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Abstract

Bandwidth verification in shaping scenarios receives much attention of both
operators and clients because of its impact on Quality of Service (QoS). As
a result, measuring shapers’ parameters, namely the Committed Informa-
tion Rate (CIR), Peak Information Rate (PIR) and Maximum Burst Size
(MBS), is a relevant issue when it comes to assess QoS. In this paper, we
present a novel algorithm, TBCheck, which serves to accurately measure such
parameters with minimal intrusiveness. These measurements are the corner-
stone for the validation of Service Level Agreements (SLA) with multiple
shaping elements along an end-to-end path. As a further outcome of this
measurement method, we define a formal taxonomy of multi-hop shaping
scenarios. A thorough performance evaluation covering the latter taxonomy
shows the advantages of TBCheck compared to other tools in the state of the
art, yielding more accurate results even in the presence of cross-traffic. Addi-
tionally, our findings show that MBS estimation is unfeasible when the link
load is high, regardless the measurement technique, because the token-bucket
will always be empty. Consequently, we propose an estimation policy which
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maximizes the accuracy by measuring CIR and PIR during busy hours and
MBS during off-peak hours.

Keywords: Service-level agreements; Quality-of-service management;
Network and systems monitoring and measurements; Token-Bucket

1. Introduction

Nowadays, core and access networks provide higher bandwidth, together
with smaller delays and jitters. As a result, many real-time services (such
as Voice over Internet Protocol (VoIP), video on demand, teleconferencing,
HD/3D television, remote desktop —e.g., Citrix—, etc.), which have strong5

requirements in terms of Quality of Service (QoS), are widespread to a huge
variety of end users, both residential and corporate. From the network mon-
itoring standpoint, the massive usage of these interactive services is posing
significant challenges. In the past, measuring the average utilization of links
was deemed sufficient, while current trends require further consideration of10

QoS parameters.
Additionally, large corporations such as banks are increasingly trusting

Multi-Protocol Label Switching (MPLS) or Virtual Private LAN Service
(VPLS) networks, instead of dedicated links, to provide connectivity be-
tween branch offices and data centers. Such networks typically provide a15

virtual circuit or tunnel whereby traffic from each branch office is shaped
in the access network, most likely by means of a token-bucket shaper. In
fact, such traffic is often hierarchically aggregated in backbone links also by
means of a token-bucket mechanism. Moreover, the advent of virtualized
infrastructures requires the application of different policies among tenants20

which share a common physical network architecture. Remarkably, traffic
shaping algorithms have been explored as an alternative for such resource
sharing, with the consequent introduction of token-buckets in these emer-
gent deployments [1].

In this context, the verification of Service Level Agreements (SLA) is an25

issue of paramount importance for both operators and clients. Hence, and
given their influence on the services’ performance, the parameters of shap-
ing mechanisms in operational networks must be correctly measured. For
example, larger Peak Information Rates (PIR) and Maximum Burst Sizes
(MBS) allow users to transfer larger traffic bursts at higher speeds, which30

greatly influences the perceived QoS in video broadcasting [2]. Furthermore,
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there are several QoS classes offered in the network (gold, silver, real-time,
etc.) each one with its own shaper parameters. Hence, the estimation of
the shaper parameters is relevant in order to choose which service to trans-
port over which QoS class. To complicate matters, the lack of standardized35

methodologies to measure network performance produces a dispersion on the
achieved results depending on the specific configuration of the tests —e.g.,
transport protocol, packet size, amount of transferred data, among others.
Actually, recent works such as [3] have addressed the problems related to
TCP-based measurements, which in fact is broadly relied by end users to40

test the performance of their connections.
Those facts expose the broad adoption of token-bucket in multi-hop en-

vironments, how their configuration exerts a direct effect in the QoS for a
diversity of end-users, and the necessity of well-defined methodologies to ob-
tain accurate results. Paradoxically, the problem of detecting chained token-45

bucket-based shapers and estimating their parameters has not received at-
tention from the research community —even in recent works related to this
matter, only the narrow link is well-characterized [4].

To fill this gap, in this paper we present TBCheck, a novel algorithm to
estimate the parameters of token-bucket-based shapers (namely, CIR, PIR50

and MBS). As a distinguishing feature, TBCheck is able to detect the effect
of chained token-buckets in multi-hop environments. At the same time, it also
surpasses other state-of-the-art tools by keeping a minimal intrusiveness on
the network, which makes it suitable for measurements during both busy and
off-peak hours. We present an extensive empirical performance evaluation55

that assesses the suitability of the methodology to characterize the behavior
of a broad variety of scenarios.

The rest of this paper is organized as follows: Section 2 presents the fun-
damentals of token-bucket algorithms and related measurement techniques,
followed by the state of the art in Section 3. Then, we proceed with both60

single-hop and multi-hop token-bucket parameter estimation in Section 4.
Next, Section 5 presents a performance evaluation of the proposed technique.
Finally, Section 6 highlights the main conclusions of this work.

2. Problem description

Prior to the state of the art, we provide a brief description of the token-65

bucket algorithm, and the problem that motivates the development of TBCheck.
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(a) Single queue

(b) Differentiated services

Figure 1: Token-bucket Algorithm Architecture: 1a depicts a single queue architecture,
while 1b represents a multi-queue deployment, each queue with its own corresponding
bucket.

Token-bucket is a network admission control algorithm which is aimed
at limiting the services’ (or users’) transmission rates. Figure 1a shows the
typical setup of a token-bucket-based shaper where packets are queued until
enough tokens are available in the bucket. As it turns out, tokens are gen-70

erated at a constant rate which is typically called Committed Information
Rate (CIR). Each token represents a predefined amount of traffic and they
are accumulated in a token-bucket with a given maximum capacity, which
is typically expressed in bits. If enough tokens are available, the incoming
packet is transmitted at the maximum rate (called PIR) that may be equal75
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to or lower than the link speed. The maximum amount of bits that can
be transmitted at PIR (namely, the token-bucket capacity) is called MBS.
Once a packet is transmitted, the corresponding tokens are removed from
the bucket. If there are no available tokens, the packet is queued and the
token-bucket transmission rate becomes limited by the CIR.80

Additionally, token-bucket algorithm can be used to shape differentiated
services according to diverse policies. For instance, a higher speed may be
imposed for real time applications (teleconferencing, video on demand, etc)
than for file transfers. To this end, several queues and token-buckets are
incorporated for each specific service, as illustrated in Figure 1b.85

To sum up, a token-bucket limits the rate to the token generation rate
(CIR), unless the bucket has available tokens. In such a case, if the bucket
is full, up to MBS bits will be transmitted at the maximum speed (PIR),
thereby shortening the inter-arrival times of packets that find the bucket
full upon arrival. To illustrate these issues, we have conducted a simple90

experiment where a token-bucket is deployed between two physical machines
directly connected using a 100 Mbps Ethernet link. The rate limitation is
performed by means of Linux tc tbf utility. To generate traffic, a packet-
train is sent using Linux pktgen[5] kernel module and, on the receiver side,
packets are captured using tcpdump. We have added background concurrent95

traffic to provide a more realistic scenario. Such background traffic has been
generated using hping3 1 tool.

