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Abstract

The Cooperative Multiple-input-multiple-output (CMIMO) scheme has been
suggested to extend the lifetime of cluster heads (CHs) in cluster-based capillary
networks in Internet of Things (IoT) systems. However, the CMIMO scheme
introduces extra energy overhead to cooperative devices and further reduces the
lifetime of these devices. In this paper, we first articulate the problem of coop-
erative coalition’s selection for CMIMO scheme to extend the average battery
capacity among the whole network, and then propose to apply the quantum-
inspired particle swarm optimization (QPSO) to select the optimum cooperative
coalitions of each hop in the routing path. Simulation results proved that the
proposed QPSO-based cooperative coalition’s selection scheme could select the
optimum cooperative sender and receiver devices in every hop dynamically and
outperform the virtual MIMO scheme with a fixed number of cooperative de-
vices.

Keywords: IoT systems, cluster, cooperative communication, energy
efficiency, QPSO

1. Introduction

Internet of Things (IoT) systems are observed to have prospective to en-
hance the operational efficiency of many industrial applications. [R2,1] Informa-
tion Handling Services (IHS) anticipates that the IoT market will grow from an
established set of 15.4 billion devices in 2015 to about 31 billion devices in 2020
and 75.4 billion in 2025 [1]. The Internet connects people via business and social
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communication or with systems via business transaction such as internet bank-
ing or e-commerce. On the other hand, the IoT goal is to connect machines and
systems sensors and actuators, in order to collect meaningful information from
these systems and take actions to enhance human productivity and efficiency.
IoT is driving the proliferation of connected devices from around 15 billion plus
today to over 30 billion in 2020. By doing so, IoT takes the meaning of inter-
connectivity to a whole new level. There is a long list of great benefits that
IoT offers. The following are some examples: Smarter homes and offices that
can save energy costs, better health care via remote monitoring of patients [2],
reminders of mundane tasks such as payment of utility bills and parking meters.
Other examples include smart lighting of streets, automatic sensing and control
of traffic signals, remote monitoring of assembly line and production system to
maximize operational efficiency, reliability and safety in manufacturing facili-
ties, and smart automobiles that can summon assistance if required and assist
in controlling vehicle speed based on traffic and environmental conditions.

There is an increasing demand of vast numbers of trustworthy devices pro-
vided with short-range radio interfaces, such as Zigbee, low-power Wi-Fi etc.
to deliver connectivity to other devices in IoT systems in order to preserve the
operational efficiency. Reliable and energy efficient communications for the IoT
systems are improved due to the introduction of capillary networks. These net-
works are specific local networks comprising of a group of wireless devices to be
connected to other communication infrastructure such as mobile networks [3].
Such networks use clustering mechanisms to enhance energy efficiency [4].

[R1,5] In [5] the authors analyses the performance of LEACH-based wireless
sensor networks regarding lifetime and throughput. The LEACH protocol is
a well-known routing protocol for cluster based wireless sensor networks. The
benefit of LEACH is that each node has an equal probability to be a cluster head.
In this case, the energy dissipation of each node is relatively fair. In LEACH
protocol, time is partitioned into many rounds, in each round, all the nodes
try to be CH according to a predefined criterion. The authors focus on how to
choose the time length of each round, to increase the lifetime of the network and
improve throughput, which is denoted as the number of data packets conveyed
to the sink node. The relationship between the lifetime and throughput to the
time length of each round is utilized to improve the performance of cluster-based
wireless sensor networks in terms of lifetime and throughput. The reasonable
number of frames in a LEACH round is deduced to prolong the lifetime and
increase the throughput.

[R1,5] The authors in [6] investigates energy efficiency in cooperative cellular
networks. Based on the double auction theory, they model the optimal relay as-
signment problem, which aims at improving the performance of cell-edge users
(CEUs) with energy efficiency optimization. In the proposed auction-based
model, the selfish nature of users is taken into consideration, which means users
in the idle state are unwilling to relay the information for active CEUs un-
less they are paid enough. Therefore, they use mark-up to determine the bid
and ask. Furthermore, the energy efficiency (EE) is defined and the model for
optimizing the EE is built. An energy-efficient maximum weighted matching
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algorithm (EE-MWM) is proposed to solve the EE optimization problem. Also,
the performance of EE-MWM is evaluated in terms of EE, capacity and social
welfare, which shows that EE-MWM can greatly improve the performance of
cooperative cellular networks. Cooperative communications improve the perfor-
mance of wireless networks by letting nodes cooperate to obtain spatial diversity
gains. To achieve cooperation gains, suitable relay node(s) should be chosen ac-
cording to network topology and channel state information (CSI). But, in ad
hoc wireless networks, the CSI is random, and the network topology is chang-
ing. This complicates relay selection, and in turn, makes it hard to perform
cooperative communications in ad hoc wireless networks. To address this issue,
the authors in [7] propose blind cooperative communications (BCC) for multi-
hop ad hoc wireless networks. In BCC, intermediate nodes and the target node
in a multihop path first listen and store the data from two-hop-away upstream
nodes, and then merge the stored data with the data forwarded by the upstream
to achieve diversity gains. The performance of BCC is assessed by analysis and
simulations to confirm that BCC can significantly enhance the packet delivery
ratio and the average end-to-end throughput. Compared with existing coopera-
tion methods, BCC needs neither CSI and topology information nor additional
signaling overheads, making it very easy to implement in changing multihop ad
hoc wireless networks.

[R2,3] To meet the requirements of high EE and large system capacity for the
5G Internet IoT, the use of massive multiple-input multiple-output technology
has been launched in the massive IoT (mIoT) network, where a large num-
ber of devices are connected and scheduled simultaneously. The authors in [8]
considers the energy-efficient design of a multipair decode-and-forward relay-
based IoT network, in which multiple sources simultaneously transmit their
information to the corresponding destinations via a relay equipped with a large
array. Furthermore, a simple yet efficient lower bound of the EE is obtained.
Based on this, a low-complexity energy-efficient resource allocation strategy of
the mIoT network is proposed under the specific quality-of-service constraint.
Their proposed strategy determines the near-optimal number of relay antennas,
the near-optimal transmit power at the relay, and near-optimal density of active
mIoT device pairs in a given coverage area.

