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Abstract

Unmanned Aerial Vehicles (UAVs), popularly known as drones, can be deployed

in conjunction with a network of ground vehicles. In situations where no infras-

tructure is available, drones can be deployed as mobile infrastructure elements to

offer all types of services. Examples of such services include safety in rural areas

where, upon an emergency event, drones can be quickly deployed as information

relays for distributing critical warning to vehicles. In this work, we analyze the

communications performance on the link between cars and drones taking into

account the altitude, the antenna orientation, and the relative distance. The

presented results show that the communication between a drone and a car can

reach up to three kilometers in a rural area, and achieves at least a fifty percent

success ratio for the delivery rate at a 2.7 kilometer range. Finally, to allow

integrating the communications link behaviour in different network simulators,

the experimental results were also modeled with a modified Gaussian function

that offers a suitable representation for this kind of communication.
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1. Introduction

Intelligent Transportation Systems (ITS) are able to provide efficient solu-

tions for traffic-related issues, such as safety and efficiency [1]. When attempting

to make roads safer, ITS can provide systems that reduce the number of acci-

dents taking place [2], along with safety-related applications [3].5

Vehicle-to-Everything (V2X) paradigm that breaks down into the exchange

of data between cars (V2V, or Vehicle-to-Vehicle), and infrastructure elements

(V2I, or Vehicle-to-Infrastructure) which acts as relays towards a wider net-

work or the Internet, is essential to provide ITS services and applications [4].

However, since vehicular networks are fast-moving and dynamic, the challenge10

comes when disseminating messages containing critical information that needs

to be timely critical and as fast as possible for emergency and safety scenar-

ios [5, 6]. Another challenge to consider in V2X communications is when the

coverage area lacks infrastructure support. Although vehicular communications

can rely on various radio access technologies [7], e.g. using 4G LTE technology15

to support communications in areas with limited infrastructure like rural areas

[8], major problems typically arise when the communications take place in areas

that have no infrastructure support at all.

Unmanned Aerial Vehicles (UAVs) or drones (we will use these two terms

interchangeably in this paper) are currently becoming an emerging solution20

for critical situations, i.e. disaster response like Search And Rescue (SAR) [9]

and fire fighting [10]. In addition, compared to terrestrial communications, the

adoption of UAVs not only offers a quick and flexible deployment, but also

the chances of having Line-Of-Sight (LOS) with the receiver increases due to

their higher altitude [11]. Recently, thorough studies analyzed the capabilities25

of UAVs as communication agents, and their usefulness in several application

scenarios [12, 13].

UAVs can also cooperate with ground vehicles in a particular network, al-

lowing to improve the data exchanges between them. This approach offers

benefits to multiple ITS applications [14, 15] like rescue and disaster assistance30

2



operations [16] and remote sensing [17]. In such cases, we typically rely on mul-

tiple UAVs to conform a network between themselves, creating what is known

as a Flying Ad-Hoc NETwork (FANET). As a subclass of Vehicular Ad hoc

NETworks (VANETs), FANETs differ from standard VANETs since they are

characterized by highly mobile nodes moving freely in the 3D space; on the con-35

trary, VANETs are restricted to 2D movements along streets. The challenges

in FANET communications vary depending on the specific application. For in-

stance, disaster monitoring introduces strong requirements such as low latency

and very high information transmission rate (real-time video feed) [18]. The use

of multi-UAV systems can also be beneficial for improving the attainable trans-40

mission range and efficiency, as packets can be relayed and forwarded between

UAVs to minimize the drawbacks of link interruptions [19].

One of the challenges of FANETs is obtaining an accurate radio propagation

model, as this problem differs from typical scenarios addressed in the literature.

Most works focus on the link between UAVs and a static ground base [20], which45

typically has line-of-sight conditions. In another case [21], the authors modeled

air-to-ground path losses with UAVs; however, the ground receiver was not a

moving node. Instead, in this work, we focus on UAV-to-car communication,

which is currently a very important topic [22, 23, 24], and that differs from

the ground base case due to vehicular mobility. Thus, it becomes necessary to50

characterize the communications between UAVs and moving vehicles, and to

derive a model that can be used in simulations combining FANET and VANET

scenarios.

In this paper, we make a characterization of UAV-to-car communications

based on real experiments aimed to foster the development of a communications55

model to be used in simulation studies. In our scenario, UAVs act as mobile

RSUs (Road Side Units), enabling us to perform a study of vehicular communi-

cations between aerial and ground vehicles in the 5 GHz band. The experiments

were performed in a rural area of Valencia with actual field tests using vehicles

and drones to determine the communications performance. In addition, based60

on the results obtained, we have modeled the packet delivery ratio in different
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scenarios (drone altitude, antenna rotation, and antenna orientation) using a

modified Gaussian function.