Figure 2a shows the inter-arrival times of a 100-packet long train (1 KB
sized packets) originally sent back-to-back, with a token-bucket configuration
of CIR = 6 Mbps, PIR = 100 Mbps , MBS = 40 KB and concurrent traffic100

generated at 5 Mbps rate. Two regions can be clearly observed: packets
from 1 to 35 are sent at PIR while packets from 36 to 100 are sent at
CIR. TBCheck exploits such behavior to estimate the PIR using the packets
present in the first region and the CIR using the remaining packets. This
is accomplished by detecting change-points in the slope of the accumulated105

inter-arrival times, as shown in Figure 2b.
Following with the effect on packet inter-arrival times, we now address

how chained token-buckets affect traffic that exceeds the shaping configura-
tion. To this end, we have performed a simple experiment using the same
setup previously commented with the difference that now we use three differ-110

1http://www.hping.org/hping3.html
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(a) Packet inter-arrival times.
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(b) Cumulative packet inter-arrival times.

Figure 2: Packet inter-arrival time distribution of a packet-train through token-bucket
(N = 100 packets, B = 1 KB, r̂ = 38, CIR = 6 Mbps, PIR = 100 Mbps and MBS = 40
KB) in the presence of cross-traffic (5 Mbps).
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(b) Cumulative packet inter-arrival times.

Figure 3: Packet inter-arrival time distribution of a packet-train through multiple token-
bucket —N = 2000 packets, CIR1 = 20 Mbps, CIR2 = 10 Mbps, CIR3 = 6 Mbps,
MBS1 = 10 KB, MBS2 = 100 KB, MBS3 = 1000 KB and PIR = 100 Mbps.
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ent physical machines each one with its own tc tbf configuration. Figure 3a
and Figure 3b show the inter-arrival time and the cumulative inter-arrival for
a train of 2000 packets originally sent back-to-back in a multi-hop scenario
where CIR1 = 20 Mbps, CIR2 = 10 Mbps and CIR3 = 6 Mbps. Besides,
MBS values are 10 KB, 100 KB and 1000 KB respectively. As it can be115

observed, three different change-points can be identified. The first one (close
to the 10th packet) represents the change-point from the packets transmitted
at PIR (100 Mbps) to the packets transmitted at CIR1 (20 Mbps). The
second one (around the 150-th packet) represents the change point from the
packets transmitted at CIR1 (20 Mbps) to the packets transmitted at CIR2120

(10 Mbps). Finally, the last change-point (close to the 1600th packet) rep-
resents the change of the packets transmitted at CIR2 (10 Mbps) to the
packets transmitted at CIR3 (6 Mbps).

This behavior, which exhibits slope changes in the accumulated inter-
arrival times series, is exploited in TBCheck to detect several token-bucket125

shapers deployed along a multi-hop path. Consequently, TBCheck is able to
detect shapers that constrain the traffic —that is, only if they are an actual
bottleneck for the incoming traffic. We provide further details about these
aspects in Section 4.3.

3. Related work130

3.1. Packet-pair and packet-train techniques
In this section we briefly review packet-pair and packet-train techniques,

since they constitute the basis for bandwidth estimation algorithms. Several
tools such as CapProbe, Iperf (UDP) and also our TBCheck are based on the
packet-pair or packet-train techniques. Packet-pair [6, 7] is a commonly used135

technique for estimating bottleneck link bandwidth. This method is based
on the analysis of the inter-arrival time between two packets sent back-to-
back. According to the bottleneck bandwidth and network conditions the two
packets will be spaced with a given inter-arrival time. Then, the bottleneck
bandwidth is estimated as the ratio between packet size and inter-arrival140

time. The main advantage of this method is that only a small number of
packets is required, thus it presents minimal intrusion. However, this tech-
nique is very sensitive to cross traffic. Such interfering traffic influences the
inter-arrival measured by the packet-pair methods in two different ways [8]:
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• Expansion of inter-arrival time: when one or more interfering packets145

slip in between the two probe packets, the measured inter-arrival time
increases and the estimated bandwidth decreases.

• Compression of inter-arrival time: when two probe packets with a par-
ticular inter-arrival time are queued together and interfering traffic fills
the router queue, the two probe packets are dequeued as fast as the150

router link allows. Thus, the probe packets present a smaller inter-
arrival time, which hides the bottleneck link effect on the bandwidth.

Obviously, estimating shaper parameters using a single pair is not feasible
as, at least, two different rates have to be measured. In this line, packet
trains have been proposed as an alternative to mitigate this limitation and155

the previously described negative effects. In this case, a packet-train is sent
and the link bandwidth is estimated at the receiver using the minimum inter-
arrival gap, the more packets the more chances for the inter-arrival times not
to be affected by interfering traffic [8]. However, packet-train techniques have
drawbacks in terms of intrusiveness and packet loss at high link utilization.160

For token-bucket parameter estimation, packet-train techniques lack ac-
curacy due to the two different shaping levels —CIR and PIR. If we choose
the minimum inter-arrival between two packets of a train we are prone to
measure the PIR but not the CIR. Conversely, if we try to remove the PIR
influence, possibly by using the average packet inter-arrival times then we165

get closer to the CIR estimation, which is possibly biased because several
packets in the train may be transmitted at the PIR instead of at the CIR.
Let us consider a link with PIR and CIR equal to 100 Mbps and 6 Mbps
respectively. Then, the inter-arrival times between typical Ethernet MTU-
sized packets at the CIR are approximately equal to 2 ms whereas the PIR170

inter-arrival times between the same packets are approximately equal to 121
µs, namely a very significant difference. Furthermore, to complicate mat-
ters, we note that the value of MBS/PIR, i. e. the maximum transmission
time at the PIR, typically ranges from 1 ms to 2000 ms. In this range, the
packet-train receiver is usually affected by Interrupt Coalescence [9] which175

further pollutes the inter-arrival times estimation. More specifically, the net-
work interface card issues an interrupt per group of packets, which have the
same timestamp. Then, the packet inter-arrival time within the burst is neg-
ligible. Clearly, such packets cannot be used for PIR nor CIR estimation
whatsoever.180
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3.2. Related measurement tools
Several studies have focused either on the impact of token-bucket param-

eters over different types of traffic [2, 10] or on the efficient implementation
of token-bucket-based shaping schemes [11, 12, 13]. Additionally, authors
in [14] analyzed the impact of shaping the traffic in terms of delay and peak185

rates using different flavors of token-bucket-based algorithms. As the authors
point out, ad hoc shaping policies are usually implemented by ISPs and the
application of multiple shapers may produce large performance losses for
network flows. Therefore, measuring the token-bucket parameters is very
relevant, because of their impact on the QoS.190

However, measuring the parameters of shapers on real networks has not
received much attention by the research community. Actually, the most
recent techniques in the literature, such as Iperf2, Speedtest 3 and CapProbe4,
deal with bandwidth estimation and not token-bucket characterization.

As for token-bucket specific measurement techniques, authors in [15]195

present an analytical method to estimate the Committed Information Rate
(CIR) and MBS of a token-bucket. The main drawback is that the pro-
posed technique requires prior knowledge of the input traffic (in terms of the
related stochastic model that describes the traffic). This is not feasible in a
real scenario because the traffic distribution is unknown and it is very depen-200

dent on the users and network. Furthermore, the traffic mix in the current
Internet is very diverse and difficult to model stochastically. In this light,
in [16], authors conducted a performance analysis of a token-bucket shaper
for MPEG4 video and a real audio signal. Both approaches lack generality
as they consider very specific conditions, which are known beforehand.205

Reference [17] presents BonaFide, a tool for detecting shaping in mobile
environments. Such tool is able to generate traffic from six different profiles
in order to detect whether a shaper is present or not. However, the tool is not
designed to characterize the shaping parameters and it is only suitable for
mobile environments. Similarly, in [18], the authors present a tool to detect210

traffic shaping differentiation based on a set of protocols. Such approach only
detects if a shaper is present or not and lacks generality as it only considers
a given group of protocols.

