
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
1
8
8
2

|

d
o
w
n
l
o
a
d
e
d
:

2
8
.
4
.
2
0
2
4

Accepted Manuscript

CDS-MEC: NFV/SDN-based application management for MEC in 5G
Systems

E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, T. Braun

PII: S1389-1286(18)30080-X
DOI: 10.1016/j.comnet.2018.02.013
Reference: COMPNW 6411

To appear in: Computer Networks

Received date: 6 August 2017
Revised date: 9 January 2018
Accepted date: 14 February 2018

Please cite this article as: E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, T. Braun, CDS-MEC:
NFV/SDN-based application management for MEC in 5G Systems, Computer Networks (2018), doi:
10.1016/j.comnet.2018.02.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.comnet.2018.02.013
https://doi.org/10.1016/j.comnet.2018.02.013

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

CDS-MEC: NFV/SDN-based application management for MEC in 5G
Systems

E. Schillera,∗, N. Nikaeinb, E. Kalogeitona, M. Gasparyana, T. Brauna

aCommunication and Distributed Systems (CDS), University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland
bCommunication Systems Department, EURECOM, Campus SophiaTech, 450 Route des Chappes, 06410 Biot Sophia

Antipolis, France

Abstract

This paper presents and evaluates the first open-source Network Function Virtualization (NFV)/Software
Defined Networking (SDN)-based Mobile Edge Computing (MEC) platform. Our platform solves the Mobile
Edge (ME) management issues with respect to Application (App) provisioning and traffic management.
First, the ME Apps are managed as Virtual Network Functions (VNFs) on top of the virtual environment
through the Juju VNF Manager (VNFM). Second, we develop an SDN controller to manage traffic on the
ME System. Third, unlike other relevant architectures of ME systems, we use the control plane (i.e., S1
interface) to derive appropriate states for traffic management. Finally, we evaluate our solution in two
use-cases: ME caching and Information Centric (ICN)/Delay Tolerant (DTN) Public Safety communication
(PS). The MEC caching framework displays improved user Quality of Experience, e.g., latency, in comparison
to direct communication, while the PS solution provides a residual mean of communication for rescue teams,
when the network core (EPC) and a Public Data Network (PDN) are unavailable.

1. Introduction

There is an on-going effort that will change the
ecosystem of future mobile networks providing intel-
ligence at the network edge. Mobile Edge Comput-
ing (MEC) [1, 2] will be used to provide computing
and storage directly at or close to an evolved Node
B (eNB). Due to MEC, content, services, and appli-
cations will greatly benefit from reduced delay of the
network edge. MEC is also foreseen in 3GPP 5G net-
works as an important technological enabler towards
new genres of applications that intelligently combine
location, network conditions, and radio information
to provide enriched services to end-users. Therefore,
MEC will widely spread in the ecosystem of future
5G networks. MEC could be implemented using older
management techniques (i.e., not Network Function
Virtualization (NFV)/Software Defined Networking

(SDN)-based), however, NFV/SDN will greatly im-
prove flexibility and rapid building of services at the
edge.

This work presents the architecture as well as im-
plements and evaluates the performance of the CDS-
MEC System1. The paper is organized in the follow-
ing way. Sec. 2 discusses the related work on 3GPP
networks and MEC. In Sec. 3, we describe architec-
ture and implementation details of our MEC plat-
form. Sec. 4 describes the architecture of the SDN
controller. The performance of our architecture run-
ning selected ME Apps is illustrated in Sec. 5. Fi-
nally, we conclude in Sec. 6.

1CDS refers to the Communication and Distributed Sys-
tems Group of the University of Bern.

Preprint submitted to Elsevier February 15, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

eNB

S/P GW
MME

HSS

Mobile Network
Telecommunications

UE

Internet

S1-US1-C

Figure 1: A simplified architecture of the LTE system.

2. Related Work

2.1. Mobile Network Telecommunications

In Fig. 1, we depict a simplified schematic of 4G
Mobile Network Telecommunications. The LTE net-
work is divided into the Evolved Packet Core (EPC)
and the Radio Access Network (RAN). An eNB is a
base station that provides a RAN towards end-users
operating User Equipment (UE). The EPC contains
a Home Subscriber Server (HSS), a Mobility Man-
agement Entity (MME), a Serving Gateway (SGW),
and a Packet Data Network Gateway (PGW) [3]. The
HSS is responsible for maintaining the user subscrip-
tion information. The MME is a critical network
function, which deals with the control plane. The
SGW is responsible for handling user plane pack-
ets between the eNB and the PGW. The PGW is
a user plane component, which forwards packets be-
tween the LTE network and packet networks (e.g.,
the Internet). In the remaining part of this paper,
we refer to both PGW and SGW as Serving Packet
Gateway (SPGW). Moreover, we will put a particu-
lar focus on the traffic management of the S1 (c.f.,
Fig. 1) interface between the eNB and MME in the
control plane (S1-C) and the eNB and SPGW in the
data plane, i.e., GPRS Tunnelling Protocol (S1-U).

2.2. SDN/NFV in Mobile Networks

In the EPC, the NFV concept solves flexibility and
cost-efficiency problems through the on-demand in-
stantiation of Virtual Network Functions (VNFs) [4],

while SDN is mainly proposed for traffic optimiza-
tions [5, 6, 7, 8] in the core focusing on benefits in-
cluding performance, scalability, interoperability, and
flexibility.

There are several projects using the concept of
NFV/SDN in Mobile Networks. Claudia2 can in-
stantiate services in private (i.e., OpenNebula, Euca-
lyptus, vSphere) and public clouds (Amazon, Flex-
iscale, etc.). The EU FP7 T-NOVA project [9] im-
plements an orchestration platform for provisioning,
configuration, monitoring, and optimization of Net-
work Function-as-a-Service over virtualized infras-
tructures. The orchestration aspects covered by T-
NOVA primarily include service chain mapping, ser-
vice chaining and provisioning. In terms of service
chaining, it employs SDN to install the forwarding
state into the switches for traffic steering through the
VNF chain. The EU H2020 SONATA project [10]
also implements an orchestration and management
framework, which allows both the service operator
and the service developers to influence the deploy-
ment and placement of service chains on the phys-
ical infrastructure. SONATA supports a Develop-
ment and Operations (DevOps) work-flow, which al-
lows both developers and service operators to collab-
orate during the orchestration to optimize the design
and deployment of the service. The EU FP7 UNIFY
project [11] proposes an orchestration layer, which
aims to achieve optimal placement of service chains
on a physical infrastructure across different domains.
The orchestration layer also provides an abstract and
unified view of physical resources across different
infrastructure providers to a service layer, through
which customers can request a service. The EU FP7
Mobile Cloud Networking (MCN) project [12] pro-
vides a distributed orchestration layer consisting of
a service manager (e.g., a RAN provider) and mul-
tiple service orchestrators per domain. The service
manager provides an interface to the end customer
to request a service from the corresponding domain.
For each requested service chain, the service man-
ager creates a service orchestrator, which configures,
creates and deploys the service on the domain in-

2http://occi-wg.org/tag/claudia/

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

frastructure through its controller. At the standard-
ization level, the ETSI NFV Industry Specification
Group (ISG) is defining concepts, architectures, and
interfaces for delivery and management of VNFs and
their service chains. In ETSI NFV MANagement and
Orchestration (MANO) [13], the NFV Orchestrator,
in combination with the VNF Manager, is in charge
of deploying the network services over the physical
infrastructure as well as configuring and operating
(scale-in/scale-out) the VNFs covering all the VNFs’
life-cycles. In terms of software, several open source
projects are addressing platforms for NFV Infrastruc-
tures and NFV MANO tools. Virtual Infrastructure
Manager (VIM) and NFV Infrastructure (NFVI) are
the current focus of the OPNFV3 initiative, which
has the goal to provide NFVI and VIM compo-
nents, as well as their open Application Program-
ming Interfaces (APIs). Other projects focus more on
the management and orchestration functions of the
NFV MANO architecture: OpenBaton4, Open-O5

and OpenSourceMANO (OSM)6 provide open source
software for NFV-Orchestration and generic Virtual
Network Function Managers (VNFMs).