The remainder of this paper is organized as follows: in the next section, we

provide an overview of related works regarding VANET scenarios that involve65

air-to-ground communications. In section 3 we describe the methodology, hard-

ware, and software involved in our experiments. Then, in section 4, we provide

details about the scenario used in our experiments. Experimental results are

presented and discussed in section 5, followed by the modeling of our obtained

results in section 6. Finally, in section 8, we conclude the paper and refer to70

future works.

2. Related Works

UAVs have recently been adopted for a wide range of ITS solutions since they

can become multi-purpose platforms for both rural and urban areas. Among

their many applications, they can be used for surveillance [25], or become an75

aerial relay when the existing infrastructure fails to provide the desired services

adequately, i.e., cell overload or outage [26]. In addition, they can be deployed

for establishing a communications system when a disaster occurs [27]. This

would allow an emergency communications system, essential for rescue opera-

tions, to be available. In post-disaster events, multiple UAVs can be also be80

easily deployed for search and rescue [28]. In addition, multiple UAVs can con-

form a cooperative network, and define the best positioning strategy for better

coordination in a distributed manner [29]. A typical application of such solu-

tions includes homeland defense operations, where the network allows dynamic

transitions from searching to the tracking of user agents and ground nodes [30].85

Other applications of deploying multiple UAVs (swarms) includes working in

conjunction with Wireless Sensor Networks (WSNs) to monitor and detect po-

tential disasters [31].

The communication between UAVs and cars (air-to-ground communications)

is discussed in [22]. For instance, UAVs can assist vehicular networks by acting90
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as intermediate relays. UAVs can also be deployed in an area where a disaster

occurs, and therefore acts as bundle carriers and relays under the Delay-Tolerant

Network (DTN) paradigm. In other work [23], the authors analyzed the possi-

bility of deploying UAVs as flying base stations for communications to rescue

vehicles in disaster events; in that scenario, vehicles should cooperate and main-95

tain connections between them when terrestrial communication infrastructures

are not available, a task that is assumed by UAVs. In such case, the authors in

[32] analyzed the inter-connectivity of disconnected groups of cars that rely on

UAVs. They studied the impact of increasing the number of cars in the group

on the overall transmission quality. This case can also be applied in a scenario100

where a UAV is deployed as a Store-Carry-Forward node for vehicular networks

[33]. More efforts in this area include the deployment of VDNET (Vehicle-Drone

hybrid vehicular ad hoc Network) [34], which offers better message transmis-

sion by equipping vehicle nodes with UAVs under its instruction so that it can

communicate with other vehicle nodes over a greater transmission range. In105

another related work [24], networks of UAVs can be deployed throughout a city

to achieve optimal information distribution. The presence of tall buildings and

landmarks can cause disruption to the radio signal, resulting in frequent com-

munication failures between vehicles. Hence, UAVs can assist on routing the

information to the vehicles. In [35], authors considered the fusion of various110

ad-hoc networks, whether it is on air (FANET) or on the ground (VANET), to

create a search and tracking-based guidance system.

In terms of the communications band, the authors of [36] proposed using an

air-to-ground link at 5 GHz. The characterization was done using WiFi-enabled

UAVs. In particular, WLAN operations using 802.11a is preferred for economic115

reasons. The authors in [37] have discussed the suitability of different frequency

bands, showing that communication can suffer from severe interference if it op-

erates in unlicensed Industrial, Scientific and Medical (ISM) bands due to their

high usage. Hence, a licensed band such as the one adopted by IEEE 802.11p

(5.9GHz band) is preferable to limit the effects of interference. To further em-120

phasize on this problem, Fabra et al. [38] proved that FANET communications
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in the 2.4 GHz band are prone to provide very poor performance, especially

when the radio control operates in the same frequency band (majority of cases).

When considering the cost, the power consumption, and the complexity, the

authors in [39] relied instead on the IEEE 802.15.4 standard. They find that125

performance levels are inadequate when used as a mesh network, a basic re-

quirement to deploy FANETs. Authors in [40], proposed a MAC protocol that

assumes the use of directional antennas in FANET applications, as this intro-

duces additional advantages in terms of transmission range compared to using

a traditional omnidirectional antenna. However, in our work, we will study the130

general case of a 5 GHz link using an omnidirectional antenna, as this is the

most common situation in real scenarios.

Our work addresses the challenge of deploying a mobile infrastructure to

support vehicular networks when there is an infrastructure shortage in a given

target area. Notice that UAVs can offer line-of-sight communications for longer135

distances, which cannot always be achieved by car-to-car communications. So,

we start by measuring the network performance for UAV-to-car communications

in a rural area. In particular, we will assess the packet delivery ratio regarding

data broadcasted from a flying UAV to a moving vehicle. Then, using the

results obtained from such real experiments, we will create a model that allows140

estimating the packet delivery ratio based on distance. The architecture of the

proposed network will be detailed in the following section.

3. Architecture Overview

In this section we start by providing a general overview of the envisioned sce-

nario, and we then detail the proposed architecture, including the data flow and145

the different elements involved. Our proposed on board unit, named GRCBox

[41], is also introduced at the end of this section.