2http://sourceforge.net/projects/iperf/
3http://www.speedtest.net
4http://www.cs.ucla.edu/NRL/CapProbe/
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On the other hand, ShaperProbe [19] is a tool which aims to detect
whether operators perform traffic shaping on residential access links or not.215

A synthetic traffic stream is sent to the link and changes in the received
rate are analyzed to detect the different token-bucket states (high -PIR- or
low -CIR-). Despite the good results achieved by the tool, we note that a
huge amount of traffic (close to 480 MB) must be generated to estimate the
token-bucket parameters. As it turns out, MPLS networks have statistical220

multiplexing gain and their performance depends on the overall network uti-
lization [20]. Therefore, the measurement technique should not overload the
network during peak hours, in order not to degrade the service.

4. Estimation algorithm

Once we have stressed the problems which motivate the development of225

new methods for token-bucket parameters estimation, we first describe our
algorithm for single-hop scenarios and, then, we proceed with the multi-hop
counterpart.

4.1. Algorithm description
To start with, we note that in absence of cross traffic and by design of the230

token-bucket algorithm, if a train of N constant-sized packets is sent back-to-
back through a token-bucket shaped link, the first r̂ packets are forwarded at
the PIR as enough tokens are available. After that, the remaining packets
(N − r̂) are forwarded at the CIR, as this is the generation rate for new
tokens and when the bucket is empty packets may not be sent. Based on this235

observation, we distinguish two cases, namely r̂ < N and r̂ = N . Basically,
the estimation of the CIR and PIR is based on the change point detection
(r̂) between packets at PIR and CIR —if r̂ < N — and, then, on the
measurement of the bandwidth values before and after such change-point.

The change-point (r̂) detection method is presented in Algorithm 1. It240

estimates the change-point r̂ by comparing the slope of the cumulative inter-
arrival times at sample i with the slope of the cumulative inter-arrival times
calculated in limited data windows. If a significant difference between such
two slopes is observed, a rate shift has occurred due to the modification
of inter-arrival times. Figure 4 shows the comparison process between the245

windowed and the cumulative slope values for a window value of 3. Each
time a packet arrives, we add its inter-arrival to the cumulative inter-arrival
packet list and we calculate the slope for all i packets. Similarly for the

10



Algorithm 1 Change-point detection
Input: k, w, inter-arrivals
total_samples = length(inter-arrivals)
i=w
window_slope=0
cumulative_slope=0
while (cumulative_slope ≤ window_slope × k) AND (i < total_samples) do

Calculate slope of cumulative inter-arrivals samples in current window (win-
dow_slope)
Calculate slope of all cumulative inter-arrivals samples (cumulative_slope)
i=i+1

end while
if i+w== total_samples then

{No change is detected}
return w+1

else
{Change detected}
return i+w

end if

windowed value we calculate the slope but only taking into account the last
three packets. As new packets arrive, the window slides.250

In the algorithm the w (window size) parameter represents the number
of samples used to calculate the windowed inter-arrival time curve slope, the
higher the value the more accurate the slope estimation. As it turns out,
larger window size values produce deviations of the change-point estimated
value, r̂, from the real change-point value. To detect the difference between255

slopes in the change-point a threshold must be used. In this light, the pa-
rameter k represents the hysteresis factor. Such factor is used to determine
whether there is a significant difference between the slope of the cumulative
inter-arrival time curve and the windowed counterpart. As the difference
between the CIR and PIR value decreases, the hysteresis factor must be260

reduced in order to detect the change-point correctly. Based on our initial
experimental analysis, the hysteresis values (k) for PIR = 1000 Mbps and
CIR ranging between 6 and 800 Mbps must be located between 3 and 1.1
—in the following sections, we formally describe a methodology to refine this
coarse bounding. Finally, we use the cumulative inter-arrival time slope and265

estimate the change in the slope using the least square error method, given
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by the general expression in Equation 1 —yi are the cumulative inter-arrival
times and xi the packet numbers.
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
yi = f(xi) = slope · xi + β0,where slope, β0 ∈ R

ŝlope =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
(1)

Furthermore, if r̂ < N , we can estimate the CIR and PIR at the receiver
as follows:270

ĈIR =
B

median
i=r̂,...,N−1

(ti+1 − ti)
(2)

P̂ IR =
B

median
i=1,...,r̂−1

(ti+1 − ti)
(3)

with ti denoting the arrival time of the i− th packet, i = 1 . . . N .

12



Then, the MBS value can be estimated as follows:

M̂BS = r̂ ×B

(
1− ĈIR

P̂ IR

)
(4)

where B is the packet length expressed in bits.
On the other hand, if r̂ = N , the link is not filled by the train (i.e.275

MBS > N ·B), hence every packet is sent at PIR. In this case, the packet-
train length must be increased in order to detect the two working regions.
Importantly, if no change point is detected after the increment, then we can
assume that there is no shaping.

Once the change-point is detected, the CIR and PIR values must be280

calculated as shown in Equations 2 and 3. Packets usually present some dis-
persion because real shaper implementations are not totally deterministic.
To circumvent this issue the median value is calculated over the inter-arrival
times of both PIR and CIR regions as representative elements of each re-
gion. By doing so, the effect of outliers is minimized and consequently the285

bandwidth calculation is robust.
Note that sampled inter-arrival times may oscillate around the real value

due to the effect of cross traffic and interrupt coalescence [9] in the receiver
side. In order to avoid the influence of such effects, the inter-arrival times
used for CIR and PIR calculation are pre-processed using a smoothing al-290

gorithm (similar as the one in [21]) based on exponential weights. Even
though this technique minimizes the effects of the outliers, the measurement
may still be affected by values that significantly diverge from the average
value. Consequently, extreme outliers must be removed before the smooth-
ing is applied, using the difference between an inter-arrival time sample and295

the previous one as a filtering parameter. To filter out extreme outliers, the
typical threshold of three times the inter-quantile range is adopted.

Now, let us focus on multi-hop scenarios where two or more token-bucket-
based shapers are present along an end-to-end path. In this case, depending
on the configuration parameters and order of application of the shapers,300

several measurement scenarios are possible.
To detect and estimate the parameters of each token-bucket along an end-

to-end path, a similar approach to the one presented in Section 4.1 may be
used. In this case, Algorithm 1 is slightly modified to detect all change-points
(not only the first one) in a packet sequence. Once all the change-points are305

detected, the CIR and MBS values are calculated over each packet group
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delimited by the intervals defined by a pair of consecutive change-points (r̂n
and r̂n−1). The CIR, PIR andMBS values associated to the the nth change
point are now calculated following Equations 5 to 7.

