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Abstract

Fuel has been the main source of energy for cars for many years, but the
non-renewable resources are limited in the planet. In this context, electric
vehicles (EVs) are increasingly replacing the previous kind of cars. However,
as the number of EVs increases, some challenges arise such as the reduc-
tion of waiting times in the queues of fast charging stations. The current
work addresses this challenge by means of social coordination mechanisms.
In particular, this work presents an agent-based simulation framework for
simulating the effects of different coordination policies in the route planning
of EV drivers for charging their vehicles on their trips. In this manner, re-
searchers and professionals can test different coordination mechanisms for
this purpose. This framework has been experienced by simulating an adap-
tive strategy based on the implicit communication through booking systems
in the charging stations. This strategy was compared with another common
strategy, which was used as the control mechanism. This comparison was
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done by simulating several scenarios in two Spanish cities (i.e. Madrid and
Zaragoza). The experimental results show that the current approach was
useful to propose a route planning strategy that had statistically significant
improvements in the reduction of waiting times in charging stations and also
in the global trip times. In addition, the evolutions of pathfinding execution
times and the numbers of interchanged messages did not show any overload-
ing pattern over the time.

Keywords: agent-based framework, agent-based simulator, agent-based
social simulation, electric car, electric vehicle, multi-agent system

1. Introduction

The renewable energies are the basis for a sustainable future [1]. Hybrid
cars are getting to be popular in Europe. However, there is a large part of the
population that use fuel cars, and there are very few citizens that use pure
electric cars. In fact, there are some barriers that prevent most population
from using non-hybrid electric cars. In general, one of the main drawback
of electric vehicles (EVs) is that these need much more time to recharge
their batteries than common fuel vehicles need for refilling gas. Thus, some
citizens may choose not to buy EVs due to their concern about the possible
waiting time in the queues of charging stations. Although increasing the
number of charging stations could be a solution for decreasing this waiting
time, this solution could bring other serious problems such as the impact on
the distribution networks [2] or the necessary economical costs.

Vehicular ad hoc networks (VANETs) allow vehicles to communicate
among each other without needing a fixed infrastructure [3]. The street
awareness can be useful to keep vehicle positions updated. For instance, a
geographical forwarding protocol was proposed based on street awareness for
a VANET, and it reduced the average delay by communicating the relevant
information when vehicles arrived to intersections [4]. In VANETs, model-
driven engineering has shown to be useful for modeling the interchanged
information for facilitating the collaboration among vehicles [5].

In this context, multi-agent systems (MASs) have proven to be useful
for managing different traffic and transport situations in the last decades [6].
More concretely, MASs have been used for analyzing different impacts of EVs
in aspects such as power grid [7, 8] or the best pricing strategies for charg-
ing station companies for making high economical profits [9]. In particular,
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agent-based simulators (ABSs) are a specific kind of MASs, aimed at simu-
lating different decentralized realities. In the recharge of EVs, the comfort
of drivers has also been analyzed for slow charging parking stations [10] and
fast charging stations [11]. Model-driven engineering has also been useful for
modeling MASs for facilitating the collaboration. The MAS based on the
Delphi process is an example of multi-agent based collaboration developed
with this approach [12]. Model-transformation by examples have allowed de-
velopers to easily define model transformations in this kind of development
[13].

This article focuses on how to tackle the problem from a practical way of
coordinating drivers for making the best use of charging stations. In this line
of research, this article proposes an ABS framework for testing coordination
policies so engineers and practitioners can assess their performance through
simulations before actually using these in real scenarios. This framework is
configurable so it can be applied to different city maps, by introducing these
maps from text files.

It is worth noting that the presented framework is a first step towards
the application of Intelligent Transportation Systems (ITSs) for reducing the
trip times of EV drivers. Once the most appropriate strategies are found,
these could be integrated in the EV software, so drivers can ask their vehicles
to offer the most convenient charging stations for stopping on their way to
certain destinations.

The remainder of the article is organized as follows. The next section in-
troduces the most similar existing works, and highlights the gap of the litera-
ture that the current work covers. Section 3 presents the ABS framework for
simulating different route planning and coordination strategies for EVs that
need to be charged on their trips. Section 4 assesses the current framework
by evaluating and comparing certain strategies with different simulations in
two different-sized Spanish cites. Section 5 discusses the most relevant as-
pects of the results, and section 6 mentions the conclusions and the future
lines of research.

2. Related work

Simulations have been widely applied to address challenges of ITSs in
general, as the current work has done for a particular problem. For instance,
the evacuation scenarios have been simulated in different network topologies
to analyze the repercussions of the correlated network intersections on the
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evacuation scenarios [14]. Another simulator was used to assess a route plan-
ning approach based on mobile crowdsensing for determining the number of
vehicles in different road segments [15]. In addition, another work explored
the benefits of ride-sharing considering pollution, energy consumption and
congestion among others [16]. They presented a hybrid approach that firstly
used a greedy algorithm and then improved the solution with constrained op-
timization, in order to obtain routes that could be shared by several citizens.
This ride-sharing approach was simulated and validated with information
from about 3 million rides extracted from a public taxicab dataset about
New York. Like in these works, many ITS works ignore the specific problems
that are being raised by the large use of EVs.

Nonetheless, there is a growing number of ITS works that address specific
challenges of EVs. Most of these works fall into one of several categories. The
first category is about simulating and analyzing the effects of the charging of
EVs on the power networks. Secondly, some works address economic issues
around the usage of EVs. Finally, some works focus on several aspects of the
drivers’ comfort, such as facilitating the charge of their EVs.

In the first category, several works used MASs for assisting the manage-
ment of EVs regarding power grids. [17] introduced a MAS for controlling
the charging of large populations of EVs. This work presented a simulation
over realistic scenarios to evaluate their approach. Their main goal was to
ensure the power networks performance considering the users’ preferences. In
a similar way, [8] proposed an agent-based approach for EVs that considered
the state of the power grid, in order to recharge in a balanced way to not
overload it. [7] proposed a MAS composed of several agents, each of which
was integrated in a Linux system embedded in a different EV. These agents
cooperated to integrate these EVs in a power grid system. In their approach,
these EVs charged when the electricity was less demanded (with a low price),
and they even sold energy in the peak hours (with a high price) supporting
the grid. This work was mainly focused on assisting the power grid and the
trade of energy with different prices reducing the costs for EV owners or even
making them earn money. Thus, these works are mainly concerned with the
charge of EVs avoiding congestions on power grids. By contrast, the current
work is mainly focused on reducing queue waiting times on charging stations
for the comfort of drivers and the popularization of EVs.