[R2,3] Considering physical sensors with certain sensing capabilities in an
IoT sensory environment, the authors in [9] propose an efficient energy man-
agement framework to control the duty cycles of these sensors under quality-
of-information (QoI) expectations in a multitask-oriented environment. Con-
trary to past research efforts, their proposal is transparent and compatible both
with the underlying low-layer protocols and diverse applications, and preserv-
ing energy-efficiency in the long run without sacrificing the QoI levels attained.
In particular, they first introduce the novel concept of QoI-aware sensor-to-task
relevancy to explicitly consider the sensing capabilities offered by a sensor to the
IoT sensory environments, and QoI requirements required by a task. Second,
they propose a novel concept of the critical covering set of any given task in
selecting the sensors to service a task over time. Third, the energy management
decision is made dynamically at runtime, to reach the optimum for long-term
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application arrivals and departures under the constraint of their service delay.
[R2,3] Simultaneous wireless information and power transfer (SWIPT) is

anticipated to have great applications in 5G communication systems and the
Internet of Things. The authors in [10] address the EE optimization problem
for SWIPT multiple-input multiple-output broadcast channel (BC) with time-
switching (TS) receiver design. Their aim is to maximize the EE of the system
while meeting certain constraints in terms of maximum transmit power and
minimum harvested energy per user. The coupling of the optimization variables,
namely transmit covariance matrices and TS ratios, leads to an EE problem
which is nonconvex, and hence very difficult to solve directly. Hence, they
transform the original maximization problem with multiple constraints into a
suboptimal min-max problem with a single constraint and multiple auxiliary
variables. They propose a dual inner/outer layer resource allocation framework
to tackle the problem. For the inner-layer, they invoke an extended SWIPT-
based BC-multiple access channel (MAC) duality approach and provide two
iterative resource allocation schemes under fixed auxiliary variables for solving
the dual MAC problem. A subgradient searching scheme is then proposed for
the outer-layer in order to obtain the optimal auxiliary variables. Numerical
results confirm the effectiveness of their proposed algorithms and demonstrate
that important performance gain in terms of EE can be realized by using the
proposed extended BC-MAC duality-based algorithm.

[R2,3] The authors in [11] present a naming, addressing, and profile server
(NAPS) as a middleware to bridge different platforms in IoT sensory environ-
ments. Given massive amount of heterogeneous devices deployed across differ-
ent platforms, NAPS serves as the key module at the back-end data center to
aid the efficient upstream sensory data collection, content-based data filtering
and matching, and downstream efficient control by applications. While previ-
ous research efforts only focus on a specific standard or protocol, they aim to
design a middleware component servicing dynamic application needs, and sen-
sors/actuators deployment and configurations across different platforms. Specif-
ically, the authors of this paper propose a complete design of NAPS, including
its key functionalities, system flows, interfaces, and individual module design.
They further propose a unique device naming and addressing convention, and
show its applicability to a few widely-used standards and protocols. They also
propose an efficient identifier generation scheme and demonstrate a full imple-
mentation of the above designs with a case study, including a service registration
portal.

Clustering mechanisms organize the devices into different clusters and choose
cluster heads (CHs) that consequently collect data from all cluster members
(CMs) and transmit the collected data to the sink node via communication
infrastructure networks. However, the CHs consume more energy compared
to other devices in the network as they take more responsibility and disperse
additional energy to transmit grouped data to the sink node. Cooperative
multiple-input-multiple-output (CMIMO) transmission scheme was then pro-
posed to solve the aforementioned problem [12]. CMIMO introduces additional
cooperative nodes (Coops) at both sending and receiving ends to help CH in
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long-haul transmission which is the most energy consuming phase of the commu-
nication between the cluster and the sink node. In [13], the authors proposed a
novel fair cooperative communication scheme that inspires devices to contribute
in cooperative communication by offering extra rewards. A Coop is selected
from CMs within the same cluster if two conditions are satisfied: the first is
that Signal-to-Noise Ratio (SNR) of the received signal sent by the CM is larger
than a predefined SNR threshold level, and the second condition is that the
CM is within the domain of the destination cluster. Via simulation results and
numerical analysis, it was demonstrated that the proposed scheme consumes
far less energy than partial cooperative and non-cooperative schemes. However,
the energy level of devices is not considered in [13]. In [14], a solution for non-
uniform energy consumption in the cluster based multi-hop wireless networks
through adaptive selection of cooperative MIMO schemes has been proposed
by the authors. The authors also have shown that the multi-hop cooperative
MIMO in relay clusters result in reduced energy consumption as compared to
the non-cooperative case, and the adaptive selection of cooperative transmission
delivers uniform energy consumption in all the clusters. However, the Coops
selection is not studied in [14].

The above-mentioned challenges raise the concerns to find an optimum set of
cooperative coalition’s at both transmit and receive sides in cluster-based capil-
lary networks with the objectives of energy efficiency. Evolutionary algorithms
are believed to have potential in solving such a coalitions selection problem [15].
Quantum-inspired particle swarm optimization (QPSO), one of the evolution-
ary algorithms merges the advantages of the quantum computing theory and
evolutionary algorithms. Compared with particle swarm optimization (PSO),
QPSO embraces novel rotation angle and quantum bit techniques so that it has
the characteristics of strong searching capability, short-computing time, rapid
convergence, and small-population size [16].

The main contributions of this work are summarized as follows:

• First, we frame the energy efficiency optimization into the optimum cooper-
ative coalition’s selection problem with the aim of maximizing the average
battery capacity among the whole network. In particular, the energy con-
sumption of each transmission phase is framed in terms of number of trans-
mitters and receivers, packet size as well as a pre-determined bit error rate
(BER) threshold. Furthermore, a battery model in [17] is used to evaluate
the energy consumption of all devices by battery capacity.