ĈIRn =
B

median
i=r̂n,..., ˆrn+1

(ti+1 − ti)
(5)

310

P̂ IRn =
B

median
i= ˆrn−1,...,r̂n

(ti+1 − ti)
(6)

M̂BSn = r̂n ×B

(
1− ĈIRn

ĈIRn−1

)
(7)

Specifically, in one-hop scenarios only two rates appear (namely, P̂ IR
and ĈIR), which define two differentiated behavioral regions separated by a
unique change point r̂. However, multi-hop scenarios exhibit more than one
change points (r̂n) (i.e., more than two regions), which requires adapting the
definitions of ĈIR and P̂ IR as presented in Equations 5 and 6. Furthermore,315

we need the value of ĈIRn−1 (as this rate takes the place of the P̂ IR in the
previous scenario) and ĈIRn to adapt the definition of M̂BSn, as presented
in Equation 7.

4.2. Selection of the algorithm parameters
As stated above, TBCheck depends on the values of a set of parame-

ters (namely, the hysteresis factor k and window size w) to properly detect
shaper behavior. To select the optimal values of k and w we performed a
parameter optimization following a grid search strategy. Equation 8 presents
the definition of the aggregated error metric to guide this grid search in
terms of the disparity among actual and estimated values for the 3-tuple
(CIR, PIR,MBS):

ε(k, w) = β1δĈIR(k,w)
+ β2δP̂ IR(k,w)

+ β3δM̂BS(k,w)
, β1 + β2 + β3 = 1 (8)

where δ
ĈIR(k,w)

, δ
P̂ IR(k,w)

and δ
M̂BS(k,w)

represent the expected relative error320

of each parameter for each (k, w), and β1, β2, and β3 are the weight that
adjust the importance of each parameter.
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First of all, note that we can link each (k, w) to the expected value in
the space (ĈIR, P̂ IR, M̂BS). Therefore, the optimization formulation aims
to find the nearest (k, w) to the one that corresponds to the actual values of325

(CIR, PIR,MBS) —i.e., minimizing a distance. Additionally, we include
the following restrictions:

1. No dependency with respect to the units of the parameters:
required given the usual disparity among the three parameters, and to
prevent aberrations as a result of rescaling.330

2. Invariant for translations: that is, it does not depend on the actual
values of the shapers’ parameters, but only on the unsigned differences
between them and the estimations.

3. Given that several values of (k, w) may lead to equivalently acceptable
results, we impose that two elements of the parametric space, (k1, w1)335

and (k2, w2) produce equivalent results if the improvement in any of
the dimensions (CIR, PIR orMBS) equals the loss of accuracy in the
rest.

4. Flexible adaptation of the relevance of individual error met-
rics: depending on the use case, not all the dimensions may have the340

same importance.

The first property can be obtained if estimated values are divided by
the actual values. Second and third properties link the error metric to the
L1 distance in R3. Finally, the last property requires the introduction of
a rescaling value for each component —which can be constrained to the
convex hull of the components without loss of generality. Therefore, putting
all together we get the derivation for ε(k, w) presented in Equation 9.

||( β1
CIR

CIR, β2
PIR

PIR, β3
MBS

MBS)−
( β1
CIR

ĈIR(k, w), β2
PIR

P̂ IR(k, w), β3
MBS

M̂BS(k, w))||1 =

β1
CIR
|CIR− ĈIR(k, w)|+ β2

PIR
|PIR− P̂ IR(k, w)|

+ β3
MBS
|MBS − M̂BS(k, w)| =

β1δĈIR(k,w)
+ β2δP̂ IR(k,w)

+ β3δM̂BS(k,w)
= ε(k, w)

(9)

We remark that in this case the grid search explores the parameter space
k × w. In practice, such space can be bounded by the product [1.1, . . . , 3]×
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[2, . . . , (N − 1)], where N is the train length. Specifically, the values of w
cannot be out of the compact [2, . . . , (N−1)], and the bounds for k suffice to345

detect all the measurable changes in the slopes. Consequently, the accuracy
can be explicitly evaluated for all the points in the parameter space, selecting
the optimal combination for each scenario.

As a final consideration, we note that the adjustment of the optimal sen-
sitivity for the change-point detection, i.e., which threshold is considered350

to indicate a change in the slope (k) and how many samples are consid-
ered to compute the slope (w), is harmed if cross-traffic is introduced during
the optimization stage. Specifically, the adjustment of these parameters can
be distorted as a result of the binary phenomenon of estimation / no es-
timation of MBS, without improving the overall algorithm accuracy —we355

comprehensively analyze this matter in the following sections. Therefore,
the optimization of the parameters k and w to minimize ε(k, w) should be
accomplished in absence of cross-traffic.

4.3. Discussion
In the following, we discuss some aspects that must be considered dur-360

ing the application of TBCheck in practice. First, we formally define the
conditions in which it provides a complete estimation of the parameters of
token-bucket shapers along multi-hop paths. Second, we show how precision
loss when timestamping packets can affect the achievable performance of the
algorithm.365

With this, we state key issues for the deployment of TBCheck implemen-
tations; and motivate the methodological principles that guide the evaluation
and comparison with other state-of-the-art tools in the following section.

4.3.1. Conditions for the detection of token-buckets
As explained before, TBCheck estimates the parameters of token-bucket370

shapers by analyzing their effect in CBR traffic —specifically, by consid-
ering the behavior of cumulative packet inter-arrival times. This leads to
the following conditions for the parameters that can be detected with our
algorithm:

• C1. TBCheck can detect a token-bucket shaper ⇐⇒ it modifies the375

behavior of cumulative packet inter-arrival times.
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• C2. Let P = {PIRi}i=1,...,N be the space of PIR values correspond-
ing to N chained token-bucket shapers. Then, TBCheck can estimate
PIRi ⇐⇒ PIRi = min(P).

• C3. Let C = {CIRi}i=1,...,N be the space of CIR values correspond-380

ing to N chained token-bucket shapers. Then, TBCheck can estimate
CIRi ⇐⇒ MBSj > MBSi ∀j such that CIRj < CIRi.

• C4. Let M = {MBSi}i=1,...,N be the space of MBS values corre-
sponding to N chained token-bucket shapers ordered by their corre-
sponding change-point. Then, TBCheck can estimate MBSi ⇐⇒385

{CIRi, CIRi−1} can be estimated.

C1 is a consequence of the TBCheck operation. The detection of a token-
bucket shaper depends on the alterations of inter-arrival times corresponding
to CBR traffic. This causes that every token-bucket with actual shaping
effects is detectable with our algorithm.390

C2 follows from the maximum rate of traffic traversing the multi-hop
scenario. If there exists a limiting PIR (min(P)), it is necessarily an upper-
bound for the maximum measurable rate for network traffic traversing that
path. This upper-bound implies that other PIRs cannot be estimated (i.e.,
higher traffic rates cannot be reached) if they are not equal to such limiting395

PIR.
C3 and C4 adapt C1 to the detection of each configured CIR and MBS.

Specifically, CIRi can be detected if and only if it generates a change-point
in the cumulative inter-arrival times slope —i.e.,there are no more restrictive
token-bucket shapers limiting the rate of the traffic. That is equivalent to400

the specified joint relation in C3. A similar reasoning with the definition of
the estimations that TBCheck provides leads to C4.