3.1. General Overview

Our ultimate goal is to build an environment where UAVs can be deployed

to assist communications in an area with limited or no infrastructure support.150
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Figure 1: Drones as Mobile RSUs.
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Figure 2: Flow of Packets from UAV (Drone) to Car.

Specifically, UAVs should be placed strategically to cope with those scenarios

where vehicle-to-vehicle communications are hindered by the lack of line of sight.

As depicted in Figure 1, the UAVs can be located near the top of surrounding

hills causing line-of-sight obstructions between cars. Such UAV-assisted com-

munications infrastructure would be useful when detecting a remote accident,155

especially if ground vehicular communications are not reliable due to large dis-

tances and non line-of-sight restrictions.

3.2. UAV-to-Car Communications

Our work focuses on measuring the effectiveness of point-to-point ad-hoc

communications between UAVs and cars, which can eventually conform the big160

picture detailed in the previous subsection. In particular, for this experimental
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work, appropriate hardware/software are required to measure the packet deliv-

ery ratio, the range, and to analyze the data obtained. Three different devices

are used in our communications experiments: a Raspberry Pi mounted on the

drone, an Android smartphone, and, finally, the GRCBox, which is a car on-165

board unit that is endowed with multiple communication interfaces, including

ad-hoc communication capabilities. The GRCBox is placed on the car, along

with the Android device that works as the end receiver.

Taking into account the widespread adoption of smartphones worldwide, this

configuration can be a non-expensive and fast solution to deploy ITS equipment.170

For our experiments, we developed a test application for Android that was in-

stalled on the Android smartphone. This application allows the driver to receive

data from the drone via the GRCBox. Regarding the drone itself, we embed-

ded a Raspberry Pi on it. The former is used to generate packets periodically,

broadcasting them via the ad-hoc network created1. In order to join the ad-hoc175

network, a car on-board unit (GRCBox) is needed, as the Android device cannot

operate in this mode by default.

The packet flow generated is depicted in Figure 2. Each packet is transmitted

from the UAV to the car on-board unit (GRCBox) via an ad-hoc network. Since

the GRCBox also provides an access point inside the vehicle, it acts as a packet180

relay, forwarding the packets received to the Android device connected to the

GRCBox.

3.3. GRCBox Overview

The GRCBox is required for providing ad-hoc communications between car

and drone, using the 5 GHz band. In our experiments, we use an Android de-185

vice to launch the application specifically developed for this purpose. Notice

that Android devices do not offer ad-hoc connectivity by default, requiring the

device to be rooted in order to achieve it, a requirement that is not practical

for end users. Thus, our proposed GRCBox emerges as a solution to bypass

1Note that this device differs from the embedded UAV flight controller.
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Figure 3: GRCBox Architecture

the difficulties of configuring an Android device in the Ad-hoc mode. In fact,190

the GRCBox can act as a router for the automatic deployment of ad-hoc mode

communications, avoiding having to root the smartphone. With this capabil-

ity, V2X communications are fully supported, and a seamless integration with

smartphones is achieved.

A Raspberry Pi 2 device model B1 is the main hardware of our GRCBox.195

It is a single board computer that has the size of a credit-card, and that only

costs 35 USD. This device has enough CPU power to perform low-scale network

routing. A Raspbian distribution based on Debian is installed in this device.

This Raspbian distribution supports the current networking hardware while

avoiding common problems of other embedded operating systems.200

Each GRCBox is equipped with several network interfaces: one inner in-

terface acting as an access point for the car passengers, which allows them to

connect to the GRCBox using smartphones supporting WiFi communications in

the 2.4 GHz band. The outer interface offers vehicular communications; specif-

ically, it connects to a vehicular network operating in the 5.8 GHz band. In205

addition, one can add other network interfaces that connect to the Internet.

For instance, one network interface can connect to a WiFi access point, and yet

another interface can be used to connect to a 4G cellular base station. Figure
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3 shows a descriptive diagram of the GRCBox connectivity features.

Several services are provided by the GRCBox. GRCBox’s inner interface210

acts as a soft-AP (Access Point) for smartphones. Once these smartphones are

connected to the GRCBox, they can access the services that run on the external

networks. Since every connection is forwarded by the GRCBox, any application

needing to use an available interface that differs from the default ones (providing

Internet connectivity) must explicitly notify the GRCBox about it. These steps215

require rules that are defined by rule type, interface name, protocol, source port,

source address, destination port, and destination address.

In our experiment, we will use the GRCBox as a receiver for packets that are

broadcasted by the drone at the sender’s side. The GRCBox is placed within

the vehicle (see Figure 2). This GRCBox can act as the entry gate of packets220

that travel in the ad-hoc network connecting the drone and the car. The packets

are then delivered to the passengers equipped with a smartphone running our

GRCBox-aware application. Since in this experiment packets are broadcasted,

GRCBox rules must be defined before the reception of packets in order to have

a match in terms of associated ports and interfaces.225

Regarding the drone, it is equipped with a Raspberry Pi configured to send

packets in ad-hoc mode. This way, the Raspberry Pi on the drone and the

GRCBox inside the car can transparently communicate through the same ad-

hoc network. The Raspberry Pi’s antenna in the drone has the same frequency

band as the GRCBox’s antenna (5 GHz).230

4. Experimental Settings

In this section, we start by providing an overview of the location where ex-

periments took place. Afterward, we detail the experimental tools used. Finally,

we analyze the data gathered in our experiments.