2.3. ME Systems

Roman et al. [14] compared MEC, fog computing,
and cloudlet systems. A derivation of a conceptual
architecture, spanning functionalities and interfaces
for provisioning applications on MEC systems is de-
rived in [15]. The ETSI MEC ISG provides an open
standardization environment for the development of
architectures for ME Systems. Initially, ETSI defined
six application use-cases [1] for mobile edge systems.
The work of ETSI concentrates on a top-down ap-
proach starting with MEC applications. The deriva-
tion of the ME Host architecture currently focuses on
the management of application life-cycle through vir-
tualization and appropriate management of the data
plane [1, 2]. However, the reference points of the low-
est level are not defined. A road-map for ME systems

3https://www.opnfv.org
4https://openbaton.github.io
5https://www.open-o.org
6https://osm.etsi.org

focusing on (power consumption, delay, bandwidth
utilization, and scalability) with a careful study on
application categorization is presented in [16]. For
example, MEC services can help with MEC task of-
floading (e.g., the video encoding process), hence im-
proving power consumption in mobile devices [17].
Moreover, as a complementary functionality in cur-
rent and future networks, MEC may become an en-
abler for real-time context-aware applications com-
bining MEC and RAN [18]. A tree-like mobile edge
organization of a multi-tier cloud architecture was
proposed in [19]. It allows an aggregation of the load
across different tiers of cloud servers to maximize the
mobile workloads being served. The work of [20] pro-
poses and implements a MEC framework of ETSI and
3GPP compliance and focuses on the integration of
LTE/LTE-A, MEC, and SDN. SDN is emerging as
a natural solution for next generation cellular net-
works as it enables further network function virtu-
alization opportunities and network programmabil-
ity [21, 22]. In MEC, NFV and SDN will allow ex-
treme flexibility, when it comes to the specification
of extended logics of micro-service architectures at
the network edge. The MEC function chain will be
managed by the VNFM responsible for the instan-
tiation of Virtual Network Functions (VNFs) and
the SDN controller (e.g., OpenDayLight7 with SDN-
Switches) connecting elements all together [23]. Such
a solution hides all the control-plane complexities
of underlying resources from an end-user, requires
the definition of appropriate hardware abstractions
and communication protocols such as OpenFlow with
OpenFlow eXtensible Match (OXM) on the south-
bound interface [23], which automates rapid building
of SDN/NFV-based function chains [24]. A top-level
orchestrator providing an appropriate level of Qual-
ity of Service (QoS) will manage the SDN/NFV con-
trollers through the north-bound API. To the best of
our knowledge, however, an open-source NFV/SDN-
based MEC platform has not been implemented yet.
Moreover, the main idea behind this paper is a so-
lution that allows for App provisioning at the edge
that does not require additional signalling between

7https://www.opendaylight.org/

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Mobile Edge Host
Virtualisation
Data Plane

Operations Support
SystemUE

App

Virtualisation
Manager

User
App

Proxy

Mobile Edge

Mobile Edge Platform
Manager

Mobile Edge
Orchestrator

Mm3

Mm1

Mm4

Mx2

Mm8

Mm9

Mp2

Mp1

Mm7
Mm6

ME
App

ME
App

Mm2

Mm5Traff ic
Rules

Control

Service

CFS
portal Mx1

Other
Mobile
Edge

M
ob

ile
Ed

ge
Sy

st
em

 L
ev

el
M

ob
ile

 E
dg

e H
os

t L
ev

el

ME
App

Mp1

Mp3 Service
ME

RegistryHost

Platform

 Infrastructure
Infrastructure

Figure 2: The architecture of the MEC system (from [2]).

the EPC and the ME System. We therefore rely on
the existing S1 protocol to derive necessary states on
the ME cloud and do not require any changes to the
existing LTE architecture. This distinguishes our so-
lution from other state of the art MEC architectures
proposed to date [15, 20, 25].

3. MEC Architecture Specification

As illustrated in Fig. 2 [2], the ME system con-
sists of the (upper) ME system level and the (lower)
ME host level. The Customer Facing Service (CFS)
for third parties and UE application portals are en-
try points towards the ME System. Roughly speak-
ing, the portal allows third parties such as vertical
providers or mobile users (UEs) to install Mobile
Edge (ME) Apps on the ME Host (i.e., small cloud).
The ME App receives traffic directly from the data
plane from nearby eNBs by an appropriate traffic
configuration. The platform is divided into separate
inter-connected entities, which communicate through
reference points defined between them (Mm1-9, Mp1-
3, Mx1-2). The ME Host provides a ME platform and
a virtualization infrastructure, which run and control
ME Apps. From the perspective of ME Apps, the ME
Platform uses the Mp1,2 reference points to provide:

• service discovery, registration, and communica-
tion, i.e., offering and consuming services (Mp1),

Abstraction of hardware
resources

eNB

Virtual
Compute

Virtual
Network

Virtual
Storage

App#1
MEC Applications

Physical
Compute

Physical
Network

Physical
Storage

App#2 App#3

MEC Infrastructure

S1 traffic

Virtual
Network
Function
Manager

OpenFlow
based

Controller
Mm7

Mp2

Mobile Edge
Orchestrator

CFS Portal

EPC

S1 traffic

S1AP

Figure 3: The architecture of the CDS-MEC system.

• data plane into the virtualized infrastructure of
ME Apps (Mp2)

A user requests a new App through the portal (CFS,
UE App). First, the request arrives at the Operations
Support System (OSS). In turn, the OSS communi-
cates with the Mobile Edge Orchestrator to manage
the life-cycle of Apps. The orchestrator uses the Mo-
bile Edge Platform Manager and VIM to appropri-
ately configure the Mobile Edge Platform and Virtu-
alization Infrastructure on the ME Host respectively.
On the way from the CFS portal, the life-cycle man-
agement of Apps on ME Host is controlled by the
Mx1 - Mm1 - Mm3 - Mm6 - Mm7 reference points,
while the traffic rules providing the data plane to ME
Apps are provided by the Mx1 - Mm1 - Mm3 - Mm5
- Mp2 reference reference points. For more details,
please consult [2].

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In Fig. 3, we present the CDS-MEC architecture
integrated with the LTE infrastructure. We enrich
the LTE ecosystem with a ME cloud residing close to
the eNB. The idea behind this infrastructure is to al-
low for i) the instantiation of arbitrary ME Apps and
ii) the response to UE requests from a close vicinity
of the eNB. Our architecture of the MEC platform
is closely related to ETSI MEC white-papers (c.f.,
Fig. 2 [1, 2]).

The ME cloud builds upon hardware resources
composed of computing units equipped with CPUs,
RAM, disks, and network adapters. In the case of
sparse resources, one cloud server can build the en-
tire ME micro-cloud, e.g., having an i7/Xeon CPU,
RAM, disk, and one Intel dual-port 10 GbE-T card,
on board. In such a configuration, ME micro-cloud
is connected to the EPC through the first port and
to the eNBs through the second port of the network
interface. Hardware resources will be abstracted to-
wards a VNFM, which automatically deploys ME
Apps (i.e., VNFs) on the hardware infrastructure
equipping VNFs with virtual compute, storage, and
networking resources (the ETSI MEC Mm7 reference
point). As the ETSI MEC Mp2 reference point pro-
viding data plane within the virtual resources of ME
Apps, we develop an OpenFlow [26]-based controller
and use the Open Virtual Switch (OVS) [27]. How-
ever, external SDN switches (i.e., not integrated with
the ME cloud) can be used as well. The VNFM and
controller will be managed by the CFS through a Mo-
bile Edge Orchestrator. In this work, we did not fo-
cus on the development of the CFS and orchestrator,
i.e., the VNFM and SDN controller are directly pro-
vided with information that should be derived by the
CFS/orchestrator.

3.1. Virtual Network Function Manager

The main building block of our system is Juju
developed by Canonical8. Juju provides a generic
VNFM that can be adopted to heterogeneous envi-
ronments such as Infrastructure as a Service (IaaS)
and Platform as a Service (PaaS) clouds (e.g.,

8https://www.ubuntu.com/cloud/juju

abstracted towards Juju through Ubuntu9, Open-
Stack10, etc.). It natively supports service provi-
sioning and scaling functions for scale-in/scale-out
scenarios. Therefore, it dynamically handles work-
loads by properly adjusting resources to momentary
situations. Juju provisions various services provided
as software on-demand. Services are described by
charms, i.e., service manifests allowing for appro-
priate service configurations. Juju allows for “glu-
ing” or “bundling” services all together by imple-
menting logic allowing for automatic associations be-
tween services (i.e., service chaining). In the ETSI
Management and Orchestration (MANO)11 architec-
ture, Juju should be classified as a VNFM of ex-
tended capabilities, helping MANO vendors to imple-
ment advanced business logic in the service orchestra-
tion part to support an enhanced Quality of Service
(QoS) through contracting appropriate Service Level
Agreements (SLAs). The charm store (i.e., a Juju
charm repository) and Juju controller play the role of
the VNFM, which allows us to spawn VNF bundles
on the MEC infrastructure. The Juju service bun-
dle could be connected with the help of the virtual
switch [27] providing a virtual network.

In our architecture, the hardware resources are
abstracted towards Juju through an Ubuntu Xenial
system12. Juju VNFM automatically deploys ME
Apps (i.e., VNFs) on the hardware infrastructure
equipping VNFs with virtual compute, storage, and
networking resources (implementing the ETSI MEC
Mm7 reference point). As an example, Juju can au-
tomatically deploy a KVM13/LXD14-based caching
service (e.g., squid15) that responds to user requests
directly from the network edge (c.f., Fig. 4).

3.2. Management of the Traffic at the Network Edge

In the ME Platform, the data plane traffic man-
agement for ME function chaining should leverage

9https://www.ubuntu.com
10https://www.openstack.org
11http://osm.etsi.org
12http://releases.ubuntu.com/16.04
13https://www.linux-kvm.org
14https://linuxcontainers.org/lxd
15http://www.squid-cache.org

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: A screen-shot of the Juju Graphical User Inter-
face (GUI), in which virtual elements, i.e., OpenAirInterface
(OAI) [28] (LTE Network) and Squid Forward Proxy (App)
are instantiated on the MEC-Cloud Infrastructure. This al-
lows the UE attached to an OAI eNB to access the external
web-server through a dynamically instantiated Squid forward
proxy.

TCP/UDP

IP

UE

PDCP

RLC

MAC

PHY PHY

MAC

PHY

MAC

RLC IPSec

PDCP GTP-U
ROHC

Wireless
Communication

IP

TCP/UDP

S1-U
Interface

towards
SPGW

eNB

Figure 5: eNB Communication Diagram

SDN, which provides increased scalability and en-
hanced flexibility already demonstrated in LTE core
networks (c.f., Sec. 2.2). An SDN switch providing
networking in ME systems will manage the data plane
according to a flow table. The flow table matches
traffic and uses actions to redirect packets towards
necessary Apps (i.e., VNFs).

