
Joint Failure Recovery, Fault Prevention, and Energy-efficient Resource
Management for Real-time SFC in Fog-supported SDN

Mohammad M. Tajikia, Mohammad Shojafarb, Behzad Akbaric, Stefano Salsanoa, Mauro Contib, Mukesh Singhald

aDepartment of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
bDepartment of Mathematics, University of Padua, Via Trieste 63, 35131, Padua, Italy

cDeparment of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
dDepartment of Electrical and Computer Engineering, University of California- Merced, Merced, CA 95343, USA

Abstract

Middleboxes have become a vital part of modern networks by providing services such as load balancing, optimization
of network traffic, and content filtering. A sequence of middleboxes comprising a logical service is called a Service
Function Chain (SFC). In this context, the main issues are to maintain an acceptable level of network path survivabil-
ity and a fair allocation of the resource between different demands in the event of faults or failures. In this paper, we
focus on the problems of traffic engineering, failure recovery, fault prevention, and SFC with reliability and energy
consumption constraints in Software Defined Networks (SDN). These types of deployments use Fog computing as
an emerging paradigm to manage the distributed small-size traffic flows passing through the SDN-enabled switches
(possibly Fog Nodes). The main aim of this integration is to support service delivery in real-time, failure recovery, and
fault-awareness in an SFC context. Firstly, we present an architecture for Failure Recovery and Fault Prevention called
FRFP; this is a multi-tier structure in which the real-time traffic flows pass through SDN-enabled switches to jointly
decrease the network side-effects of flow rerouting and energy consumption of the Fog Nodes. We then mathemat-
ically formulate an optimization problem called the Optimal Fog-Supported Energy-Aware SFC rerouting algorithm
(OFES) and propose a near-optimal heuristic called Heuristic OFES (HFES) to solve the corresponding problem in
polynomial time. In this way, the energy consumption and the reliability of the selected paths are optimized, while
the Quality of Service (QoS) constraints are met and the network congestion is minimized. In a reliability context, the
focus of this work is on fault prevention; however, since we use a reallocation technique, the proposed scheme can be
used as a failure recovery scheme. We compare the performance of HFES and OFES in terms of power consumption,
average path length, fault probability, network side-effects, link utilization, and Fog Node utilization. Additionally,
we analyze the computational complexity of HFES. We use a real-world network topology to evaluate our algorithm.
The simulation results show that the heuristic algorithm is applicable to large-scale networks.

1. Introduction

Network Function Virtualization (NFV) technology plays an important role in industrial traffic management
through a chain of different hardware services running on the middle-boxes (e.g., IDS, proxy, deep packet inspec-
tion, and firewall), which is called Service Function Chaining (SFC). In particular, NFV replaces hardware middle-
boxes with flexible and innovative software applications known as Virtual Network Functions (VNFs) to reduce the
CAPEX/OPEX costs, optimize network operations, and increase the service usage elasticity [1]. Also, NFV can
decrease the dependence on expensive network equipment vendor solutions, by replacing network functions with
software implementations running on low-cost multi-purpose hardware [2]. Focusing on SFC, a chain of economical
VNFs provides the same packet processing functions at the desired throughput [3]. Besides, chains are required to

Email addresses: mhmtjk01@uniroma2.it (Mohammad M. Tajiki), mohammad.shojafar@math.unipd.it (Mohammad
Shojafar), b.akbari@modares.ac.ir (Behzad Akbari), stefano.salsano@uniroma2.it (Stefano Salsano),
conti@math.unipd.it (Mauro Conti), msinghal@ucmerced.edu (Mukesh Singhal)

Preprint submitted to Computer Networks July 3, 2018

ar
X

iv
:1

80
7.

00
32

4v
1

 [
cs

.D
C

]
 1

 J
ul

 2
01

8

process large volumes of traffic within a very short period of time to facilitate real-time streaming applications that
comprise the majority of traffic in today’s networks. SFCs require attention to avoid cascading threats as well as
controller protections, especially for the software applications across the SDN switches that are corporate with the
server virtualization and virtual machines (VMs) [4]. Failure to provide the desired throughput of an SFC may lead
to violating the service level agreements (SLAs), incurring high penalties. Hence, achieving the high throughput of
ordered VNFs (i.e., it can be interpreted as SFC) is of paramount importance.