4.1. Experimental environment235

For the experimental tests, we have selected a rural area located on the out-

skirts of Casinos, a small town located to the west of Valencia, Spain. The road
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Drone
(Sender)

Car
(Receiver)

Car's
Direction

Figure 4: Satellite View of the target road near Casinos.

was located far from the urban area itself, and thus interference was minimal

when operating in the 5 GHz frequency band. As depicted in the aerial view (see

Figure 4), we have selected a path for the vehicle that is more than 3 kilometers240

long.

The experiments were taken place in a Mediterranean climate on sunny

summer season. At the time of the experiments, no precipitations were present.

The wind speed was spotted to be very minimum, in which it was a typical

weather condition in a valley surrounded by hills. Hence, the weather condition245

did not significantly affect the communication performance in the experiment.

In terms of the surface surrounding the experiment location, the trajectory

experienced different elevation points (see Figure 5). From the starting point to

the destination point, the road is found to be running downhill. Specifically, as

detailed in Figure 6a, the elevation at the starting point is about 400 meters,250

and the final point is about 320 meters above the sea level. If we calculate the

LOS (Line-of-sight) between the drone and the vehicle, we can see in Figure

6b, that depending on the drone’s altitude, the worst case line-of-sight condi-

tions are expected when the vehicle is located about 900 meters away from the

11



Figure 5: Topographic Map of Casinos.

starting point, situation where signal obstructions exist. Such situation causes255

communications to experience Non-Line-Of-Sight (NLOS) conditions.

Our driving tests were performed with a static drone and one moving vehicle,

as shown in Figure 7. Notice that the drone is located at the top of the scenario,

near the vehicle’s initial position. As the vehicle moves downwards, both its

location and the drone’s location are stored in a trace file. This is done to260

determine the positions associated to packet sending and receiving events.

4.2. Experimental Tools

Figure 8 shows our target scenario, illustrating with an example how packets

are sent and recorded. The drone will generate UDP packets and broadcast them

to an ad-hoc network. While the drone remains static, the car is moving away265

from the drone. The moving car is equipped with a GRCBox and an Android

phone. This way, the car can seamlessly join the ad-hoc network. While moving

12
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Figure 6: Elevation profiles relevant to our experiments.

and receiving packets, the car will record its geographical location. This way,

by continuously retrieving the geographic information, the receiver (in this case,

the car) can determine with great accuracy the GPS coordinates associated to270

the reception of each particular packet.

At the sender side (Raspberry Pi embedded in the drone), we developed a

Java application in order to generate broadcast messages. This test tool was

tuned for a packet generation rate of 10 Hz, each with a size of approximately

1.4 Kbytes, being each packet numbered with a sequential id. In addition, the275

timestamp and GPS location of the sender are also carried in the packet. These

transmission parameters are similar to those of typical Decentralized Environ-

mental Notification Messages (DENM) [42] in the context of vehicular networks.

Also notice that, since all packet transmissions are broadcasted, the transmis-

sion rate is limited to 6 Mbps. The location information was obtained from the280

drone’s GPS device by using the MAVLink protocol, that enables communica-

tion between the Raspberry Pi and the drone’s hardware.

At the receiver’s side, the packets were received by the Android smartphone

13



Figure 7: Real View of UAV-to-Car Communications in Casinos.

using the GRCbox as a relay. We have developed a specific Android-based appli-

cation for this purpose. This application provides the rendering of information285

received from the drone. The tool is also used for measuring the packet delivery

ratio in the test scenarios. It is relevant to point out that our Android-based ap-

plication is fully compatible with GRCBox, meaning that the user does not need

to configure the connection to the GRCBox interface. Instead, the application

contains libraries and plugins that allow connecting to the GRCBox module in290

a seamless manner. Once the smartphone is connected to the access point of the

GRCBox (inner interface), a bidirectional communications relay is established

with the outer interface (ad-hoc network). In this application, packet reception

is started when, at the receiver’s side, the user presses the receive button. The

packets received are then recorded and stored in a log file until the user stops295

the application. The stored variables are then measured to determine which

have more impact on the communication’s quality.

4.3. Data Analysis

The log file generated from the experiments contains all data required to

measure the packet delivery ratio at different distances, including the geo-300
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Figure 8: UAV-to-Car Communications in our Experiment’s Scenario.

(a) Horizontal (b) Vertical

Figure 9: View of the antenna orientation.

graphic information (latitude, longitude, altitude). Since the receiver records

the sender’s geographical location, the distance between the drone and the mov-

ing vehicle can be directly inferred by comparing the sender’s location and the

receiver’s location.