The second category of works address economic issues around the charge
of EVs. For example, a simulator considered different charging strategies
of EV drivers, such as mainly considering charging prices to get the lowest
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ones assuming the cases in which drivers are not in hurry [18]. From the
perspective of charging station owners, [9] presented a MAS for estimating
the demand of the charging stations from EV drivers in order to determine
the better prices for maximizing the profits. These works and the current one
have in common the execution of simulations for testing different strategies.
However, the difference is that these works are mainly concerned with the
prices and profits, while the current one is concerned with the reduction of
queue waiting times.

The third category is related to EV drivers’ comfort, and is the most
related one with the current approach. These works are mainly aimed at
facilitating the charge of EV drivers. In particular, [10] proposed an approach
for providing an appropriate infrastructure of slow charging parking stations
(about 12 hours each charge) with standard wall outlets (110 V - 220 V),
so that EV drivers can be supplied when they park their EVs. They also
evaluated their approach with a simulation. The current work is also aimed
at facilitating the charge of EV drivers. However, the current work deals
with fast charging stations (about 30 minutes each charge), in which the
user is assumed to be there waiting and the number of stations is much more
limited.

In addition, in this same category, [11] presented an anticipatory coordi-
nation mechanism for the fast charging of EVs. In their approach, the EVs
were coordinated so that each driver selected the best charging station on
their way. However, this work did not consider possible deviations in EV
driver paths, as the current work does.

Although the number of simulations about ITSs is increasing steeply,
there is still not an agreement about which are the best technologies for this
kind of simulations. For example, [18] used Matlab for simulating the effects
of EVs on electric distribution systems. Other approaches used general-
purpose object-oriented programming languages such as Java [19], or even
web-based languages like JavaScript alongside Cordova [20]. However, there
are other works that propose domain-specific technologies for ITSs such as
ontologies [21], facilitating the intercommunication between different devices.
In this line, another proposal used model-driven engineering principles for
conforming a domain-specific modeling language about the simulation of ITSs
[22]. In this context, cross-platform game-based development technologies are
not so much explored as is the case of Unity, which is the technology used in
the current work.
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3. ABS about smart transportation for reducing waiting times in
charging EVs

The proposed model of the ABS framework about smart transportation for
reducing waiting times in Charging EVs (ABSCEV) has been defined with
the updated version of ODD (Overview, Design concepts, and Details) pro-
tocol [23]. The presentation of the current ABS model follows the structure
of sections recommended by this protocol. In addition, section 3.9 introduces
the user interface of the simulator tool.

The development of the ABS framework has followed the Process for de-
veloping Efficient Agent-Based Simulator (PEABS) [19]. In general, PEABS
allows developers to rapidly develop ABS that are normally efficient in terms
of response time and memory usage. PEABS achieves these benefits by rely-
ing in some core ideas such as (a) using implicit communications, (b) avoid-
ing communication platforms like JADE, and (c) using method invocations
for communications. In particular, ABSCEV uses implicit communications
among EVs through the booking systems in charging stations. ABSCEV has
been developed without any time-consuming communication platform like
JADE. ABSCEV simulates the communications with method invocations in
the C# programming language. We have also incorporated the recommen-
dations about spatial locations of agents from TABSAOND (a technique for
developing agent-based simulation apps and online tools with nondetermin-
istic decisions) [20].

Regarding the technology, this ABS uses the widespread cross-platform
game-based engine Unity [24], which has allowed us to create a user-friendly
simulator that can be used by both researchers and non-specialized users.

3.1. Purpose

The purpose of this ABS framework is to simulate the outcomes of dif-
ferent pathfinding strategies and coordination mechanisms in the selection of
paths of EVs that need to be charged on their ways from certain departure
locations to certain destinations. The main outcomes are measured with the
average waiting time of EVs in fast charging stations and the average time
of EV trips. Another goal of this ABS framework is that researchers can
extend it for assessing more elaborated strategies and richer representations
of real-world scenarios.
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Figure 1: Agent diagram of ABSCEV with Ingenias notation

Figure 2: Main symbols of Ingenias notation

3.2. Entities, state variables and scales

The main entities of the presented ABS model are the “EV” agents and
the “Charging Station” agents, which are presented in Figure 1 with an
agent diagram with the Ingenias notation [25]. This diagram also includes
the agent roles and their goals. The architecture of this ABS was designed
considering the common MAS guidelines about keeping the cohesion high
and the coupling low [26]. It is worth mentioning that this diagram uses
the -R (or -r) suffix for roles and the -A (or -a) suffix for agents, to avoid
conflict of names in an abbreviated way. In order to make this diagram and
the following one understandable, Figure 2 determines the representation of
the main concepts in the Ingenias notation. The agent types of this ABS are
further introduced below:

• EV agents : Each of these agents simulates the behavior of an EV driver.
This agent could also simulate a software assistant installed in the EV
navigator system. These agents consider their current locations and
their destinations. Each of these agents is aware that it needs to charge
its vehicle before finishing the trip, as this assumption belongs to the
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problem definition. Each submodel can establish a different strategy
for selecting a route that includes a stop for charging in a station.

• Charging Station agents : Each of these agents manages a charging
station, and controls which EV has access to the fast charging plug-in at
each time slot. Regarding the submodel, it can use different strategies,
such as (a) implementing just a waiting queue for sequentially charging
the EVs in the arrival order, or (b) having a booking system to let EV
agents know the availability of the station in advance.

Regarding the state variables, some of these are common to both agent
types. For example, any agent has a 2D position. EV agents change their
positions during the simulations, since EVs move from some places to others.
However, the positions of charging station agents are just set at the beginning
of the simulation from a given map.

In addition, the places of agents of both types are related to their positions
in the graph that represents the current map. Thus, any agent knows in which
road (graph edge) or intersection joint (graph node) it is placed.

Each EV agent has variables for its heading direction and its speed. EV
agents has another variable that indicates the necessary time for charging
their vehicles in a fast charging station. Each EV agent also has an internal
variable that determines whether it has charged its battery in the current
simulation.

Each charging station agent has a variable that indicates the EV that is
currently charging if any. It also has different data structures regarding the
policy for establishing the order of charging EVs.

Concerning the scales, the positions are established as relative distances
from the map center measured in kilometers. The speed is determined in
kilometers per hour. The necessary time for charging is measured in minutes.

3.3. Process overview and scheduling

Among the parameters of the simulator is the time interval between the
starting times of drivers. The simulator starts an EV and then waits for the
established time. Then, it starts the driving of another EV and waits again.
The simulator repeats this until it reaches the established number of EVs
in the simulation. This simulator was built using Unity, which is a cross-
platform engine for developing applications. Unity was originally created as
game-based engine, but its flexibility facilitates the development of general-
purpose applications. Unity allows designers to define, create and destroy

8



dynamically visual elements arranged in a scene. These visual elements were
used to represent the different kinds of agents such as the EVs with drivers
and the charging stations. In Unity, visual elements can periodically call
functions from scripts representing object-oriented classes. More concretely,
the “Update” function is invoked every frame, and we implemented this func-
tion to impersonate the behavior of each agent type. Algorithm 1 represents
the implementation of this function showing how the simulator keeps track
of the elapsed time and generates EV agents sequentially.

