To conclude, remember h̄2,k was assumed to equal either 0 or 1. We show that

Smax is also the upper bound of the general objective function we denote f , for any
h̄2,k ∈ [0, 1]. Indeed, as the objective function increases with any of the decision
variables, any attempt to increase Smax to Smax + ε, ∀ε > 0, necessarily increases some
zero hit ratio by δh̄ > 0 and decreases a hit ratio of one by the same amount.

ε =
[∂f(h̄)

∂h̄

∣∣∣
h̄2,k=0

− ∂f(h̄)

∂h̄

∣∣∣
h̄2,k=1

]
δh̄ = − µ̄k,1,2

C2,1 + C3,2
δh̄.

As ε ≤ 0, the solution provided through LFU caching is the optimum for any h̄2,k ∈
[0, 1].

4.2.2. General α-fairness
Here the objective consists in the following:

Maximize
∑
k

qαk
1− α

(h̄2,kµ̄k,1,2 + µ̄k,2,3)1−α.

As demonstrated previously, the optimal h̄2,k belong to {0, 1}. It allows to reuse
the aforementioned definition of the setsKi. We can calculate the optimal link services
rates, owing to the concave objective function∑

k∈K0

qαk
1− α

(µ̄k,2,3)1−α +
∑
k∈K1

qαk
1− α

(µ̄k,1,2 + µ̄k,2,3)1−α. (19)
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The KKT conditions yield

µ̄k,2,3 =
qk
β1/α

,∀k ∈ K0, and

µ̄k,2,3 =
qk
β1/α

− µ̄k,1,2,∀k ∈ K1.

It follows that∑
k

µ̄k,2,3 = C3,2 =
1

β1/α

[ ∑
k∈K0

qk +
∑
k∈K1

qk

]
−
∑
k∈K1

µ̄k,1,2

gives the following optimal rates:

µ̄k,2,3 = qk

[
C2,1 +

∑
k∈K1

µ̄k,1,2

]
,∀k ∈ K0

µ̄k,1,2 + µ̄k,2,3 = qk

[
C2,1 +

∑
k∈K1

µ̄k,1,2

]
,∀k ∈ K1,

making the optimal allocation identical to the proportional fairness case we presented
earlier.

5. Evaluation

We numerically solved problem (10) using SCIP 3.2.1 [1], a Mixed Integer Non-
Linear Program (MINLP) optimization suite. It actually performs branch-cut-and-
price on mixed integer problems and invokes the Interior Point Optimizer IPOPT
3.12.5 [26] to solve relaxed nonlinear instances. IPOPT itself relies on PARDISO 5.0.0
[12][18][19] for tackling large-scale linear systems of equations when needed. We did
not used SCIP’s Mixed Integer Programming features since all our decision variables
are real. It has essentially been used as an interpreter to the ZIMPL mathematical
language [11] and a programming interface for IPOPT.

5.1. Client/Cache/Server bus

Consider the same bus topology as in Sec.4.2 above. Consider that exogenous
requests address a catalog size of 80 objects. The content popularity follows a Zipf
distribution of parameter 1. The cache budget is 10 objects. The link capacity from
the cache to the client is 10 objects/s while the one from the server to the cache has
a 20 objects/s capacity. Fig.5 depicts the results. LFU is clearly the proportionally
fair caching policy. Also, observe that link capacities are shared proportionally to
content popularity. For instance, as anticipated by Eq.17, the sum of the ingress rates
for content 1 is 2.9 + 3.1 = 6 = q1 × (C2,1 + C3,2) = 0.2× (10 + 20).
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Figure 5: Bus topology: proportionally fair allocation.
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20	𝑜/𝑠

Figure 6: Simple network topology.

5.2. A simple network

Next, we evaluate a network of 3 cache-equipped routers/nodes and one server
(Fig.6). The computational complexity of this nonconcave problem prevents the inves-
tigation of bigger instances. However, this setup suffices for characterizing the optima.