• Second, we propose to select cooperative coalitions at the sender and receiver
sides of each hop in the routing path by QPSO. By taking advantage of the
low complexity and fast convergence of QPSO, we formulate the possible
cooperative coalitions by quantum-coded particles. All particles are hovered
through the whole search space by updating the fitness value, i.e. the average
battery capacity, until reaching the pre-defined maximum generation.

The rest of this paper is organized as follows: Section II introduces the system
model including the problem formulation, the power consumption model, and

5



the battery model. In Section III, the QPSO algorithm has been explained in
detail and also we propose the use of QPSO to achieve the optimum cooperative
coalitions in the routing path with the objective of maximizing the average
battery operating time in the network. Simulation results and conclusions are
provided in Sections IV and V, respectively.

2. System Model and Problem Formulation

In this work the system model, shown in Fig. 1, focuses on one routing path
from Cluster 1 to the capillary gateway through n hops. The system model
considers a typical energy-limited cluster-based capillary network for IoT sys-
tems with Ntotal devices. All devices in the routing path have been classified
into four classes: CHs, CMs, cooperative sender devices (SCoops), and cooper-
ative receiver devices (RCoops). Denote the number of CHs in the network to
be NCH , which also indicates the number of clusters in the network, while the
number of CMs in cluster i to be NCM (i) where i ∈ [1, · · · ,NCH ]. Also the
number of SCoop and RCoop in cluster i are denoted NSCoop(i) and NRCoop(i)
respectively, where i ∈ [1, · · · ,NCH ].

Data collection (capillary access)
Local broadcasting (capillary access)

Long-haul CMIMO (capillary access)
IoT Platform

Cellular accessCluster 1

Cluster 2

Cluster 3

...

Cluster n-1

Cluster nTransit clusters

Cluster head (CH)

Cluster member (CM)

Cooperative sender device (SCoop)

Cooperative receiver device (RCoop)

Local forwarding (capillary access)

Capillary gateway

Base station

Figure 1: System model.

In this paper, we adopt the additive white Gaussian noise (AWGN) channel
with squared power path loss for intracluster communications within the cluster,
and the frequency nonselective and slow Rayleigh fading channel for long-haul
transmission in each hop. Moreover, since the communications environment
is more complex in the long-haul transmission, we assume that the long-haul
transmission with respect to the wavelength gives rise to independent fading
coefficients. In developing the strategy, M -ary Quadrature Amplitude Modula-
tion (MQAM) is adopted. Furthermore, we assume the energy level of capillary
gateway is infinite, therefore, the energy consumption of capillary gateway is
omitted.
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In Fig. 1, considering the long range scenario, the data flow from Cluster
1, i.e. the source cluster to the capillary gateway, is through several transit
clusters by CMIMO scheme to reduce the long-haul transmission overhead. In
particular, CH in cluster 1 at the transmission side liaises with its SCoops to
send data to their neighboring cluster, i.e. Cluster 2, by forming a virtual
multi-antenna diversity system. Concurrently, the CH in Cluster 2 liaises with
its RCoops to receive the MIMO modulated data from Cluster 1 in the reception
side. In this way, all the transit clusters from Cluster 2 to the capillary gateway
not only forward their own data but also relay the MIMO modulated data from
their neighboring clusters in the routing path.

CH

RCoop

SCoop

Cluster 1 Cluster 2 Cluster n

Figure 2: Inter-cluster communication

The transmission process of every cluster in the routing path consists of the
following phases:

• Data collection (DC) phase. As shown in Fig. 3a, CH collects and aggregates
data from all other non-CH devices.

• Local broadcasting (LB) phase. As shown in Fig. 3b, CH broadcasts the
aggregated data to all SCoops at the transmission side.

• Long-haul cooperative transmission (LH) phase. As shown in Fig. 2, CH and
its SCoops in the transmission cluster jointly encode and send the aggregated
data to the CH and its RCoops in the adjacent cluster or the capillary gateway
based on the cooperative technique investigated in [18] which is such that the

CH

CM

RCoop

SCoop

(a) Data collection phase

CH

SCoop

(b) Local broad-
casting phase

CH

RCoop

(c) Local for-
warding phase

Figure 3: Inter-cluster communication
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cooperative coalitions share their antennas to create a virtual array through
distributed transmission and signal processing.

• Local forwarding (LF) phase. In this phase as shown in Fig. 3c, all RCoops
transmit the MIMO modulated data to their CH at the reception side. The
MIMO modulated data are obtained from the transmission cluster. Then the
reception CH decodes and combines these data with its cluster data collected
in the data collection phase. Finally, the combined data is further directed
through the next hop.

In addition, we use the transmission operation in [19], which is divided into
several rounds during the time period from the initialization of the network to
the last device running out of energy. The transmission is operated in two phases
of one round as shown in Fig. 4 set-up phase and steady state phase. During
the set-up phase, the gateway executes the clustering algorithm to select CHs
and form clusters, the routing algorithm to construct the routing table, and the
cooperative coalition selection algorithm to select SCoops and RCoops in each
cluster. The steady state phase consists of several time frames. All the four
phases in Fig. 2 and Fig. 3 are performed during one time frame, where time
division multiple access (TDMA) scheduling is employed. Express the duration
of one time frame to be t∆ and the number of time frames of the steady state
phase in one round to be Nframe. Generally, in comparison with the duration
of the steady state phase, the length of set-up phase is much shorter, which can
be ignored, hence the duration time of one round is Tround = t∆ ×Nframe.

Set-up Steady state Frame

Round 0 Round 1

Time 

CHs 

selection

Cluster 

formation

Routing 

table 

generation

Cooperative 

nodes 

selection
Node1 Node2 ... Node N

Data forwarding to 

Capillary gatway

... ... ... 

Time slot

Data collection phase
Multi-hop based 

MIMO Transmission

Figure 4: Transmission structure in cluster-based IoT system

2.1. Battery Model

In this work, the battery model in [17] is used. When a battery discharges at
current rate Ic in time period [ts, te], the available capacity Cavl(Ic, Top, ts, te, β

2)
can be expressed as follows,

Cavl(Ic, Top, ts, te, β
2) = Cinit − IcF (Top, ts, te, β

2), (1)
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where

F (Top, ts, te, β
2) = (te − ts)

+ 2

∞∑
k=1

e−β
2k2(Top−te) − e−β2k2(Top−ts)

β2k2
,

(2)

Cinit is the initial battery capacity, β2 is a constant related to the diffusion
rate of the battery, which can be determined by data fitting [20], and Top is the
total operating time of the battery. In (2) there are two terms, the first term
Ic(te− ts) is the consumed capacity by the given current load Ic, and the second
term is the capacity loss due to the current effect.