As the 1st innovation, we provide a rationale
for the necessary SDN functions that have
to be standardized in OpenFlow and imple-
mented by SDN switches to allow for SDN-
based traffic management in ME Systems ex-
changing traffic between UEs and IP-based
ME Apps not supporting the LTE stack.

3.2.1. Basic eNB Operation

An eNB provides radio access for UEs using the
core network (c.f., Fig. 5). When a user generates
traffic, the IP messages are being forwarded through
an S1-U tunnel towards the SPGW. An S1-U mes-
sage encapsulates a 32 bit Tunnel Endpoint Identifier
(TEID), (e.g., 0x00000001) so that the traffic can be
appropriately recognized at the EPC on a per-user
level. Please notice that the downlink packets from
the EPC to the UE traverse the stack in the oppo-
site direction. In Fig. 6, we present S1-U messages
exchanged between the eNB and the EPC. We also
refer to the eNB through the Base-Band-Unit (BBU),
which is the signal processing entity of the eNB. The
TEIDs on the upstream and downstream differ. How-
ever, they are related as they belong to the same
bearer with the same IPUE. (c.f., Sec. 4).

3.2.2. Required SDN Actions

To redirect traffic towards Apps, the SDN switch
has to be appropriately programmed by a Controller
(c.f., Fig. 7). First, the flow tables have to inter-
cept S1-U traffic from the eNB towards EPC. The
encapsulated packets (c.f., Fig. 6, Inner IP Packet)
should be provided towards a ME App. Second, the
IP traffic from Apps towards a UEs should be pro-
vided as S1-U traffic (with an appropriate TEID) to-
wards the eNB. In order to accomplish this goal, the
SDN switch has to implement the following functions
(please notice that the last two actions are already
standardized in OpenFlow):

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

src: IPBBU
dst: IPSPGW

IP Header

TEIDBBU(UE)

GTP Header User Data / Inner IP Packet

src: IPUE

IP Header
Data

eNBSPGW

src: IPSPGW
dst: IPBBU

IP Header

TEIDSPGW(UE)

GTP HederUser Data / Inner IP Packet

dst: IPUE

IP Header
Data

Figure 6: S1-U GTP packet description.

eNBSPGW

App

1 2

1 - decapsulation + redirect
2 - encapsulation + redirect

S1-U

S1-U

IP

Controller

SDN Switch

OpenFlow

Figure 7: Basic SDN operations to redirect traffic between UEs
and Apps.

• GTP decapsulation of S1-U, which strips off the
IP/UDP/GTP header (c.f., Fig. 6) leaving the
inner IP packet,

• GTP encapsulation of S1-U, which equips an IP
packet with a S1-U GTP tunnel of an arbitrary
TEID,

• MAC-based/IP-based packet modifications,
which alter the destination addresses at the
MAC and IP level,

• SDN port action, which sends the packet to a
given output port.

Now, let us demonstrate the completeness of these
SDN actions allowing for successful communication
between UEs and ME Apps. Let us assume that
a user is attached to an eNB. The eNB and EPC
recognize the traffic of a given UE by a bearer
(be it a default or dedicated bearer) consisting of
an S1-U GTP tunnel using TEIDSPGW(UE) on the
downstream and TEIDENB(UE) on the upstream. On
every bearer, the UE receives a different IPUE. The
UE, eNB, and SPGW are equipped with IP addresses
IPUE, IPeNB, and IPSPGW, respectively. When the
UE originates an IP packet p of source IPUE, it is
encapsulated by the eNB as an inner data packet
into a GTP tunnel, i.e., packet PTEIDENB(UE)

(p)
with TEIDENB(UE). The packet is pushed from
the eNB (i.e., IPeNB) towards the SPGW (i.e.,
IPSPGW) as illustrated in Fig 6 and Fig 7. On
the way towards the SPGW, the SDN switch
captures the packet, strips off the GTP header
p = GTP decapsulation(PTEIDENB(UE)

(p)), and
provides p using a Redirect(p) function towards
the ME App (c.f., Sec. 3.3.2, Sec. 4.2, Sec. 5.1, and
Sec. 5.2). Note that a typical function redirecting
packets towards a ME App could be materialized
by modifying the link layer destination (i.e., the
destination MAC address) and providing the packet
towards an appropriate outgoing port on the switch
(i.e., the SDN port action). The ME App recognizes
the network layer source of the transmission as IPUE.
It then issues a downstream packet p′ using the
received IPUE as the destination (c.f., Fig. 7). The
packet goes through the SDN switch, which in turn
intercepts packet p′ from the ME App going towards
the IPUE. Such an IP packet p′ cannot be delivered to
the eNB directly. It has to be first tunnelled towards
the eNB with an appropriate TEIDSPGW(UE)

by issuing a GTP packet P ′TEIDENB(UE)
=

GTP Encapsulate(p′, IPeNB,TEIDSPGW(UE)). The
GTP Encapsulate function is provided with the
target endpoint, i.e., the eNB IP address and the
SPGW TEID to appropriately encapsulate the
traffic. Finally, the S1-U GTP packet arrives at the
eNB, which recognizes the user using the SPGW
TEID from the GTP header and delivers p′ through
the air interface to the UE.

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.2.3. SDN Matching

Packet matching is also an important property.
Usually, SDN switches match packets based on vari-
ous policies such as addresses at the various level of
the IP stack and other important fields in packets.
Due to the fact that the provider has to have flexibil-
ity in terms of allocating services to UEs, the SDN
switch has to allow us to match packets based on
the GTP-TEID. Moreover, after decapsulation, the
SDN switch will allow us to inspect the fields of in-
ner data packets to redirect various protocols towards
appropriate MEC applications. As an example, a
UE HTTP request (towards TCP port 80) could be
redirected to the MEC HTTP cache server running
squid16, while an SSH packet (towards TCP port 22)
can go directly to the SPGW.

3.3. SDN Switches & SDN Switch Modifications

The SDN switch is in the core of our architecture.
As an example, OpenvSwitch (OVS) is a software-
based, OpenFlow compatible switch developed by
Nicira [27]. It allows for the on-demand establish-
ment of virtual switches among Windows or Linux
operating systems. On the north-bound interface,
the switch uses OpenFlow to communicate with the
controller. It supports various matching rules at dif-
ferent levels of the IP stack as well as many actions
(e.g., modification of addresses; tunneling, encapsu-
lation, decapsulation in GRE, VxLAN, etc.) that
allow for advanced traffic engineering. OVS sup-
ports OpenFlow 1.1-1.4 protocols with OVS Exten-
sible Flow Match (NXM) / OpenFlow eXtensible
Match (OXM). We worked with OpenFlow 1.4 us-
ing OXM/NXM extensions to provide GTP matching
rules (c.f., Sec. 3.2.3).

3.3.1. Necessary modifications to OVS

The 2nd innovation is the implementation of
a micro-flow [27] GTP matcher17 in the user
and Linux kernel spaces. The OVS optimized
packet forwarding consists in general of three tech-
niques, i.e., user space packet matching, kernel space

16http://www.squid-cache.org
17https://github.com/ejschiller/FLEX/tree/master/ovs

src: IPBBU
dst: IPSPGW

IP Header
TEIDeNB(UE)

GTP Header Inner IP Packet

src: IPUE

IP Header
Data

eNB

SPGW

OVS

if TEIDeNB(UE) does not match,
forward packet to SPGW

src: IPeNB
dst: IPSPGW

IP Header
TEIDeNB(UE)

GTP Header Inner IP Packet

src: IPUE

IP Header
Data

else if TEIDeNB(UE) matches, decapsulate
packet and match it against App rules
Inner IP Packet

src: IPUE

IP Header
Data

if packet matches App#X, forward Inner
IP Packet to App#XInner IP Packet

src: IPUE

IP Header
Data

App#X

else (no App found), encapsulate the packet
again and send it to SPGW

SPGW

src: IPeNB
dst: IPSPGW

IP Header
TEIDeNB(UE)

GTP Header Inner IP Packet

src: IPUE

IP Header
Data

transparently forward traffic from
SPGW to eNB

SPGW

dst: IPeNB
src: IPSPGW

IP Header
TEIDSPGW(UE)

GTP HeaderInner IP Packet

dst: IPUE

IP Header
Data

eNB

Upstream

Downstream

encapsulate App#X traffic
with GTP tunnel

App#X

dst: IPeNB
src: IPSPGW

IP Header
TEIDSPGW(UE)

GTP Header

IP Packet

dst: IPUE

IP Header
Data

eNB
Inner IP Packet

dst: IPUE

IP Header
Data

Figure 8: Processing of GTP packets by OVS.

matching, and so called kernel space mega-flow [27],
out of which we implement the first two. Moreover,
we used the S1-U tunnelling patch allowing for the
S1-U GTP decapsulation/encapsulation18. This pro-
vides enough functionality to support services run-
ning on MEC infrastructures with appropriate traffic
handling as shown in Sec. 3.2.2.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.3.2. Traffic Rules on the OVS Switch

The OVS switch distributes traffic among Apps us-
ing traffic characteristics (network protocols, trans-
port protocols), the corresponding addresses (e.g.,
TCP Port 80), and flags (e.g., TCP SYN). An ex-
ample OVS rule will resemble:

• a GTP tunnel of TEIDBBU(UE) carrying a TCP
request from IPUE towards port 80 goes through
App#2/IPApp#2,

• every GTP tunnel (from all UEs) carry-
ing a request towards port 80 goes through
App#3/IPApp#3.