4.3.2. Implementation constraints
Once the algorithm detection conditions have been explained, let us now

focus on the inherent specific problems of the implementation of the method.405

As our method relies on packet inter-arrival times, we need to obtain accu-
rate measurements of such a magnitude. Obtaining accurate timestamps for
incoming packets is a challenging task especially when capturing packets in
high speed scenarios. Typically, network measurement tools are implemented
in software and are executed in general purpose operating systems such as410
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GNU/Linux. Performing the packet timestamping in software is not a deter-
ministic task and variance may exist[22]. Such variance may affect negatively
to the estimation algorithm. To illustrate such issue, we have transmitted
back-to-back a packet train of 10,000 UDP packets of size 1450 Bytes be-
tween two Linux hosts directly connected with a 1 Gbps Ethernet link. The415

train has been sent using Linux pktgen[5] module and has been received
using tcpdump. Figure 5b inter-arrival times of the packet train while Fig-
ure 5a shows the Empirical Cumulative Distribution Function (ECDF) for the
inter-arrival of the 10,000 packets. The theoretical inter-arrival value for this
scenario is 11.6 µs (1450 Bytes *8/1000 Mbps). Analyzing the inter-arrival420

times distribution we can observe that approximately 45% of the samples
are located near the theoretical value while the rest are deviated. Such a
deviation ranges between 1 and 25 µs. Note that even in the best-case devi-
ation (1 µs) the capacity estimation is 1094 Mbps (1450 Bytes *8/ 10.6 µs)
which represents a relative error of 9.4%. Similarly, when the inter-arrival425

deviation is 25 µs the capacity estimation is 436 Mbps (1450 Bytes * 8 / 26.6
µs) which represents a 56% of relative error. To reduce the estimation error,
the timestamping can be performed by means of deterministic approaches
such as Field Programmable Gate Array (FPGA) devices.

Moreover, when dealing with software token-bucket implementations such430

as the one present in tc tool, the shaping rate is not perfect (especially at
high speeds)[23] and variance may exist due to the scheduling mechanisms
of the operating systems and the time quanta used for such scheduling. Such
behavior is also commented in the man page of the tc tbf command.5

5. Performance evaluation435

5.1. Methodology and experimental conditions
In this section, we describe the experimental methodology that we follow

to assess the performance of TBCheck. Our experimental design aims at a
general evaluation of our method (i) in a variety of scenarios in terms of
the situations described in Section 4.3, and (ii) with a minimal effect of the440

specific implementation of the algorithm. To this end, we evaluate the per-
formance of the proposed solution in a testbed created using the Mininet [24]
tool. Mininet allows the creation of custom SDN-enabled virtual networks

5https://linux.die.net/man/8/tc-tbf
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Figure 5: Packet inter-arrival time distribution of a packet-train sent back-to-back trough
a 1 Gbps link (N = 10, 000 packets, B = 1450Bytes).

within a physical host. In our case, two different test scenarios have been
created. The first, in what follows single-hop scenario, consists of two hosts445

(sender and receiver) connected through a switch that performs shaping. The
second scenario, in what follows multi-hop scenario, also consists of two hosts,
sender and receiver, connected through four switches in a linear topology as
depicted in Figure 6.

To apply traffic shaping, the Linux shaper tc 6 with tbf (Token-bucket450

Filter) option has been used, which allows imposing different CIR, PIR and
MBS values to the traffic. It is worth remarking that tc and similar tools
are being used nowadays to perform traffic-shaping at the edges making use
of software approaches[23].Furthermore, to generate cross-traffic, additional
hosts have been attached to each switch of the topology that send packets455

by means of the hping3 7 tool.
We have implemented TBCheck in C language to test its performance.

Our software codes the algorithms described in Section 4 to estimate the
shaper parameters. Our implementation follows a client/server architecture,

6http://linux.die.net/man/8/tc
7http://www.hping.org/hping3.html
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Figure 6: Topology used for the multi-hop tests.

where the server must be placed after the shaping systems whereas the client460

must be placed before the shaping systems.

5.2. Selection and definition of testing scenarios
With the two guiding principles stated above, we are going to analyze

three-hop scenarios, as this is the minimal number of hops to represent all
the combinations that may affect the accuracy of TBCheck —that is, situa-465

tions in which all, some or only the most limiting token-bucket element can
be detected. Besides, this deployment is suitable for the validation of the
expected behavior of TBCheck in common operational scenarios, as previous
work [25] suggests that the average number of hops in a MPLS tunnel ranges
between two and five.470

Table 1 summarizes the considered measurement scenarios depending on
the parameters of the applied shapers along a three hop end-to-end path.
Note that CIRi and MBSi represent the CIR and MBS at hop i. Impor-
tantly, we will assume that the PIR remains constant as it is a consequence
of the conditions stated in the previous section. It is worth noting that in475

the typical multi-hop shaping scenario, the conformed speeds grow larger in
the path from source to destination as ISPs usually aggregate traffic from
different customers incrementally from their accesses to their core networks.
Such scenarios correspond to classes 5 to 8 in Table 1.

First, we note that as the CIR imposed by the shaper decreases along480

the path from source to destination, the detection of the three shapers is
only possible if the corresponding MBSs are incremental. If MBS are not
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Table 1: Measurement scenario characteristics in the presence of shapers and multiple
hops—3 hops.

Class CIR MBS Measurable parameters

1 CIR1 > CIR2 > CIR3 MBS1 < MBS2 < MBS3

CIR1 X
CIR2 X
CIR3 X

2 CIR1 > CIR2 > CIR3 MBS1 > MBS2 > MBS3

CIR1 ×
CIR2 ×
CIR3 X

3 CIR1 > CIR2 > CIR3
MBS1 < MBS2 > MBS3

MBS1 > MBS3

CIR1 ×
CIR2 ×
CIR3 X

4 CIR1 > CIR2 > CIR3 MBS1 > MBS2 < MBS3

CIR1 ×
CIR2 X
CIR3 X

5 CIR1 < CIR2 < CIR3 MBS1 < MBS2 < MBS3

CIR1 X
CIR2 ×
CIR3 ×

6 CIR1 < CIR2 < CIR3 MBS1 > MBS2 > MBS3

CIR1 X
CIR2 X
CIR3 X

7 CIR1 < CIR2 < CIR3
MBS1 < MBS2 > MBS3

MBS1 > MBS3

CIR1 X
CIR2 ×
CIR3 ×

8 CIR1 < CIR2 < CIR3 MBS1 > MBS2 < MBS3

CIR1 X
CIR2 X
CIR3 ×

incremental then traffic is forwarded along hops without being conformed
at each hop (as there are enough tokens) and only the most restrictive one
shapes the traffic. On the other hand, when the CIR increases along the485

path the shapers can be detected if and only if the MBSs are decreasing.
In this case, if the MBS are not incremental the traffic stream rate will be
limited to the CIR of an intermediate hop avoiding the exhaustion of tokens
in the next shaper. For example if CIR1 = 6 Mbps, CIR2 = 10 Mbps and
CIR3 = 20 Mbps andMBS1 = 100 KB,MBS2 = 10 KB andMBS3 = 1000490

KB, traffic will traverse hop 1 at maximum rate and after exhausting the
tokens (10 KB) at hop 2, the output traffic will be conformed at 10 Mbps
speed. Thus, the input traffic at hop 3 will be lower than the CIR at hop
3 (20 Mbps) and will not be able to exhaust the tokens at hop 3 making
impossible the estimation of both CIR and MBS at hop 3.495
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5.3. Result in single-hop scenarios
As a first step, the method has been validated estimating the parameters

of the shaper on the single-hop scenario with several combinations of CIR
and MBS. Table 2 shows the relative error in the estimations of the three
parameters (CIR, PIR and MBS), with a CIR ranging from 6 Mbps to 80500