Algorithm 1 Procedures for generating the EV agents
1: procedure Start
2: elapsedT ime← 0
3: counterEV s← 0
4: procedure Update(timeInterval, numEVs)
5: if counterEVs<numEVs then
6: elapsedTime ← elapsedTime + Time.deltaTime
7: if elapsedTime ≥ timeInterval then
8: (origin,destination) ← SelectOriginAndDestination(graph)
9: ev ← new EV()

10: ev.Pathfinding(origin, destination)
11: ev.StartDriving()
12: elapsedTime ← 0
13: counterEVs ← counterEVs+1

When an EV agent is created, firstly the manager selects its origin and
destination. Then, the EV agent searches for a path considering these two
locations with the restriction of charging the battery. Section 3.7 will intro-
duce several mechanisms for this search of paths. Once the path is found,
the EV agent starts driving following the path, updating its position visually
in the user interface every frame.

It is worth mentioning that there are two modalities for establishing the
origins and destinations of the paths of the drivers. In the first option, all the
EVs share the same origin and the same destination. In this case, the origin
and the destination nodes are the first and the last ones in the definition of
the map. Normally these two locations are recommended to be selected far
from each other, so that the possible paths can cover a great part of the map.
This modality is especially useful for analyzing and understanding behaviors
in a simple, deterministic and reproducible way.

The second modality is that each EV selects two random positions for
respectively the origin and the destination forcing that these are different
between each other, with the Algorithm 2. Each EV agent searches a path
for its particular origin and destination. This modality is more realistic and
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relevant for obtaining simulations that are more similar to real scenarios.
The analysis of this kind of simulations requires a representative number of
executions to draw meaningful conclusions, due to its stochastic behavior.

Algorithm 2 Selection of two different random positions for respectively the
origin and the destination

1: procedure RandomOriginAndDestination(graph)
2: indexOrigin ← Random.randInt(graph.numNodes)
3: origin ← graph.GetNode(indexOrigin)
4: indexDestination ← Random.randInt(graph.numNodes-1)
5: if indexDestination ≥ indexOrigin then
6: indexDestination ← indexDestination+1

7: destination ← graph.GetNode(indexDestination)
8: return (origin, destination)

3.4. Design concepts

3.4.1. Basic Principles

The goal of ABSCEV is to analyze the waiting and trip times of EVs
given certain conditions, for comparing different strategies in the selection of
paths and stations for charging EVs. The basic principles of ABSCEV are
summarized as follows:

• Several EVs are simulated in the same map.

• Each EV is assigned to a certain origin and destination.

• Each EV must go from the origin to the destination with the mandatory
restriction of charging its battery in a station before finishing the trip.

• There are several charging stations in the map.

• Two different EVs cannot simultaneously charge their batteries in the
same station.

The proposed framework allows analyzing different strategies and incor-
porate different elements to implement useful coordination strategies. In
particular, the framework included the possibility of booking time slots in
the charging stations, in order to analyze a pathfinding algorithm with coor-
dination based on these bookings.
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3.4.2. Emergence

In the case of using the booking systems in the charging stations, the
resulting behavior of the EV agents is an emergent coordination. For ex-
ample, when all the agents share the same origin and destination locations,
the emergent behavior is that the EVs distribute between the different paths
with charging stations in a coordinated way to reduce the waiting times in
the charging stations. This happens even if some of the paths are larger than
others, as long as they achieve their goal of reducing the trip times. This fact
reveals coordination, since normally each EV would not select a path if there
was another shorter possibility, unless the EVs are coordinated to distribute
the paths for avoiding coincidences in the stations.

When applying the booking systems in simulations with different origins
and destinations, one can also observe that EV agents choose paths that
are not the shortest ones given their beginning and target locations and
the restriction of needing to charge. However, these selections also reveal
coordination, since these reduce not only the average waiting time in charging
stations but also the average time of the trips. Section 4.2 indicates the
results of the experiments that corroborate these assertions.

3.4.3. Adaptation

In the strategy in which EV agents use booking systems, EV agents are
adaptive since they decide their paths based on the current status of bookings
in charging stations. A prove of the adaptiveness of EV agents is that, when
they share the same departure and destination locations, they take different
decisions based on the particular state of the simulation. This adaptive
booking strategy will be properly introduced in section 3.7.2.

By contrast, in the strategy used as control mechanism introduced in
section 3.7.1, EV agents always take the same decision given some particular
departure and target locations in a specific map, regardless the current state
of the simulation.

3.4.4. Objectives

The primary objective of EV agents is to arrive at their destinations
from their origins in the shortest time possible with the condition that each
of these charges its EV in a charging station on its way.

The use of the current framework is illustrated with a pathfinding mecha-
nism in which charging stations integrate booking systems. In this particular
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version, the objective of the charging station agents is to manage the book-
ings of time slots in the plug-in so that EV agents can efficiently use the
service of charging stations.

This strategy is compared with another pathfinding mechanism, as the
control version. Although the primary objectives EV agents remain the same,
they accomplish it in a different way. They simply assume that the shortest
path in distance will be the fastest one ignoring any estimation of the possible
delays because of the waiting queues in the corresponding charging stations.
In this case, the goal of charging station agents is just to manage the cor-
responding waiting queues so the EV agents respect the order of arrivals in
the use of the charging service.

3.4.5. Prediction

The current ABS framework predicts the average waiting times and the
average trip times in the trips of EVs when these need to be charged on their
ways.

The prediction is based on certain input parameters such as the expected
number of EVs for a certain time period, the charging time, the average EV
speed and the frequency of EVs starting their trips (indirectly indicated as
the number of minutes between the beginning of these trips).

One of the most influential factors on the waiting and trip times is the
strategy used for selecting the paths and coordinating among the different
agents. The current framework is illustrated with a basic control mechanism
and a different strategy based on booking charging station slots. The current
framework can predict the repercussions of each of these strategies. In addi-
tion, the framework can also be used to explore new strategies and predict
their repercussions.

3.4.6. Sensing

The charging station agents sense the arrivals of EV agents. They assign
these to a queue and then sequentially supply these with energy. In the
case of using the booking strategy, charging station agents inform EV agents
about the soonest available time slot from certain time. They also book an
available time slot when an EV agent requests so.