To distribute traffic among selected Apps and by
default send traffic through the EPC, we have de-
rived the following forwarding strategy (c.f., Fig. 8).
On the upstream, a packet originated by a UE trans-
parently goes to the SPGW if it does not match any
of GTP rules on the OVS (e.g., TEID=0x00000001).
However, when the packet TEID matches a GTP
rule, the packet should target ME Apps on the ME
Host. Therefore, the switch removes the GTP header
and inserts the inner packet into the switch App
flow tables for processing. If the UE inner packet
matches the App rule#X (e.g., IP packet, TCP des-
tination port 80 (HTTP)), it is redirected to a given
App#X (e.g., a squid forward proxy). If no App rule
matches, the packet is again encapsulated with the
initial upstream TEID and goes towards the SPGW.
On the downstream, the SPGW packets targeting
the eNB go transparently through the OVS switch.
However, packets returning from Apps (targeting a
given UE based on the IP address) get encapsulated
with a GTP header using an appropriate downstream
TEIDSPGW(UE).

Currently, a limited version of service function
chaining is supported, i.e., UE → App → UE and
UE → EPC → UE chain types are implemented. To
support more complex chains having many Apps in-
side the chain, the forwarding Apps will have to carry
the original source IPUE in the header of forwarded
packets. The flow rules will use IPUE as a matching

18https://patchwork.ozlabs.org/patch/579431/

condition for traffic forwarding. For example, if traf-
fic for a given IPUE, has to go from AppA to AppB, a
switch has to forward a packet with IPUE from AppA

towards the input port of AppB according to flow
rules installed on the output port of AppA. Such a
method will allow for multi App chains. We do not
study, however, multi App chains in this paper.

4. SDN-based Controller

This section describes an SDN-based controller
that allows for the S1-U traffic distribution among
ME Apps on both a per UE and App using the packet
forwarding technique demonstrated in Sec. 3.3.2. The
OpenFlow-based controller responds to user require-
ments through the CFS portal (c.f., Fig. 3). The
CFS portal allows the user for the preparation of
templates for traffic management. The user assigns
a given App to all users attached to an eNB (pro-
vides the IPUE wildcard) or only selected users based
on specific IPUE. The role of the controller is to
derive traffic rules using appropriate TEIDBBU(UE)

on the upstream and TEIDSPGW(UE) on the down-
stream matching the IPUE of the UE. The relation
is derived by a tracking module capturing the S1-
C control plane between the EPC and eNB on the
OVS switch. The module derives the bearer rela-
tion combining IPUE, IPSPGW, TEIDeNB(UE), and
TEIDSPGW(UE). This information is eventually used
for constructing SDN rules on the OVS switch (on the
downstream and upstream) from templates provided
by the user.

4.1. S1-C Tracking Module

The 3rd innovation is the passive monitoring
of the control plane to derive the necessary
parameters upon the UE attachment. We in-
troduce a tracker, which is an auxiliary module of our
architecture. Its role is to recognize the transmission
bearer and associate the IPeNB, IPSPGW, upstream
TEIDeNB(UE), downstream TEIDSPGW(UE) with the
IP address of the user IPUE (c.f., Fig. 9). Upon the
UE attachment procedure, the tracker first processes
the Initial Context Setup Request of the S1-C proto-
col exchanged between the MME and the eNB. The

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

MME

eNB

OVS tracker

..., E-RAB ID, ...
SGW TEID

LTE User attachment

Initial Content Setup
Request

tracker receives:
as keys: ID E-RAB, IPeNB
data: IPSGW, TEIDeNB ,IPUE

MME

eNB

OVS tracker

..., E-RAB ID, ...
eNB TEID

LTE User attachment

Initial Content Setup
Response

tracker already has:
ID E-RAB, IPeNB, IPSGW, TEIDeNB ,IPUE
tracker receives:
E-RAB ID, IPeNB, TEIDSPGW

Figure 9: Tracking procedure.

request contains a per-user unique E-UTRAN Ra-
dio Access Bearer (E-RAB) that can serve as an in-
formation key distinguishing bearers in the database
(db). The tracker retrieves, the E-RAB ID, IPSPGW,
IPeNB (destination of the IP packet), TEIDeNB, and
the user Packet Data Network (PDN) IPUE from the
message to keep in the database. Second, when the
LTE Initial Context Setup Response arrives for the
same bearer, the tracker can extend the cached data
with the TEIDSPGW from the message, as the E-RAB
ID from the S1-C response is equal to the E-RAB ID
from the S1-C request, which already serves as the
database key. Therefore, the tracker needs to receive
the Initial Content Setup Request and Initial Content
Setup Response to derive the complete user informa-
tion.

We present our tracking procedure in Algorithm 1.
The procedure requires two input parameters, i.e.,
the port for traffic monitoring and the switch for
SDN-based management. The procedure collects
traffic on a given port and fills out variables re-
quired for appropriate traffic management in the
db structure. When the data is ready, meaning
that db[p.IPeNB][p.IDE-RAB] is fully populated with
IPeNB, IPSPGW, TEIDeNB, TEIDSPGW, IPUE, the

Algorithm 1 Tracking algorithm

1: db[][] = ∅
2: procedure Tracking(interface, switch)
3: while p← getPkt(interface) do
4: if p is Initial Context Setup Req. then
5: delete-ovs-rules(switch,

db[p.IPdst][p.IDE-RAB])
6: delete db[p.IPdst][p.IDE-RAB]
7: db[p.IPdst][p.IDE-RAB].IPeNB ← p.IPdst

8: db[p.IPdst][p.IDE-RAB].IPSPGW ← p.IPSPGW

9: db[p.IPdst][p.IDE-RAB].TEIDeNB ←
p.TEIDeNB

10: db[p.IPdst][p.IDE-RAB].IPUE ← p.PDN.IPUE

11: else if p is Initial Context Setup Resp. then
12: db[p.IPsrc][p.IDE-RAB].TEIDSPGW ←

p.TEIDSPGW

13: if db[p.IPdst][p.IDE-RAB] is full then
14: install-ovs-rules(switch,

db[p.IPdst][p.IDE-RAB])
15: end if
16: else if p is S1-U then
17: no operation
18: end if
19: end while
20: end procedure

procedure executes the install-ovs-rules function to
translate user templates into actual rules. Currently,
the rule (i.e., state) is stored on the switch, until the
EPC creates a bearer with the same E-RAB/IPUE.
When such a new bearer appears in the system, the
old rules are recycled. Notice that we assume that
distinct bearers carry different IPUE addresses. MME
or X2 handovers in the case of UE mobility are left
for future work.

This is a novel method of reusing the S1-C to
manage traffic rules on the ME Platform. Previous
works [2] only acknowledge the distribution of the
data plane among Apps, but the exact method is not
discussed in the literature. User space capturing of
the S1-C protocol between the MME and eNB is com-
putationally inexpensive, as it resembles an ordinary
S1-C protocol handling of a typical eNB. The expen-
sive part is the user space capturing of S1-U packets

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

MEC Cloud:
Intel quad-core @ 3.4 GHz

S1-AP/GTP traffic

OVS

1 GbE-T Network

VM tracker

Figure 10: Traffic switching on the ME cloud.

going between the eNB and the EPC that can be re-
ceived together with S1-C (i.e, no operation for heavy
traffic) by the tracking module. We, however, do not
require any S1-U packets in our monitoring opera-
tion. The further optimization of the tracking pro-
cedure uses the SDN capabilities of the switch. We
install appropriate rules on the switch to filter out the
S1-U communication from the traffic captured by the
user space tracker. Please notice that the S1-C packet
copying (i.e., to the monitoring interface) is easily im-
plementable in SDN/OVS by the application of the
output action providing the tracker with traffic. Gen-
erally, the S1-C traffic can be provided towards the
tracker through the Out-Of-Band (OOB) or regular
interfaces.

We performed the experiment illustrated in Fig. 10.
We connect the ME cloud to a S1-C/S1-U traffic
source (i.e., eNB) through a 10 Gigabit Ethernet port
(i.e., the Intel 10 GbE-T X540 NIC). The most signif-
icant traffic is S1-U. First, we saturate the network
from the eNB with S1-U traffic of different packet
sizes between 128 and 1500 bytes. There are 5 sit-
uations considered: i) The S1 traffic targets the IP
address of the MEC Cloud directly, ii) the S1 traffic
targets the IP address of the LXC-based ME Service
instantiated on the MEC Cloud, iii) the S1 traffic tar-
gets the IP address of the KVM-based ME Service
instantiated on the MEC Cloud, iv) the S1 traffic
targets the LXC-based ME Service and the tracker
captures the whole S1 traffic on the switch, and v)

GTP Saturation of LXC Service (virtual tracker)
GTP Saturation of LXC Service (tracker)
Saturation of an LXC Service
GTP Saturation of a KVM Service
Direct GTP saturation of the MEC Server

GTP-U Packet Size [B]

N
et
w
or
k
C
ap

ac
it
y
[G

b
/s
]

1500 B1024 B512 B256 B128 B

14

12

10

8

6

4

2

0

Figure 11: Performance of traffic switching on ME clouds.

the S1 traffic targets the LXC-based ME Service, but
the (virtual) tracker is only provided with S1-C traf-
fic due to an appropriate configuration of the OVS,
i.e., the separation of the control and data plane on
the ME cloud.

