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A Dynamic Resource Allocation Framework in LTE

Downlink for Cloud-Radio Access Network
Mohammed Yazid Lyazidi, Nadjib Aitsaadi, and Rami Langar

Abstract—One main asset of Cloud-Radio Access Network
(C-RAN) lies in its centralized architecture that allows network
operators to serve dynamic flows of mobile traffic with efficient
utilization of baseband resources and lesser operation costs
than the distributed RAN architecture. For this very reason,
the implementation of online resource allocation algorithms in
the BaseBand Unit (BBU) pool for handling loads of multiple
Remote Radio Heads (RRHs) is one of the most motivating
challenges in C-RAN. Those centralized algorithms must be able
to handle efficiently interference between users, as well as to
dynamically select RRHs that can be turned on/off based on
traffic variation. By doing so, the total RRHs transmission power
can be minimized and the number of active BBUs within the
cloud can also be reduced. In this paper, the issues of dynamic
wireless resource allocation, transmission power minimization
and BBU-RRH assignment in downlink C-RAN are addressed in
one framework. We have previously attempted to address these
problems by proposing a approach based on the branch-and-cut
algorithm to solve small instances of the problem to optimality.
However, due to the combinatorial complexity of the problem,
finding optimal solutions for a large-scale network may take a fair
amount of time and will not be suitable for online optimization.
Towards this end, we propose a novel two-stage approach to
address these issues for a large-scale problem. The first stage is
a new proposal that addresses the problems of dynamic resource
allocation and power minimization in C-RAN using a simulated
annealing approach with a specific neighborhood search pro-
gram. The BBU-RRH assignment is handled in the second stage
using a multiple knapsack formulation. Through extensive event-
based simulations, our proposal achieves significant reduction in
time complexity and yields near optimal performance compared
to state-of-the-art methods.

Index Terms—Cloud-RAN; LTE; Resource allocation; Power
minimization; BBU-RRH assignment; Simulated annealing.

I. INTRODUCTION

Cloud Radio Access Network (C-RAN) has been recently

introduced by China Mobile Research Institute as a novel

cloud architecture for Long Term Evolution (LTE) and up-

coming cellular standards (5G) [2]. It is a new RAN paradigm

that can address the challenges mobile network operators are

faced with and meet their requirements in terms of capital and

operational expenditure costs reduction. The C-RAN architec-

ture is illustrated in Fig. 1. It is based on a central cloud pool

composed of BaseBand Units (BBUs) that perform Physical
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Fig. 1: Cloud Radio Access Network (C-RAN) Architecture

(PHY) and Medium Access (MAC) functions processing. The

BBUs are connected to the Remote Radio Heads (RRHs) in

the cell sites by means of a low-latency and high bandwidth

fronthaul network. A cloud controller is situated in the BBU

pool and performs resource and load balancing between BBUs

that are interconnected through a high-speed backhauling

network [3]. By replacing “hard” wireless network equipments

by “soft” BBUs, the C-RAN capabilities can be dynamically

adjusted based on the traffic load variations [4]. This not only

fosters efficient resource utilization, but also allows the C-

RAN to handle more areas than standalone clusters of base

stations and facilitates service deployment on the edge [5].

However, the design of dynamic schemes for C-RAN’s

radio resource management constitutes a major challenge that

hinders its commercial expansion. In fact, the optimization

of C-RAN baseband resource allocation needs methods to

cater to time-varying traffic demands at different RRHs [6]. A

centralized algorithm can help optimize the resource demands

of mobile users located in different cells and with differ-

ent bandwidth requests. Besides, such centralized approach

will help network operators select the RRHs that can be

dynamically turned on/off, based on their traffic loads patterns

during the day. Consequently, the total RRHs transmission

power can be minimized and the baseband resources can be

efficiently utilized for handling traffic demands during the

day. Moreover, lessening the number of active RRHs would

help reduce the number of instantiated BBUs associated to

them in the cloud and realize more power and cost savings.

Therefore, for all these reasons, a careful C-RAN resource
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allocation strategy must be planned regarding users traffic

demands, RRHs transmission power minimization and BBU

pool capacity in terms of handled RRHs.

In [1], we presented two optimization models for the i)

resource allocation and power minimization problem and ii)

the BBU-RRH assignment problem in C-RAN. The proposed

scheme based on the branch-and-cut algorithm [7] has per-

mitted to achieve reasonable gain in throughput satisfaction

rate and transmission power minimization over state-of-the-art

algorithms and for small instances of the problem. However,

due to the combinatorial nature of the first problem (NP-

hard), the computational complexity is exponential if an exact

optimal solution is to be calculated for a large-scale system.

In this paper, a meta-heuristic algorithm, known as Simu-

lated Annealing (SA), is used in providing fast and close-to-

optimal solutions to the first-stage problem at a much reduced

complexity. The near-optimality gap will be emphasized by

comparison to solving the problem to optimality by the offline

branch-and-cut algorithm used in [1].