The EV agents sense (a) the whole map, as this is normally public static
knowledge, and (b) the positions of the charging stations. In one of the strate-
gies of the current approach, EV agents can also know about the available
time slots for charging in the stations.
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Figure 3: Interaction between EV agents and charging station agents

3.4.7. Interaction

The explicit communication is performed between EV agents and charging
station agents, and its purpose is twofold. First, the EV agents can ask about
information of the current bookings in the different stations. Second, the EV
agents can actually book a time slot in a particular charging station, just
right after it has selected a path and a stop for charging.

Figure 3 shows the interaction between an EV agent and a charging sta-
tion agent. This figure uses the Ingenias notation that was previously intro-
duced in Figure 2. Firstly, the EV agent asks for information about available
time slots from a given arriving time. The charging stations replies with the
first available one, considering the necessary charging time. The EV agent
assesses its option. In case, it actually selects this particular charging sta-
tion, it informs so to the charging station agent, so that it actually books
a time slot in this station. Notice that the EV agent normally assesses sev-
eral charging station options before actually choosing one. In case it does
not choose a particular charging station, it just omits the third message (i.e.
interaction unit) of the interaction.

It is worth mentioning that there is also an implicit communication be-
tween EV agents. Although these agents do not interchange explicit messages
between each other, each EV agent takes a decision (i.e. a path) and lets this
information available to their peers through an actual booked time slot in
one of the charging stations. This implicit communication among EV agents
is what makes the emergent coordination behavior of this ABS.
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3.4.8. Stochasticity

In the modality of selecting different origin and destination locations,
these locations are selected randomly from the different nodes of the graph
that represents the city map. The corresponding mechanism was determined
in Algorithm 2.

3.5. Initialization

The initialization of the simulations depends on the input parameters set
by the user. More concretely, the user can establish the number of electric
cars of the simulation, the necessary time for charging a vehicle in a station,
the speed of cars, the time interval between the start time points of cars, the
modality for selecting the origins and destinations of trips, and the kind of
strategy applied in the simulation.

In the time zero of the simulation, the map selected by the user is loaded
into the simulator. All the charging station agents are created, assigning
one agent to each station of the map. These agents initialize empty waiting
queues and/or empty list of bookings, regarding the used strategy.

Normally only one EV agent is created at the beginning since all the EV
agents start at different time points equally distributed among the timeline
of the simulation, even if the start points are separated with very short time.
Notice that the current simulator is executed with 30 frames per second,
so 30 agents could start in different time points in each real-time second of
the execution. The simulator assigns an origin and a destination to the EV
agent. This agent chooses a path with a pathfinding algorithm, and starts
following it at the speed indicated by the user.

3.6. Input data

This simulator receives input from data files that represent any kind of
road or city maps. These files contain the positions of the road joints (that
represent the nodes of a graph) in one list, and the way these locations are
interconnected (i.e. the edges of the graph) in another list. Figure 4 shows an
example of a simple map represented with this notation. Notice, that in the
former list each node is represented with the two coordinates of its location,
measured as the distances from the map center in km. When a node has
a charging station, it is denoted with the word “station”. In the later list,
the edges are denoted with the two integer indexes of the nodes it connects,
starting counting the indexes at zero. Both lists are headed with meaningful
titles to remind their meanings and to determine the limit between them.
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Figure 4: Example of a map represented with a text file for being simulated

3.7. Submodels

This section presents the two possible strategies that are included in this
framework for illustrating some different mechanisms for selecting paths in
the current approach. Section 3.7.1 presents a basic static strategy based on
the distances of the corresponding map, while section 3.7.2 presents a dy-
namic adaptive strategy based on the use of booking systems in the charging
stations.

3.7.1. Basic strategy based on physical distances

In this strategy, each EV agent selects the shortest path from the begin-
ning location to the destination that satisfies the restriction of going through
a charging station. This strategy is called “Distance” as it only focuses on
the physical distance of the path, besides satisfying the charging restriction.

We defined a modification of the A* (A-Star) algorithm for this strategy.
Note that in general the variations of the A* algorithm have been widely
used in the literature about pathfinding [27]. In the presented modification
of the current work, the condition of achieving the right path is not only to
reach the destination but also going through a charging station.

Basically, this algorithm uses a priority queue of paths ordered by their
distances. It starts with a path of only the origin. From each path in the
queue, the algorithm pops it, and push new paths generated from it. More
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concretely, the algorithm generates all the paths obtained from adding the
unvisited neighbors to the popped path. If the last node of the treated path
is a charging station, the path is marked as “charging”, and adds a new edge
to the path that symbolizes the recharge. When analyzing each first path
of the priority queue (ordered by global distance), the algorithm determines
whether both of the two conditions are satisfied: (a) the last location is
the destination and (b) whether the path is marked as charging. If both
conditions are met, the algorithm returns this path.

Once a car obtains a path with this algorithm, then the car starts follow-
ing this path. Notice that even if the path is selected as the shortest one,
then the simulation considers the restriction that only one car can charge in
a station at a given time. Thus, a trip may suffer delays from the expected
time because of the waiting time to be attended in a charging station due to
the possible coincidences of cars.

3.7.2. Adaptive strategy based on booking systems

This adaptive strategy is based on the dynamic booking of charging sta-
tions. Figure 5 shows an overview of this strategy with a functional block
diagram. This indicates the actions triggered in each simulation frame for
respectively the simulation manager and each EV agent. In the creation of
EVs shown in the left side of the diagram, the pathfinding incorporates the
communications for asking some stations which are their first available slot
from the expected arrival time. The pathfinding algorithm is further detailed
with pseudocode and the C# programming code later in this section. After
selecting one path, each EV books the corresponding station. The right side
of the diagram introduces the behavior of each EV in each frame of the sim-
ulated animation. Each EV checks whether it has arrived to the destination
after charging in its way. If not, it checks whether it is in a charging station.
In this case, if the EV has already the battery full of energy, it leaves the
station. Otherwise, it waits for its turn in the queue of the station, or charges
its battery on its turn.