2.2. Energy Consumption Model

The power consumption model defined in [21] is used in this work. The
total power consumption alongside a single path can be split into two main
components: one is the power consumption of all power amplifiers PPA and the
other component is the power consumption of all other circuit blocks Pc. Note
that the power consumption of power amplifiers is linearly dependant on the
transmit power Pt, as in [21]. Then the power consumption per link can be
expressed as

P=PPA+Pc = (1 + α)Pt + Pc, (3)

where α = ξ/η − 1 with η being the drain efficiency of the RF power amplifier,
and ξ being the peak-to-average ratio, which is dependent on the modulation
scheme and the associated constellation size [22]. As referred to [21], ξ = 3(M−
2
√
M + 1)/(M − 1) in MQAM coded communication.
As discussed in [21], denote the number of transmitters and receivers to be

Nt and Nr respectively, we estimate the circuit power consumption Pc as

Pc ≈ Nt(PDAC + Pmix + Pfilt) + 2Psyn

+Nr(PLNA + Pmix + PIFA + Pfilr + PADC),
(4)

where PDAC , Pmix, Pfilt, Psyn, PLNA, PIFA, Pfilr and PADC are the power
consumption values of the D/A converter, the mixer, the active filters at the
transmitter side, the frequency synthesizer, the low noise amplifier, the inter-
mediate frequency amplifier, the active filters and the A/D converter at the
receiver side, respectively. Pc comprises the transmitting circuit power Pct and
the receiving circuit power Pcr.

For a general communication link, the energy consumption per bit can be
formulated as

Ebt =
(1 + α)Pt + Pc

Rb
, (5)

whereRb = B log2M is the bit rate forMQAM,B is the modulation bandwidth.
In the MQAM-based connection, Pt in (5) can be calculated according to

the link budget relationship as follows,

Pt =
(4π)

2
MlNr

GtGrλ2
· Ēb
N0

Rbd
κ, (6)
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where κ is the channel path loss exponent, d is the distance between trans-
mitter and receiver, Gt and Gr are the transmitter and receiver antenna gains
respectively, Ml is the link margin which indicates the difference between the
receiver sensitivity and the actual received power, Nr is the single-sided power
spectral density of the receiver noise, λ is the carrier wavelength, and Ēb/N0 is
the normalized average energy per bit necessary for a given BER specification
to the noise spectral density.

As referred to [23], the average Ēb/N0 of the intra-cluster communication
with a square constellation MQAM in AWGN channel is given by

Ēb
N0

∣∣∣
intra

.
=

M − 1

3 log2M

[
Q−1

(
P̄ intraBER log2M

4(1− 1/
√
M)

)]2

, (7)

where Q(x) =
∫∞
x

1
2π e
−u2

2 du and P̄ intraBER is the average BER of intra-cluster
communication.

In [24], the average Ēb/N0 of the inter-cluster communication with a square
constellation MQAM in Rayleigh fading channel is given by

Ēb
N0

∣∣∣
inter

.
= NT

2(M − 1)

3 log2M

×

1

4

(
4(1− 1/

√
M)
(

2NTNR+1
NTNR

)
P̄ interBER log2M

) 1
NT NR

− 1

 , (8)

where NT and NR are the number of transmission and reception devices and
P̄ interBER is the average BER of inter-cluster communication.

2.3. Power Consumption and Active Time in the Transmission

2.3.1. Data collection phase

Data collection phase: The CH, in this phase, in each cluster acts as the re-
ceiver dispersing the receiving path power consumption, while all CMs, SCoops
and RCoops transmit data to their relating CH, dissipating the transmitting
path power consumption. According to the assumption of squared power path
loss, the power consumption per bit for the data collection phase of devices in
the i-th cluster can be expressed as follow,

PDCCH (i) = Pcr,

PDCCM (i, j) =
(4π)

2
MlNr

GtGrλ2
Rbd

2
j,i ·

Ēb
N0

∣∣∣
intra

+ Pct,

PDCSCoop(i,m) =
(4π)

2
MlNr

GtGrλ2
Rbd

2
m,i ·

Ēb
N0

∣∣∣
intra

+ Pct,

PDCRCoop(i, k) =
(4π)

2
MlNr

GtGrλ2
Rbd

2
k,i ·

Ēb
N0

∣∣∣
intra

+ Pct,

(9)
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where j ∈ [1, · · · ,NCM (i)], m ∈ [1, · · · ,NSCoop(i)] and k ∈ [1, · · · ,NRCoop(i)].
Similarly, the active time of devices in the i-th cluster for the data collection
phase can be expressed as follows,

TDCCH (i) = (NCM (i) +NSCoop(i) +NRCoop(i))
L

Rb
,

TDCCM (i, j) =
L

Rb
,

TDCSCoop(i,m) =
L

Rb
,

TDCRCoop(i, k) =
L

Rb
,

(10)

where L is the amount of data in bits.
The CH performs data aggregation technique, after collecting data from all

non-CH devices. In [25], the amount of data after aggregation is,

Lagg(i) =
(1 +NCM (i) +NSCoop(i) +NRCoop(i))

(NCM (i) +NSCoop(i) +NRCoop(i))γ + 1
L, (11)

where γ is the aggregation factor.