In summary, our key contributions are the following:

• We express in the first stage the Centralized Resource

Allocation and Power Minimization (C-RAPM) problem,

which is formulated as an Mixed Integer Linear Program-

ming (MILP) problem. A reformulation is proposed using

the framework of the well-known big-M method [8]. A

novelty in this paper compared to our previous approach

is we consider here a power allocation model based on

static transmission instead of continuous.

• We formulate in the second stage the BBU-RRH assign-

ment problem as a Multiple Knapsack Problem (MKP).

The latter can efficiently be solved by standard solvers

such as IBM CPLEX [9].

• We present our new Dynamic Resource Allocation in

C-RAN framework based on SA (DRAC-SA) to solve

the C-RAPM problem with dynamic constraints.

• We compare our approach’s results from event-based

simulations to our previous approach DRAC in [1] and

to different literature schemes. We also discuss the asso-

ciated performance gains.

The remainder of the paper is organized as follows: Section

II presents a review of related works regarding resource

allocation, power minimization and BBU-RRH management

in C-RAN. In Section III, we describe the two-stage system

model for the C-RAPM and MKP problems, which is followed

by Section IV that details our proposed SA approach. Discus-

sion and analysis of simulation results are exposed in Section

V. Finally, Section VI concludes the paper.

II. RELATED WORK

C-RAN has received a considerable amount of research

attention after its introduction by China Mobile Institue.

Authors in [4] highlighted C-RAN’s advantages for operators

and vendors compared to distributed RAN. In fact, traditional

base stations are often under-utilized during certain hours of

the day, which results in wasteful use of radio resources and

baseband capacity. The authors showcased C-RAN’s ability

to handle this issue by dynamically instantiating BBUs and

allocating the baseband resources to RRHs depending on

traffic volumes [10]. Furthermore, authors in [11] introduced

the concept of coupling C-RAN with mobile cloud computing

systems to enhance end-to-end cloud services for future 5G

networks. In their work, the authors proposed a novel topol-

ogy framework and rate-allocation configuration in C-RAN

to improve end-to-end traffic performance of mobile cloud

computing users.

Regarding the transmission power minimization issue, au-

thors in [12] described a Group Sparse-based Beamforming

approach (GSB), that can minimize the C-RAN RRHs trans-

mission and fronthaul links power consumption in downlink.

The authors outlined the problem as a joint RRH selection

and transmit plus fronthaul links power minimization prob-

lem, with a Signal-to-Interference-plus-Noise Ratio (SINR)

constraint at each user. Their proposed GSB algorithm solves

the problem by starting to sort all RRHs following their trans-

mitting power gains. The algorithm then iteratively turns off

RRHs with minimum power gain, until the power minimiza-

tion problem becomes infeasible. However, the GSB approach

was not a C-RAN-specific solution for power minimization,

since it can also be applied to traditional base station networks,

with an extension of fronthaul links. Furthermore, the GSB

scheme could not measure the number of necessary BBUs in

the cloud that can handle the system.

Our paper, to the best of our knowledge, is one of the pre-

cursory attempts to present a high-level centralized approach

combining dynamic resource allocation, transmission power

minimization and BBU-RRH assignment in one framework.

Other attempts regarding centralized resource allocation have

been previously tackled under rate constraint such as [13]

[14][15]. Authors in [13] presented a QoS-based Power Con-

trol and Resource Allocation in LTE Femtocell network (QP-

FCRA). Although their approach is mainly within the context

of femtocell networks, it can be applied to C-RAN thanks

to its centralization nature. In their proposal, a joint resource

allocation and power minimization algorithm is implemented

at a central level of each clustering cells. The QP-FCRA al-

gorithm then exploits cooperation between neighboring RRHs

to periodically optimize the throughput satisfaction rates of

users. However, their optimization scheme was run in offline

mode and the algorithm’s computational time was fairly big. In

[14], we have addressed the problem of admission control con-

sidering individual UEs Quality of Service (QoS) requirement

for guaranteed-service users but the transmission power aspect

was however not considered. In this paper we encompass

jointly maximizing the throughput of best-effort users while

minimizing the total transmission power.

Although solutions for resource BBU-RRH assignment pro-

cedures in C-RAN have received some notable attention,

the number of contributions for this problematic remains

nonetheless very limited. Authors in [16] described a Colony

RAN design that can lessen the number of BBUs by roughly

75% compared to distributed RAN. In [17], the same authors

carried out their Colony RAN framework by proposing two

mapping schemes for BBU-RRH assignment: Semi-Static (SS)

and adaptive. The SS approach fixes the dichotomies of BBU-

RRH subject to traffic peak hours of all network’s RRHs in a
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large time window (one day). On the other hand, the Adaptive

scheme dynamically maps BBUs with RRHs based on BBUs

resource capacity and neighboring RRHs loads within a short

time interval (one hour). For a given business office area traffic

distribution, the authors demonstrated that the SS and Adaptive

schemes can help reduce the number of BBUs by 26% and

47%, respectively.