In the pathfinding of this strategy, EV agents use a further modification
of A* algorithm that departs from the strategy introduced in the previous
section. This modification is presented in the Algorithm 3. When each EV
agent is managing the paths from the priority queue, it creates new paths
from the neighbors. In the case of being a charging station, it creates a new
edge with the same node. This edge does not only consider the charging time
but also an estimation of the waiting time.
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Figure 5: Functional block of the Booking strategy

Algorithm 3 Pathfinding algorithm using charging stations with booking
systems

1: procedure PathfindingWithBooking(origin, destination, chargingTime, speed)
2: queue ← new PriorityQueue()
3: path ← new Path(origin)
4: path.hasCharged ← false
5: while (path.last 6= destination) OR NOT path.hasCharged do
6: if path.last.isStation then
7: arrivingTime = Time.CurrentTime() + path.Duration()
8: availableTime = Interaction.AskForBookInformation( path.last.chargingStationAgent, ar-

rivingTime)
9: waitingTime ← availableTime - arrivingTime

10: duration ← waitingTime + chargingTime
11: newPath ← path.Clone()
12: isCharginInThisNode ← true
13: newPath.Add(path.last, duration, isChargingInThisNode )
14: newPath.hasCharged ← true
15: queue.Insert(newPath)

16: for edge ∈ path.last.neighbors do
17: if edge.target /∈ path.NodesFromLastChargeOrOrigin() then
18: newPath ← path.Clone()
19: duration ← edge.distance / speed
20: isChargingInThisNode ← false,
21: newPath.Add(edge.target, duration, isChargingInThisNode )
22: queue.Insert(newPath)

23: path ← queue.PullFirst()
24: queue.RemoveFirst()

return path
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In order to be accurate with the waiting time, the EV agent interacts with
the corresponding charging station agent, and asks about the first available
time slot for charging from the earliest time that the EV agent can get
there. The charging station agent indicates the soonest available time slot
considering the previous bookings and the necessary charging time. The
algorithm calculates the waiting time based on this response, and adds a
new path fragment considering the duration (i.e. the waiting time plus the
charging time), and marks this path fragment as charging. Since this strategy
uses a booking system, it is referred as “Booking” strategy.

The algorithm finishes when it detects a path that reaches the destination
going through a charging station. When found, the path is the shortest in
time because of the properties of the A* algorithm [28] and since the priority
queue is sorted by the durations of paths. In that moment, the EV agent
selects this path, and contacts the corresponding charging station agent of
the path to actually book the specific time slot. This booking is considered
by subsequent agents in the simulation.

The original A* algorithm discards the neighbors that are already visited
for a given path, to avoid paths with cycles that could hinder the performance
and the termination property. In the presented modification, this slightly
changes since sometimes a EV may need to charge in a particular station
and then come back through a part of the same path. For this reason, the
proposed modified version only guarantees separately that (a) the path does
not contain repeated nodes between the ones before charging, and (b) the
same for the nodes after charging. Thus, when checking the visited nodes,
this algorithm only uses the list of nodes from the last charging stop (if the
EV has been charged in this path) or from the origin (otherwise).

Since both pathfinding mechanisms share most of the code, we imple-
mented a general solution for supporting both pathfinding submodels. This
facilitates the maintainability of the programming code for possible exten-
sions. Figure 6 shows this general solution with the C# programming lan-
guage. The “Find Shortest Path” method is used for both pathfinding
strategies, and all the programming lines are the same for both pathfind-
ing strategies. The different between these is encapsulated in the “Correct
Edge Distance” method. This modifies the distance of an edge representing
a recharge only in the case of using the Booking strategy. If so, it commu-
nicates with the corresponding recharging station for adding a delay to the
estimated time. This delay is calculated from the first available slot in the
queue of bookings of the station.
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Figure 6: Programming code of the pathfinding in C# language
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3.8. Definition of new strategies with this framework

This framework provides the necessary tools for implementing different
pathfinding and coordination algorithms and testing whether these can re-
duce waiting times in charging stations and the global trip times or improve
in any other aspect. In particular, the new pathfinding algorithms can be
added as new functions within the “Pathfinding” class of the framework.

In order to implement new coordination mechanisms, the developer can
extend the EV agent and/or the charging station agents. For example, the
coordination of EV agents can be implicit through charging station agents,
but incorporating mechanisms different from booking systems. Another op-
tion can be that EV agents communicate through explicit messages. In this
case, if the communication is based on the locations, for example each EV
agent could communicate with each other EV agent nearby the path the
former agent is considering to take.

3.9. User interface

Figure 7 presents the user interface of ABSCEV. More concretely, Fig-
ure 7(a) shows the interface for setting the input parameters of simulations.
These include (1) the number of electric cars, (2) the necessary time for
charging a car battery, (3) the speed of cars, (4) the frequency of cars for
starting driving, determined with the time interval between cars, (5) whether
the cars start and end at different random points (denoted as “random trips”
in the interface) or if all of them share the same origin and destination, (6)
whether the simulation uses the Booking strategy, and (7) the map of the
simulation. Notice that new maps can be easily added by means of text files.
Finally, the user can establish the speed of the simulation as the ratio of the
simulated real-time divided by the actual simulation time. For example, a
speed of 1000 indicates that 1000 real-time seconds of the cars will be sim-
ulated in only one second in the simulator. Figure 7(b) shows an example
of the final results of a simulation. One can observe that the top of the ap-
plication shows the resulting average waiting time and the resulting average
trip time.

Figure 8 shows examples of simulation executions in a basic map. The
charging stations are represented as yellow circles. The red circles represent
electric cars that have not charged their batteries in the current simula-
tion yet. By contrast, green circles represent electric cars that have already
charged their batteries in the simulation. The streets are represented with
blue lines. In the simulations, one can observe that cars with low-level energy
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(a) User input (b) Simulation results

Figure 7: User interface of ABSCEV

(a) Same origin and destination (b) Random origins and destinations

Figure 8: Example of simulations with different options about the origins and destinations
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sequentially appear (i.e. red ones). Each car goes to a charging station, and
stays there for a while, simulating both the possible waiting time and the
charging time. Then, it changes its color to green representing that it has a
high level of energy, and continues its path towards its destination.

The simulation of the same trips (referring only to the same origin and
destination) is useful for understanding the system. Figure 8(a) shows an
example for this kind of simulation. It uses booking systems, and one can
observe that the vehicles alternatively take different paths even if one of these
is slightly larger, in order to avoid the waiting time in charging stations and
reduce the global trip time.

The simulation of trips with random beginning and target locations allows
the user to obtain more realistic situations. Figure 8(b) shows an example of
this kind of simulations. The study of these simulations requires to perform
a representative number of executions to avoid bias of the results due to the
nondeterministic behavior of the simulator.

This application was deployed as both as a mobile application and as a
desktop application, thanks to the fact that the used engine (i.e. Unity) is
cross-platform.

4. Evaluation

The validation of ABSCEV was performed in two different levels. First,
the basic functioning of the simulator was checked with simple situations.
Each of these situations was aimed at checking a specific property that the
simulator should have to be consistent. The second level of validation used
more complex cases that were inspired by real scenarios. The goal was to
assess the global emergent behavior of the system to draw representative
conclusions. The subsections of this sections present respectively these two
levels.