2.3.2. Local broadcasting phase

The CH in the i-th cluster, in the local broadcasting phase, acts as transmit-
ter to broadcast the aggregated data to all SCoops, dissipating the transmitting
path power consumption. Also all SCoops receive data information from the
CH, dissipating the receiving path power consumption. Due to the broadcast
nature of the wireless channel, if the SCoop with the maximum distance from
CH in the i-th cluster denoted by dmax(i) can receive the data from the CH,
the other SCoops can simultaneously receive these data. Then the power con-
sumption per bit of devices for the local broadcasting phase in the i-th cluster
can be expressed as follows,

PLBCH(i) =
(4π)

2
MlNr

GtGrλ2
Rbd

2
max(i) · Ēb

N0

∣∣∣
intra

+ Pct,

PLBCM (i, j) = 0,

PLBSCoop(i,m) = Pcr,

PLBRCoop(i, k) = 0,

(12)

where j ∈ [1, · · · ,NCM (i)], m ∈ [1, · · · ,NSCoop(i)] and k ∈ [1, · · · ,NRCoop(i)].
Similarly, the active time of devices in the i-th cluster for the local broadcasting
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phase can be stated as follows,

TLBCH(i) =
Lagg(i)

Rb
,

TLBCM (i, j) = 0,

TLBSCoop(i,m) =
Lagg(i)

Rb
,

TLBRCoop(i, k) = 0.

(13)

2.3.3. Long-haul transmission phase

In this phase, the CH and SCoops in the i-th cluster jointly transmit the
MIMO modulated data to their adjoining (i+1)-th cluster or the capillary gate-
way, dissipating the transmitting path power consumption, while the CH and
RCoops in the (i + 1)-th cluster receive the MIMO modulated data, dissipat-
ing the receiving path power consumption. In wireless channels, the long-haul
distance in the CMIMO communications represents the maximum distance be-
tween the transmission device in the i-th cluster and the reception devices in the
(i + 1)-th cluster. Denote these maximum distances as dκmax

max (i) and dκmax
max (m)

for the CH and the SCoop respectively. Hence, at the transmission side for the
long-haul transmission phase, the power consumption per bit of devices in the
i-th cluster can be expressed as follows,

PLHCH (i) =
(4π)

2
MlNr

GtGrλ2
Reffb dκmax

max (i) · Ēb
N0

∣∣∣
inter

+ Pct,

PLHCM (i, j) = 0,

PLHSCoop(i,m) =
(4π)

2
MlNr

GtGrλ2
Reffb dκmax

max (m) · Ēb
N0

∣∣∣
inter

+ Pct,

PLHRCoop(i, k) = 0,

(14)

where j ∈ [1, · · · ,NCM (i)], m ∈ [1, · · · ,NSCoop(i)] and k ∈ [1, · · · ,NRCoop(i)]
and Reffb is the effective system bit rate as evaluated in (16).

In [26], authors introduced a training overhead into the CMIMO scheme for
the purpose of channel estimation. The number of required training symbols
is proportional to the number of transmit antennas. Hence, the packet size of
long-haul transmission is given by,

Lc(i) =
Fblock

Fblock − ρtrain(NSCoop + 1)

i∑
q=1

Lagg(q), (15)

where Fblock is the block size of STBC code, ρtrain(NSCoop + 1) is the number
of training symbols in each block. According to [27], the effective system bit
rate is given by,

Reffb =
Fblock − ρtrain(NSCoop + 1)

Fblock
Rb. (16)

12



Then, for the long-haul transmission phase, the active time of devices in the
i-th cluster can be expressed as follows,

TLHCH (i) =
Lc(i)

Reffb

,

TLHCM (i, j) = 0,

TLHSCoop(i,m) =
Lc(i)

Reffb

,

TLHRCoop(i, k) = 0.

(17)

And at the reception side, the power consumption per bit of devices in the
(i+ 1)-th cluster can be expressed as follows,

PLHCH (i+ 1) = Pcr,

PLHCM (i+ 1, j) = 0,

PLHSCoop(i+ 1,m) = 0,

PLHRCoop(i+ 1, k) = Pcr,

(18)

where j ∈ [1, · · · ,NCM (i+1)], m ∈ [1, · · · ,NSCoop(i+1)] and k ∈ [1, · · · ,NRCoop(i+
1)]. Consistently, for the long-haul transmission phase, the active time of devices
in the (i+ 1)-th cluster can be expressed as follows,

TLHCH (i+ 1) = (NRCoop(i) + 1)
Lc(i)

Reffb

,

TLHCM (i+ 1, j) = 0,

TLHSCoop(i+ 1,m) = 0,

TLHRCoop(i+ 1, k) = (NRCoop(i) + 1)
Lc(i)

Reffb

.

(19)

2.3.4. Local forwarding phase

In this phase, CH in the (i + 1)-th cluster receives long-haul MIMO data
from all RCoops in the same cluster, dissipating the receiving path power con-
sumption. In the meantime, RCoops transmit data to their CH, dissipating
the transmitting path power consumption. As a result, for the local forwarding
phase, the power consumption per bit of devices in the (i+ 1)-th cluster can be
expressed as follows,

PLFCH(i+ 1) = Pcr,

PLFCM (i+ 1, j) = 0,

PLFSCoop(i+ 1,m) = 0,

PLFRCoop(i+ 1, k) =
(4π)

2
MlNr

GtGrλ2
Rbd

2
k,i+1 ·

Ēb
N0

∣∣∣
intra

+ Pct,

(20)
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where j ∈ [1, · · · ,NCM (i+1)], m ∈ [1, · · · ,NSCoop(i+1)] and k ∈ [1, · · · ,NRCoop(i+
1)]. Similarly, for the local forwarding phase, the active time of devices in the
(i+ 1)-th cluster can be expressed as follows,

TLFCH(i+ 1) = NRCoop(i+ 1)
Lc(i)

Reffb

,

TLFCM (i+ 1, j) = 0,

TLFSCoop(i+ 1,m) = 0,

TLFRCoop(i+ 1, k) =
Lc(i)

Reffb

.

(21)

2.4. Problem Formulation
The average current required to power a device during period [ts, te] can be

obtained by [28],

Īc =
Ptotal
φV

, (22)

where Ptotal is the overall power consumption of period [ts, te], while φ and V ,
respectively, denote the DC-DC converter output efficiency and voltage.