III. PROBLEM FORMULATION

We detail in this section our two optimization models:

C-RAPM and MKP. We consider a C-RAN system composed

by a number of S RRHs within the set S = {i|1 6 i 6 S}.
The BBU pool jointly assigns to each RRH in S a number of

K Physical Resource Blocks (PRBs) from the set K = {k|1 ≤
k ≤ K}. We assume that the fronthaul network has sufficient

links capacity.

A. Centralized Resource Allocation and Power Minimization

(C-RAPM) Problem Formulation

In our first optimization model, we consider N (N ≥ 1)

number of User Equipments (UEs) entering the system at a

given epoch and connecting to a certain RRH from S. Each

UE u ∈ {1, .., N} requests from its serving RRH a number

of PRBs Nu to run its applications [18]. We suppose that

each RRH i handles one cell in a delimited area, and that a

UE u can only be served by the RRH covering the area it

is positioned within. We consider a static transmission power

from RRH i to UE u on each allocated PRB k. We suppose that

the transmission power is quantized into L ≥ 2 discrete power

levels: pmin = p1 < p2 < ... < pL = pmax, where pmin is the

minimum power that can be transmitted to a UE u and pmax

is the maximum transmitted power for each RRH. An increase

in the number of power levels L pushes the discrete domain to

be closer to a continuous one, but undoubtedly increases the

problem’s computational complexity [19]. Each resolution can

lead to different transmission powers. We define our UE-RRH

attachment, PRB allocation and transmit power variables:

xu
i =

{

1, if UE u is attached to RRH i,

0, otherwise.
(1)

yuik =

{

1, if PRB k is allocated to UE u on RRH i,

0, otherwise.
(2)

puik =

{

p ∈ {p1, ..., pL}, if yuik = 1,

0, otherwise.
(3)

The SINR achieved by UE u, attached to RRH i and on a

given PRB k can be formulated as:

γu
ik =

puikg
u
ik

∑

j 6=i

∑

v 6=u p
v
jkg

u
jk + σ2

(4)

Where guik is the path gain between RRH i and UE u, and σ2

is the noise power. The SINR is expressed per PRB, as both

channel/fading and interference vary over PRBs due to multi-

path, frequency selectivity and domain scheduling [20]. Our

objective in this first stage is to find the best PRBs allocation

to serve in a best effort way all existing UEs, while minimizing

the total downlink RRHs transmission power. The C-RAPM

optimization problem can be expressed as follows:

minimize
xu,yu,pu

N
∑

u=1

∑

i∈S

∑

k∈K

(ǫ
puik

Pmax
− (1− ǫ)

xu
i y

u
ik

K
) (5)

subject to
∑

i∈S

∑

k∈K

xu
i y

u
ik 6 Nu, ∀u (6)

∑

i∈S

xu
i 6 1, ∀u (7)

N
∑

u=1

∑

k∈K

puik 6 pmax, i ∈ S (8)

γu
ik > yuikΓ

u
k , i ∈ S, k ∈ K, ∀u (9)

puik > yuikpmin, i ∈ S, k ∈ K, ∀u (10)

N
∑

u=1

yuik 6 1, i ∈ S, k ∈ K (11)

yuik 6 xu
i , i ∈ S, k ∈ K, ∀u (12)

xu
i , y

u
ik ∈ {0, 1}, i ∈ S, k ∈ K, ∀u (13)

We outline in the objective function (5) that we target

to minimize the total transmission power while maximizing

all possible UEs-PRBs assignments. The objective function

is standardized so as to return values in the same order of

magnitude. ǫ is a constant optimization weight between 0 and

1. Constraint (6) imposes that the total number of allocated

resources for UE u cannot surpass its original demand Nu.

Constraint (7) denotes that a UE can only be served by at most

one RRH. This is already guaranteed by UEs’ cell position,

however, a decision should be made for edge UEs positioned

in a coverage area overlapped with other RRHs. If so, the

optimization should assign this UE to an RRH that satisfies

the other problem constraints1. Conditions (8) and (10) are the

power constraints on RRH and UE, respectively. Condition (9)
ensures that the received SINR is equal to the required one

Γu
k when the PRB k is in use (i.e., yuik = 1) [13]. Constraint

(11) stresses the fact that two users linked to the same RRH

cannot be served with the same PRB. Constraint (12) enforces

all yuik = 0 if attachement variable xu
i is equal to 0 (i.e., UE

u is not receiving any PRBs from RRH i). Finally, constraint

(13) refers that both yuik and xu
i are binary variables.

