
SD-WISE: A Software-Defined WIreless SEnsor
network

Angelos-Christos G. Anadiotis, Member, IEEE, Laura Galluccio, Sebastiano Milardo, Giacomo Morabito,
and Sergio Palazzo, Senior Member, IEEE

Abstract—SD-WISE is a complete software-defined solution for
wireless sensor (and actuator) networks (WSNs). SD-WISE has
several unique features making it a flexible and expandable so-
lution that can be applied in heterogeneous application domains.
Its fundamental feature is that it provides software abstractions
of the nodes’ resources on both the controller and the nodes
sides. By leveraging these abstractions, SD-WISE (i) extends
the Software Defined Networking (SDN) approach to WSNs,
introducing a more flexible way to define flows as well as the
possibility to control the duty cycles of the node radios to increase
energy efficiency; (ii) enables network function virtualization
(NFV) in WSNs; (iii) leverages the tight interplay between trusted
hardware and software to support regulation compliant behavior
of sensor nodes. In this paper SD-WISE is introduced, its major
operations are described, and its features are demonstrated in
three relevant scenarios, thus assessing the effectiveness of the
approach.

I. INTRODUCTION

The Software Defined Networking paradigm is changing
the way in which networks are conceived with disruptive
implications on network design, deployment, operation, and
maintainance. In the last few years, the industrial and academic
communities have devoted relevant efforts to SDN devel-
opment, and nowadays well established SDN solutions are
available for both wired and wireless infrastructured network
domains.

The adoption of SDN in wireless infrastructureless net-
works and, more specifically, in wireless sensor (and actuators)
networks (WSNs), is at its infancy, instead. Accordingly, in
this paper we introduce a software-defined complete solution
for WSNs which we call SD-WISE. Major innovative features
of SD-WISE are the following:

• SD-WISE includes a software defined networking (SDN)
solution for WSNs which extends the general OpenFlow
approach to such domain. As in OpenFlow, SD-WISE
nodes maintain a table (the WISE Table) the entries of
which specify how to distinguish packets belonging to
certain flows (the Rules) and how such packets should

A preliminary version of this paper was presented at IEEE Infocom 2015
with the title “SDN-WISE: Design prototyping and experimentation of a
stateful SDN solution for wireless sensor networks”.

A.-C. Anadiotis is with the EPFL (work done during his time at CNIT UdR
Catania).
E-mail: angelos.anadiotis@epfl.ch

Laura Galluccio, Giacomo Morabito, and Sergio Palazzo are with the
University of Catania. E-mail: {name.surname}@dieei.unict.it

Sebastiano Milardo is with the University of Palermo.
Email: sebastiano.milardo@unipa.it

be treated (the Actions). Entries in the table are sent to
the nodes by an external Controller. The three major
distinctive characteristics of SD-WISE as compared to
OpenFlow and recent SDN proposals for WSNs are the
following:

– It is stateful. State information is maintained inside
each sensor node and can be modified by executing
the Actions.

– It supports a flexible definition of the Rules. Rules
can involve any portion of the packet to identify
the corresponding flow and can exploit a large set
of relational operators to identify whether a certain
condition is satisfied or not.

– It is energy-aware. One of the most (if not the
most) precious resources in WSNs is energy. Energy
consumption is often reduced in WSN by exploit-
ing duty cycles, i.e., nodes spend large portions of
time in OFF state, and transmission power control,
i.e., nodes transmit at the power level which best
suits the current transmission conditions. The above
techniques have not been considered in OpenFlow
design because energy is not a major problem in
infrastructured networks. SD-WISE instead has been
designed to support both duty cycle and transmission
power control.

• SD-WISE extends network function virtualization (NFV)
to WSNs. To this purpose we extend the Open Network-
ing Operating System (ONOS), which is currently under
development for infrastructured networks, and exploit the
capability of sensor nodes to host an (often lightweight)
operating system. For example, Raspberry Pi and other
embedded devices can host operating systems like Contiki
or RIoT [1], [2].

• SD-WISE leverages strict interplay between trusted hard-
ware and software to guarantee that nodes behavior is
compliant to context-based rules. To this purpose SD-
WISE builds on the work of the Trusted Computing
Group in the context of Trusted Platform Modules (TPM)
which are now commercially available for several embed-
ded systems.

SD-WISE design is highly modular, in order to address the
high variety of WSN devices and their capabilities as well as
the large differences in the requirements stemming from the
application scenarios. In fact, given such heterogeneity there
can be no one-size-fits-all SD-WISE deployment. Accordingly,
different parts of the SD-WISE node or controller stacks may

ar
X

iv
:1

71
0.

09
14

7v
1

 [
cs

.N
I]

 2
5

O
ct

 2
01

7

be deployed in each context.
The objective of this paper is to present the full SD-WISE

architecture and to demonstrate its major features in three
relevant cases. In fact, we will show how SD-WISE can exploit
an OpenFlow-like definition of forwarding rules in a real WSN
testbed. We will also demonstrate how SD-WISE network
function virtualization capabilities can be exploited to support
geographic routing. Note, however, that the same approach can
be applied to support any other protocol such as 6LoWPAN
or ZigBee. Finally, we will demonstrate how SD-WISE can
exploit the interplay between trusted hardware and software
to guarantee that certain operations cannot be performed by
nodes in certain contexts which might be defined on-the-fly in
a very dynamic way.

More specifically, the rest of the paper is organized as
follows. In Section II we provide an overview of relevant
literature. In Sections III and IV we present the major char-
acteristics of SD-WISE. Its behavior in the relevant use cases
will be the subject of Section V. Finally, in Section VI we
will draw some conclusions.

II. RELATED WORK

SD-WISE is a holistic, integrated solution for software-
defined WSNs. Its goal is to render WSNs modular in both
communication and processing, while enforcing regulation
compliance. To achieve this, it leverages software-defined
networking, network function virtualization and in-device se-
curity technologies, respectively. More specifically, SD-WISE
first builds a node architecture, which supports a novel SDN
protocol, as well as the deployment of functions, developed
by users, inside the nodes. The node architecture also incor-
porates a trusted environment, which relies on TPM in order
to verify that the node behaves within a given regulatory
context. Then, the interaction between the applications and
the nodes is performed through a network operating system,
which provides abstractions to instantiate and send SDN rules,
network functions, as well as context rules.