The packet delivery ratio is calculated by comparing the number of packets305

sent at the sender side and the number of packets received for a specific time

interval. For our study, we have in fact analyzed both endpoints, sender, and

receiver, as both contain a log file that is stored in each device. The log files are

then analyzed to compare and calculate the ratio of packets sent and received

by considering the geographical information inside.310

In order to measure the potential factors that could affect the communi-
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(a) Inside the Vehicle. (b) Outside the Vehicle.

Figure 10: Views of the antenna location.

cation’s performance, we have selected three variables for the experiment: the

altitude of the sender (the drone), the sender’s antenna orientation, and finally

the receiver’s antenna location. First, the drone’s altitude will have a clear

effect to the LOS probability, as the higher the drone is, the lesser the proba-315

bility of finding obstacles, and so we considered two altitudes: 40m and 100m,

respectively. The orientation of the drone antenna also affects the communica-

tions range, as the antenna waves propagate according to a different radiation

pattern. So, we considered horizontal and vertical orientations (see Figure 9).

Finally, testing with different antenna positions in the vehicle is also interesting320

to study as the communication will suffer degradation due to the vehicle’s metal

elements (see Figure 10). So at the vehicle side, we tested two different positions

for the antenna: inside and outside (rooftop).

In order to simplify the definition of our scenarios, we have categorized them

(see Table 1) depending on the UAV’s altitude, antenna position at the car, and325

antenna orientation at the UAV. The naming defined in Table 1 will be used to

indicate each scenario in the sections that follow.

5. Experimental Results

The experimental results are presented in heatmaps (see Figures 11 and 12)

for different drone altitudes. Each point represents locations where groups of330
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Table 1: Scenario Categories

Scenario UAV Altitude Car’s Ant. Position UAV’s Ant. Orientation

Scenario 1 100m Outside Vertical

Scenario 2 100m Inside Vertical

Scenario 3 100m Outside Horizontal

Scenario 4 100m Inside Horizontal

Scenario 5 40m Outside Vertical

Scenario 6 40m Inside Vertical

Scenario 7 40m Outside Horizontal

Scenario 8 40m Inside Horizontal

packets were successfully received. The points have different colors according

to the associated delivery ratio. In terms of the relationship between commu-

nications range and packet delivery ratio, the results obtained are depicted in

Figure 13. These results will then be modeled in the following section.

5.1. 100m altitude335

The results of the experiments made with the drone located at the higher

altitude are shown in figure11. The best results are achieved by putting the

car’s antenna outside and having the drone’s antenna pointing down vertically

(Scenario 1). We can see in figure 11a that, in this situation, the communication

reaches up to 3 kilometers. When the highest distance is reached, the delivery340

ratio is roughly above 10%. Up until 1.4km, the delivery ratio is above 90%. At

2.8 km range, we can see that this ratio falls from about 0.7 to less than 0.5.

As expected, the furthest the car is, the fewer packets are received.

On the other hand, if we put the receiver’s antenna inside the car (Scenario

2), the results are slightly worse. As we can see in Figure 11b, the reception345

trend has the same pattern as in the previous scenario, although the delivery

ratio is slightly reduced. This is due to the presence of the car’s materials,

especially metals, which block the signal. At 2.8 km range, the delivery ratio is
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(a) Scenario 1: Outside, Vertical.
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(b) Scenario 2: Inside, Vertical.
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(c) Scenario 3: Outside, Horizontal.
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(d) Scenario 4: Inside, Horizontal.

Figure 11: Heat Maps for the different scenarios where the drone’s altitude is at 100 meters.

Each plot shows the packet delivery ratio depending on the sender’s antenna orientation

(Vertical, Horizontal), and the receiver’s antenna location (Inside, outside).
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found to be about 20%. On the other hand, at the furthest point of reception,

the delivery rate is less than 10%.350

Having the drone’s antenna pointing horizontally introduces significant dif-

ferences in terms of packet delivery. In Scenario 3, if we put the car’s antenna

outside, the communication range is lower when compared to Scenario 1, where

we had the drone’s antenna pointing down (vertical). Interestingly, up to a

certain (short) distance, the delivery ratio is near 100%.355

Finally, scenario 4 presents the worst overall results when compared to the

previous three. The range is shorter, and the ratio is lower for all distances

compared to the other cases. At the distance of 1.4 km, the packet delivery

ratio is already below 50%, and the maximum distance reached in this scenario

is only 2.4 km. Compared to the other experiments, where the UAV was flying360

at a height of 100 meters, this scenario presents the worst results in terms

of communications range and packet delivery ratio performance, meeting the

theoretical expectations.

5.2. 40m altitude

In this scenario we have decreased the drone’s height, maintaining the same365

variables as in the previous scenario. Figure 12 shows the new results achieved.