4.1. Validation of individual rules

In order to guarantee the proper functioning of the ABS, we checked the
following individual rules in two simple maps created for this purpose:

• We selected some origin location and a destination in each map. We
executed both the Distance and the Booking strategies for only one
car. We checked that in both cases the car departed from the origin
location and ended its trip in the destination location.
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• We selected an origin location and a destination location in a map so
that the shortest path did not go through any charging station. In
both strategies, we checked that (a) a simulated car followed a path
that went through a charging station, (b) it actually stayed there for a
while, and (c) afterwards it proceeded with a high level of energy.

• In the same previous scenario, we checked that the car with the Dis-
tance strategy followed the shortest path from the ones that went
through a charging station.

• In this same scenario, we also confirmed that a car with the Booking
strategy selected the shortest path from the ones that went through a
charging station. This behavior is appropriate since there could not be
any waiting time for starting to charge, since there was only one car in
the simulation.

• In each map, we chose an origin and a destination, so that there were
several possible paths that went through different charging stations.
These paths had different distances. In this scenario, we executed 10
cars with the Distance strategy, and we checked that all the cars se-
lected the shortest path in distance that went through a charging sta-
tion. We also confirmed that each car waited in the charging station
until it was available. In this way, the first car charged directly without
waiting, while the second one waited until the first one completed the
charge. The third one waited until the two previous ones finished, and
so on. We checked that every car arrived to the target location with
the battery charged.

• In the same scenario as the previous rule, we executed 10 cars with
the Booking strategy. We checked that the cars alternatively selected
paths through different charging stations, to avoid the waiting times
in the stations. We confirmed that the Booking strategy reduced both
the average waiting time in the charging stations and the average trip
times in comparison with the Distance strategy in the previous test.
We also observed that every car arrived at the destination and had
been charged.

4.2. Validation in two real scenarios

In order to assess the global emergent behaviors of the current approach,
we applied it in two different Spanish cities. We used the information avail-

23



(a) Madrid within M30 road (b) Zaragoza up to Z40 road

Figure 9: Maps of the main charging stations of two Spanish cities

able from the website electromaps.com (see some examples in Figure 9). This
website provides a geographical information system that informs of all the
charging stations indicating some of its features. It aggregates the areas
where there are several charging points when zooming out.

More concretely, Figure 9(a) shows a simplified version of the main areas
or charging stations in the center of Madrid city, delimited by the surrounding
M30 road. Each area of charging stations is represented with a green circle.
In a similar way, Figure 9(b) shows a similar map for the Zaragoza city
delimited at the south and east by the Z40 road. The current experiments
used these two maps considering only the most relevant streets and places.
These maps were represented as text files with the notation of the current
approach, so that the simulator was able to load them.

First, we used the fixed origin and destination locations to compare both
strategies. Thus, we ran the simulator respectively with (a) the Distance
strategy, which followed the shortest paths in distance and (b) the Booking
strategy with the proposed booking systems.

Then, we repeated the comparison but this time using random origin and
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Fixed trips Random Trips
(both cities) Madrid Zaragoza

Num Cars 10 20 20
Charging time (min) 30 30 30
Car speed (km/h) 30 30 30
Interval between cars (min) 10 3 10

Table 1: Values of the input parameters.

destination locations. In this occasion, we executed each strategy 100 times,
to avoid bias because of the nondeterministic behaviors.

All these experiments were repeated in the same way for the two maps,
respectively associated with the Madrid and Zaragoza cities.

Table 1 shows the input parameters used in the simulations. In the fixed
trips (i.e. with fixed origin and destination), all the same inputs were used
for both cities. In the case of the random trips, the number of cars was
increased to have more representative data due to the nondeterministic as-
pect of this simulations. In addition, the number of cars was increased to
maintain the possibility of having coincidences in the charging stations, since
the coincidences normally decreased when having different origin and desti-
nation locations. In addition, since Madrid was represented with a higher
number of charging stations than Zaragoza, we selected a higher frequency
for starting cars in the former case (represented with a shorter time interval
between generated cars) to simulate scenarios in which the charging stations
needed to be shared efficiently.

Since the maximum car speed allowed in Spanish cities is 50 km/h, we
used a lower average speed (i.e. 30 km/h) to consider the possible traffic
conditions and the stops because of traffic lights. In addition, we selected
30 min as the charging time of the fast charging stations, as it is one of the
most common charging times for this kind of stations [29].

Figure 10 shows examples of simulations for both cities with the param-
eters of these experiments. In both examples, one can observe some EVs
with low levels of energy (red circles), each of which either (a) going to a
charging station on the way to its destination or (b) getting charged in one
of the stations (yellow circles). One can also observe EVs already charged
(green circles) going to their destinations. In these particular examples, both
simulations were using the Booking strategy.

Figure 11 compares the waiting times of EVs in charging stations for
the different simulation scenarios. Each scenario is determined by (a) the
city, and (b) the way of selecting the current and target locations. In the
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(a) Madrid (b) Zaragoza

Figure 10: Examples of simulations of the experiments
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Figure 11: Comparison of waiting times between the strategies for different scenarios

26



0

20

40

60

80

100

120

140

160

Madrid-Fixed Zaragoza-Fixed Madrid-Random Zaragoza-Random

Tr
ip
	ti
m
e	
(m

in
)

Simulation	 scenario	(city,	way	of	selecting	current	 and	target	locations)

Distance	Strategy Booking	strategy

Figure 12: Comparison of trip times between the strategies for different scenarios

cases of random selection of current and target locations, each result shows
the average of 100 simulations, to avoid bias due to its nondeterministic
behavior. It is worth noting that the reductions of waiting times of Booking
strategy over Distance were higher when using the same current and target
locations (i.e. in Fixed scenarios) than when having a variety of origin and
target locations (i.e. in Random scenarios). In particular, in the Fixed
scenarios, the Booking strategy obtained reductions of 86.9% and 67.7% for
respectively Madrid and Zaragoza. In the Random scenarios, the reductions
were respectively 49.8% and 37.9 % for respectively Madrid and Zaragoza.
One can also observe that the reduction of waiting time was higher in Madrid
(68.4%) than in Zaragoza (52.8%), and the former city was represented with
a bigger map than the latter one.