In SDN-based SFC, controllers are expected to provide high availability for the traffic flows. Hence, they are
hungry to use innovative solutions (possibly in routing and rerouting) to preserve the availability of the chains from
failure. On the other hand, the Fog computing paradigm is defined to deploy computing resources closer to end users.
Fog computing at the edge can rapidly compute and organize small instance processes locally and move relevant on-
demand processing data flow from the incident geographical location to core platforms such as Amazon Web Services
[5]. Moreover, some SDN-enabled switches that are located geographically near to the users are played edge switches
(nodes or Fog Nodes) to address small-size flows with limited response time SLAs and deliver high user Quality of
Experiences (QoEs) like [6] and [7]. As a consequence, Fog Nodes are connected with virtualized SDN-enabled
switches, which run atop servers or data centers at the edge of the access network. These switches can easily handle
such flows within the low latency. The big issue behind this technology is how to control the Fog Node when faced
with failure or side-effects of faults? Therefore, presenting failure recovery and fault-aware solutions in fog-supported
SDN/NFV-based SFC is an essential phenomenon that must be addressed. Recently, several technical/practical works
have been presented in the literature in order to address such limitations in SDNs/NFVs. Most of these works address
the fault-handling process, from fault detection and prevention to failure recovery, but to the best of our knowledge
none of them jointly addresses the SFC QoSs fault-recovery, fault minimization targeting prevention, path reliability,
and energy minimization over SDN-enabled switches, all of which our solution covers. To cope with the problem,
several questions arise: Is it possible to propose fault tolerance routing and rerouting algorithms for real-time guar-
antee time-triggered traffic by supporting QoS SFC and minimize the energy in SDNs/NFVs? How to guarantee the
elasticity of such solutions, which can be applied, in real scenarios? Can we assure that the presented algorithm could
swiftly update itself for the dynamically changing time-triggered traffic?

1.1. Contributions

Motivated by the aforementioned considerations, we address the problem of SFC using the NFV concept in fog-
supported SDNs with reliability, QoS, and energy consumption considerations. To this end, we proposed a routing
architecture based on the SDN concept with a focus on the failure aspect of network devices. We mathematically
formulate the problem of traffic engineering when the network devices have a variable fault probability during the time
slots and use an Integer Linear Programming (ILP) solver to optimally solve the corresponding optimization problem.
Thereafter, we propose an efficient heuristic algorithm to handle the scalability issue over large-scale networks. Our
main contributions are summarized as follows:

• We propose a new fault-aware routing architecture for SFC problems with energy consideration. The architec-
ture is proposed for SDN networks and supports fog nodes. We mathematically formulate the failure recovery
and fault minimization problem. The corresponding problem is in the form of ILP. We consider the impact of
each flow on other flows to surpass the resource fragmentation in networks with big-size flows.

• Our proposed scheme optimizes the probability of failure in the networking devices (switches) and, in the event
of failure in a Fog Node(s) and/or switch(es), reconfigures the network in a real-time manner.

• We propose a suboptimal heuristic to solve the scalability issues of the aforementioned optimization problem.
The proposed solution is an adaptive approach that is applicable to real-world networks.

• In order to evaluate the proposed algorithm, we exploit a real-world network topology. Additionally, we test
the performance of the proposed algorithm over different traffic patterns using a demand generator. To this end,
the impacts of the flow size, number of Fog Nodes, and length of the required VNF on the performance of the
proposed algorithm are evaluated.

2

1.2. Organization

The remainder of this paper is organized as follows. Section 2 presents a holistic literature. Section 3 presents
the problem definition, related assumptions and overviews the considered architecture and its main components while
Section 4 presents the system model. The problem of jointly managing the energy consumption and the network
side-effect of rerouting flows triggered by fatigue processes is formulated as an ILP in Section 5. Section 6 details
the proposed heuristic algorithm, HNFR, and its computational complexity. The considered scenarios and the setting
of the input parameters are detailed in Section 7. The obtained results are detailed in Section 8. Finally, Section 9
concludes the paper with some final remarks and outlines open research problems.

2. Related Work

In the following, we briefly discuss the main literature on NFVs/SDNs SFC related to our work. We first describe
solutions targeting the SFC. Then, we move our attention to research works targeting the management of failures
and faults for various injected traffic flows in SDNs/NFVs. Finally, we investigate the energy-aware fog-supported
solutions in SDNs/NFVs.

2.1. SFC solutions in SDNs/NFVs

Consequently, numerous works focus on providing SFC in SDNs. An SFC taxonomy that considers architecture
and performance dimensions as the basis for the subsequent state-of-the-art analysis is introduced in [8].

The authors of [9] study the problem of deploying SFCs over NFV architecture. Specifically, they investigate the
VNF placement problem for the optimal SFC formation across geographically distributed clouds. Moreover, they set
up the problem of minimizing inter-cloud traffic and response time in a multi-cloud scenario as an ILP optimization
problem, along with some other constraints such as total deployment costs and SLAs.