In this section, we discuss the relevant related work in the
above topics. More specifically, we present the most common
SDN solutions used for WSN, then the SDN controllers that
have been individually developed in the context of fixed
networks and finally, state of the art approaches for enforcing
compliance of regulations in sensor nodes. Furthermore, for
each solution described in the following, we outline the major
shortcoming and the corresponding enhancement provided by
the use of SD-WISE.

Solutions for software-defined WSN. Sensor Open-
Flow [3] is the first attempt to implement an SDN protocol for
WSNs. It follows the OpenFlow architecture, by considering
that the nodes should maintain a flow table with entries of
specific, predefined format. Sensor OpenFlow supports in-
network processing mainly to enable data aggregation, as
commonly done in WNS for energy preservation.

Note that Sensor OpenFlow cannot support the wide range
of protocols, either standard or proprietary that have been
proposed in the context of WSNs. To address the above issue,
the Software Defined Wireless Network approach (SDWN),

introduced in [4], leverages flexible entries in the flow tables
maintained by the sensor nodes so achieving higher efficiency
in terms of energy and communication resources. Moreover,
SDWN supports duty cycles to save energy of the nodes.

TinySDN [5] focuses on the support of SDN operations
across different platforms which is achieved by building on
TinyOS. TinySDN enables interoperability of SDN-enabled
nodes with several controllers, and has been implemented and
tested with the Cooja simulator.

In SD-WISE we propose a stateful extension of SDWN [4],
which has already been shown to outperform existing WSN
protocols in terms of delay and resource utilization efficiency
[6]. By exploiting state information and network function vir-
tualization SD-WISE allows nodes to take forwarding decision
without querying the Controller, when local information is
sufficient to the purpose. This results in further reduction of the
delay and increased efficiency in the use of system resources.

SDN Controllers. Even though OpenFlow [7] is the most
well-known SDN protocol, several efforts have already been
made towards controlling the network routing-plane, such as
SANE [8], ETHANE [9], 4D [10] and RCP [11]. On the other
hand, after the wide adoption of OpenFlow, several controllers
have been developed, such as NOX [12], Floodlight [13], and
Beacon [14]. Even though these controllers were successfully
applied in the first days of SDN, they were centralized and
therefore, have been later replaced by distributed solutions,
which are able to scale in order to meet the requirements of
today’s large scale SDN deployments.

OpenDaylight [15] is a distributed network operating sys-
tem, which has been developed as a collaborative project
among several universities and vendors. OpenDaylight sup-
ports sensor nodes in the context of IoT ecosystems through
the IoTDM project, and targets the integration of information
coming from sensor nodes in the cloud. Therefore, it does not
support full interoperability of sensor nodes and switches in
the network layer.

ONIX [16] is a distributed SDN controller, which identifies
the scalability constraints of the aforementioned centralized
solutions and builds an architecture, which distributes the net-
work management functionality to several instances. However,
its development has been discontinued, whereas it has been
developed mainly for data centers and it is closed-source, as
also described in [17].

In the light of these issues, the Open Network Operating
System (ONOS) has been proposed [17]. ONOS is based on
Floodlight, but it is distributed and provides an extensible,
layered architecture, in order to integrate other devices and
protocols, besides OpenFlow, which is inherently supported.
In fact, ONOS has been considered in the context of this work,
due to its scalability properties and its highly modular architec-
ture, which allows the seamless integration of wireless sensor
devices, as has been shown in [18]. In this work, we extend
ONOS in order to support network function virtualization and
enforce regulatory compliance in wireless sensor nodes.

Regulation Enforcement. Recently a few solutions have
been proposed to restrict the behavior of sensors (as well as
smartphones) in certain contexts. From a conceptual point of
view, such solutions radically differ on the basis of the element

which is in charge of transforming context information into
hardware dependent settings of the sensors and actuators.

On one extreme in some solutions the device itself is
responsible of context information processing and translation
of high level regulations into device level configurations. Such
solutions support high level, platform-independent definition
of the restrictions that must be enforced to the device behavior.
However, they require a full trusted hardware/software stack
to be run by devices, which might involve high cost and
processing load. The above drawbacks make such types of
solutions not appropriate in most scenarios.

In a recent Apple’s patent [19], for example, a use case is
envisioned which implements such approach. In the solution
proposed in [19] commands are broadcast to smartphones ex-
ploiting infrared signals in areas where recording is prohibited
(concert halls or movie theaters, for example) to disable all
recording functionalities. As already mentioned, such a type of
solution assumes the availability of large processing resources
in the device (actually, the patent focuses on smartphones).
Furthermore, context is defined by location (besides time,
obviously), whereas cases exist in which context is defined
by larger set of information.

At the opposite extreme there is the approach proposed
in [20]. In this case, a node is envisioned in the infrastructure
which acts as a regulation authority and transforms rules
into detailed, platform dependent configurations. The above
configurations are sent to the devices and flashed in their
memory.

Note that this approach requires minimal operations to be
executed by the devices. In fact, it only relies on trusted
reading and writing in the memory of the device and trust-
worthy measurements from their sensors to perform context
discovery. Nevertheless, such an approach requires the defini-
tion of restrictions to be applied to IoT devices in terms of
low level, platform-dependent configuration, which is difficult
to be realized given the dramatic heterogeneity of the IoT
landscape. Furthermore, exchange of large amount of data is
required and the flashing operation may result in long time
intervals during which the device is freezed.

As explained in the following section, SD-WISE integrates
the advantages of the two approaches described above.

III. SD-WISE

In this section we describe SD-WISE. More specifically, in
Section III-A we provide an overview of the major components
and their interactions. Then, in Sections III-B and III-C we
describe the SD-WISE node architecture and the SD-WISE
operating system architecture.

A. SD-WISE overview

Operations of SD-WISE networks are distributed between
SD-WISE nodes and SD-WISE Controllers.