The overall power consumption Ptotal of device n is expressed as

Ptotal(n) = PDC(n) + PLB(n) + PLF (n) + PLH(n) (23)

and PDC(n), PLB(n), PLF (n) and PLH(n) can be obtained from (9), (12), (20),
and (14) and (18) respectively.

The overall active time Ttotal of device n during the transmission is expressed
as

Ttotal(n) = TDC(n) + TLB(n) + TLF (n) + TLH(n) (24)

where TDC(n), TLB(n), TLF (n) and TLH(n) can be obtained from (10), (13), (21),
and (17) and (19) respectively.

The battery operating time of device n can then be expressed as,

Cavl(Ic(n), Top(n), ts(n), te(n), β2)

Īc(n)

=
Cinit(n)φV

Ptotal(n)
− (te(n)− ts(n))

− 2

∞∑
k=1

e−β
2k2(Top(n)−te(n)) − e−β2k2(Top(n)−ts(n))

β2k2
.

(25)

In this work, we assume ts(n) = 0, and te(n) = TDC(n) + TLB(n) + TLF (n) +
TLH(n).

The cooperative coalition in the i-th cluster can be expressed as follows,

SCoop(i) =
{
SCoop1(i), · · · , SCoopNSCoop(i)

(i)
}
,

RCoop(i) =
{
RCoop1(i), · · · , RCoopNRCoop(i)

(i)
}
,

C(i) = RCoop(i) ∪ SCoop(i).

(26)
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The research problem in this work is to find the optimum cooperative coali-
tions of all clusters in the routing path, denoted by C = {C(1), · · · , C(i), · · · , C(NCH)},
in order to maximize the average battery operating time T̄ avgop under given BER

threshold P̄THRBER . Hence the research problem formulation can be expressed as,

maximize
C

T̄ opavg =

∑Ntotal

n=1 Top(n)

Ntotal
. (27)

3. Description and Analysis of QPSO Algorithm

In PSO, which is an evolutionary computing technique based on the bird
flocking principle, a swarm consists of several particles and each particle rep-
resents a candidate solution to the optimization problem. To find the particle
position, each particle flies in the search space and updates its best individual
optimum position and global optimum position of the swarm by moving towards
a better solution space. QPSO introduces quantum coding mechanism to en-
code each particle. It was tested on some benchmark functions and experimental
results showed that QPSO outperforms PSO [29].

3.1. Quantum Particle Swarm Optimization (QPSO)

QPSO encodes each particle by a quantum bit (qubit). A qubit is defined
in [30] as a pair of composite numbers (α, β), where |α|2 + |β|2 = 1 and α > 0,
β > 0. |α|2 gives the probability that the quantum bit is found in ′0′ state and
|β|2 gives the probability that the quantum bit is found in ′1′ state. Then the
quantum velocity of particle m at generation t is defined as

vtm =

[
αtm1

βtm1

αtm2

βtm2

· · ·
· · ·

αtmR
βtmR

]
, (28)

where R is the dimension of the research problem and m ∈ [1, 2, · · · , h], h is the
number of particles.

Since βmn =
√

1− α2
mn, we can simplify (28) as

vtm = [ α
t
m1 αtm2 · · · αtmR ]. (29)

The quantum particle position according to (29) can be expressed as

xtmn =

{
1 if δmn > (vtmn)

2

0 if δmn ≤ (vtmn)
2 , (30)

where δmn ∈ [0, 1] is a uniform random number between 0 and 1. In this
paper, as shown in Fig. 5, the quantum position of a particle is composed of all
possible cooperative coalitions candidates in the routing path. SCoopcand(n)
represents SCoops candidates in Cluster n, which is the set of all non-CH devices
in Cluster n. Furthermore, RCoopcand(n) share the same candidates set with
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SCoopcand(n), which means that every non-CH device in Cluster n has the
potential to be a SCoop and RCoop. The value of quantum position indicates
whether the device n in particle m is a member of the cooperative coalitions:
xtmn = 1 represents that the candidate n in particle m is a SCoop/RCoop at
generation t; otherwise, it is a CM at generation t. Therefore each particle in
this paper represents a possible solution of particular cooperative coalitions, and
the fitness value of each particle can be obtained by (27).

Scoopcand(1) Rcoopcand(2) Scoopcand(2) Rcoopcand(n) Scoopcand(n)

X
t

11 X
t

12

... ... 

Cooperative coalition 

candidates in the first hop
Cooperative coalition 

candidates in the last hop

... ... ... 

... ... ... ... ... ... 

... ... ... ... ... ... 

X
t

21 X
t

21

... 

X
t

m1 X
t

m2

Particle 1

Particle 2

Particle m

... 

... 

X
t

2n

X
t

1n

X
t

m2

Figure 5: Particle position representation

Denote the fitness value of particle m at generation t to be f tm , then the
local individual optimum fitness value fpbestm which is defined as the maximum
fitness value of particle m from the first generation to the current generation t.
Accordingly, the corresponding local individual optimum position pm is defined
as follows,

fpbestm = max{f1
m, f

2
m, · · · , f tm}, (31)

pm = xpbestm . (32)

Likewise, the global optimum fitness value fgbest that is defined as the max-
imum local individual optimum fitness value of all particles and the correspond-
ing global optimum position pg is defined as below,

fgbest = max{fpbest1 , · · · , fpbestm , · · · , fpbesth }, (33)

pg = pgbest. (34)

The quantum rotation angle θt+1
mn , at generation t+ 1, is updated by

θt+1
mn = k1(pmn − xtmn) + k2(pgn − xtmn), (35)

where k1 and k2 are positive learning factors of cognitive and social acceleration,
respectively. The cognitive acceleration factor represents the attraction that a
particle has toward its own success while the social acceleration factor represents
the attraction that a particle has toward the success of its neighbours. Referring
to [31], we set k1 = 1

5ζ1 and k2 = 4
5ζ2 where ζ1 and ζ2 are Gaussian distributed

random numbers with zero mean and unit variance.
The updated velocity of the quantum particle m at t+ 1 generation is

vt+1
mn =


√

1− (vtmn)
2
, if θt+1

mn = 0 and δ = c1∣∣∣∣vtmn cos θt+1
mn −

√
1− (vtmn)

2
sin θt+1

mn

∣∣∣∣ , otherwise
(36)

16



where δ is a uniform random number between 0 and 1, and c1 is a constant
which refers to the mutation probability, c1 ∈ [0, 1/R].