We set the total routers ingress link rates to respectively 10,15 and 20 objects/s.
The capacity of the link to the content server is 30 objects/s. Cache capacities at every
content router is 5, 6 and 7 objects. The content server is viewed as a node with a cache
capacity that equals the catalog size.

The key insight is that every tractable instance entails an optimal caching consisting
in the long-term storage of number of the most popular objects. This indicates that an
LFU caching policy leads to content-wise α-fairness. Another implication is that at the
optimum, the network does not convey any miss traffic. In other words, optimally, no
interest crosses the nearest cache. Hence, the optimal network is a set of autonomous
clusters centered on caches surrounded by their clients. Remember that such an opti-
mum does not aim to guarantee interest satisfaction. We detail our observations below.

5.2.1. (α = 0)-fairness
In the very particular case of zero-fairness, we consider a catalog of 2000 Zipf-

ranked objects. Note that only the first 80 objects are depicted as the trends are clear.
Beyond rank 80, objects are still neither cached nor delivered.The trivial optimum in
Fig.7 depicts the whole network capacity being allocated to a single content, the most
popular one. However, multiple optima exist, including a bandwidth allocation propor-
tional to content popularity, as the problem turns out to be unweighted.
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Figure 7: Simple network: A zero-fair allocation for every content k at every cache n.

5.2.2. Proportional fairness
Proportional fairness first translates into ensuring a hit ratio of 1 for a majority of

the most popular content. It is distinctive in Fig.8 where the Zipf skewness is 1 and
Fig.9 featuring a Zipf parameter that equals 0.7. Given that persistent caching, fairness
is actually enforced by an adequate link capacity sharing. The throughput fair share
follows a curve that matches the content popularity, indicating proportionality.

This is a key result as it decouples caching and scheduling in the pursuit of content-
wise fairness. Cache network fairness simplifies into legacy-but-content-wise queuing
network fairness, given a few additional content servers formally known as caches.
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Figure 8: Simple network: proportionally fair allocation for every content k at every cache n.

5.2.3. (α = 2)-fairness
Even when α = 2, fairness remains consistent with the previous observations.

There is no fractional hit ratio. As a consequence, content-wise 2-fairness in a cache
network does not require shared-time cache occupancy. The optimal link capacity share
in this case is proportional to qk where qk is the probability that a requested object is
of popularity rank k. It shows once more that the packet scheduler is entirely in charge
of content-wise fairness.

5.2.4. Max-min fairness
We evaluate numerically max-min fairness as α-fairness with α = 9. Compu-

tational limitations prevented us from exceeding this value. Although this is a quite
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Figure 9: Simple network: proportionally fair allocation with less skewed popularity distribution.
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Figure 10: Simple network: (α = 2)-fair allocation for every content k at every cache n.

loose approximation of an infinite α, the insight we get remains relevant. As before,
the recipe to fairness turns out to be persistent caching and a content-wise bandwidth
fair sharing on top of the classical client-server network infrastructure. Observe that,
as predicted analytically, fair resource sharing remains insensitive to α. The max-min
fair share, just like in proportional fair sharing or any other case, are proportional to
content popularity.
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Figure 11: Simple network: Approaching max-min fairness with (α = 9)-fair allocation for every content k
at every cache n.
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6. Conclusion

Cache networks, and more specifically Information-Centric Networks (ICN), are
prominent solutions for communication infrastructure offloading. Early in the Internet
history, cache engines have been inserted between the content consumers and the de-
livery servers to confine the recurrent traffic of very popular objects close the network
edge. Nowadays, ICN, FemtoCaching[8] and Fog-RAN [20][23] have furthered the
ongoing caching penetration.

Throughout this paper, we show that a resource allocation α-fair to content items,
at any value of α ≥ 0, can solely tackle the design of fair packet schedulers while
ensuring that the most popular objects get permanently cached. In contrast to previous
works, that focused on isolated caches, it appears that no fractional content hit ratios is
necessary for the sake of fairness.