SD-WISE nodes are wireless sensor nodes that implement
the software defined networking approach and support network
function virtualization. More specifically, in line with the
mostly adopted SDN solutions, the forwarding behavior of
SD-WISE nodes is determined by the content of a table which

Recognized	
Authority	1

Recognized	
Authority	2

Recognized	
Authority	n

SD-WISE	Controller

Network	
App.	1

Network	
App.	2

Network	
App.	m

SD-WISE	Operating	System

Legend:

SD-WISE	node

SD-WISE	sink	node

Commun.	link

Interaction

Fig. 1. SD-WISE structure.

we call WISE Flow Table. Each entry of the WISE Flow
Table specifies how to treat packets with certain characteristics.
Accordingly, a node receiving a packet browses its WISE
Flow Table to check whether an entry related to the received
packet exists. If this is the case, the packet is treated as
specified in the WISE Flow Table entry. Otherwise, the SD-
WISE node sends a request to the SD-WISE Controller and,
upon receiving the response, inserts the corresponding new
entry in the WISE Flow Table. To execute such a procedure,
SD-WISE nodes have to set information about a path towards
the SD-WISE Controller. This is achieved by executing the
Topology Discovery Protocol as specified in Section III-B.

Furthermore, SD-WISE nodes execute a software stack that
provides an API used to access any information related to the
nodes, as well as download, deploy and execute application
layer functions, specified in the SD-WISE Controller. In this
way SD-WISE supports the network function virtualization
paradigm.

SD-WISE nodes execute a trusted firmware that has full
control on nodes’ peripherals. This firmware regulates the be-
havior of the peripherals according to the directives generated
by a remote Recognized Authority, which is identified by the
SD-WISE Controller on the base of the current node context.
To ensure that the trusted firmware is authentic, SD-WISE
nodes are equipped with a Trusted Platform Module (TPM)
which is leveraged to execute software attestation.

In accordance with the current trends concerning SDN,
the SD-WISE Controller is a software suite consisting of a
network operating system (NOS), called SD-WISE Operating
System (or SD-WISE OS in short), and several network appli-
cations. A network application defines the way the network
will treat a subset of packet flows. Therefore, routing proto-
cols are implemented as network applications. Since different
network applications can be installed and run simultaneously
by the same Controller, it becomes simple to provide the most
suitable treatment to different applications with heterogeneous
characteristics and needs.

SD-WISE OS provides a rich set of APIs that allow network
applications to manage different types of remote devices using
unified abstractions to represent them as well as to create
and send rules to them. In fact, the SD-WISE OS transforms
the policies set by network applications into directives that
determine the way SD-WISE nodes will generate and treat
the relevant packets. As an example, in Section V-B we will

Radio MCU Sensors …

Radio MCU Sensors …

SD-WISE	
node	

internal	
API	

Device	management

N
ei
gh
bo

r	
di
sc
ov
er
y

Se
ns
or
	

co
nf
ig
ur
at
io
n

Fu
nc
ti
on

	in
st
al
le
r

TPM

SD-WISE	Trusted	Firmware

Se
cu
ri
ty
	

m
an
ag
em

en
t

Physical
resources

Drivers

Core	functions

NFV	and	device
management

Application	
loader

Multi-
threading

Networking

Fwd. TD

NFV	container

V
N
F	
1

V
N
F	
2

V
N
F	
N

…

Fig. 2. SD-WISE node architecture.

discuss how a network application can implement Geographic
Routing by exploiting the APIs of the SD-WISE Operating
System.

The SD-WISE Controller is also responsible for acting as
an intermediary between the SD-WISE nodes and Recognized
Authorities, i.e., entities that have the power to limit the
operations of nodes based on regulations or other policies,
as previously explained.

B. SD-WISE node architecture

The architecture of SD-WISE nodes is based on the typical
approach of the operating systems for sensor nodes such as
Contiki and RIOT, and is represented in Figure 2.

As regards the hardware characteristics, SD-WISE nodes
have a Trusted Platform Module (TPM) besides the usual
resources such as radio transceiver, MCU, sensors, actuators,
memory, etc.

The TPM implements in hardware four basic security prim-
itives:

• Random number generation;
• Cryptographic key generation and storage;
• Data Encryption/Decryption;
• Hashing;
These primitives are leveraged by SD-WISE to authenticate

trusted elements, to ensure that the software run by a device is
trusted, and that the values provided by sensors are authentic
and have been generated and processed by trusted sensors
[21].

On top of the hardware the SD-WISE Trusted Firmware
is executed, which has full control on the hardware resources.
By exploiting the TPM functionality, the SD-WISE Trusted
Firmware can be authenticated both locally and remotely
by executing software integrity measurement and attestation,
respectively. Note that the SD-WISE Trusted Firmware is in
the position to filter all interactions to/from the hardware and
therefore, has full control on all peripherals - sensors and
actuators.

The Drivers implement the core abstractions of the hard-
ware resources of each node. Access to the physical resources
is only given through the SD-WISE Trusted Firmware.

The Core functions layer builds on top of the SD-WISE
node abstractions and provides key functionalities such as
the support of Networking, Multithreading and Application
Loading, which allows to load and execute new applications
in the SD-WISE node without the need to restart the node.
Recent versions of the major operating systems for embedded
systems, such as Contiki and RIOT, offer this functionality.