The optimization problem formulated in (5) − (13) is a

Mixed Integer NonLinear Programming (MINLP), which is

NP-hard [21] due to the presence of the quadratic product in

the objective function (5) and the non-linear SINR constraint

(9). We propose next, to reformulate the problem in a Mixed

Integer Linear Integer version (MILP) via the big-M method

[8]. In fact, the product of two binary variables xu
i and yuik

can be replaced with a single binary one zuik that is defined in

the following constraints:

zuik 6 yuik, (14)

zuik 6 xu
i , (15)

zuik > xu
i + yuik − 1. (16)

1The study of Cooperative Multipont Processing (CoMP) in C-RAN is out
of the scope of this paper.
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regarding constraint (9), we find it convenient to reformulate

it as follows:

(1 +
1

Γu
k

)puikg
u
ik > yuikΥ

u
k + yuikσ

2 (17)

where Υu
k is equal to

∑

j

∑

v p
v
jkg

u
jk . Besides, the product

between yuik and Υu
k can be linearized using the big-M

reformulation too; provided that Υu
k has explicit lower and

upper bounds. From (3) and (10), we can deduce Lwr and

Uppr, the respective lower and upper bounds of Υu
k . Hence,

the binary-continuous product yuikΥ
u
k can be substituted by

a continuous variable wu
ik and by including the following

constraints:

yuikLwr 6 wu
ik 6 yuikUppr (18)

(1− yuik)Lwr 6 Υu
k − wu

ik 6 (1− yuik)Uppr (19)

Hence, the ILP formulation of our C-RAPM problem can be

expressed as follows:

minimize
xu,yu,pu

N
∑

u=1

∑

i∈S

∑

k∈K

ǫ
puik

Pmax
− (1− ǫ)

zuik
K

(20)

subject to
∑

i∈S

∑

k∈K

zuik 6 Nu, ∀u (21)

(7), (8), (10), (11), (12), (13)

(14), (15), (16) (22)

(1 +
1

Γu
k

)puikg
u
ik > wu

ik + yuikσ
2 (23)

(18), (19) (24)

B. Multiple Knapsack Problem (MKP) Formulation for BBU-

RRH Assignment

In a distributed RAN system, one BBU is entirely assigned

to a single RRH in order to handle its total traffic load. Thanks

to C-RAN’s centralization and flexibility, the resources of one

BBU can be shared across different RRHs that have few traffic

loads [10]. For instance, if a remote site is covered by 4 RRHs

and each has 25% of traffic load, one BBU is enough to

manage all four RRHs. In our study, we can compute the

optimal number of needed BBUs B to manage the S loaded

RRHs as follows:

B = ⌈
Sum of all RRHs traffic charges

K
⌉ (25)

where ⌈.⌉ is the ceiling function and K is the number of

PRBs. The total charge of active RRHs corresponds to the total

number of assigned PRBs from transmitting RRHs to all users,

that are returned after solving the C-RAPM problem. Our goal

in this second stage consists of properly assigning RRHs to

BBUs according to their traffic charges and the number of

available B BBUs. Towards this end, we consider a MKP

formulation of the BBU-RRH assignment problem [22], where

the objects and the knapsacks are represented by the RRHs and

the BBUs, respectively. We introduce a new binary variable

rij , which is equal to 1 if RRH i is attached to BBU j and 0

otherwise. From the results of the C-RAPM problem, we can

compute the weight ci of each RRH i as follows:

ci =
∑

k∈K

y⋆ik/K (26)

where y⋆ is the returned solution of y from the C-RAPM

problem. The value of ci represents the percentage of traffic

load RRH i handles. We suppose that each BBU j can handle

100% of a fully loaded RRH (i.e., all K PRBs are used). We

then formulate our BBU-RRH MKP as follows:

maximize
r

B
∑

j=1

S
∑

i=1

rij (27)

subject to

S
∑

i=1

cirij 6 1, j ∈ {1, ..., B}, (28)

B
∑

j=1

rij 6 1, i ∈ {1, ..., S}, (29)

rij ∈ {0, 1}, i ∈ {1, ..., S}, j ∈ {1, ..., B} (30)

where constraint (29) denotes that one RRH cannot be man-

aged by more than one BBU. This formulated problem is an

Integer Linear Program (ILP), which can be efficiently solved

by standard ILP solvers such as CPLEX.

IV. PROPOSAL: DRAC-SA ALGORITHM

In this section, we present our Dynamic Resource Allocation

in C-RAN based on Simulated Annealing (DRAC-SA) meta-

heuristic with defined neighborhood search to solve the C-

RAPM problem formalized in (20)− (24).