S1-U traffic is handled by the underlying UDP pro-
tocol. The UDP implementation on Linux is slow and
does not saturate the link as easily as a regular TCP
connection19,20. TCP displays a regular throughput
of 9.3 Gbps when targeting the cloud server directly,
while we reach 7-9 Gbps with huge performance vari-
ations with S1-U/UDP in an similar situation (c.f.,
Fig. 11). This is due to the fact that the RX queue
processing of the 10 GbE-T network adapter fully
saturates the CPU thread in our experiment. For
protecting UDP packets against out of order deliv-
ery, Linux assigns a single CPU thread for process-
ing a given UDP stream based only on network and
transport protocol addresses. Therefore, S1-U traf-
fic between eNB and ME cloud is recognized as a
single UDP stream, even if it carries traffic from a
large number of distinct UEs. Moreover, we notice
that LXC ME Service displays better throughput

19https://blog.cloudflare.com/how-to-receive-a-million-
packets

20https://fasterdata.es.net/network-tuning/udp-tuning

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

than KVM-based Services (even with multi-queue
TUN/TAP interfaces) due to virtualization overhead.
Performance-wise, LXC behaves nearly as good as the
physical infrastructure. Furthermore, a new prob-
lem arises, when the tracker (implemented using the
python pcapy21 capture library) starts capturing an
interface with both the S1-C and S1-U traffic between
the EPC and eNB. Even though, S1-U is not required
by the tracker, it can severely degrade performance as
it quickly saturates the CPU thread (c.f., Fig. 11) and
in consequence the forwarding capacity of the whole
system. Notice that OVS is a software switch that
also competes for computing resources (e.g., against
the tracker) on the ME cloud. We, therefore, sepa-
rated the control and data plane on the OVS switch,
and provided the tracker with the control plane only.
When the tracker does not receive S1-U packets, the
original forwarding capacity restores.

4.2. User Template Handling

Listing 1: The OVS template for traffic redirections.

MATCHING THE UPSTREAM PACKET OF A GIVEN UE (TEID
BASED) AND REDIRECTING IT TO THE LOCAL GTP TUNNEL
END−POINT USING THE mod dl dst MAC ADDRESS
MODIFICATION AND output ACTIONS
ovs−o f c t l add−f low OVS−SWITCH ” in po r t=$PORT ENB,
ip , udp , tp ds t =2152 , g tp t e i d=$TEID ENB , nw dst=
$IP SPGW, act ion=mod dl dst :$MAC LOCAL,
mod nw dst=$IP LOCAL ,NORMAL”

IMPLICIT DECAPSULATION OF THE GTP HEADER ON THE
UPSTREAM RESUBMITTING PACKETS TO $PORT ENB
ovs−o f c t l add−f low OVS−SWITCH ” tun s r c=$IP ENB ,
tun id=$TEID ENB , act i on=mod dl dst :$MAC APP,
resubmit :$PORT ENB”

REDIRECT A TCP PORT 80 (HTTP) PACKET TO A LOCAL CACHE
USING THE mod dl dst MAC ADDRESS MODIFICATION AND
output ACTIONS (APP#1)
ovs−o f c t l add−f low ovs−br ” i n po r t=$PORT ENB, ip , tcp ,
tp ds t =80, nw src=$IP UE , act ion=mod dl dst :$MAC APP,
output :$PORT APP”

SEND REMAINING PACKETS (NOT MATCHING APP#1) TO THE
SPGW
ovs−o f c t l add−f low ovs−br ” i n po r t=$PORT ENB, nw src=
$IP UE , act ion=load:0−>NXM OF IN PORT [] , s e t t unne l :
$TEID ENB , s e t f i e l d : $IP SPGW−>tun dst , output :
$GTP TUN PORT”

ENCAPSULATING THE DOWNSTREAM PACKET FROM CACHE
WITH THE APPROPRIATE SPGW TEID SENDING THE
ENCAPSULATED PACKET TO THE ENB
ovs−o f c t l add−f low OVS−SWITCH ” in po r t=$PORT APP,
ip , nw dst=$IP UE , nw src=$IP APP , act ion=s e t tunne l :
$TEID SPGW, s e t f i e l d : $IP ENB−>tun dst ,
output :$GTP TUN PORT”

In Listing 1, we provide an example Unix shell-
based template to distribute traffic among the EPC

21https://pypi.python.org/pypi/pcapy

and ME Apps in OVS. Please notice that the gtp teid
matcher (implemented by CDS) and GTP tunneling
end-point (installed patch) are used in the script, but
are not available in the default version of OVS (c.f.,
Sec. 3.3.1).
OVS-SWITCH is the OVS instance deployed on

the ME Cloud, $GTP TUN PORT is the OpenFlow
Port number of the local GTP tunneling end-point,
$PORT APP is the number of the OpenFlow Port con-
necting the switch with the App, $PORT ENB is the
number of the OpenFlow Port connecting the switch
with the eNB, $TEID ENB is the GTP tunnel endpoint
identifier of the user on the eNB side, $TEID SPGW is
the GTP tunnel endpoint identifier of the user on
the SPGW side, $IP APP is the IP address of the
App (e.g., web cache), $IP ENB is the IP address of
the eNB, $IP LOCAL is the local IP address of the
switch on the MEC Cloud, $IP UE is the IP address
of the UE, $IP SPGW is the IP address of the SPGW,
$MAC APP is the MAC address of the App (e.g., web
cache), and $MAC LOCAL is the local MAC address of
the switch on the MEC Cloud. Moreover, we assumed
that the GTP tunnel between the eNB and SPGW is
a UDP stream of source and destination port 2152.

Most of the variables are static (with respect to
the UE attachment), i.e., $GTP TUN PORT, $PORT APP,
$PORT ENB, $IP APP, $IP ENB, $IP LOCAL, $MAC APP,
$MAC LOCAL. As mentioned in Sec. 4.1 there are dy-
namic parameters established upon a UE attachment,
i.e., $TEID ENB, $TEID SPGW, $IP UE, and $IP SPGW.

A user derives traffic redirection rules for App#X
and fills out App related variables: $PORT APP,
$IP APP, $MAC APP. Then the template is submit-
ted to the CFS portal. The portal provides the
template to the ME Orchestrator, which in turn
fills out all the cloud-deployment related parame-
ters $GTP TUN PORT, $PORT ENB, $IP ENB, $IP LOCAL,
$MAC LOCAL and sends the template down to the
controller. The controller (tracker) monitors the
S1-C traffic, and for all discovered UEs attached
(IPUE matching IPSPGW, TEIDeNB, TEIDSPGW)
substitutes corresponding parameters in the template
($IP UE, $IP SPGW, $TEID ENB, $TEID SPGW) and ex-
ecutes the derived OVS rules on the OVS switch.
When the user specifies $IP UE in the template,
the controller will execute the rule for the specified

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Content
Source
Internet

P-GW
cache

S-GW S-GW
cache

eNB eNB eNB eNB

MEC Server running a Caching App.
collocated with a macro eNB site.

cache

Figure 12: The LTE network architecture with caches at dif-
ferent levels.

$IP UE only.
The current implementation integrates our track-

ing module (c.f., Sec. 4.1) with the shell-based con-
troller that both automatically deploy necessary rules
for discovered UEs on the underlying OVS switch.
We do not, however, study scaling of the shell-based
controller as the number of UEs attached with a given
eNB/ME cloud will remain at a relatively small level
of 1000 users per cell. Moreover, as we do not imple-
ment mega-flow optimizations in OVS [27], we can-
not currently elaborate on scaling of switching per-
formance with the increasing number of flow-rules in-
stalled on the switch. Finally, we do not consider any
security measures in the installation of flow rules.

5. Use-cases

In this section, we will evaluate two important use-
cases.

5.1. SDN/NFV based MEC Caching

As the 4th innovation, with the help of SD-
N/NFV, we enrich a hierarchical network ar-
chitecture of LTE with persistent caching at
the network edge as shown in Fig. 12 [29]. In
a typical LTE network, traffic originated by users is
forwarded in a hierarchical manner through eNBs,
SGWs, PGWs that provide access to an external net-
work (e.g., the Internet). Generally, every level of the

LTE network can be equipped with a cache, which
stores a fraction of cached content. This enables pop-
ular content to be stored at the network edge very
close to the user.

5.1.1. Caching Benefits

The hierarchical organization allows us to provide
popular content directly from edge caches, while less
popular objects shall be forwarded further to the next
level (i.e, SGW cache, PGW cache) of growing capac-
ity (however, the placement of cached content is out
of the scope of this paper). When the content is un-
popular (i.e., not available from the caches), it will
be directly accessed from the content source. How-
ever, caching of unpopular objects does not provide
significant benefits.

This caching approach brings a multitude of ad-
vantages for end users and Mobile Network Operators
(MNOs). For users, the QoE significantly increases
due to lower access latency (also lower fluctuations
of the object access time) and increased through-
put. Moreover, the backhaul traffic is significantly
reduced, allowing quicker access from distant content
providers. It is envisioned to reduce the Operational
Expenditures (OPEX) by 36% [30] due to the lower
load of the core infrastructure. In 5G networks, the
deployment of caches will be managed by NFV, i.e.,
when a new cache is required it will be dynamically
instantiated as a Virtual Machine (VM). An SDN
controller shall manage traffic on-demand to make
use of appropriate caching instances at every level of
the LTE network.