As a strong consequence, our analytic contribution suggests that content-wise fair
allocation in cache networks can be formulated within the existing frameworks pertain-
ing to queuing networks [14] by viewing caches equipped with LFU-approximating
caching policies like p-LRU, LRU+Leave-Copy-Down heuristics, or LAC+ as regular
popular content servers [4]. To sum up, ICN can be α-fair to contents, as long as the
link service rate allocation is α-fair.
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Appendix A. Proof of α-fair allocation’s Pareto efficiency

The partial derivatives with respect to the ingress capacities µ̄k,a,n give:

h̄∗n,k =
ν

(1)∗
n,a − ν(4)∗

k,n,a

(qk/φ∗k)α
,∀k, n, a ∈ Γ−(n).

As the sum of local hit ratios equals the size of the cache,[
xn +

∑
k

ν
(4)∗
k,a,n

(φ∗k
qk

)α][∑
k

(φ∗k
qk

)α]−1

= ν(1)∗
n,a > 0,∀n, a ∈ Γ−(n).

As ν(1)∗
n,a is strictly positive since the cache size is strictly positive too. By the

complementary slackness conditions of the convex optimization framework, the related
constraint must be saturated. That translates into Eq.14.

Moreover, first derivatives with respect to the server’s ingress capacities µk,n,b give:( qk
φ∗k

)α
+ ν

(4)∗
k,n,b = ν

(1)∗
n,b > 0,∀k, b ∈ ς(k), n ∈ Γ−(b).

The multipliers being strictly positive, the corresponding constraints must be saturated.
It makes Eq.14 hold and Pareto efficiency follow. �
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Appendix B. Proof that LFU leads to α-fairness

Let f(·) be the α-fair objective function. The increase of f with regards to an
increase of content k’s ingress rate is

dfµk,a,n
=
∂f(µ̄∗k,a,n)

∂µ̄∗k,a,n
dµ̄ = h̄∗n,k

( qk
φ∗k

)α
dµ̄.

Let ε(α) be the increase of the α-fair objective function induced by an increase of
content 1’s rate and the equivalent decrease of content k’s rate, k ↑ ∞.

ε(α) ≡ dfµ1,a,n
− lim
k→∞

dfµk,a,n
=
[
h̄∗n,1 − lim

k→∞
h̄∗n,k

(qk/φ∗k
q1/φ∗1

)α]
dµ̄. (B.1)

We aim at proving that ν(3)∗
n,k > 0,∀n, k. Due to KKT complementary slackness

conditions, it would imply that h̄∗n,k ∈ {0, 1},∀n, k. The partial derivatives w.r.t. cache
hit ratios give

∑
a∈Γ−(n)

µ̄∗k,a,n =
(φ∗k
qk

)α[
ν(2)∗
n + ν

(3)∗
n,k (2h̄∗n,k − 1)

]
,∀n, k.

As stated in Eq.14, per-content services rates cumulatively equal the downlink ca-
pacity. This helps getting rid of the link service rate in the above expression and obtain
that:

∑
k,a∈Γ−(n)

µ̄∗k,a,n =
∑
k

(φ∗k
qk

)α[
ν(2)∗
n + ν

(3)∗
n,k (2h̄∗n,k − 1)

]
=

∑
a∈Γ−(n)

Cn,a,∀n.

Then we substantiate the pivotal multiplier

ν(2)∗
n =

[∑
k

(φ∗k
qk

)α]−1

Cn,∀n,

where Cn =
∑

a∈Γ−(n)

Cn,a −
∑
k

(φ∗k
qk

)α
ν

(3)∗
n,k (2h̄∗n,k − 1).

By contradiction, suppose ν(3)∗
n,k = 0. It entails∑

a∈Γ−(n)

µ̄∗k,a,n =
(φ∗k/qk)α∑
i(φ
∗
i /qi)

α
Cn,∀α ≥ 0

=
Cn
|K|

, for α = 0 and α→∞.

However, from Eq.B.1, ∀α ≥ 0, h̄∗n,1 = 1 and h̄∗n,k = 0, k ↑ ∞ yield ε(α) > 0.

Consequently, as ν(3)∗
n,k = 0 does not lead to a maximum, ν(3)∗

n,k > 0 and h̄∗n,k ∈ {0, 1}.
�
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