Mbps and a MBS ranging from 10 KB to 10000 KB. A PIR value of 100
Mbps was selected for all the experiments and the packet length (B) to 1400
bytes. Regarding the train length, for each test we have used the double of
theMBS (in number of packets) as it suffices to deplete the bucket. That is,
if the MBS is 100 KB, we have used 200 packets. For the case of CIR=80505

Mbps we have used trains of length 50000 packets as more packets are needed
to completely deplete the bucket. Each experiment was repeated 10 times
and the mean and standard deviation of the relative error was calculated.
As it can be observed, the achieved accuracy is remarkable with an average
relative error lower than 1% for the CIR parameter estimation and lower510

than 5% for the MBS parameter estimation in most of the cases. Note
that these experiments have been performed using the optimal values of k
and w obtained from the space parameter analysis explained in Section 4.2.
Similarly, Table 3 shows the relative error in the estimations of the three
parameters (CIR, PIR and MBS) with theoretical CIR values up to 800515

Mbps and PIR=1 Gbps. As in the low-speed scenario, the error in the
estimation of the CIR and MBS are below 2% and 13% respectively for all
cases.

To test the effect of cross-traffic on the estimation of the token-bucket
parameters, we have generated UDP cross-traffic at different constant rates520

ranging from 5% to 50% of the CIR value following the previously described
methodology. Table 4 shows the relative error in the estimations of the
three parameters (CIR, PIR and MBS) with theoretical CIR values up to
800 Mbps, PIR=1 Gbps and cross-traffic. Each experiment was repeated
10 times, and the mean and standard deviation of the relative error was525

calculated. For the sake of brevity we only show the worst-case (larger value
of the error metric ε, defined in Equation 8) for each combination of CIR
and MBS.

As it can be observed, the CIR relative error is still below 2% for all cases
while PIR relative error is below 30%. However, the MBS relative errors530

are greater than the ones observed in absence of cross-traffic. This behavior
is not surprising, as cross-traffic consumes tokens when traversing the shaper.
That is, when measurement traffic is injected, it is likely that the bucket is
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Table 2: Estimated Relative Error [%] for single-hop token-bucket parameters using
TBCheck : CIR, PIR and MBS (no cross-traffic, B = 1400 Bytes, PIR = 100 Mbps
and several cases of CIR and MBS). Mean and standard deviation. * denotes no error
nor variance in the results.

CIR
[Mbps]

MBS
[KB]

ĈIR Relative
Error %[µ± σ]

P̂ IR Relative
Error %[µ± σ]

M̂BS Relative
Error %[µ± σ]

w k

6

10 0.025 ± 0.009 2.008 ± 0.77 2.94 ± 0.04 3 1.4
100 0.021 ± 0.001 0.189 ± 0.40 0.254 ± 0.02 3 1.4
1000 0.0178 ± 0.001 * 0.11 ± 0.001 3 2.9
10000 0.021 ± 0.001 * 0.011 ± 0.001 3 2.9

10

10 * 2.37 ± 0.51 10.02 ± 0.06 3 2
100 * 0.18 ± 0.40 0.09 ± 0.04 4 1.4
1000 * * 0.03 ± 0.01 4 1.1
10000 * * 0.03 ± 0 9 1.1

20

10 * 2.39 ± 1.43 5.59 ± 4.98 3 1.1
100 * * 0.62 ± 0.01 5 1.1
1000 0.035 ± 0.001 * 0.02 ± 0.02 5 2
10000 * * 0.01 ± 0 3 2.6

50

10 * 2.84 ± 0.903 3.68 ± 2.1 4 1.1
100 * 1.33 ± 0.81 13.43 ± 5.42 13 1.4
1000 * * 6.79 ± 3.31 12 1.7
10000 * 0 ± 0.1 0.01 ± 0.002 3 1.4

80

10 * 0.36 ± 0.14 0.15 ± 0.040 6 1.1
100 * * 0.57 ± 0.16 10 1.1
1000 * * 6.02 ± 1.52 14 1.1
10000 * * 19.03 ± 1.283 14 1.1

either depleted or with a number of tokens that do not correspond to the
maximum bucket capacity. As a result, in presence of cross-traffic (especially535

with sustained rates), MBS may not be estimated correctly. Remarkably,
this evaluation exposed that the measured parameters errors hardly depend
on the amount of cross traffic, but just on its presence.

In the light of these results, the CIR and PIR values can be estimated
during busy-hours of the network (as their estimations are not particularly540

affected by concurrent-traffic), while MBS should be estimated during off-
peak hours in order to obtain accurate results. These restrictions allow us
to define a shaping detection policy that must be applied when measuring
token-bucket based systems.
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Table 3: Estimated Relative Error [%] for single-hop token-bucket parameters using
TBCheck : CIR, PIR and MBS (no cross-traffic, B = 1400 Bytes, PIR = 1000 Mbps
and several cases of CIR and MBS). Mean and standard deviation. * denotes no error
nor variance in the results.

CIR
[Mbps]

MBS
[KB]

ĈIR Relative
Error %[µ± σ]

P̂ IR Relative
Error %[µ± σ]

M̂BS Relative
Error %[µ± σ]

w k

60

10 0.210 ± 0.072 9.059 ± 4.459 2.128 ± 0.393 3 1.1
100 0.178 ± 0 12.205 ± 3.773 1.288 ± 0.541 12 1.1
1000 0.177 ± 0 9.610 ± 3.861 2.856 ± 13.921 8 1.7
10000 0.178 ± 0 1.970 ± 0.885 4.524 ± 18.371 5 2

100

10 0.034 ± 0.176 8.682 ± 4.489 9.605 ± 0.773 3 1.1
100 * 12.453 ± 3.629 3.977 ± 0.491 14 1.5
1000 * 8.581 ± 3.229 0.815 ± 0.337 14 2.3
10000 * 1.818 ± 0 0.419 ± 0.004 14 2.3

200

10 * 11.592 ± 4.729 6.481 ± 3.094 3 1.1
100 * 15.247 ± 3.192 3.454 ± 4.669 8 1.4
1000 * 7.863 ± 2.721 1.058 ± 0.556 10 2.0
10000 * 1.979 ± 0.885 4.372 ± 16.136 7 1.7

500

10 1.821 ± 0 9.982 ± 4.012 12.768 ± 5.258 6 1.1
100 1.818 ± 0 15.692 ± 2.868 1.573 ± 2.692 10 1.2
1000 1.817 ± 0 6.181 ± 1.479 1.786 ± 1.954 13 1.7
10000 1.818 ± 0 1.818 ± 0 2.455 ± 8.132 6 1.4

800

10 * 2.813 ± 0.201 11.657 ± 3.417 6 1.2
100 * 1.818 ± 0 10.302 ± 1.152 14 1.2
1000 * 1.818 ± 0 10.273 ± 3.273 14 1.2
10000 * 1.812 ± 0 9.463 ± 0.280 14 1.2

Once the accuracy of TBCheck has been assessed, we compare the results545

with the state-of-the-art bandwidth estimation tools. Table 5 shows the CIR
estimation using common bandwidth-estimation tools such as: Speedtest,
Iperf (UDP and TCP), Capprobe, a File-transfer tool based on the ETSI
guide 202 057-4 [26] and a also a generic packet-train technique. We note
that the generic packet-train technique estimates the capacity of an end-550

to-end path using the mean inter-arrival time and is affected by shapers as
discussed in Section 4.1. Additionally, the shaper detection tool ShaperProbe
has been added to the comparison.