5.1.2. Software & Hardware Architecture

The fully open-source caching solution is presented
in Fig. 13. We enrich a typical LTE architecture
with the cloud node residing in between the eNB
and the network core (EPC). The cloud node is con-
trolled with the Juju VNFM. Moreover, we provide
the cloud node with the OVS switch equipped with
the tunnelling and matching patches. The web cache
is instantiated as a VNF from the Juju controller.
The remaining elements of the LTE infrastructure
are OAI-MME, OAI-SPGW, and OAI-ENB imple-
mented by EURECOM [31] providing the UE with
access to the Internet. The eNB is configured to use

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

OAI LTE
eNB App

eNB: 10.0.5.1UE

MEC Cloud: 193.55.113.196

KVM Virtualization:
10.0.5.201

GLIBC / FS / libs/
bins

OVS

S1 interface

Internet`

Web Client

Remote VM:
130.92.70.163

Web Server
Web Cache

OAI
EPC

10.0.5.2

To
w

ar
d

s
EP

C

Towards EPC

Typical traffic through the EPC

P
h

ys
ic

al
 N

et
w

o
rk

Redirected traffic towards cache

Figure 13: The implementation of the caching solution.

5 MHz channels in Band7 of the LTE spectrum range
in the Single Input Single Output (SISO) mode. The
hardware used in the experiment is the following.
The eNB is an Intel(R) Core(TM) i7-4790 CPU @
3.60GHz quad-core, 32 GB RAM, 1 TB HDD com-
puter equipped with a USRP B21022 Software De-
fined Radio (SDR). The MEC Cloud is an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz quad-core, 16 GB
RAM, 200 GB SDD computer. Both computers run
the Ubuntu 16.04 (Xenial) operating system. They
are also equipped with Intel X540T2 10 GbE-T in-
terfaces. The UE uses a Huawei E392 dongle23.

5.1.3. Results

The results are presented in Fig. 14. First, we
run the experiment in which the cache is inactive.
We therefore access the remote server of address
130.92.70.163 at the University of Bern being 15 hops
away from EURECOM to directly retrieve the con-
tent from this location. Second, we activate the SDN
controller, add necessary traffic templates, and ac-
tively store the content in the squid memory (i.e., we
allow for cache memory hits, by allowing large ob-
jects of up to 10 MB to be stored in the memory).

22https://www.ettus.com/product/details/UB210-KIT
23http://m.huawei.com/enmobile/consumer20150301/

press/news/hw-256115.htm

Remote Apache serving a file on a Disc
MEC – Squid with Memory Cache

File Size [B]
G
o
o
d
p
u
t
[b
/s
]

10M1M100k10k

1× 107

1× 106

Figure 14: MEC Caching improves the QoS of content delivery
in comparison to generic HTTP access.

Since, the controller adds appropriate traffic rules for
a given UE (transmission towards TCP port 80 goes
through the squid App for all attached UEs), the ob-
jects can be directly retrieved from the cache. We
measure the time required to download the content
(from the cache and remote server), i.e., the time be-
tween issuing the HTTP request and retrieving the
whole object. We then convert it into the UE expe-
rienced throughput by dividing the file size by the
time required to download the object. The experi-
ments are performed several times for every file size
considered, i.e., 10 kB to 10 MB. The error bars
are calculated as the file size divided by the aver-
age transmission time for a given file size squared
multiplied by the standard deviation of the trans-
mission time for that size (the following differential
relation holds for the calculation of the error bar
Goodput = filesize

t → |σGoodput| = |filesize
t2 σt|, where

t is the transmission time (c.f., Fig. 14)).

For all the file sizes, we noticed a significant im-
provement in the user QoE. The files are downloaded
quicker when directly served from the cache. The im-
provement in the experienced capacity is about 30%
for both big and small files (10 kB, 100 kB, 10 MB).
However, sometimes due to momentary network con-
ditions, the performance gain might not be so signif-
icant (e.g., 1MB).

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Rund Trip Delay (phy interfaces)
Round Trip Delay (OVS)

Packet Size [B]

R
ou

n
d
T
ri
p
D
el
ay

[m
s]

1024 B512 B256 B128 B

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 15: OVS delay for other applications.

We therefore clearly see the benefit of edge caches.
However, other UE traffic (e.g., targeting the EPC)
will have to go through an additional element: the
OVS instantiated on the ME cloud. In Fig. 15, we
measure the round trip delay of S1-U/UDP packets
exchanged between the eNB and the MEC Cloud for
different packet sizes. We observe that OVS does
not provide significant overhead in terms of delay
in comparison to the situation, when only physical
interfaces (i.e., physical network adapters) are used.
Therefore, other traffic will not experience significant
performance degradation due to the deployment of
OVS between the eNB and EPC.

5.2. SDN/ICN Public Safety Solutions

The 5th innovation is the Public Safety (PS)
application for networks with a disconnected
core.

5.2.1. DTN/ICN Benefits in Critical Situations

The utilization of Delay Tolerant Networks (DTNs)
in disaster scenarios for Public Safety (PS) applica-
tions has been studied in literature. In [32], the au-
thors propose a terrain discovery system using a DTN
environment in a disaster scenario. Specifically, they
use civilians that carry sensor nodes in their mobile
devices and collect Data. Nodes use DTN to transfer

data reaching computing nodes that perform a dis-
covery of the affected area. In [33] the combination
of DTN with the Cognitive Wireless Network (CWN)
for disaster networks is proposed. Furthermore, Fa-
jardo et al. [34] implemented a data collection method
that uses people and their mobile phones as sensor
nodes.

Tyson et al. [35] study the utilization of Informa-
tion Centric Networks (ICNs) in disaster scenarios.
The authors argue that ICN could improve connec-
tivity resilience. This is due to the fact that in an ICN
architecture, nodes can explore multiple interfaces at
the same time. ICN does not have to maintain short
connection timeouts as in classical networks. ICN re-
quires no particular underlying network-layer, as it
creates its own ad-hoc network. Deploying ICN in
a network could improve QoS, as different requests
could be treated differently. ICN supports the store,
carry, and forward mechanism, as each node could be
equipped with a cache, which is important in disaster
scenarios, where connectivity may momentarily dis-
appear. We therefore argue that the integration of
DTN/ICN with LTE is an important research topic.

5.2.2. Software & Hardware Architecture

In previous work [36], we provided an orchestration
framework for PS applications. We worked out a ME
architecture that provides ICN/DTN network Apps
in the case, when a still functional eNB can provide a
RAN towards end-users (UEs), but it does not have
a valid connection to the network core. Typically,
when a fully functional eNB looses its connection to
the EPC, it stops providing RAN service as a result
of a failed S1 or EPC.

A macro MEC-enabled eNB [1] is the main archi-
tectural element of this system. In the ordinary sit-
uation, when the network core is reachable, an eNB
site runs a BBU that provides E-UTRAN and com-
municates with the operator network core to provide
mobile access. When the core is unavailable, the ME-
enabled base station can actively cooperate in the
DTN/ICN information dissemination by instantiat-
ing DTN/ICN based Apps as VNFs. The primary
purpose of this section is to provide an evaluation
of our DTN/ICN architecture in a disaster situation,
when a bundle of a micro LTE core is provided to

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

Tlocal
BBU VNF

RF Equipment

local
S/P GW

VNF
local

MME VNF

local
HSS VNF

UE

local PS
VNF

Figure 16: Service bundle for PS applications

run Radio Access Network (RAN) integrated with
DTN/ICN (c.f., Fig. 16). To accomplish this goal,
we integrate the PS orchestration solution with SDN
traffic management derived in this paper to obtain a
fully functional PS solution (i.e., with traffic). Traf-
fic measurements were out of scope of the work pre-
sented in [36].

Whenever a local Application Management Unit
on an eNB discovers that it runs disconnected from
the core network, it starts the recovery procedure
to provision a new communication service. Such a
service is deployed as a bundle of VNFs that de-
fines the required network services, namely eNB, local
SPGW, MME, HSS, and PS. User information will be
maintained either by replicating the HSS database if
possible, or by provisioning the IMSI range for res-
cue teams with necessary key and sequence numbers.
Note that the authentication procedure can also be
relaxed to accept all the attach procedures.

All the VNF functions are instantiated on the same
edge cloud. The BBU has to be re-instantiated to ac-
knowledge local copies of the MME, SPGW, HSS pro-
viding core network services. MME, SPGW, and HSS
are minimal services of a small footprint. They pro-
vide basic LTE functions and connect UEs attached
with the macro eNB. Due to the basic core function,
the UEs attached to the same eNB can communicate
directly with the help of the PS VNF. The PS VNF
is based upon DTN and/or ICN applications such as

CCNx24 or DTN225. In our previous work, we im-
plemented a DTN2 charm for Juju VNFM [36]. The
PS VNF is a communication end-point and a relay
between other clients instantiated on UEs. The es-
tablished setup allows end users to attach to macro
eNB. The rescue teams can now freely attach to the
open eNB instantiated and exchange data using DTN
and/or ICN relay points. If a macro eNB shares a
functional X2 interface with another nearby base sta-
tion, the X2 interface can be used as an interface to
share data among nearby cells. Otherwise, the cell-
cell communication can be based upon data mules.

5.2.3. Results

In Fig. 17, we gather instantiation times for the PS
service bundle provisioned with Juju VNFM (MySql
is a supporting system for HSS) [36]. We tested
two scenarios, when a DTN App (i.e., PS instance),
MySQL, EPC, and HSS were instantiated on KVM
and LXC respectively. We use a single host machine
with Intel 3.20 GHz quad core CPU and 16 GB RAM.
The services use 1 thread, 1 GB RAM; 1 thread 1 GB
RAM; 4 threads 8 GB RAM; 1 thread, 2 GB RAM;
1 thread, 1 GB RAM for MySQL, HSS, eNB, EPC,
and DTN resp. Therefore, the PS bundle can be in-
stantiated within around 600 seconds after the failure
in the EPC was discovered.