The Networking component of the Core layer implements
two fundamental protocols: the SD-WISE Forwarding Protocol
and the Topology Discovery Protocol. The SD-WISE For-
warding Protocol is mostly responsible for the management
of incoming packets with an approach which is derived from
OpenFlow and will be described in Section IV. The Topology
Discovery (TD) protocol, instead, is executed by SD-WISE
nodes for generating local topology information and delivering
it to the Controller. More specifically, the TD protocol main-
tains updated information about the next hop of each node
towards the Controller as well as its current neighbors. To this
purpose all sinks in the SD-WISE network periodically and
(almost) simultaneously transmit a Topology Discovery packet
(TD packet) over the broadcast wireless channel. This packet
contains the identity of the sink that generated it, the battery
level of each node transmitting it, and the current distance from
the sink which is initially set to 0. A node A, upon receiving
a TD packet from node B (note that B can be also a sink),
performs the following operations:

1) inserts B in the list of its current neighbors along with
the current RSSI and the battery level. Obviously, if B
is already present in the list of current neighbors, then
only the RSSI and battery level values are updated;

2) controls whether it has recently received a TD packet
with a lower value of the current distance from the sink.
If this is not the case, then node A updates the value
reported in the TD packet to the current value plus one
and sets its next hop towards the Controllers equal to
B;

3) sets its battery level in the corresponding field of the TD
packet;

4) transmits the updated TD packet over the broadcast
wireless channel.

Periodically, each node generates a packet containing its cur-
rent list of neighbors and sends it to the Controller. Note that
the list of neighbors is periodically cleared. Nodes receiving
packets directed towards the Controllers relay them to the node
that is closer (in terms of number of hops) to the sink.

The Network function virtualization and device man-
agement layer runs on top of the Core layer. At this layer the
virtual network functions, which can be loaded on the fly, are
executed. The network functions make use of the Core API,
which gives them access to the node resources. Furthermore, at
this layer node management functions run. Examples of such
functions include node configuration, security management,
and applications/NF installation.

Finally, interactions between all SD-WISE node compo-
nents occur through the SD-WISE node internal API.

Drivers	

Southbound	

Distributed	
Core	

Northbound	

Network	
App.	1	

Network	
App.	2	

Network	
App.	N	

…	
SD

-W
IS
E	
O
pe

ra
-n

g	
Sy
st
em

	

Topology	
manag.	

Flow	entry	
prep.	

Service	
virtual.	

Node	conf.	
&	control	

Path	
mng	

NF	
consolid.	

Context	
disc.	

NF	prep.	&	
deploy	

Resource	
store	

Network	
Service	API	

Node	
API	

Flow	
API	

Packet	
format	API	

RegulaGon	
API	

Rule	
IdenGf.	

Fig. 3. SD-WISE Operating System architecture.

C. SD-WISE operating system architecture

The architecture of the SD-WISE Operating System extends
the one of the Open Network Operating System (ONOS) and
is depicted in Figure 3.

Like ONOS, the SD-WISE Operating System consists of
three layers called Southbound, Distributed Core, and North-
bound.

Objective of the Southbound is to provide the higher layers
with services supported by the existing resources which are
independent of platform-specific features, such as the layer
2 packet header format, the addressing scheme, the sensor
data format, etc. Accordingly, major responsibilities of the
Southbound are the creation and management of the network
topology, the formatting and management of the flow entries
that will be sent to the SD-WISE nodes, the virtualization
of the services offered by the sensor and actuators deployed
in the nodes, the configuration and control of the SD-WISE
nodes, and the preparation and deployment in the nodes of the
network functions (NF).

The Distributed Core is responsible of most critical man-
agement functions. For example, it is responsible of identi-
fying optimal communication paths and transform them into
sequences of WISE table entries which will be deployed in
the SD-WISE nodes. Furthermore the Distributed Core is
responsible of the so-called Network Function consolidation,
i.e., identify the subset of nodes where NF should be installed
at the Device management and applications layer, as described
in the previous Section III-B. The Distributed Core implements
the functionality needed for discovering the context in which
each SD-WISE node is operating and identify the respective
Recognized Authority. The distributed core maintains the so
called Resource Store updated , i.e., a database containing
information and characterization of the resources provided
by the active SD-WISE nodes. The Resource Store can be
queried by the applications through the Northbound. Finally,
the identification of the rules that SD-WISE nodes must
comply with, based on the high level directives coming from
the relevant Recognized Authorities is also within the scope

of the Distributed Core layer.
The Northbound is responsible of providing applications

with access to the services offered by SD-WISE networks.
Such access must be completely independent of the specific
characteristics of the underlying physical resources. More
specifically, the Northbound specifies the high level features
of the services (i.e., unicast, broadcast, anycast, geocast, etc.)
offered by the WSN. In the Northbound, the abstractions of
SD-WISE nodes are also provided. In this context, we extend
what is available in ONOS, by introducing node features that
are specific of sensor networks and cannot be found in tradi-
tional infrastructured networks. Examples include abstractions
of the sensors and of the actuators deployed in the node, the
level of battery, the current state1. We extend ONOS for the
Flow API as well. In fact in SD-WISE it is possible to define
flows utilizing several relational operators, as anticipated in
Section I and discussed deeply in the following Section IV.
The Packet API, instead, is exactly the same as in ONOS.
Finally, for what concerns the communication involving the
most external layers of the proposed architecture, while on the
one hand the Northbound will define the interface that Rec-
ognized Authorities must use to define context-based rules in
platform-independent way, on the other hand, the Southbound
will interact with the physical devices enforcing secure and
authenticated sessions. It is worth noting that in many cases
IoT devices may lack of direct Internet connectivity or may
have limited resources in terms of memory or computational
power, therefore identity validation using standard protocols
like X.509 may be unfeasible. In this case, the TPM will
support such validation by allowing the exchange of signed
messages using pre-shared pairs of public/private keys stored
inside the TPM itself.

IV. SD-WISE OPERATIONS

In this section we will describe the two major novel
operations introduced by SD-WISE, that is, the SD-WISE
Forwarding included in the Networking module of the Core
layer of the SD-WISE nodes and the procedures run to
guarantee that SD-WISE nodes are compliant to context-based
rules set by a recognized authority. The above operations will
be detailed in Sections IV-A and IV-B, respectively.

A. SD-WISE forwarding

For what concerns forwarding, the behavior of SD-WISE
nodes is completely encoded in three data structures, namely:
the WISE State, the Accepted IDs Array, and the WISE Flow
Table. Along with most SDN approaches, such structures
are filled with the information coming from the Controller,
running in appropriate server. In this way the Controller
defines the networking policies which will be implemented
by the SD-WISE nodes.