As it can be observed in Table 5, as the burst length value increases, all
tools tend to overestimate the CIR value with the exception of TBCheck555

and ShaperProbe. These results highlight the importance of using specifi-
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Figure 7: CIR Relative Error (PIR = 100 Mbps, CIR = 6 Mbps, several cases of MBS
and cross traffic [1, 3 and 5 Mbps]).Mean and standard error.
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Table 4: Estimated Relative Error [%] for single-hop token-bucket parameters using
TBCheck : CIR, PIR and MBS (B = 1400 Bytes, PIR = 1000 Mbps and several cases
of CIR, MBS). Mean and standard deviation. * denotes no error nor variance in the
results. Cross-traffic varies between 5% and 50% of CIR value for each case. Only worst
results are shown.

CIR
[Mbps]

MBS
[KB]

Cross-traffic
[Mb/s]

ĈIR Relative
Error %[µ± σ]

P̂ IR Relative
Error %[µ± σ]

M̂BS Relative
Error %[µ± σ]

w k

60

10 3 0.178 ± 0 28.099 ± 17.112 6.812 ± 4.560 3 1.1
100 9 0.178 ± 0 25.764 ± 36.960 26.761 ± 41.454 12 1.1
1000 18 0.178 ± 0 1.818 ± 0.000 68.534 ± 26.675 8 1.7
10000 15 0.176 ± 0 2.780 ± 2.044 96.912 ± 0.905 5 2

100

10 5 * 27.696± 6.103 12.656 ± 15.376 3 1.1
100 30 * 6.117 ± 7.706 8.629 ± 14.013 14 1.5
1000 30 * 2.303 ± 1.533 40.635 ± 22.681 14 2.3
10000 50 * 1.818 ± 1.148 4.654 ± 3.446 14 2.3

200

10 10 * 19.523 ± 14.653 12.377 ± 6.880 3 1.1
100 40 * 3.854 ± 4.293 16.440 ± 27.803 8 1.4
1000 90 * 1.81 ± 0.001 45.997 ± 24.787 10 2.0
10000 70 * 2.303 ± 1.533 98.722 ± 0.345 7 1.7

500

10 225 1.818 ± 0 20.715 ± 10.983 31.498 ± 11.102 6 1.1
100 25 1.818 ± 0 4.332 ± 7.542 28.009 ± 23.203 10 1.2
1000 150 1.818 ± 0 2.303 ± 1.533 25.246 ± 23.601 13 1.7
10000 150 1.818 ± 0 1.818 ± 0.000 62.588 ± 47.577 6 1.4

800

10 80 * 3.488 ± 3.572 35.959 ± 24.202 6 1.2
100 80 * 2.303 ± 1.533 49.912 ± 17.388 14 1.2
1000 280 * 2.303 ± 1.532 41.964 ± 42.413 14 1.2
10000 400 * 2.303 ± 1.533 70.446 ± 46.594 14 1.2

cally tailored estimation methods when traffic shapers are present. Since
only TBCheck and ShaperProbe perform accurate measurements for traffic
shapers, we will only consider such tools in what follows.

Additionally, we now focus on the MBS estimation. We followed the560

same approach of obtaining ten different MBS estimates per test and cal-
culating the standard deviation of the relative error. Table 6 provides the
relative error in the MBS estimation for TBCheck and ShaperProbe tools in
a single-hop scenario with PIR = 100 Mbps and CIR = 6 Mbps. As shown,
TBCheck obtains accurate values. Using ShaperProbe similar estimation re-565

sults are observed except for MBS values of 10 KB. In such a case, the tool
does not provide the MBS estimation. A careful examination of its code
revealed that ShaperProbe estimation method required more than 11 packets
to estimate the MBS value. In the 10 KB case, the level shift between CIR
and PIR takes place near the 9th packet and the tool starts estimating the570

MBS value after the change point.
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Table 5: CIR Measurement (no cross-traffic, PIR = 100 Mbps, CIR = 6 Mbps and
several cases of MBS).Mean and standard error.

CIR [µ± SEM ]
MBS [KB]

Tool 10 100 1000 10000
TBCheck 6.01 ± 0.00 5.99± 0.00 6.00± 0.00 6.01± 0.00
iperf(UDP) 94.84± 0.16 94.86± 0.12 95.00± 0.10 94.80± 0.06
iperf(TCP) 6.47± 0.00 6.55±0.00 7.23± 0.00 13.76± 0.06
CapProbe 91.84± 2.49 92.46± 1.45 91.38± 2.93 94.27± 1.83
SpeedTest 5.70± 0.00 5.70± 0.01 6.27± 0.52 18.64± 1.76
File-transfer 5.74± 0.00 5.81± 0.00 6.77± 0.00 94.20± 0.00
Packet-train 6.24± 0.00 18.55± 0.31 96.74± 0.18 96.80± 0.18
ShaperProbe 5.84± 0.03 5.84± 0.03 6.12± 0.41 5.78± 0.00

To compare the influence of cross-traffic on the shaping detection tools,
we injected UDP cross-traffic at three different rates (1, 3 and 5 Mbps) con-
currently with the measurement. The cross-traffic has been generated with
hping3 tool in combination with tc netem tool, in order to simulate random575

delays according to a Pareto-Normal distribution [27]. Such distribution is
a weighted sum of a Normal distribution with weight 25% and a Pareto dis-
tribution with weight 75% and α = 3 (finite variance). We note that this
cross-traffic pattern is less demanding than the previous tests to assess the
performance of our tool.580

Figures 7a and 7b show the average CIR relative error estimation values
for TBCheck and ShaperProbe tools for the three cross-traffic rates. As shown,
TBCheck accurately estimates the theoretical CIR value (6 Mbps) even if
the cross-traffic rate represents more than the 80% of the theoretical CIR.
On the contrary, ShaperProbe tends to underestimate the CIR value even585

in low-speed scenarios due to the influence of cross-traffic mainly by two
different reasons. First, ShaperProbe uses a predefined window size for CIR
estimation. That is, instead of considering the expansion of inter-arrivals,
its rate estimation is performed by averaging the number of received bytes
along the time interval —which partly explains the underestimations, as the590

number of bytes received in a constant length time interval decreases. Second,
ShaperProbe performs estimation of shaper parameters at user level and only
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Table 6: Estimated Relative Error [%] for MBS using TBCheck and ShaperProbe: no
cross-traffic, PIR = 100 Mbps and CIR = 6 Mbps. Mean and standard deviation.

Maximum
Burst Size

[KB]

Relative Error
TBCheck
(%)[µ± σ]

Relative Error
ShaperProbe
(%)[µ± σ]

10 2.94 ± 0.04 N/A
100 0.254 ± 0.02 1.3 ± 1.77
1000 0.11 ± 0.0001 2.46 ± 2.59
10000 0.001 ± 0.0001 3.58 ± 10.32

takes into account UDP payload size and not all underlying headers—UDP,
IP and link layer.