A. Algorithm Overview

The SA meta-heuristic [23] is a powerful stochastic algo-

rithm used to solve many combinatorial optimization problems

in a fixed amount of time. The framework is based on

exploring the different states of the cooling process of a solid

from an initial hot temperature to a fixed frozen one. Each state

of the process corresponds to a solution of the optimization

problem. From a given state, a subsequent one can be gen-

erated by performing a small perturbation mechanism. This

corresponds to generating neighbors of the initial solution via

some particular neighborhood structures. The acceptance rule

of a new solution (or new state) to the initial one is defined

by the Metropolis rule [24], which imposes a probabilistic

decision based on the varying temperature and the energy

of both states. The energy refers to the cost function of the

optimization problem. If the generated state has lesser energy,

it is accepted as the current state. Otherwise, it is admitted with

a probability exp(−∆E
T ), where ∆E is the energy difference

of the two states and T is the time varying temperature. It

is worth noting that at high temperature exp(−∆E
T ) is close

to 1, therefore the majority of moves can be accepted. Whereas

at low temperature, exp(−∆E
T ) is close to 0, which severely

limits the search process to only solutions decreasing the

energy. Hereafter, we will define each function if the SA meta-

heuristic to resolve C-RAPM.
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Fig. 2: DRAC-SA Flow Chart

B. Initial Solution

We first start by employing a greedy search method to

generate the initial solution of the C-RAPM problem. It is

based on performing linear relaxation of the integer variables

and limiting the local search at the first nodes containing

feasible integer solutions. Moreover, by focusing the resolution

on a limited optimization space generated by fewer variables,

the local search can be further reduced. In fact, we can

consider zuik as the “core" variable of our problem; since

variables xu
i and yuik can be derived from the big-M constraints

(14), (15), (16). On the other hand, puik comes as a “sub-

core" optimization variable, which can be deduced from (8)

and (10). We denote E0 the cost function (or energy) of this

initial solution and Tmax the maximum annealing temperature.

In what follows, we define TSRu the throughput satisfaction

rate of UE u, which is the ratio of its total allocated PRBs on

its initial demand Nu.

C. Neighborhood Search Structure

Here, we define our specific neighborhood search stage to

generate the states. We initiate the neighborhood generation

by selecting a uniformly random UE u from the outputs of

the initial solution and by computing its TSRu. We define

x̂u, ŷu and p̂u, the solution neighbors of xu, yu and pu for

UE u, as follows:

• Step 1: UE u changes its RRH attachment following a dis-

crete Bernoulli distribution with parameter (1− TSRu).

A new RRH attachment vector x̂u is generated from this

probability and by selecting the available RRHs to whom

u can be linked to based on its geographical position.

• Step 2: We keep the existing PRB allocation in the new

RRH x̂u
i to other UEs untouched. For the available PRBs

(yuik = 0), we select the eligible ones that can be allocated

to UE u based on the SINR constraint γu
ik ≥ Γu

k , while

determining for each one the minimal power that satisfies

this constraint.

• Step 3: For the eligible PRBs that satisfy γu
ik ≥ Γu

k , they

are allocated to UE u following a Bernoulli distribution

with parameter TSRu ×
γu

ik

SNRmax

, where SNRmax =

pmaxg
u
ik/σ

2 represents the maximum Signal-to-Noise

Ratio (SNR) achieved on UE u. This helps allocating

PRBs to UE u, with respect to other users existing

allocation and possible interference. After this, we set

all allocated PRBs power levels to a unique one, corre-

sponding to the highest level of the allocated PRBs (i.e.,

the maximum of all minimal powers that satisfy the SINR

constraint or each PRB).

D. Equilibrium state

After generating the new solution neighbors, a new cost

function En is calculated. We increase the neighborhood

search structure to other UEs if and only if the current solution

does not improve the objective function and satisfies the

following equation:

exp(−
En − E0

Tn
) ≥ δ (31)

where δ is a random number in [0, 1], which refers to the

random value of the equation to increase the neighborhood

states in the SA meta-heuristic to see whether exp(−∆E
T ) in

equation (31) is close to 0 or 1, and thus accept increasing the

neighborhood tree. Additionally, in each iteration n we use

the following cooling equation to decrease the temperature:

Tn ←
Tn

ln(n)
(32)

E. Stopping condition

Fig. 2 illustrates our DRAC-SA algorithm flow-chart. The

algorithm converges as soon as the maximum number of

iteration nmax is elapsed, which corresponds to the maximum

CPU time. Therefore, its value should be scalable based on the

processing machine so as to not exceed the delays of mobile

users resources requests during their stay time in the system.

F. MKP Resolution

Once the C-RAPM problem is solved and the resources

are allocated to UEs, the next step consists in calculating the

number of needed BBUs B to handle the total traffic demand

(25). Since the MKP problem (27)-(30) is a ILP, we make

use of IBM’s linear solver CPLEX to compute its solution

using the solver’s built-in algorithms. CPLEX’s branch-and-

bound is able to return optimal results within a computation

time nMKP very small compared to nmax (nMKP ≪ nmax).