In general, we can see that the range is reduced when compared to the results

achieved at 100 meters. We can also observe the impact of a little hill be-

tween the road that is located at coordinates latitude 39.719058, and longitude

-0.729005, thus reducing drastically the delivery rate.370

As in the previous experiments, we find that scenario 5 achieves the best

results in this group, being that the communications range reaches up to 1.5

kilometers. At 1 km, though, the packet delivery ratio already starts to drop to

less than 20%.

When we locate the antenna inside the vehicle (Scenario 6), the result is375

less satisfactory than the previous one. By having a lower range, the delivery

ratio is lower for all distances when compared to the previous scenario. Another

interesting fact is the ratio produced for the first few meters. In the case of
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(a) Scenario 5: Outside, Vertical.
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(b) Scenario 6: Inside, Vertical.
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(c) Scenario 7: Outside, Horizontal.
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(d) Scenario 8: Inside, Horizontal.

Figure 12: Heat Maps for the different scenarios where the drone’s altitude is of 40 meters.

Each plot shows the packet delivery ratio depending on the sender’s antenna orientation

(Vertical, Horizontal) and the receiver’s antenna location (inside, outside).
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scenario 6, this ratio is not decreasing in the range from 0 to 250 meters. In

fact, it slightly increases until that point, and it eventually attenuates afterward.380

This is due to the orientation of the antenna at the drone, as having the antenna

pointing directly to the receiver would represent worst-case conditions in terms

of energy radiation from that antenna. The maximum distance reached in this

scenario is 1.3 km.

On the other hand, when the drone’s antenna has a horizontal orientation,385

the results are more standard, meaning that, as the distance increases, the

delivery ratio attenuates in a monotonous manner. However, in terms of range

and delivery ratio values, having the vehicle’s antenna outside (scenario 7) still

achieves lower performance than for the two previous scenarios (scenarios 5 and

6). In fact, compared to the previous scenario where the communications range390

is of 1.3 km, the maximum distance covered in this scenario is of less than 1

km. At 500 meters, the packet delivery ratio has already dropped to 43%.

Putting the antenna inside the vehicle while having the drone’s antenna

pointing horizontally is, as expected, the worst possible combination of all,

achieving a low communications range and a low packet delivery ratio. For395

instance, the performance achieved in scenario 7 is noticeably better than the

one for scenario 8. In fact, despite the maximum reachable distance is similar to

the previous scenario, the packet delivery ratio obtained as distance increases,

is significantly less than the previous ones.

6. Communications Modeling400

Using the results of the previous experiments, we now proceed by modeling

communications based on the different factors being studied (drone’s altitude,

transmitter antenna orientation, and receiver antenna location). Notice that our

model was obtained based on the number of packets received at each registered

position. As the packet delivery ratio is calculated for a small distance interval,405

we have performed curve fitting to derive the optimal parameters. The models

generated can then be integrated into simulation tools to have more realistic
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(a) Delivery ratio at Scenario 1 and 2.
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(b) Delivery ratio at Scenario 3 and 4.
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(c) Delivery ratio at Scenario 5 and 6.
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(d) Delivery ratio at Scenario 7 and 8.

Figure 13: Curve Fittings of Delivery Ratio vs Distance, with the antenna put Inside or

Outside the vehicle

performance results.

Specifically, for modeling this system, we used the location of the received

packets (latitudes, longitudes, and altitudes), and their corresponding time-410

stamp. The sender also stores information about how many packets were sent

and when which can then be compared to the packets received to calculate the

delivery ratio based on distance ranges. We have sliced the distance range into

intervals of 100 meters. The delivery ratio is then calculated for each interval

of distance range. The delivery ratio information for all scenarios tested is then415

plotted on a bar chart. Using this information, we continue by performing curve

fitting using the nonlinear least-square Marquardt-Levenberg algorithm. This

curve fitting allows deriving a general model for the packet delivery ratio vs.

distance under different conditions.

The curve fitting results are presented in Figure 13. We have tried to find420
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a common model that would suit our variables (antenna orientation, antenna

location, and UAV altitude). The goal is having fitting parameters that can

vary from one scenario to another while maintaining the same function. Thus,

the selected fitting function was a modified Gaussian, and the best fitting was

evaluated for the different cases studied:425

f(x) = a · e−
(x−b)2

2c2 (1)

Based on equation 1, we have three parameters for each scenario: a, b, and

c. These parameters take the values shown in Table 2. We have also added the

R2 value to represent the goodness-of-fit. Based on the table mentioned, for

each scenario, the model explains all the variability of the response data around

its mean. The parameter is represented as R-squared, which is a statistical430

measure of how close the data are to the fitted regression line. In our fitting of

the delivery ratio and distance values obtained from the experiment, it shows

a high value of R-squared, in which the value ranges from 0.7162 to 0.9844.

Hence, the model represents an adequate fit.

As depicted in Figure 13, the curve that represents those scenarios where435

the antenna is placed outside the vehicle has higher values than the curve rep-

resenting those scenarios where the antenna is located inside the vehicle.

Comparing the curve that represents the scenarios that involve pointing

down the antenna (vertical) to the opposite case (horizontal orientation), we

can see that some curves bend, while others do not. The curves that bend are440

the curves that represent a scenario having the antenna pointing down (vertical).