Regarding intrusiveness, TBCheck generates packet trains of 50,000 MTU-595

sized UDP packets in the worst case scenario (MBS equal to 10,000 KB),
namely 71 MB of traffic, in contrast with the 480 MB generated by Shaper-
Probe, nearly 7 times more. This is a very significant difference that surely
affects the measured link available bandwidth.

5.4. Results in multi-hop scenarios600

Up to this section, both TBCheck and ShaperProbe have been evaluated in
a single-hop scenario even in the worst case when cross-traffic is present. Let
us focus on the performance evaluation of the shaper parameter estimation
in the multi-hop scenario whereby three shapers are applied sequentially.
We note that ShaperProbe tool has been designed to detect the presence of605

a single shaper only, namely the most restrictive one. Thus, from now on
this tool is not considered in the evaluation. Table 7 shows the different
configurations and parameters used in the multi-hop performance evaluation
testbed, grouped by classes presented in Table 1. The tested CIR values
are 20 Mbps, 10 Mbps and 6 Mbps. PIR value reflects a typical SLA-based610

enterprise connection at 100 Mbps, andMBS values are 10 KB, 100 KB and
1000 KB.

For each class, ten experiments were performed and mean and standard
deviation were calculated. Figures 8, 9 and 10 show the mean relative esti-
mation error and standard deviation for CIR, MBS and PIR respectively615
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Table 7: Multi-hop testbed parameters grouped by class.

Class CIR1

[Mbps]
CIR2

[Mbps]
CIR3

[Mbps]
MBS1

[KB]
MBS2

[KB]
MBS3

[KB]
1 20 10 6 10 100 1000
2 20 10 6 1000 100 10
3 20 10 6 100 1000 10
4 20 10 6 1000 10 100
5 6 10 20 10 100 1000
6 6 10 20 1000 100 10
7 6 10 20 100 1000 10
8 6 10 20 1000 10 100

in each of the 8 classes. Note that, in Figures 8 and 9, the estimation error
in each hop, per class, is depicted. However, according to Table 1 there are
several cases for which it is not possible to estimate either the CIR or the
MBS or both. In such cases, no data is displayed.

The results show that multi-hop shaper detection and parameter estima-620

tion is achieved (whenever possible) with an estimation relative error lower
than 1% for CIR parameter and lower than 15% for the most MBS param-
eter values. Regarding PIR estimation, the relative error achieved is lower
than 8% in all cases. In the typical network scenario where CIR1 < CIR2 <
CIR3 and MBS1 > MBS2 > MBS3, all the shapers are detected and the625

estimated relative error for the CIR parameter in all hops is close to 0%. For
the MBS parameter, the relative error is lower than 14% in all three hops.

Furthermore, the previous multi-hop experiments are repeated in the
presence of cross-traffic to simulate a real production network. More specif-
ically, UDP cross-traffic with random delays according to Pareto-Normal630

distribution was generated at each hop using hping3, in order to obtain an
average traffic load ranging from 10% to 60% at each hop. The 60% load
upper limit is typically used to protect against traffic bursts as suggested
in [28]. The experiments were performed using class 1 and 6 scenarios since
they are the most typical in real-world scenarios.635

Figure 11 and 12 shows the CIR relative estimation error for each class in
the presence of concurrent traffic. As it can be observed, in class 1 scenario
the estimation relative error is lower than 1% even when the link load is
60%. On the other hand, in the class 6 scenario the relative estimation error
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Figure 8: Estimated CIR relative error for multi-hop —no cross-traffic, 8 classes and 3
hops. Mean and standard deviation.
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Figure 9: Estimated MBS relative error for multi-hop —no cross-traffic, 8 classes and 3
hops. Mean and standard deviation.

30



1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Class

E
s
ti
m

a
te

d
 r

e
la

ti
v
e

 e
rr

o
r 

[%
]

Figure 10: Estimated PIR relative error for multi-hop —no cross-traffic, 8 classes. Mean
and standard deviation.

is lower than 5% in all cases with the exception of the link load of 60%.640

Note that a link occupied at 60% is considered as a highly-loaded link and,
typically, operators and network managers keep the load below this value for
stability reasons.

Figure 13 and 14 represent the MBS relative estimation error for each
class in the presence of concurrent traffic. In this case, the estimation error645

is lower than 30% in both cases when the link load is low (10%-30%). When
the link load increases the estimation error grows up to 50%. As it turns out,
when the link load is high, the concurrent traffic consumes more tokens from
the token-bucket mechanisms, which reduces the accuracy of the estimation.
Note that such problem is insurmountable and inherent to the token-bucket650

mechanism independently of the estimation technique used. Note that, if
traffic at each hop is unknown, it is not possible to accurately estimate the
MBS as there is no information about the number and size of concurrent
packets. Such results call for a measurement strategy where the CIR can be
estimated at all times while the MBS estimation should be relegated to low655

utilization periods, namely night hours or lunch periods.
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Concerning the PIR estimation, Figure 15 shows the PIR estimation
error in both scenarios —class 1 and 6. As it can be observed the relative
error is lower than 10% even in high link-load scenarios.
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Figure 11: Estimated CIR relative error for multi-hop class 1 with variable cross-traffic.
Mean and standard deviation.

6. Conclusions660

In this paper a simple, generic and minimal-interfering technique for
multi-hop token-bucket parameter estimation has been presented. Addition-
ally, an algorithm (TBCheck) has been proposed and validated for typical
CIR ranging from 6 Mbps to 800 Mbps and different cross-traffic scenarios.
For the sake of completeness, the algorithm has been compared with other665

single-hop measurement techniques in the state of the art, obtaining the best
results both in terms of relative error and intrusiveness even in the presence
of cross-traffic.

In case of multi-hop scenarios, a taxonomy of shaping scenarios has been
presented and the most typical real-world scenarios have been identified.670

For each scenario, TBCheck proves accurate as it correctly estimates all the
parameters when there is no cross-traffic. When cross-traffic is present, the
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Figure 12: Estimated CIR relative error for multi-hop class 6 with variable cross-traffic.
Mean and standard deviation.
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Figure 13: Estimated MBS relative error for multi-hop class 1 with variable cross-traffic.
Mean and standard deviation.
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Figure 14: Estimated MBS relative error for multi-hop class 6 with variable cross-traffic.
Mean and standard deviation.
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Figure 15: Estimated PIR relative error for multi-hop classes 1 and 6 with variable cross-
traffic. Mean and standard deviation.
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algorithm is able to estimate the CIR and PIR with a relative error lower
than 15% even when the link presents a high load. Concerning the MBS,
TBCheck attains relative error rates lower than 30% when the link load is675

below 30%. As it turns out, MBS estimation is unfeasible at high link
loads, regardless of the measurement technique, as the bucket will always
be empty. Nevertheless, our algorithm accurately estimates the MBS at
reasonable utilization levels that allow the token-bucket to fill up eventually.

In the light of the obtained results, we propose a shaping estimation pol-680

icy for multi-hop scenarios whereby CIR and PIR are estimated during busy
hours while MBS is estimated during off-peak hours in order to obtain ac-
curate results. This methodology has been successfully applied to measure
the performance parameters of operational deployments in enterprise and
large ISPs networks. Furthermore, besides the results presented in this pa-685

per, we plan to evaluate the detection and measurement of further shaping
algorithms, such as Shaped Round Robin (SRR).
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