Hence, by summing the two computation times, solutions for

the C-RAPM and BBU-RRH associations can be dynamically

found while respecting mobile users requests delays.
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Fig. 3: Throughput Cumulative Density Function

Table I: Simulation Parameters

Parameters Values

Number of RRHs 100
Bandwidth 20 MHz

Total number of PRBs 100
Power levels L 6

p1(pmin)/p2/p3/p4/p5/p6(pmax) 0.1/1/5/10/15/20 mW
Constant ǫ 0.5

Path loss model[1] 148.1 + 37.6log10(d), d in Km
Shadowing standard deviation[3] 5 dB

Fading model[3] Normal distribution N (0, I)
Thermal noise[3] −174 dBm/Hz

Transmit antenna power gain[3] 8 dBi
Arrival rate of UEs λ ∈ [1, 10] (default 5)

Departure rate of UEs µ = 0.1
UE’s PRB demand Uniform distribution U(1, 25)

BBU capacity[10] W 1 (100%)
Initial hot temperature Tmax = 1000

Max. number of iterations 1000

V. PERFORMANCE EVALUATION

In this section, we evaluate the benefits and performances of

our proposed DRAC-SA algorithm, and compare the benefits

of our solution with respect to state-of-the-art schemes: the

QP-FCRA [13] and the Iterative GSB [12] algorithms for

solving the C-RAPM problem. We also include comparisons

to the greedy approach, which was used to generate the initial

solution of the DRAC-SA algorithm, as well as to our previous

DRAC approach in [1]. The latter was run in offline mode due

to its high computation time for the chosen system parameters.

On another hand, we also compare the SS and Adaptive

switching algorithms in [17] to the returned solutions of our

MKP regarding the BBU-RRH assignment problem. For our

experimental environment, we simulated a wireless LTE envi-

ronment consisting of 100 RRHs deployed in a 450m×450m
square grid. Each RRH has a coverage radius of 35 m and the

distance between two nearest RRHs is 50 m. We considered

the following channel model [1]: hu
i = 10−L(du

i
)/20

√

φu
i s

u
i g

u
i ,

where L(dui ) is the path-loss at distance dui between RRH

i and UE u, φu
i is the antenna gain, sui is the shadowing

coefficient, and gui is the fading coefficient. We generate a

fixed poisson arrival rate of mobile users of λ = 5 arrivals per

time, and vary at each simulation run the users’ stay time and

service demand following an exponential and uniform laws,

respectively. Each UE’s geographical position is randomly

generated at each run and remains fixed during its stay-time

in the system. The service demand of each user is expressed

in terms of number of PRBs from a downlink LTE frame

of 100 PRBs and follows a uniform distribution from 1 to

25 PRBs. We run 30 simulations for each scenario of SINR

threshold Γ: 10 and 25 dB, to reach a confidence level of 97%.

Table I reports the simulation parameters. In what follows,

we present the corresponding simulation results in terms of

Throughput Satisfaction Rate (TSR), computation time anal-

ysis, Spectrum Spatial Reuse (SSR), normalized throughput

distribution, transmission power, and number of BBUs along

with the active number of RRHs.

1) Throughput Satisfaction Rate (TSR): We present in Fig.

3 the Cumulative Distributed Function (CDF) of the TSR. The

latter represents the ratio of the number of allocated PRBs

to the total initial demands Nu. The CDFs of DRAC, GSB

and QP-FCRA correspond to CDFs generated from offline

resolutions, where we left the algorithms methods running

until the end results. We emphasize the fact that they are not

applicable in real-time context due to their high computational

time, and we only added them for the sake of comparison. We

can observe, by comparing the CDF of the offline methods

and the online Greedy and DRAC-SA’s ones, that for the

latter, more than 50% of UEs have their TSR greater than

80% and 70% in SINR threshold equal to 10dB and 25dB,

respectively. The TSR is lessened to 60% and 48% for QP-

FCRA and GSB, respectively - as shown in Fig.3(a) - at low

SINR threshold, and to 47% and 35%, respectively, in Fig.3(b),

when the SINR threshold is high. Hence, our proposed DRAC-

SA approach outperforms both QP-FCRA and GSB schemes,

and approaches as well the highest throughput satisfaction

rate given by DRAC, when the latter reaches the end of the

resolution. However, we notice that the greedy online approach

achieves better satisfaction rate at high SINR regime than the
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Table II: Mean Spectrum Spatial Reuse

SINR DRAC-SA DRAC Greedy QP-FCRA GSB

10 dB 4.29 ± 0.12 4.55 2.45 ± 0.5 4.05 2.25

25 dB 4.23 ± 0.15 4.55 2.45 ± 0.5 4.10 2.01

offline GSB scheme. In fact, the latter emphasizes on turning

off as many as RRHs as possible to achieve maximum power

savings, whereas the greedy approach turns a large number of

RRHs on to find quick solutions for the C-RAPM problem.