3.2. QPSO Cooperative Coalitions Selection

The multi-hop-based transmission procedure using CMIMO scheme in cluster-
based capillary networks is summarized in Algorithm 1 and the cooperative
coalitions selection process based on QPSO is executed by the capillary gate-
way and summarized in Algorithm 2. Denote the number of routing paths in
the capillary network to be Nroute, the number of candidates set to be NCand,
and the number of generations to be Tmax.

[R1,1] The different steps involved in Algorithm 2 for each route are given
below:

• Step 1: Initialize the positions of all particles (potential solutions) in the
population randomly (lines 2 to 5), and evaluate their fitness values and
positions (lines 6 to 8).

• Step 2: Assign the current fitness value to gbest and assign the current
coordinates to gbest coordinates (lines 9 to 10).

• Step 3: Update the rotation, velocity, and position of all particles (lines
12 to 16).

• Step 4: Evaluate the fitness value of all particles (line 17).

• Step 5: Compare the personal best (pbest) of every particle with its cur-
rent fitness value. If the current fitness value is better, then assign the
current fitness value to pbest and assign the current coordinates to pbest
coordinates (lines 18 to 20).

• Step 6: Determine the current best fitness value in the whole population
and its coordinates. If the current best fitness value is better than global
best (gbest), then assign the current best fitness value to gbest and assign
the current coordinates to gbest coordinates (lines 21 to 24). Note that
this is the step that allows the algorithm to maximize the network lifetime
by choosing the particle (i.e. potential solution) that has the maximum
T̄ opavg as per (27) and (33).

• Step 7: Repeat steps 3-6 until the number of generations reaches Tmax.

[R2,2][R1,2] Although Algorithm 2 is executed by the capillary gateway, that
can be considered as having extensive computational power, it is interesting to
assess the complexity of the algorithm. In this complexity analysis, h and Tmax
are considered to be constants. The for loop of line 1 is executed Nroute times.
The complexity of the lines 2 to 8 is O(NCand + Ntotal). The complexity of
lines 9 and 10 is O(1). Finally, the complexity of the lines from 11 to 24 is
O(NCand +Ntotal). Hence the overall complexity is O(Nroute[NCand +Ntotal]).
SinceNCand < Ntotal andNroute ≤ Ntotal, the overall complexity of Algorithm 2
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is O(N 2
total). Note that this is a worst case scenario complexity as in practice

the number of routes is at maximum equal to the number of CHs and in practice
the number of CHs is much smaller than Ntotal.

Algorithm 1: Multi-hop-based transmission procedure using CMIMO
scheme

1 Set r = 0
2 while ∃n.Erre(n) > 0 do
3 Set-up phase initialization. Every device reports its location and

residual energy to the capillary gateway.
4 CH selection and Cluster formation. The capillary gateway runs a

centralized clustering algorithm based on the devices’ individual
information, for example, clustering scheme in [32], to assign every
device with a role: CH or non-CH device.

5 Routing path construction. The capillary gateway runs a routing
protocol, e.g. [33] to construct the routing tables.

6 Cooperative coalitions selection. The capillary gateway selects the
cooperative MIMO coalitions from all non-CH devices in all routing
paths by Algorithm 2.

7 The gateway broadcasts a message to inform each device about which
cluster it belongs to as well as its role in the cluster: CH, CM,
SCoop or RCoop.

8 Steady-state phase data transmission.
9 for each i ∈ [1, 2, · · · ,Nframe] do

10 The capillary network performs intra-cluster and inter-cluster
data transmission in frame i.

11 r ← r + 1

12 return set r as the final number of rounds when all devices run out of
energy.

4. Simulation

In this paper, for simplicity, we assume a scenario with three clusters in one
routing path, i.e. 3 hops routing. Each cluster consists of 10 devices which are
randomly distributed within a circle of 25 m radius. Furthermore, all devices
are powered by one AAA Li-FeS2 battery, which has 1.5-volt nominal voltage
and 1200 mAh nominal capacity.

[R1,3] Similar works that try to address the same problem are [32] and [34].
However, [32] does not consider the cooperation mechanism, while [34] is a
CMISO system where the focus is on the cooperative transmission process only.
Hence, we simulate the 2×2 MIMO and 3×3 MIMO systems as reference so that
we can compare our work with the peer work. We simulate the transmission in
one round. The system parameters are given in Table 1.
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Algorithm 2: [R1,1] QPSO for cooperative coalitions selection in order to
maximize the network lifetime

1 for each i ∈ [1,Nroute] do
2 for each m ∈ [1, 2, · · · , h] do
3 for each n ∈ [1, 2, · · · ,NCand] do
4 Set x1

mn to 0 or 1 randomly

5 Set v1
mn = 1/

√
2

6 Update f1
m by (27)

7 Set fpbestm = f1
m

8 Set pm = x1
m

9 Update fgbest by (33)
10 Update pg by (34)
11 for each t ∈ [1, 2, · · · , Tmax − 1] do
12 for each m ∈ [1, 2, · · · , h] do
13 for each n ∈ [1, 2, · · · ,NCand] do
14 Update θt+1

mn by (35)
15 Update vt+1

mn by (36)
16 Update xt+1

mn by (30)

17 Update f t+1
m by (27)

18 if f t+1
m > fpbestm then

19 Set fpbestm = f t+1
m

20 Set pm = xt+1
m

21 Update f t+1
gbest by (33)

22 if f t+1
gbest > fgbest then

23 Set fgbest = f t+1
gbest

24 Update pg by (34)

25 Set fg(i) = fgbest
26 Set pg(i) = pg

27 return pg as the set of cooperative coalitions in all paths.