Figure 12 shows the comparison of trip times in the different scenarios.
The trip time was measured between the departure and arrival of each EV.
It is worth mentioning that Booking strategy sometimes used longer paths if
these reduced the trip time by avoiding unnecessary waiting time in charging
stations. Although Booking strategy obtained high reductions in waiting
times over Distance strategy, the trip time reductions were usually lower
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Distance Strategy Booking Strategy Time reduction (%)
Trip kind City Waiting

time (min)
Trip time
(min)

Waiting
time (min)

Trip time
(min)

Waiting
time

Trip
time

Fixed Madrid 90.6 150.4 11.9 71.9 86.9 52.2
Zaragoza 90.2 141.3 29.1 80.3 67.7 43.2
Average 90.4 145.9 20.5 76.1 77.3 47.7

Random Madrid 27.0 (8.7) 69.2 (8.8) 13.6 (3.4) 57.3 (4.0) 49.8 17.2
Zaragoza 35.8 (14.9) 77.5 (15.0) 22.2 (7.2) 65.0 (7.4) 37.9 16.1
Average 23.8 51.9 13.0 42.1 43.9 16.6

Total 50.5 89.5 16.0 55.7 60.6 32.2

Table 2: Results of the experiments.

as EVs frequently spent more time on the road for avoiding these occupied
charging stations. In fact, the global trip time reduction in this chart (i.e.
32.2%) is lower than the global reduction in the previous chart about waiting
times (i.e. 60.6%). In the case of trip times, the reductions in Fixed scenarios
(i.e. 47.7% in average) were also higher than in Random scenarios (i.e. 16.6%
in average). In the case of trip time, the city represented with a larger map
(i.e. Madrid) also obtained a higher time reduction (34.7% in average) than
the other city represented with a smaller map (29.7% in average).

Table 2 presents the results for all the aforementioned configurations of
input parameters, indicating both the resulting average waiting times and
average trip times. In the case of random trips, it includes the standard
deviations of the 100 simulations between parentheses. This table also in-
dicates the reduction percentages of respectively the waiting and trip times
for each case. These reduction percentages are calculated with the formula
100 ∗ (d − b)/d where d and b are respectively the times for the Distance
and Booking strategies. One can observe that in all the configurations, the
average waiting time was reduced at least 37% and the average trip time was
reduced at least 16%.

Furthermore, we applied the Welch’s t-test (also known as “unequal vari-
ances t-test”) [30] to determine whether the reduction of the waiting time
and the trip time was statistically significant in each configuration with ran-
dom trips. We selected this test as it is appropriate for comparing two
independent samples and it is more robust than Student’s t-test for unequal
variances. In addition, we also used the Brown-Forsythe test for equality of
means, since it is also robust for unequal variances [31]. Table 3 shows the
results of these tests. As one can observe, the improvements of the Booking
strategy from the alternative are very statistically significant (under a .001
significance level) for both the waiting and trip times in the two cities.
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Statistica df1 df2 Sig.
Waiting Time Madrid Welch 207.888 1 128.358 .000

Brown-Forsythe 207.888 1 128.358 .000
Zaragoza Welch 67.286 1 142.761 .000

Brown-Forsythe 67.286 1 142.761 .000
Trip Time Madrid Welch 149.616 1 137.568 .000

Brown-Forsythe 149.616 1 137.568 .000
Zaragoza Welch 55.441 1 144.479 .000

Brown-Forsythe 55.441 1 144.479 .000

Table 3: Results of robust tests about equality of means for comparing the results of
random trips. aAsymptotically F distributed.

Waiting time Trip time
Madrid 2.04 0.71
Zaragoza 1.16 0.64

Table 4: Cohen’s d effect sizes of for the comparison of means between strategies.

The effect sizes were measured with Cohen’s d as normally done for in-
dependent t-tests, and table 4 shows the results. These results can be in-
terpreted with the Cohen’s guidelines [32] that associated 0.2, 0.5 and 0.8
respectively with small, medium and large effects. In addition, [33] added
the category of very large for the values above 1.3. Following these interpre-
tations, the booking strategy reduced the waiting time in charging stations
with large and very large effect sizes respectively for the two case studies. In
addition, the trip time was reduced with medium-large effect sizes in both
case studies.

In order to assess the fluctuations and possible overloads of the execution
times of pathfinding, we measured these times for the two city scenarios and
the two strategies, with simulations of 200 EVs in each case. We used the
random selection of origins and destinations to test more realistic scenarios.
Figure 13 shows the execution times in milliseconds of the pathfinding of
each EV in the Zaragoza scenario. It compares the execution times for both
strategies. The abscissa represents the position of the vehicle in the chrono-
logical order of simulated vehicles. One can observe that most pathfinding
execution times had low values with averages of 6.55 ms and 5.17 ms for
respectively the Booking and Distance strategies. These averages were sub-
stantially lower than the maximum execution times, which were respectively
19 ms and 18 ms. One can observe that the pathfinding executions recur-
rently had some peaks, but the execution times were not excessive. These
time fluctuations may be due to the random selection of origins and destina-
tions. Another reason might be that many charging stations could have the
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Figure 13: Pathfinding execution times in the Zaragoza scenario

queue full and then the algorithm had to search more alternatives.
The most relevant aspect is that the chart does not show any overloading

patterns over the time. In other words, the values followed a neutral trend
(i.e. neither increasing nor decreasing) despite their fluctuations.

The Booking strategy had an increase of the average execution time
(26.5%) and the maximum execution time (5.6%) over the Distance strategy.
However, it is probably worth this increase for the reduction of both wait-
ing and trip times for the drivers, since the execution time increase of this
amount of milliseconds would probably not be noticed by the final users.

Figure 14 shows the pathfinding execution times for the Madrid scenario.
As one can observe, the conclusions of the previous scenario were confirmed
in this one. The average execution times were low (118.7 ms and 99.4 ms for
respectively Booking and Distance strategies) in comparison with the maxi-
mum cases (i.e. 907 ms and 872 ms). It is probably worth the increase of all
these values from Distance to Booking strategies (19.4% and 4% respectively
for averages and maximums) for the reduction of trip and waiting times. The
increase of the execution times from the Zaragoza scenario to the Madrid one
may be due to the differences of paths distances and map sizes. This scenario
neither presented any overloading pattern over the time.
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Figure 14: Pathfinding execution times in the Madrid scenario

Moreover, we also measured the number of messages interchanged in the
pathfinding of the adaptive Booking strategy between cars and charging sta-
tions. The measurement of communications has shown to be especially rel-
evant in both VANETs and MASs communities [34]. Notice that the basic
Distance strategy does not communicate with charging stations so the num-
ber of messages was zero for all cases. We used simulations of 200 EVs as
in the previous experiments. Figures 15 shows the results of the number of
messages for the Zaragoza scenario. One can observe an average of 110.51
messages per pathfinding while the maximum was 208 messages. The fluctu-
ations of the numbers of messages were lower than for execution time. Figure
16 presents the same experiments for the Madrid scenario. The average was
2247.06 messages and the maximum 8960 messages. The results were higher
probably due to the bigger map and the greater number of charging stations.
In both scenarios, one can observe that there was not any overloading patter
over the time, since the numbers of messages followed neutral trends despite
their fluctuations.
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Figure 15: Number of messages in the Zaragoza scenario
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Figure 16: Number of messages in the Madrid scenario
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5. Discussions

The proposed framework has shown its utility in simulating groups of EVs
that need to travel from certain origins to some destinations and stop on their
ways for charging their batteries in fast charging stations. In particular, this
framework has simulated several strategies and has loaded different maps.
For its illustration, a strategy based on booking systems has been compared
with a control mechanism. The control mechanism represents a basic system
for selecting the shortest path going through a charging station. However,
it could also represent the drivers that do not use the proposed system and
they just select the shortest path with a charging station. The results showed
a statistically significant reduction of the average waiting times in charging
stations and the average trip times in general. In addition, the evolutions of
the pathfinding execution times and the number of messages did not show
any overloading pattern over the time.