At any time SD-WISE nodes are characterized by the
current WISE State which is an array of strings of sState bits
each. The State can be modified by the Controller or by nodes
themselves.

1Recall that sensor nodes spend most of the time in idle state to reduce
energy consumption.

Given the broadcast nature of the wireless medium, in
general sensor nodes can receive packets which are not meant
for them (not even for forwarding). The Accepted IDs Array
allows each WISE node to select only the packets which it
must further process. In fact, the header of the packets contains
a field in which an ID is specified. A node, upon receiving
a packet, controls whether the ID contained in such field is
listed in its Accepted IDs Array. If this is the case, the node
will further process the packet; otherwise it will drop it. Note
that SD-WISE specifies the packet format proposed in [4]
in which the ID field replaces the next hop address. Each
network application can, however, override such format and
specify its own through the Packet format API provided by
the Northbound of the WISE Operating System as described
in the previous Section III-C. If this is the case, a field in
the packet header is used to identify the application that has
generated the packet. Nevertheless, the ID field must remain
as it is required to enable SD-WISE operation over network
segments in which all communications are broadcast.

In the case the packet must be processed, the sensor node
will browse the entries of its WISE Flow Table. Each entry
of the WISE Flow Table contains a Matching Rules section
which specifies the conditions under which the entry applies.
Matching Rules may consider any portion of the current packet
as well as any bit of the current state. If the Matching Rules are
satisfied, then the sensor node will perform an Action specified
in the remaining section of the WISE Flow Table entry. Note
that such action may refer to how to handle the packet as well
as how to modify the current state of the node.

If no entry is listed in the WISE Flow Table whose Matching
Rules apply to the current packet/state, then a request is sent
to the Controller.

In order to contact the Controller, a node needs to have a
WISE Flow Table entry indicating its best next hop towards
one of the sinks. This entry is different from the others because
it is not set by a Controller but is discovered by each node
using the Topology Discovery protocol briefly described in
Section III-B.

Note that sensor nodes have limited capabilities in terms of
memory, therefore, selection of the size of the different data
structures is very important. The optimal choice of such size
depends on several deployment specific features set by the
SD-WISE Operating System during the initialization phase.

B. Context-based regulation compliance

The scheme of the operations performed by SD-WISE
to guarantee regulation-compliant behavior of sensors (and
actuators) is shown in Figure 4.

We assume that each sensor node has a cyber counterpart,
called virtual sensor instantiated in the SD-WISE OS. The
virtual sensor acts as a proxy between the physical device and
the Recognized Authority. This approach is common in several
solutions [22] because exploitation of cyber counterparts of
physical sensor nodes has many advantages. In fact, on a first
hand virtual sensors are persistent, always-on entities whereas
physical devices might spend large portions of the time in idle
mode. Furthermore, virtual sensors can rely on theoretically

Recognized	
authority	

Context	
discovery	

Trusted	
sensor	

Virtualized	
sensor	

Sensed	data	è	

é	
Sensed	data	

Recognized	
Authority	

ê	

Context	informa<on,	
Device	characteriza<on	è	

ç Restric<ons	ç	Configura<on	commands	

Trusted	server	

Fig. 4. Scheme of the operations performed by SD-WISE to guarantee
regulation-compliant behavior of sensor (and actuator) nodes.

unlimited amount of processing and communication resources,
whereas physical devices might be characterized by strict
resource limitations. Finally, the virtual sensors can define a
high level abstraction of the sensor node hiding the specific
details of the hardware platform implementing the physical
device. Therefore, the interactions between the sensors and
the Recognized Authority are platform independent, whereas
the interactions between the physical sensor and the virtual
sensor can occur according to proprietary protocols. These can
be optimized according to the specific needs arising from the
hardware characteristics as well as the deployment scenario.

For what concerns the focus of our work, the virtual sensor
will receive the information from its physical counterpart that
will forward it to the Context Discovery module to determine
the current context. According to [23], the context is defined by
the identity of the node itself and the assets in its neighborhood
and, therefore, relevant information is [24]:

• Social environment: location, nearby people, situation
• Computing environment: nearby sensors/actuators, con-

nectivity options
• Physical environmet: noise, temperature, humidity, light-

ing, etc.
Accordingly, the values that the sensor node will collect and
send to its cyber counterpart are the values measured by its
sensors and the list of sensor nodes and access points in the
neighborhood. By leveraging sensor attestation as described
in [25], values received by the virtual sensor and forwarded to
the Context Discovery module can be considered authentic.

In fact, the Context Discovery module uses data received
by all virtual sensors to infer the context and identify the
corresponding Recognized Authority. This is responsible for
identifying the rules which sensors must comply with. In our
prototype implementation the context is defined by the position
of the sensor and its owner; however, more complex cases can
be easily thought.

The restrictions are sent to the virtual sensor that translates
them into configuration parameters of sensors (and actuators).
Such configurations are finally transmitted to the physical
sensor which will implement them and send a confirmation
to its cyber counterpart. Also in this case sensor attestation2

can be exploited to ensure that the sensor has applied the
restrictions sent by its virtual counterpart.

2In this case it would be more correct to call it sensor/actuator attestation.

Fig. 5. Nodes deployment.

V. SD-WISE IN ACTION

Objective of this section is to demonstrate the specific
features of SD-WISE in relevant use cases. More specifically,
in Section V-A we will show how SD-WISE forwarding based
on the use of the WISE Flow Table performs in a physical
testbed. Then, in Section V-B we will provide an example
of network application running on top of the SD-WISE OS
which implements geographic routing and leverages the NFV
capabilities of SD-WISE. Finally, in Section V-C we will
present a use case in which the behavior of sensor nodes is
regulated by a Recognized Authority.

A. WISE Flow Table-based forwarding

Similarly to OpenFlow, the main communication overhead
of SD-WISE is represented by the exchange of information
between the OS and the devices. To measure such overhead,
the performance of SD-WISE have been tested in a real
testbed made of 5 wireless sensor nodes and a sink physically
connected to the SD-WISE OS.