Table 1: System Parameters

Ml = 40dB Nf = 10dB Nr = −161dBm/Hz
B = 10kHz GTGR = 5dBi λ = 0.12m
Nframe = 25 η = 0.47 L = 1000bit
Ntotal = 25 β = 0.5 PLNA = 20mW
PDAC = 15.5mW Pmix = 30.3mW Pfilt = 2.5mW
Pfilr = 2.5mW PIFA = 3mW PADC = 9.8mW
Fblock = 200 ρtrain = 2 M = 16
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First, one of the main difficulties of applying an evolutionary algorithm to
a given problem is to decide on an appropriate set of parameter values, such as
optimum number of particles and optimum number of generations [35]. Denote
the optimum number of generations to be Topt, which shows the number of
generations required to first produce the final optimum global fitness value. In
addition, as referred to [36], the function evaluations denoted by FE is defined
as FE = Topt × h, which indicates the algorithm complexity with respect to
different number of particles. Table 2 shows the optimum number of generations
and function evaluations for different number of particles to converge to the
same optimum global fitness value. The simulation iteration is set to be 100
times. In order to emphasize the convergence trend in Table 2, Fig. 6 shows
the convergence time with respect to both optimum number of generations and
function evaluations.

Table 2: Algorithm complexity analysis of QPSO
Number of particle (h) 5 10 15 20 25
Optimum number of generations (Topt) 954.3 256.6 241.1 243.1 247.8
Function Evaluations (FE) 4771.5 2566 3616.5 4863.3 9165.8

Number of particle (h) 30 35 40 45 50
Optimum number of generations (Topt) 232.2 205.9 228.9 206.9 224.7
Function Evaluations (FE) 6966 7208.8 9157.3 9313.5 11236.7

In Fig. 6, the optimum number of generations decreases dramatically when
the number of particles increases from 5 to 10. This is because more particles
means better opportunity to find the optimum fitness value. However, as the
number of particles increases from 10 to 50, the optimum number of generations
varies within a small range between 205.9 to 256.6, therefore, the performance
of QPSO is not sensitive to higher number of particles. Focusing on the function
evaluations, it can be seen that the minimum FE is achieved at the point where
the number of particle is 10 and the optimum number of generation is 256.6.
Therefore, in order to reduce the algorithm complexity, we set the number
of particles to be 10 and number of generations to be 300 in the following
simulation.

Next, the long-haul distance has been taken into consideration as shown
in Fig. 7. We set P̄THRBER to be 10−4. It is observed that the proposed QPSO
cooperative coalitions selection algorithm outperforms the 2×2 MIMO and 3×3
MIMO in terms of average battery operating time by approximately 20%. This
is because the proposed algorithm can select the optimum cooperative coalition
in every link dynamically. In addition, the 2 × 2 MIMO system outperforms
3 × 3 MIMO system in a short long-haul distance around 100m, due to more
circuit energy consumption of 3× 3 MIMO system. Note that with the increase
of long-haul distance, the average battery capacity decreases. This is because
more RCoops and SCoops are selected to support the long-haul transmission.

Table 3 shows the size of cooperative coalition in each link in terms of long-
haul distance. We can see that the size of cooperative coalitions increases from
link 1 to link 3 on account of the same long-haul distance, due to the increment
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Figure 6: Time complexity analysis of QPSO
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Figure 7: Network lifetime vs. long-haul distance between CHs

of the packet size in the long-haul transmission. Furthermore, it is clear that,
the size of the cooperative coalition also increases in terms of long-haul distance.
However, the size of the cooperative coalition remains the same when the long-
haul distance becomes larger. This is because no optimum SCoops and RCoops
can be selected.

Fig. 8 illustrates the average battery capacity in terms of BER threshold
P̄THRBER . The long-haul distance is set to be 100m. Aforementioned, the proposed
QPSO algorithm can select cooperative coalitions in each link dynamically, and
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Table 3: Size of cooperative coalitions in multi-hop routing

Long-haul distance (m) Link 1 Link 2 Link 3
100 1× 2MIMO 2× 2MIMO 3× 1MIMO
125 1× 2MIMO 2× 3MIMO 3× 1MIMO
150 1× 2MIMO 2× 3MIMO 4× 1MIMO
175 1× 2MIMO 3× 3MIMO 4× 1MIMO
200 1× 2MIMO 3× 3MIMO 4× 1MIMO
225 1× 2MIMO 3× 3MIMO 5× 1MIMO
250 2× 2MIMO 3× 4MIMO 5× 1MIMO
275 2× 3MIMO 3× 4MIMO 5× 1MIMO
300 2× 3MIMO 3× 4MIMO 5× 1MIMO
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Figure 8: Network lifetime vs. BER threshold

hence it outperforms 2× 2 MIMO and 3× 3 MIMO systems. Furthermore, the
2× 2 MIMO system can save more energy than 3× 3 MIMO system under the
same BER threshold after the BER threshold reaches 2.5 × 10−5, because the
size of optimum cooperative coalitions becomes smaller. We also investigate
the size of the cooperative coalition in each link in terms of BER threshold in
Table 4. Table 4 indicates that the proposed QPSO algorithm can select the
cooperative coalitions dynamically to meet different BER requirements.

5. Conclusion

In this paper, we investigate the cooperative coalitions selection using QPSO
algorithms with the aim of maximizing the average battery operating time in
multi-hop and cluster-based IoT systems. We conclude that the proposed QPSO
based cooperative coalitions selection algorithm can select the optimum cooper-
ative devices dynamically to participate in the long-haul MIMO transmission. In
particular, the proposed QPSO-based MIMO scheme outperforms 2× 2 MIMO
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Table 4: Size of cooperative coalitions in multi-hop routing

BER Threshold Link 1 Link 2 Link 3
10−6 1× 3MIMO 3× 3MIMO 5× 2MIMO

5× 10−6 1× 3MIMO 3× 3MIMO 5× 2MIMO
10−5 1× 3MIMO 3× 2MIMO 5× 2MIMO

5× 10−5 1× 2MIMO 3× 2MIMO 4× 2MIMO
10−4 1× 2MIMO 2× 2MIMO 3× 1MIMO

5× 10−4 1× 2MIMO 3× 2MIMO 3× 2MIMO

and 3 × 3 MIMO regarding average battery operating time irrespective of the
target BER.
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