2) CPU time vs network density: As shown in Fig. 4, the

complexity evolution of DRAC-SA is polynomial in terms of

network density, and is largely lower than that of DRAC. The

time computation results indicate that the proposed DRAC-

SA can solve the C-RAPM problem in less than 120 ms
for a network with 100 mobile users. Besides, it can return

solutions in a few ms when the number of active users is

low (less than 20 mobile users). Overall, DRAC-SA achieves

significantly high CPU time savings than DRAC, where the

latter returns the optimum solutions after at least 1000 s for

the highest dense network (150 users). This makes the DRAC

approach unpractical for online optimization as it severely

impacts the rate of served users and the global TSR, which

will be described later on.

3) Spectrum Spatial Reuse (SSR): Table II reports the SSR

of all aforementioned approaches. Note that SSR denotes the

average portion of RRHs using identical PRB and can be

expressed as follows:

SSR =
1

S ×K

N
∑

u=1

∑

i∈S

∑

k∈K

yuik (33)

The more a PRB is reused, the better is the performance.

Table II clearly shows that our proposal DRAC-SA increases

PRBs reuse by a factor of 1.06 and 1.91 compared to QP-

FCRA and GSB approaches, respectively, at low SINR thresh-

old. When the SINR threshold is high, the reuse factor is

enhanced by 1.03 and 2.13, respectively. We also notice that

the gap between DRAC-SA’s SSR and DRAC’s is only of

5.71%, which exhibits the good performance of our algorithm.

We further extend the analysis by investigating how each PRB
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is reused in the network compared to the greedy and the

optimal solutions. Fig. 5 shows that DRAC-SA improves the

reuse factor up to 32% for PRBs that are less re-used with the

greedy method. In fact, DRAC-SA achieves globally 43.36%
better performance in PRB reuse than the greedy approach.

4) Normalized throughput vs UEs demand: In order to

illustrate how the allocated resources are affected by UEs’

demand volume, Fig. 6 presents the normalized throughput

evolution as a function of UEs demands Nu, for both SINR

regimes. Globally, QP-FCRA and GSB show a roughly con-

stant behavior for SINR = 10 dB in Fig. 6(a), with an

emphasis on low and high PRB demand, respectively. This

implies that their resource allocation mechanisms are done

independently of UEs’ requested number of PRBs. On the

other hand, DRAC-SA favors resource allocation of UEs

with the highest demand Nu in order to increase their total

satisfaction rate. This is more clearly shown in the high SINR

regime (Fig. 6(b)), where DRAC-SA favors high demands

significantly more than DRAC and the other schemes. This

may be interpreted as unfair to users with low PRB demands.

However, from a network management perspective, it is a

positive behavior as DRAC-SA can dismiss resource alloca-

tion to low user demands that would cause interference to

high-demanding users with greedy resource applications, and

eventually increase their total transmitted power.

5) Transmitted Power per RRH: Fig. 7 illustrates the per-

centage of RRHs transmitting on each transmission power.

We remark that at low SINR regime (see Fig. 7(a)), the

majority of RRHs are transmitting on the lowest power levels:

pmin = 0.1 mW and p2 = 1 mW , whereas for most RRHs

the greedy method favors the highest power level pmax = 20
mW , which results in a high total transmission power. What

is more, DRAC-SA focuses mostly on the second power

level p1 = 1 mW . At high SINR regime (see Fig. 7(b)),

most approaches emphasize on higher transmission powers

such as p4 = 15 mW and pmax = 20 mW . By scattering

the transmission powers on the lowest levels, our approach

can achieve less energy consumption compared to the greedy

resolution method and QP-FCRA, as shown in Fig. 8, which

presents the total C-RAN transmitted power. We can remark
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(a) SINR = 10 dB (b) SINR = 25 dB

Fig. 6: Throughput distribution as a function of user demands

(a) SINR = 10 dB (b) SINR = 25 dB

Fig. 7: Percentage of RRHs vs transmission power levels

that the GSB scheme realizes minimum transmission power

thanks to its successive RRH switching algorithm; however,

this is negatively reflected on the TSR of mobile users as

seen in Fig. 3, since they are less satisfied by their allocated

PRBs. The QP-FCRA approach, on the other hand, supposes

that all RRHs are turned on, which results in a higher power

consumption but to a good TSR. As can be observed in Fig. 3

and Fig. 8, our proposed DRAC-SA scheme performs a good

tradeoff balance between UEs satisfaction rates and overall

transmission power minimization in both SINR threshold

levels.