In each measurement campaign 5000 data packets have
been sent, each every 15 seconds. Different payload sizes
have been considered for such packets (10, 20 and 30 bytes).
Furthermore, the time interval, T , between two consecutive
generations of the TD packets has been changed. In each cam-
paign we have set the time interval between the transmissions
of local topology information to twice the value of T in order
to receive at least one beacon packet.

In the following we illustrate the performance achieved by
SD-WISE in terms of:

• Round Trip Time (RTT), that is, the time interval between
the generation of a data packet and the reception of the
corresponding acknowledgment;

• Efficiency, measured as the ratio between the number of
payload bytes received by the intended destinations and
the overall number of bytes circulating in the network;

• Controller response time, measured as the interval be-
tween when the Controller receives a request for a new
entry and the time instant when the Controller sends the
corresponding entry.

In Figures (6a) and (6b) we represent the Cumulative
Distribution Functions (CDF) of the RTT when the distance
between the packet source and the packet destination is equal

to 3 and 5 hops, respectively. In each figure we represent three
curves obtained for different values of the payload size (10,
20, and 30 bytes). As expected, RTT increases as the distance
and the payload increase. Furthermore, we expect a similar
behavior for the standard deviation. Indeed, this is reflected in
Figures 7 and 8 where we show the average and the standard
deviation of the RTT vs. the payload size for different values
of the distance between source and destination.

In Figures 7 and 8 we plot a curve for the multicast case, as
well. This has been obtained by measuring the time interval
between the transmission of a packet and the reception of the
acknowledgement from the last destination. In this case, only
three destinations were considered and were deployed within
the radio range of the source. Obviously, the average and the
standard deviations of the RTT is slightly higher than in the
analogous (one hop) unicast case. The corresponding CDFs
are represented in Figure 9.

Finally, the performance in terms of efficiency are shown
in Figures 10 and 11. More specifically, in Figure 10 we
represent the efficiency vs. the payload size for different values
of the lifetime of an entry in the WISE Flow Table, which we
denote here as TTL. Instead, in Figure 11 we show the same
curves obtained for different values of the interval between
consecutive transmissions of the TD packets, T .

Note that most of the inefficiency is due to the high ratio
between the header size and the payload size.

B. Geographic routing
Objective of this section is to show how the typical, cen-

tralized, SDN operations shown in the previous sections, can
be distributed by leveraging NFV. More specifically, in this
section we will consider geographic routing as a proof-of-
concept of network function.

In a typical SDN scenario, nodes ask the Controller to
provide the rules to forward a packet to the destination. Even
though SDN-based approaches have been proven to be more
efficient than the common distributed protocols in WSNs [6],
they still require that the nodes contact the Controller when
they have to send a packet to an unknown destination, whereas
they need to maintain an entry per destination in their flow
tables. As it will be shown later in this section, by applying a
geographic routing approach, nodes can reduce the signaling
overhead and the number of flow entries that they have to
keep, resulting in a significant reduction in their overall energy
consumption.

Geographic routing has been shown to be very efficient
in several WSN scenarios, both for unicast and multicast
communications [26] [27] [28]. In geographic routing, a node
relays incoming packets to its immediate neighbor, which has
the shortest Euclidean distance to the destination. In order to
do so, it only needs to know the position of itself, its immediate
neighbors and the destination. This information is received
by the Controller, which maintains a consistent view of the
network topology, by inferring the positions of the nodes from
the Received Signal Strength Indication (RSSI) values that the
nodes are anyway reporting periodically to the Controller.

More specifically, as explained earlier in Section III-B, in
the context of the Topology Discovery protocol, every node

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT [ms]

C
D

F

10
20
30

Payload [Bytes]

(a) Number of hops = 3.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT [ms]

C
D

F

10
20
30

Payload [Bytes]

(b) Number of hops = 5.

Fig. 6. CDFs of the RTT for different payload sizes and different distances between the source and destination node.

5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

Payload [Bytes]

A
ve

ra
ge

 R
T

T
 [m

s]

1 hop
2 hops
3 hops
4 hops
5 hops
Multicast 3 nodes

Fig. 7. Average RTT vs. the payload size, for different values of the number
of hops.

5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

Payload [Bytes]

S
ta

nd
ar

d
D

ev
ia

tio
n

R
T

T
 [m

s]

1 hop
2 hops
3 hops
4 hops
5 hops
Multicast 3 nodes

Fig. 8. Standard deviation of the RTT values vs. the payload size, for different
values of the number of hops.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT [ms]

C
D

F

10
20
30

Payload [Bytes]

Fig. 9. CDF of the RTT in the multicast case for different payload sizes.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Payload [Bytes]

E
ffi

ci
en

cy

10s
30s
50s
70s
90s

WISE Flow Table Entry TTL

Fig. 10. Efficiency for different values of maximum WISE Flow Table entry
TTL.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Payload [Bytes]

E
ffi

ci
en

cy

10s
30s
50s
70s
90s

Beacon Period

Fig. 11. Efficiency for different values of beacon sending period.

periodically sends to the Controller a packet, which contains
its immediate neighbors and the RSSI value corresponding to
each one of them. The typical Controller operation in this case
is to update the topology graph, in order to keep a consistent
view of the network topology. In case geographic routing is en-
abled, the Controller also employs a localization algorithm to
extract the coordinates of the nodes based on the RSSI values.
Note that there are several localization algorithms [29] [30],
which provide reliable results [31]. In case the position of a
node has changed, the Controller sends the new coordinates
to that particular node as well as its immediate neighbors.
This way, nodes are always up-to-date about the positions of
themselves and their immediate neighbors. Then, when a node
wants to send a packet with geographic routing enabled, it
only sends a request to the Controller for the coordinates of

the packet destination and then all forwarding decisions are
performed independently by each individual node along the
communication path.

In the multicast case, the Controller also decides the path
that the packet has to follow in order to reach all the nodes of
the group. Typically, the algorithm used to construct that path
is the Steiner tree, with complexity depending on the size of
the whole network. However, when using geographic routing,
the Euclidean Steiner tree algorithm can be leveraged, which
has complexity dependent only on the number of nodes in
the mulicast group. Observe that the Euclidean Steiner tree
algorithm may introduce Steiner (branching) points, which do
not necessarily correspond to nodes of the multicast group,
however they are necessary in order to optimize the routing
path. In fact, Steiner points are artificial, as there might not be
a network node corresponding to their coordinates. In this case,
the node closest to these coordinates is selected as a Steiner
point. In the rest of this section, this node will be referred to
as Steiner node.