The architecture of the developed Public Safety
(PS) Solution is presented in Fig. 18. It is similar to
the solution studied in 5.1. However, the EPC runs
on the same ME cloud as VNFs and the protocol
considered is different. The SDN traffic management
scheme remains the same.

The main core network of the provider is discon-
nected. We therefore instantiate a complete small
core on the MEC Cloud (i.e., MME, SPGW, HSS) as
Virtual Network Functions (VNFs) through the Juju
VNFM. The eNB connects to the newly instantiated
core. We use OpenAirInterface [28] from the OAI
development branch as the EPC and eNB. The eNB
is configured to use 5 MHz channels in Band7 of the
LTE spectrum with SISO mode. We also instantiate

24http://blogs.parc.com/ccnx/ccnx-downloads/
25https://sourceforge.net/projects/dtn/files/DTN2/

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Instantiation
Installation

Relations

App/VNF

pr
oc

es
si

ng
tim

e
[s

]

LXC

KVM

HSSEPCeNBMySQLDTN

800

700

600

500

400

300

200

100

0
HSSEPCeNBMySQLDTN

Figure 17: Provisioning time.

OAI LTE eNB
App

eNB: 10.0.5.1

UE

P
h
y
s
i
c
a
l

N
e
t
w
o
r
k

MEC Cloud: (disconnected)

KVM Virtualization:
10.0.5.201

GLIBC / FS / libs/
bins

OVS

DTN Client

DTN App 10.0.5.2

KVM Virtualization:
10.0.5.10x

GLIBC / FS / libs/
bins

OAI EPC

D
T
N

T
r
a
f
f
i
c

Figure 18: Architecture of the PS solution.

a DTN PS service and the SDN controller to manage
traffic between the UE and the DTN App. The UE
using a Huawei E392 dongle is equipped with a DTN
PS client. Hence, the UE and DTN PS can directly
communicate when the UE is successfully attached
to the eNB.

We verified that our SDN/NFV-based PS solution
works well. We were able to successfully dtnping
(use the dtn ping function) between the UE of (dy-
namically assigned) IP address 172.16.0.2, eNB TEID
0x0000001, SPGW TEID 0xca6fe0dd, and DTN ad-
dress ue.dtn towards the DTN App on the ME cloud
of address 10.0.5.203 and DTN address enb.dtn. The
dtnping confirms connectivity in a small DTN net-
work of UE and eNB.

It takes around 237 ± 38 ms to discover the con-
nected eNB App (enb.dtn) from the UE. When the
connectivity was tested successfully, we started send-
ing files between the UE (ue.dtn) and ENB (enb.dtn).
It is worth noting that the dtnping times are much
larger than the classical ICMP ping times (20.9 ± 2.6
ms), as the DTN service has to first discover the des-
tination (if connected). The example transmission of
six 1 MB files (the time period between consecutive
transmissions is 40 s) is provided in Fig. 19. The
throughout of 1.06 ± 0.08 MB/s was established on
average in a single transmission (c.f., Fig. 20). The
figures present the amount of data sent from the UE
to the eNB through a DTN2 App.

6. Conclusions

Our paper consists of five innovations in prototyp-
ing of the MEC environment. The first innovation
is the organization of the traffic management at the
network edge. We show how to manage GTP-tunnels
and traffic redirections to successfully exchange traf-
fic between IP-based MEC applications and the LTE-
based UE. The second innovation is the implementa-
tion of the OVS GTP matcher that together with
OVS GTP tunneling service provides traffic to MEC
services. The third innovation is in the domain of
SDN rule management at the ME cloud with an
SDN controller equipped with an S1-C tracking mod-
ule. The fourth innovation is the first fully open-
source implementation of the ME cloud based on Juju

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Actual File Transmission
Amount of traffic sent

Time [s]

T
ra
ffi
c
se
n
t
[B
]

200150100500

8× 106

7× 106

6× 106

5× 106

4× 106

3× 106

2× 106

1× 106

0

Figure 19: Six consecutive file transmissions.

Amount of traffic sent
Linear regression

Time [s]

T
ra
ffi
c
se
n
t
[B
]

52.652.452.25251.851.651.451.25150.8

1.4× 106

1.2× 106

1× 106

800000

600000

400000

200000

0

Figure 20: Single file transmissions.

VNFM, SDN controller, OVS, and OAI. It improves
the perceived throughput of a UE by 30%. Finally,
our fifth innovation is the evaluation of the MEC-
enabled public safety solution. It is a fully open-
source solution that spawns a minimal fully operating
core (EPC) in the disconnected core critical situation.
As mobility is a crucial aspect of mobile systems, in
future work, we will study mobility and handover in
our MEC architecture.

Acknowledgement

This work was partially supported by the EU FP7
Project FLEX (612050) and COST STSM grants
(CA15127). We would like to also thank Dr. Peppo
Brambilla from the Institute of Computer Science of
the University of Bern for helping us out with the 10
GbE-T connectivity tests.

References

[1] M. Patel, J. Joubert, J. R. Ramos, N. Sprecher,
S. Abeta, A. Neal, Mobile-Edge Computing, ETSI,
white paper: https://portal.etsi.org/portals/

0/tbpages/mec/docs/mobile-edge_computing_

-_introductory_technical_white_paper_v1%

2018-09-14.pdf (2014).

[2] ETSI GS MEC 003: Mobile Edge Computing
(MEC); Framework and Reference Architec-
ture V1.1.1, http://www.etsi.org/deliver/

etsi_gs/MEC/001_099/003/01.01.01_60/gs_

MEC003v010101p.pdf (Mar. 2016).

[3] F. Lobillo, Z. Becvar, M. A. Puente, P. Mach,
F. L. Presti, F. Gambetti, M. Goldhamer, J. Vidal,
A. K. Widiawan, E. Calvanesse, An architecture for
mobile computation offloading on cloud-enabled lte
small cells, in: 2014 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW),
2014, pp. 1–6. doi:10.1109/WCNCW.2014.6934851.

[4] H. Hawilo, A. Shami, M. Mirahmadi, R. Asal, NFV:
state of the art, challenges, and implementation in
next generation mobile networks (vEPC), IEEE Net-
work 28 (6) (2014) 18–26. doi:10.1109/MNET.2014.
6963800.

[5] A. Ksentini, M. Bagaa, T. Taleb, On Using SDN
in 5G: The Controller Placement Problem, in: 2016
IEEE Global Communications Conference (GLOBE-
COM), 2016, pp. 1–6. doi:10.1109/GLOCOM.2016.

7842066.

[6] M. Martinello, M. R. N. Ribeiro, R. E. Z. de Oliveira,
R. de Angelis Vitoi, Keyflow: a prototype for evolv-
ing SDN toward core network fabrics, IEEE Net-
work 28 (2) (2014) 12–19. doi:10.1109/MNET.2014.
6786608.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[7] V. Nguyen, Y. Kim, Proposal and evaluation of
SDNbased mobile packet core networks, EURASIP
Journal on Wireless Communications and Net-
working 2015 (1) (2015) 18–26. doi:10.1186/

s13638-015-0395-1.

[8] K. Pentikousis, Y. Wang, W. Hu, Mobileflow: To-
ward software-defined mobile networks, IEEE Com-
munications Magazine 51 (7) (2013) 44–53. doi:

10.1109/MCOM.2013.6553677.

[9] I. Giannoulakis, E. Kafetzakis, G. Xylouris,
G. Gardikis, A. Kourtis, On the applications of effi-
cient NFV management towards 5G networking, in:
1st International Conference on 5G for Ubiquitous
Connectivity, 2014, pp. 1–5. doi:10.4108/icst.

5gu.2014.258133.

[10] H. Karl, S. Drxler, M. Peuster, A. Galis, M. Bre-
del, A. Ramos, J. Martrat, M. S. Siddiqui, S. van
Rossem, W. Tavernier, G. Xilouris, DevOps for net-
work function virtualisation: an architectural ap-
proach, Transactions on Emerging Telecommunica-
tions Technologies 27 (9) (2016) 1206–1215. doi:

10.1002/ett.3084.

[11] S. Sahhaf, W. Tavernier, J. Czentye, B. Sonkoly,
P. Skldstrm, D. Jocha, J. Garay, Scalable Archi-
tecture for Service Function Chain Orchestration,
in: 2015 Fourth European Workshop on Software
Defined Networks, 2015, pp. 19–24. doi:10.1109/

EWSDN.2015.55.

[12] B. Sousa, L. Cordeiro, P. Simes, A. Edmonds,
S. Ruiz, G. A. Carella, M. Corici, N. Nikaein, A. S.
Gomes, E. Schiller, T. Braun, T. M. Bohnert, To-
ward a Fully Cloudified Mobile Network Infrastruc-
ture, IEEE Transactions on Network and Service
Management 13 (3) (2016) 547–563. doi:10.1109/

TNSM.2016.2598354.

[13] ETSI GS NFV-MAN 001: Network Functions
Virtualisation (NFV), Network Functions Vir-
tualisation (NFV); Management and Orches-
tration V1.1.1, http://www.etsi.org/deliver/

etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_

NFV-MAN001v010101p.pdf (Dec. 2014).