In the simulation results, the simulations in which the departure and des-
tination locations were shared among the different EVs, the Booking strat-
egy had a stronger repercussion in reducing waiting and trip times (i.e. with
higher reduction percentages). That makes sense since when several EVs
share the same path, there are normally more coincidences in the charging
stations and consequently the waiting queues are usually longer. Therefore,
the presented approach will probably be more useful in cities in which many
citizens have similar paths at the same time. The analysis with the current
framework can assist engineers in designing the appropriate mechanisms of
coordination in certain cities for preventing users from suffering unnecessary
waiting times.

The reduction percentage of waiting times is higher than the reduction
percentage of global trip times. EVs can avoid waiting times by distributing
with different charging stations in a balanced way. However, the trip time
can never be reduced below a certain amount (i.e. the one needed for the
shortest path). In addition, the Booking strategy sometimes decides to take
a larger path in distance in order to reduce the waiting time and the global
trip time. Hence, the trip time reduction is less as it also counts the time
spent in this larger path. Even though, the algorithm of the Booking strategy
prioritizes the reduction of the trip time, so it only takes longer paths if it
reduces the total trip time. In fact, drivers normally prefer the reduction
of the total trip time (including the time spent in the charging station and
the one driving) in comparison to just reduce the waiting time, since in the
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former case drivers arrive sooner at their destinations.
It is worth mentioning that the presented global booking mechanism can

be considered as a global greedy algorithm, since each EV agent chooses a
path and establishes its booking without being able to be altered afterwards.
If the information of all the drivers were known in advance, maybe a different
scheduling mechanism could be theoretically better. However, in real scenar-
ios drivers normally manifest the desire of taking the EVs and charging it at
a given time, when the information of future drivers is normally not avail-
able. Thus, the proposed mechanism can be useful for common situations
of drivers. The departure times can be accurate with the current approach,
since the drivers or their software assistants would report the departure time
when they were actually taking the car. This could be especially easy to
use, if the algorithm was integrated with the navigation system of the car.
The driver would introduce the destination and the need of charging, and
the system would guide them through the path that is probably the shortest
in time.

The current simulator can have more utilities than the ones initially pre-
sented in this article. For instance, the current simulator can be useful to
assess which locations can be appropriate for building charging stations in a
given city. For example, ABSCEV can simulate the repercussions of adding
a new charging station in different locations in a given map with a certain
frequency of cars needing to charge their batteries. The results can be com-
pared to determine which of the considered locations will probably reduce
more the average waiting and trip times.

It is worth mentioning that the current work is mainly dedicated to the
coordination of charging EVs. However, this problem could be more com-
plex when combining it with other factors such as traffic conditions. In this
case, the estimated locations of traffic jams should be considered besides the
information about charging stations.

6. Conclusions and future work

The current work has presented an ABS framework for testing different
pathfinding and coordination strategies for EVs that go from one place to
another with the restriction that they need to charge their batteries in a fast
charging station on their ways. The ABS framework can simulate any map
that is represented with the appropriate text format. The current work has
compared two illustrating strategies, which respectively obtain the shortest
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path in distance and the shortest path in time. The later was founded on
the use of booking systems in charging stations. Both strategies have been
experienced in two different-sized Spanish cities. The results show that the
strategy based on the booking of stations actually reduced both the waiting
times in stations and the trip times with statistically significant differences.
The pathfinding execution times and the number of interchanged messages
did not have any overloading over the time. Therefore, the current ABS
framework has proven to be useful for testing different pathfinding and co-
ordination strategies for EVs in several city scenarios.

The current ABS is planned to be extended for including more realistic
features. First, EVs will be able to have different charging times, regarding
what is their exact levels of battery. In some cases, the EVs may have the
restriction of a maximum distance that they can drive before they run out
of battery energy. Furthermore, the simulator will consider the possibility
that each charging station can have several plug-ins to charge simultaneously
several EVs up to a certain number. This will be useful to perform larger
simulations with more EV agents. In addition, we will consider the influ-
ence of temperature on the performance of EV batteries in a future version
of the simulator. We will analyze whether all these changes influence the
results somehow. In addition, the simulator will be experienced with more
cities to determine whether the conclusions of the current work are gener-
alizable. Moreover, we will encourage other researchers to use the provided
ABS framework for testing different strategies for charging EVs, so they can
give us feedback to improve the ABS framework. Furthermore, this simulator
may be integrated with a traffic simulator, in order to provide appropriate
solutions for considering both the traffic conditions and the need of charging
batteries. In addition, we may incorporate the possibility of having different
charging prices in the simulator, so that the simulations can also be influ-
enced by economic factors.
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M.-P. Gleizes, J. Gómez-Sanz, A tool for generating model transfor-
mations by-example in multi-agent systems, in: 7th International Con-
ference on Practical Applications of Agents and Multi-Agent Systems
(PAAMS 2009), Springer, 2009, pp. 70–79.

[14] O. Tayan, Y. M. Alginahi, M. N. Kabir, A. M. Al BinAli, Analysis of
a transportation system with correlated network intersections: A case
study for a central urban city with high seasonal fluctuation trends,
IEEE Access 5 (2017) 7619–7635.

[15] D. Cerotti, S. Distefano, G. Merlino, A. Puliafito, A crowd-cooperative
approach for intelligent transportation systems, IEEE Transactions on
Intelligent Transportation Systems 18 (6) (2016) 1529 – 1539.

37



[16] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, D. Rus, On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment,
Proceedings of the National Academy of Sciences 114 (3) (2017) 462–
467.

[17] E. L. Karfopoulos, N. D. Hatziargyriou, A multi-agent system for con-
trolled charging of a large population of electric vehicles, Power Systems,
IEEE Transactions on 28 (2) (2013) 1196–1204.

[18] J. Xiong, K. Zhang, Y. Guo, W. Su, Investigate the impacts of pev
charging facilities on integrated electric distribution system and electri-
fied transportation system, IEEE Transactions on Transportation Elec-
trification 1 (2) (2015) 178–187.
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