6) Number of BBUs and on RRHs: Fig. 9 shows the

variations of the number of on RRHs and the number of

instantiated BBUs B per time returned by DRAC-SA, when

the SINR threshold is equal to 25 dB. As can be observed,

the number of instantiated BBUs computed from the output

of DRAC-SA can achieve important savings compared to

Table III: Number of BBUs and RRHs

Scheme Mean BBU Mean on RRHs Max RRHs/BBU

MKP 7.97 ± 0.06 55.4 ± 2.2 39

SS 15.1 59.7 27

Adaptive 13.5 62.4 28

a conventional RAN scenario. The latter follows a static

variation due to the one-one mapping, which imposes as

many BBUs as deployed RRHs. This consequently inflicts

heavy investments from operators to manage their network

and increase their total BBU equipment costs to handle the

radio traffic loads of all cells. Our approach can realize up to

86% and 92% BBUs savings compared to a RRH-based RAN

scenario, which will result in important OPEX savings for the

operator.

For the BBU-RRH assignment problem, we solve the MKP

in (26) using CPLEX, which is able to find optimal results
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Fig. 8: Total RRHs transmitted power in C-RAN

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

N
u

m
b

e
r 

o
f 

u
n

it
s

Time (s)

Number of BBUs with DRAC-SA
Number of on RRHs with DRAC-SA

BBUs/RRHs in conventional RAN

Fig. 9: Number of needed BBUs and on RRHs per time

with very low computation time (at average 3 ms at each

epoch). Table III presents the average number of BBUs and

on RRHs as well as the minimum and maximum number of

handled active RRHs per BBU. Clearly, DRAC-SA achieves

more BBUs savings to cater to the same volume of traffic load

with a reduced number of on RRHs. This not only improves

the network capacity, since many RRHs can be handled by the

same BBU, but also helps maximizing the efficiency of BBUs

within the virtual pool.

7) Global TSR vs arrival rates: We vary next the arrival

rates of mobile users in the system, where λ takes values in

[1, 10]. Fig. 10 illustrates the evolution of the global TSR in

both SINR regimes for each of DRAC-SA, DRAC and the

greedy approaches. As λ increases, more users penetrate the

system, which leads to less time intervals between each user

arrival. As stated before, a large proportion of new arrived

users are discarded by DRAC, since it is still solving the

C-RAPM problem of the previous existing users. What is

more, starting from λ = 4, the global TSR returned by

DRAC is severely impacted and results in more than 70%
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of UEs not served by the system. This is depicted in Fig.11,

which illustrates the evolution of rejected users’ rate with

different arrival rates. DRAC-SA, on the other hand, clearly

outperforms DRAC thanks to its reduced complexity and

possible online optimization, which provides a very global

TSR at high arrival rate (74% and 61% for low and high SINR

threshold, respectively) as well as a low rate of rejected UEs

(14% and 19% for low and high SINR threshold, respectively).

8) Number of BBUs vs arrival rates: In the following,

we present the variation of the number of instantiated BBUs

as a function of the network density for each arrival rate.

Fig. 12 presents the evolution of BBUs and the number of

on RRHs in the system with the variation of the poisson

arrival rate λ for SINR threshold equal to 25 dB. The plot

illustrates the evolution for the DRAC-SA and Greedy methods

as well as the number of BBUs required in case of the

conventional RAN. The latter corresponds to the number of

active RRHs, which has to be equal to the number of BBUs

due to the one-one mapping in a distributed RAN deployment.

As illustrated, the number of instantiated BBUs for the DRAC-

SA solutions achieves important savings in BBUs compared

to the conventional scenario. On another hand, we can remark
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that for the highest arrival rate, λ = 10, the number of on

BBUs is at its maximum capacity for the conventional case,

whereas DRAC-SA and the greedy methods are still at 55%
and 40% of the total system’s capacity, respectively. Therefore,

it is up to the operator to manage its C-RAN deployment:

wether is increasing the number of RRHs to satisfy maximum

users, or turning them off to achieve energy efficiency is the

better choice.

VI. CONCLUSION

In this paper, we have portrayed a novel approach based

on simulated annealing to address the problem of resource

allocation and transmission power minimization in C-RAN

for a dynamic flow of UEs traffic. Specifically, our newly

improved DRAC-SA framework can quickly find the best

PRB allocation and transmission power strategy to cater the

traffic demand, while satisfying individual SINR constraints

and maximum power limitations. Besides, our approach can

dynamically determine the best (if not optimal) number of

active RRHs and BBUs to instantiate in order handle the C-

RAN traffic. Through our extensive event-based simulations,

we have demonstrated that our method finds several good bal-

ances regarding, firstly, throughput satisfaction rate and total

transmitted power and, secondly, resolution time and global

user satisfaction. In fact, DRAC-SA achieves 43.36% better

performance in PRB distribution than a greedy approach,

and only 5.71% of difference is between the global opti-

mum offline approach and DRAC-SA in terms of throughput

satisfaction. Besides, the number of BBUs calculated from

DRAC-SA can help increase the BBUs savings to 85.6%
compared to distributed RAN scenarios. We hence believe that

this approach represents a promising solution for centralized

resource allocation in future C-RAN deployments.
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