[14] R. Roman, J. Lopez, M. Mambo, Mobile edge com-
puting, Fog et al.: A survey and analysis of secu-
rity threats and challenges, Future Generation Com-
puter Systemsdoi:http://dx.doi.org/10.1016/j.
future.2016.11.009.

[15] C.-Y. Chang, K. Alexandris, N. Nikaein, K. Katsalis,
T. Spyropoulos, MEC Architectural Implications for
LTE/LTE-A Networks, in: Proceedings of the Work-
shop on Mobility in the Evolving Internet Architec-
ture, MobiArch ’16, ACM, New York, NY, USA,
2016, pp. 13–18. doi:10.1145/2980137.2980139.

[16] M. T. Beck, M. Werner, S. Feld, T. Schimper, Mobile
Edge Computing: A Taxonomy, in: The Sixth Inter-
national Conference on Advances in Future Internet,
AFIN ’14, IARIA, 2014, pp. 48–54.

[17] M. T. Beck, S. Feld, A. Fichtner, C. Linnhoff-Popien,
T. Schimper, ME-VoLTE: Network functions for
energy-efficient video transcoding at the mobile edge,
in: 2015 18th International Conference on Intelli-
gence in Next Generation Networks, 2015, pp. 38–44.
doi:10.1109/ICIN.2015.7073804.

[18] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger,
C. Thuemmler, H. Feussner, A. Schneider, Enabling
Real-Time Context-Aware Collaboration through
5G and Mobile Edge Computing, in: 2015 12th
International Conference on Information Technol-
ogy - New Generations, 2015, pp. 601–605. doi:

10.1109/ITNG.2015.155.

[19] L. Tong, Y. Li, W. Gao, A hierarchical edge cloud
architecture for mobile computing, in: IEEE INFO-
COM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, 2016, pp.
1–9. doi:10.1109/INFOCOM.2016.7524340.

[20] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini,
C. Bonnet, Low Latency MEC Framework for SDN-
based LTE/LTE-A Networks, in: IEEE Interna-
tional Conference on Communications, ICC ’17,
2017, pp. 1–6.

[21] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der
Merwe, K. Webb, Mobiscud: A fast moving personal
cloud in the mobile network, in: Proceedings of the
5th Workshop on All Things Cellular: Operations,
Applications and Challenges, AllThingsCellular ’15,
ACM, New York, NY, USA, 2015, pp. 19–24. doi:

10.1145/2785971.2785979.

[22] A. Manzalini, et al., Towards 5g software-defined
ecosystems: Technical challenges, business sustain-
ability and policy issues, white paper.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[23] J. Kempf, B. Johansson, S. Pettersson, H. Lning,
T. Nilsson, Moving the mobile evolved packet core to
the cloud, in: 2012 IEEE 8th International Confer-
ence on Wireless and Mobile Computing, Networking
and Communications (WiMob), 2012, pp. 784–791.
doi:10.1109/WiMOB.2012.6379165.

[24] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis,
D. Stavropoulos, I. Alyafawi, Z. Zhao, T. Braun,
T. Korakis, Network store: Exploring slicing in fu-
ture 5g networks, in: Proceedings of the 10th Inter-
national Workshop on Mobility in the Evolving In-
ternet Architecture, MobiArch ’15, ACM, New York,
NY, USA, 2015, pp. 8–13. doi:10.1145/2795381.

2795390.

[25] B. Nguyen, N. Choi, M. Thottan, J. V. der Merwe,
SIMECA: SDN-based IoT Mobile Edge Cloud Ar-
chitecture, in: 2017 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM), 2017,
pp. 503–509. doi:10.23919/INM.2017.7987319.

[26] N. McKeown, T. Anderson, H. Balakrish-
nan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: Enabling
Innovation in Campus Networks, SIGCOMM
Comput. Commun. Rev. 38 (2) (2008) 69–74.
doi:10.1145/1355734.1355746.
URL http://doi.acm.org/10.1145/1355734.

1355746

[27] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson,
A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, M. Casado, The
design and implementation of open vswitch, in:
Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’15, USENIX Association, Berkeley, CA, USA,
2015, pp. 117–130.
URL http://dl.acm.org/citation.cfm?id=

2789770.2789779

[28] N. Nikaein, R. Knopp, L. Gauthier, E. Schiller,
T. Braun, D. Pichon, C. Bonnet, F. Kaltenberger,
D. Nussbaum, Demo: Closer to cloud-ran: Ran as
a service, in: Proceedings of the 21st Annual Inter-
national Conference on Mobile Computing and Net-
working, MobiCom ’15, ACM, New York, NY, USA,
2015, pp. 193–195. doi:10.1145/2789168.2789178.

[29] C. Anastasiades, A. Gomes, R. Gadow, T. Braun,
Persistent caching in information-centric networks,

in: 2015 IEEE 40th Conference on Local Computer
Networks (LCN), 2015, pp. 64–72. doi:10.1109/

LCN.2015.7366284.

[30] H. Sarkissian, The business case for caching in 4g lte
networks, LSI White Paper (2013).

[31] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier,
C. Bonnet, D. Nussbaum, R. Ghaddab, Demo: Ope-
nAirInterface: An Open LTE Network in a PC, in:
Proceedings of the 20th Annual International Con-
ference on Mobile Computing and Networking, Mo-
biCom ’14, ACM, New York, NY, USA, 2014, pp.
305–308.

[32] E. M. Trono, M. Fujimoto, H. Suwa, Y. Arakawa,
M. Takai, K. Yasumoto, Disaster area mapping using
spatially-distributed computing nodes across a DTN,
in: 2016 IEEE International Conference on Per-
vasive Computing and Communication Workshops
(PerCom Workshops), IEEE, 2016, pp. 1–6.

[33] N. Uchida, N. Kawamura, N. Williams, K. Taka-
hata, Y. Shibata, Proposal of delay tolerant network
with cognitive wireless network for disaster infor-
mation network system, in: Advanced Information
Networking and Applications Workshops (WAINA),
2013 27th International Conference on, IEEE, 2013,
pp. 249–254.

[34] J. T. B. Fajardo, K. Yasumoto, N. Shibata, W. Sun,
M. Ito, Disaster information collection with oppor-
tunistic communication and message aggregation,
Journal of information processing 22 (2) (2014) 106–
117.

[35] G. Tyson, E. Bodanese, J. Bigham, A. Mauthe, Be-
yond content delivery: Can icns help emergency sce-
narios?, IEEE Network 28 (3) (2014) 44–49.

[36] E. Schiller, E. Kalogeiton, T. Braun, A. Gomes,
N. Nikaein, 11 - icn/dtn for public safety in mo-
bile networks, in: D. Camara, N. Nikaein (Eds.),
Wireless Public Safety Networks 3, Elsevier, 2017,
pp. 231 – 247. doi:https://doi.org/10.1016/

B978-1-78548-053-9.50011-1.
URL http://www.sciencedirect.com/science/

article/pii/B9781785480539500111

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Biography

Eryk Schiller (schiller@inf.unibe.ch) received two
M.Sc. diplomas: in electronics and telecommunica-
tions from the University of Science and Technology,
and in theoretical physics from the Jagiellonian Uni-
versity, Cracow, Poland, in 2006 and 2007, respec-
tively. He got a Ph.D. in computer science from the
University of Grenoble, France, in 2010. He was a
postdoctoral scholar at the University of Neuchatel,
Switzerland. Since 2014, he has been with the Uni-
versity of Bern, Switzerland, as a senior researcher.

Navid Nikaein (navid.nikaein@eurecom.fr) has
been an assistant professor in the Communication
Systems Department at EURECOM since 2009. He
received his Ph.D. degree in communication sys-
tems from the Swiss Federal Institute of Technology
(EPFL) in 2003. Currently, he is leading a research
group focusing on experimental system research re-
lated to wireless systems and networking. Broadly,
his research interests include wireless access and net-
working protocols (4G/5G), cloud-native and pro-
grammable mobile networking (SDN, NFV, MEC),
and real-time RF prototyping and emulation/simu-
lation.

Eirini Kalogeiton (kalogeiton@inf.unibe.ch) re-

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ceived Dipl.Eng. and M.Sc. degrees in electrical and
computer engineering from the Democritus Univer-
sity of Thrace, Xanthi, Greece, in 2014 and 2016,
respectively. Since 2016, she is a PhD student at
the University of Bern, Bern, Switzerland. Her main
research interests include vehicular ad-hoc networks,
routing in named data networking networks and soft-
ware defined networking.

Mikael Gasparyan (gasparyan@inf.unibe.ch) is a
Ph.D. student at the University of Bern, Switzerland.
He obtained his Master degree with a specialization
in distributed systems at the University of Fribourg
in Switzerland. He earned his Bachelor degree at
the University of Applied Science in Sierre, Switzer-
land. His Ph.D. research topic is Service-Centric Net-
working. In his Ph.D. work, he aims to develop and
evaluate a novel Service-Centric Networking architec-
ture, which integrates service request requirements
like load-balancing and session support.

Torsten Braun (braun@inf.unibe.ch) got his
Ph.D. degree from the University of Karlsruhe, Ger-
many, in 1993. From 1994 to 1995 he was a guest
scientist at INRIA Sophia-Antipolis (France). From
1995 to 1997 he worked at the IBM European Net-
working Centre Heidelberg, Germany. He has been
a full professor of computer science at the Univer-
sity of Bern, Switzerland, since 1998 and a member
of the SWITCH (Swiss education and research net-
work) Board of Ttrustees since 2001.

22

	1