This is expectable as, when the car is just below the drone’s position, the delivery

ratio becomes lower, increasing when the car gets a bit farther from the drone.

This phenomenon is due to the fact that the antenna installed on the UAV is

an omnidirectional antenna, thereby radiating power uniformly in one plane,445

with the power decreasing with the elevation angle above or below that plane

until it theoretically reaches zero on the antenna’s axis [43]. Hence, the signal

that propagates from the antenna has its strongest power when the receiver is
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Table 2: Value of parameters a, b and c for each scenario with its R2 value .

a b c R2

Scenario 1 (Curve 1) 0.9613 1071 1815 0.7162

Scenario 2 (Curve 2) 0.7834 705.4 1296 0.8132

Scenario 3 (Curve 3) 0.9593 -180.2 1883 0.7646

Scenario 4 (Curve 4) 1.24 -11.49 1941 0.8627

Scenario 5 (Curve 5) 0.8497 163.4 609.5 0.9279

Scenario 6 (Curve 6) 0.7385 137.7 488.9 0.9844

Scenario 7 (Curve 7) 0.9083 -48.59 616.4 0.9786

Scenario 8 (Curve 8) 0.932 -113.1 654.2 0.971

perpendicular to it. On the other hand, when the receiver is located parallel to

the antenna (in our case, just below), it will receive a weaker signal.450

From another perspective, when comparing the curves for the scenarios

where we vary the drone’s altitude, it quickly becomes clear that higher al-

titudes are associated to greater distances. For Scenarios 1 and 2, the curves

continue up to distances of more than 3.2 kilometers. For Scenario 3, the curve

stops at 3 km and reaches 200 additional meters on Scenario 4. On the other455

hand, for both Scenarios 5 and 6, the resulting fitting function cannot reach

more than 1.5 km. On the last two scenarios, the maximum point reached by

the resulting curve is 1.3 km. That is, for the scenarios when the drone’s alti-

tude is of 40m, these cut-off values precisely correspond to locations where LOS

is blocked by hills, as shown in figure 6b.460

It is worth pointing out that, since our experiments were located in a quite

remote rural area, no significant interference was present that could hinder the

communications band. Thus, the results achieved are quite reasonable as, for

this situation, the fitting suits an AWGN (Additive White Gaussian Noise)

channel model, meaning that only the effect of additive white Gaussian noise465

is noticeable. Also, we find that the only obstacles that hindered the commu-

nication were little hills that blocked line of sight in some areas of the selected
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scenarios.

7. =Model Applicability and Comparison Against Existing Models

In this section we discuss the novelty and applicability of our model by470

comparing it against other existing propagation models, and explaining how it

could be used as a part of existing network simulators.

7.1. Comparison with Existing Models

The characterization of a data link between two endpoints requires studying

the signal propagation conditions in the target environment. The line of sight475

conditions and the presence of obstacles clearly affect the channel model due

to the signal reflections and Doppler spread effects. This is specially true for

vehicular communications, where it can be affected by the presence of buildings,

terrain profile, or the car metal structure itself.

Various empirical path loss models have been proposed to address the signal480

propagation phenomenon. However, very specific transmission conditions can-

not be addressed by these models, as they only provide a generic propagation

behavior. Regarding vehicular communication settings, we have found in pre-

vious works that different types of intersections have their own characteristics

that define the communications performance when the visibility between two485

nodes is obstructed by either buildings or trees [44]. In our current work, we

have found that terrain conditions (e.g hills, mountains) can be a critical factor

affecting communication between UAVs and ground vehicles.

To clearly demonstrate the usefulness and novelty of the models derived from

this work, we have also compared our results with those obtained from simula-490

tion experiments that mimic the real-life experimental settings. We have chosen

the OMNeT++ [45] tool for simulation tests. Table 3 presents the simulation

parameters adopted. Notice that, in order to get simulation results compara-

ble to the real experimental results, we have set the simulation parameters in

accordance to real-life settings, except for the Path Loss Model, which is the495

parameter under analysis.
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Table 3: Simulation Parameters

Parameters Values

Transmitter Power 200 mW

Antenna Gain 5 dB

Packet Size 1400 Bytes

Packet Rate 10 Hz

Transmitter’s Altitude 40m/100m

Path Loss Model Free-Space, Rayleigh Fading

For our simulation experiments we considered two existing empirical path

loss models. The first one was the Free-space path loss model [46], and the

second one was the Rayleigh fading [47] model. Simulation experiments include

two nodes, one static and another moving, thereby resembling the drone and500

car of the real experiment. Then, we have measured the packets sent from

the transmitter, and those received correctly at the receiver node. Afterward,

we have calculated the packet delivery ratio progressively, depending on the

distance between the two nodes. This way, we obtained a graph for packet

delivery ratio versus distance, the same way as we did with the results obtained505

in the real experiment.