When a node wants to send a multicast packet, it sets the
group address as the destination and sends a request to the
Controller. Then, Controller calculates the Euclidean Steiner
tree and replies with the destination coordinates of the next
multicast or Steiner node. Nodes use geographic routing, as
described above, to forward the packets towards each multicast
or Steiner node. When a multicast or Steiner node receives a
packet, it sends a request to the Controller, which sends back
the next multicast or Steiner node. This process is repeated
until the packet has reached all nodes in the multicast group.

The implementation of both the geographic unicast and
multicast is made as an SD-WISE application. New packet
types and formats have been introduced in order to manage
the geographic-related requests by the particular application.
Moreover, group management operations have also been im-
plemented by following a protocol similar to IGMP. Geo-
graphic operations are made available on the sensor nodes by
leveraging the NFV capabilities enabled by SD-WISE. In fact,
in case geographic routing is enabled, SD-WISE OS sends a
message to the nodes at system bootstrap with the function
returning the intermediate node which is the nearest to the
destination, as well as a rule to call it. This rule is triggered
when the node receives the coordinates of the destination and
has to forward the packet to the next hop.

The performance of geographic forwarding in SD-WISE
have been evaluated using the Mininet emulator. More specif-
ically, we consider a 80x80m2 area with 100 nodes. The
positions of the nodes were generated randomly according
to uniform distribution. There is one sink, which acts as a
gateway between the WSN and the outside world, including
SD-WISE OS. Even though we considered both the case of
unicast and multicast routing, we present the results of the uni-
cast case only, since multicast follows the same trends, as the
forwarding decisions are made based on the same principles.
According to the already described protocol specification, all
nodes know their own coordinates, as well as the coordinates
of their neighbors, from SD-WISE OS.

We compare the following approaches: (i) Shortest path
where the SD-WISE OS estimates the shortest path to reach

the destination using the Dijkstra algorithm and sends back
this information to the source node so that intermediate nodes
simply relay the packet according to a pre-computed path;
(ii) Geographic-CTRL where SD-WISE OS preliminarily
decides on the geographic forwarding paths, so that interme-
diate nodes simply relay the packets; (iii) Geographic-DIST
where the distributed geographic forwarding is implemented
as already described earlier in this section.

Figure 12 depicts the impact of geographic forwarding
on the number of signaling messages (Fig. (12a)) and on
the number of forwarding rules installed on the nodes (Fig.
(12b)). As clearly shown, the Geographic-DIST forwarding
case outperforms the Geographic-CTRL case, even if the
latter still considers geographic routing. The reason is that
in Geographic-DIST, SD-WISE OS only needs to send the
coordinates of the destination and all the other decisions
are made independently by each node. The impact of this
behavior is outlined in Fig. 13, which shows the CDF of the
energy consumption of the nodes. Since most of the energy
consumption of the sensor nodes is due to communication, the
reduction of signaling strongly affects the energy consumption
and, therefore, the overall network lifetime.

C. Context-based fencing

As already described in Section II, there are several ex-
amples of applications where context-based regulations are
required.

Given the virtually endless combination of devices, envi-
ronments, and regulations, this section will describe a sample
application that, although specific, will be taken as a model
to generalize the requirements and design tradeoffs to be
considered in similar deployments.

The proposed use case consists of a drone equipped with
a camera that is allowed to record a video only if it is flying
over a certain area and it is oriented towards a particular target
in order to avoid copyright or privacy infringements (e.g. the
drone is flying over an open air concert). In this case, the
context of the device being considered is given by the status
of the camera, the position and orientation of the drone, and
the status of the activity within the area framed by the camera.
All of these information are used by the Recognized Authority
to choose what limitations should be imposed to the device.
These limitations should have priority over the commands
and configurations decided by the user of the device and,
at the same time, must be implemented using information
that are up to date and trustworthy. To achieve such result,
the drone is equipped with a TPM which guarantees that the
firmware running on the device has not been tampered and
the measurements coming from the GPS and accelerometers
sensors mounted on the device are authentic.

It should be emphasized that, given the limited resources in
terms of storage and computation on most of the controlled
devices and to allow a dynamic activation of such restrictions,
the controlled devices have to report their context to their cyber
counterpart.

From a communication point of view, this design require-
ments imposes a trade-off between the amount of information

(a) CDF of the overall number of signaling messages for different unicast
forwarding strategies

(b) CDF of the number of rules for different unicast forwarding
strategies

Fig. 12. Impact of geographic routing on the size of flow tables and signaling

Fig. 13. CDF of the energy consumption in the unicast case for the considered
forwarding strategies

exchanged with the Recognized Authority and the delay after
which these restrictions become active.

In fact, the frequency of such information exchange can be
easily changed taking into account that:

• The higher the chosen frequency, the higher the commu-
nication cost, which in many cases is the most relevant
key performance metric;

• The lower the chosen frequency, the less reactive is the
solution to rapid changes of context, which is critical
in cases where the restriction policy dictated by the
Regulation Authority depends on some parameters that
change rapidly.

The trade-off between the amount of data transmitted and the
average activation delay is shown in Figure 14.

The x axis shows the amount of data generated which is
a function of the chosen signaling frequency and the format
used to transmit the data. On the y axis, instead, the average
delay after which the restriction becomes operative is reported.
The choice of the signaling frequency can be posed as a
minimization problem where the cost function to be minimized
is cost = a× rate+ b× delay where a and b are the weights
chosen by the user depending on the application requirements.