Figure 14 combines the results for the real tests and the simulation tests

for comparison. The curves have distinct colors, where Scenario 1 represents

the real experiment with the drone flying at 100 meters in a green curve, and

Scenario 5 represents the real experiment with the drone flying at 40 meters in a510

red curve. In both cases, these results correspond to the best case scenario, with

the UAV antenna pointing down, and the vehicle’s antenna located on top of it.

Regarding the Rayleigh results represented in the figure in a blue curve, these

correspond to the simulation test using the Rayleigh fading model, while the

Free-Space line (in cyan color) corresponds to simulation results using the Free-515

Space path loss model. Regarding the altitude parameter, simulation results

actually show that the impact of varying the UAV’s altitude is negligible, being

26



0 500 1000 1500 2000 2500 3000

Distance (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

liv
e

ry
 R

a
ti
o

Scenario 1

Scenario 5

Rayleigh

Free-Space

Figure 14: Comparison of results obtained from simulations and real experiments.

that very similar results are obtained when having the transmitter at 40 meters

or 100 meters. Hence, the curves that are shown in the figure are applicable for

the channel model regardless of the transmitter’s altitude chosen.520

Based on the results presented in Figure 14, we can notice that the Rayleigh

fading model does not represent the performance of the communications achieved

when flying at either 40 or 100 meters. In fact, the Rayleigh fading model only

shows a progressive decline as the distance between endpoints increases. In ad-

dition, even though in the real experiment the communication was lost after525

3.2 kilometers, the curve still shows a successful packet delivery beyond that

distance. Overall, we can conclude that it cannot represent the performance for

UAV-to-car communication conditions.

Regarding the Free Space path loss model, it is more adequate for the sce-

nario being tested. We can see that, as the distance increases, the power at-530

tenuates drastically after a certain distance. This is shown in its curve when

it attains 2000 meters, being that the curve plunges from 0.85 to less than 0.5

for a distance variation of only 200 meters. This trend is similar to the curve

27



that represents the real experiment when the transmitter was at an altitude of

100 meters. Notice that, at this particular altitude, the terrain profile did not535

cause line-of-sight obstructions. However, compared to the curve that repre-

sents the experiments having the transmitter at 40 meters of altitude, we find

that the Free Space model is no longer applicable. Now, since communication

obstructions were present between the drone that acts as the transmitter and

the moving vehicle, the packet delivery ratio drops for much shorter distances.540

Taking into account the results presented above, we conclude that the exist-

ing channel models still cannot address the specific characteristics of UAV-to-

Car communication scenarios. In fact, we found that the free-space path loss

model is applicable, but only when there is line of sight between both endpoints.

In case the terrain profile causes obstructions, then traditional models are no545

longer applicable, and an obstruction model specific to each particular scenario

is required.

7.2. Applicability of the proposed Model in Simulation

Knowing that our proposed model can be an alternative for defining commu-

nications performance in UAV-to-car scenarios, our intended goal is to use this550

model for larger scale simulations. In order to adapt our model to simulation en-

vironments, information regarding the terrain profile in the target area should

be known in advance. Hence a topographic map with elevation information

would be needed for the simulation to be as realistic as possible.

By analyzing a 3D map (with elevation information), one can characterize555

the line-of-sight conditions between UAVs and cars by classifying the elevation

and landforms as obstacles to communication. This classification process can

be done before the actual simulation. Widely used map providers such as Open-

Streetmap [48] include elevation information, which make the adoption of our

model feasible. This way, the adoption of the models derived in this paper can560

be used in combination with line-of-sight availability based on information of

the actual scenario topology, which is used to determine whether signal block-

ing due to obstacles will take place or not, prior to checking the packet delivery
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feasibility accounting for distance-related loss.

8. Conclusions565

In this paper, we have studied the packet delivery effectiveness on UAV-to-

car communications. For this study, we have varied the drone’s altitude, the

transmitter antenna orientation, and the receiver antenna location. According

to our experiments, the best scenario for UAV to car communications takes

place when the drone’s antenna is pointing down (vertical), the car’s antenna570

is located outside the vehicle, and the drone’s altitude is very high (100 meters,

near the maximum allowed limit according to the legislation in different coun-

tries), thereby helping to avoiding any LOS obstruction. Under this setting, the

communications range achieved was of 3.2 kilometers.

In addition, based on the experimental results obtained, we have also found575

the best-fitting function and applied regression to provide a generic model ap-

plicable to the different situations under study. The model is based on the

modified Gaussian function, which offers a suitable results representation such

as the ones obtained in our tests. In fact, by merely adjusting two values of the

fitting function, we can adapt it to the different scenarios tested. Simulation580

results have also shown that the derived models keep some relationship with the

standard Free Space model when LOS conditions are met, but not otherwise.

As future work, we will study in more detail the impact of obstructions

present at different altitudes. In particular, the presence of hills as an ob-

struction to the line of sight communications is an important factor to take into585

account, and thus integrating 3D maps in network simulation tools can be useful

to improve the degree of realism of our experiments.
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