VI. CONCLUSIONS

In this paper we have introduced a Software-Defined WIre-
less SEnsor networking solution called SD-WISE. SD-WISE

Fig. 14. Trade-off between data rate and activation delay.

extends the SDN approach to wireless sensor networks and
introduces two major novelties when compared to similar so-
lutions. First of all, SD-WISE leverages existence of operating
systems for wireless sensor nodes to support the network
function virtualization (NFV) paradigm which can be applied
to implement any networking function. As an example, in
this paper we have exploited the NFV paradigm to implement
geographic routing.

Furthermore, SD-WISE exploits the strict interplay between
trusted hardware and software to guarantee that sensor nodes
will behave as imposed by a remote recognized authority
on the basis of the current context. To this purpose SD-
WISE leverages software and sensor attestation mechanisms
supported by trusted platform modules (TPM). In this way
SD-WISE can be considered the enabling technology of a new
family of trustworthy wireless sensor networks whose behavior
can be controlled to comply with context-based regulations.

REFERENCES

[1] Contiki website. [Online]. Available: http://www.contiki-os.org/
[2] Riot website. [Online]. Available: https://riot-os.org/
[3] T. Luo, H. P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: Enabling

Software-Defined Wireless Sensor Networks,” IEEE Communications
Letters, vol. 16, no. 11, pp. 1896–1899, November 2012.

http://www.contiki-os.org/
https://riot-os.org/

[4] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software de-
fined wireless networks: Unbridling SDNs,” in 2012 European Workshop
on Software Defined Networking, Oct 2012, pp. 1–6.

[5] B. T. de Oliveira, L. B. Gabriel, and C. B. Margi, “TinySDN: Enabling
Multiple Controllers for Software-Defined Wireless Sensor Networks,”
IEEE Latin America Transactions, vol. 13, no. 11, pp. 3690–3696, Nov
2015.

[6] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrignani,
S. Mijovic, G. Morabito, and R. Verdone, “Testing Protocols for the
Internet of Things on the EuWIn Platform,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 124–133, Feb 2016.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, March 2008.

[8] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “SANE: A Protection Architecture for
Enterprise Networks,” in Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15, ser. USENIX-SS’06, 2006.

[9] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007.

[10] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach
to Network Control and Management,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, pp. 41–54, Oct. 2005.

[11] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Proceedings of the 2Nd Conference on Symposium on
Networked Systems Design & Implementation - Volume 2, ser. NSDI’05,
2005, pp. 15–28.

[12] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an Operating System for Networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul.
2008.

[13] “Floodlight OpenFlow Controller.” [Online]. Available: http://www.
projectfloodlight.org/floodlight

[14] D. Erickson, “The Beacon Openflow Controller,” in Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’13. New York,
NY, USA: ACM, 2013, pp. 13–18. [Online]. Available: http:
//doi.acm.org/10.1145/2491185.2491189

[15] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, June 2014, pp. 1–6.

[16] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,”
in Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’10, 2010, pp. 1–6.

[17] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620744

[18] A. C. G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and
S. Palazzo, “Towards a software-defined network operating system for
the IoT,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-
IoT), Dec 2015, pp. 579–584.

[19] V. M. Tiscareno, K. W. Jonhson, and C. H. Lawrence, “Systems and
methods for receiving infrared data with a camera designed to detect
images based on visible light,” in US patent 9,380,225, June 2016.

[20] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and
A.-R. Sadeghi, “Regulating arm trustzone devices in restricted spaces,”
in Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’16. New
York, NY, USA: ACM, 2016, pp. 413–425. [Online]. Available:
http://doi.acm.org/10.1145/2906388.2906390

[21] Tpm design principles - trusted computing group. [Online]. Available:
http://bit.ly/2sBd2rC

[22] H.-L. Truong and S. Dustdar, “Principles for engineering iot cloud
systems,” IEEE Cloud Computing, vol. 2, no. 2, pp. 68–76, 2015.

[23] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-
tions,” in Proc. of WMCSA 1994, December 1994.

[24] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” Lecture Notes in Computer Science, vol. 1707, pp. 304–307,
November 2001.

[25] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for
trusted sensors.” in In Proc. of ACM Mobisys 2012, June 2012.

[26] M. Zorzi and R. R. Rao, “Geographic random forwarding (geraf) for ad
hoc and sensor networks: multihop performance,” IEEE Transactions on
Mobile Computing, vol. 2, no. 4, pp. 337–348, Oct 2003.

[27] D. Ferrara, L. Galluccio, A. Leonardi, G. Morabito, and S. Palazzo,
“MACRO: an integrated mac/routing protocol for geographic forward-
ing in wireless sensor networks,” in Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM)., vol. 3, March 2005, pp. 1770–1781 vol. 3.

[28] L. Galluccio, G. Morabito, and S. Palazzo, “Geographic multicast (gem)
for dense wireless networks: Protocol design and performance analysis,”
IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1332–1346,
Aug 2013.

[29] J. Bachrach and C. Taylor, Localization in Sensor Networks.
John Wiley & Sons, Inc., 2005, pp. 277–310. [Online]. Available:
http://dx.doi.org/10.1002/047174414X.ch9

[30] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network
localization techniques,” Computer Networks, vol. 51, no. 10, pp.
2529–2553, 2007. [Online]. Available: http://bit.ly/2sVRUPi

[31] V. Daiya, J. Ebenezer, S. A. V. S. Murty, and B. Raj, “Experimental anal-
ysis of rssi for distance and position estimation,” in 2011 International
Conference on Recent Trends in Information Technology (ICRTIT), June
2011, pp. 1093–1098.

http://www.projectfloodlight.org/floodlight
http://www.projectfloodlight.org/floodlight
http://doi.acm.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2906388.2906390
http://bit.ly/2sBd2rC
http://dx.doi.org/10.1002/047174414X.ch9
http://bit.ly/2sVRUPi

	I Introduction
	II Related work
	III SD-WISE
	III-A SD-WISE overview
	III-B SD-WISE node architecture
	III-C SD-WISE operating system architecture

	IV SD-WISE operations
	IV-A SD-WISE forwarding
	IV-B Context-based regulation compliance

	V SD-WISE in action
	V-A WISE Flow Table-based forwarding
	V-B Geographic routing
	V-C Context-based fencing

	VI Conclusions
	References