Moreover, in [10] an optimization model based on the concept of Γ-robustness is proposed. They focus on dealing
with the uncertainty of the traffic demand. The authors of [11] propose a heuristic algorithm to find a solution for
service chaining. It employs two-step flow selection when an SFC with multiple network functions needs to scale
out. Furthermore, the authors in [12] introduce a VNF chaining which is implemented through segment routing
in a Linux-based infrastructure. To this end, they exploit an IPv6 Segment Routing (SRv6) network programming
model to support SFC in an NFV scenario. The authors of [13] propose a scheme which provides flexibility, ease of
configuration and adaptability to relocate the service functions with a minimal control plane overhead.

Besides, the authors of [14] use ILP to determine the required number and placement of VNFs that optimize
network CAPEX/OPEX costs without violating SLAs. In [15] an approximation algorithm for path computation and
function placement in SDNs is proposed. Similar to [14], they proposed a randomized approximation algorithm for
path computation and function placement. In [16] an optimization model to deploy a chain in a distributed manner is
developed. Their proposed model abstracts heterogeneity of VNF instances and allows them to deploy a chain with
custom throughput without worrying about individual VNFs throughput. The paper [17] considers the offline batch
embedding of multiple service chains. They consider the objectives of maximizing the profit by embedding an optimal
subset of requests or minimizing the costs when all requests need to be embedded. Reference [18] solves a joint route
selection and VM placement problem. They design an offline algorithm to solve a static VM placement problem and
an online solution traffic routing. They expand the technique of Markov approximation to achieve their objectives.

Recently, the authors in [19] presented a scheduling and routing solution in SDN/NFV time-triggered flows. In
detail, they approximate the optimal solution over a corresponding static scheduling problem and solve it using ILP.
As in our approach, hard constraints on the overall execution times are considered by [19]. However, we point
out that, unlike our approach: (i) the focus of [19] is on the traffic routing and scheduling between SDN-enabled
switches per time-flow, so that the resulting flow scheduler does not support, by design, failure and fault tolerance
per link and switch of data time-flow; (ii) the joint flow and computing rate mapping afforded in [19] is, by design,
static; (iii) the scheduler in [19] does not perform real-time reconfiguration rerouting, real-time traffic hosted by the
serving controller; (iv) the work in [19] does not consider SFC and rerouting; and (v) the scheduler in [19] does not
enforce per-flow QoS guarantees on the limited time minimum energy and/or the minimum side-effect. Although
the aforementioned solutions are interesting, however, none of them considers the problem of service chaining with
respect to the energy consumption of the VMs.

3

2.2. Failure recovery and fault-aware solutions in SDNs/NFVs

The available literature ranges from the joint problem of fault-aware distributing and routing the traffic flows/content
in SDNs/NFVs infrastructure [20, 21] to the problem of fault detection and recovery solutions in SDNs/NFVs [22, 23].
In detail, in [21] the authors analyze the fault tolerance over SDN. They present a discussion about fault tolerance and
failure happening in the OpenFlow (OF) protocol that is applied in SDNs. Specifically, they propose a link/node
failure detection and failure recovery method in the data plane that can be controlled through the controller. However,
they do not present any discussion about the application plane side-effect and do not cover the SFC fault-awareness.

In [24], they present a controller-based fault recovery solution that covers path-failure detection and preconfigured
backup paths. However, we point out that, unlike our approach: (i) the focus of [24] is on presenting the network
configuration in order to manage the traffic flows, which is not an effective solution, by design, in real scenarios;
and (ii) the presented fault prevention method in [24] does not support the SFC over the SDN-enabled switches. The
authors in [25] propose a solution to quickly detect link failures in order to increase the fault tolerance by combining
the flow retrieval which is achieved through analyzing the protection switching times and using a fast protection
method. Interestingly, this paper supports the fault minimization over the links and addresses the end-to-end fault
tolerance method per flow, but not radically. Overall, the contribution does not afford, by design, jointly the QoSs in
the node and link of SDN and does not support the SFC fault minimization, both of which are adopted in this paper.

Besides, authors in [26] present NFV-FD, a fault-tolerant unreliable failure detector that is adapted based on
information (it includes communication links states and the flow characteristics) obtained from an SDN. The paper
presents flavor of novelties, but it fails to address the SFC traffic flows. Moreover, our solution utilizes a network
equipment fault-aware technique that spreads out the fault tolerance process all over the components running in the
SDN. In [27], authors applied novel rule-based programming language presented in [28] to talk between the controller
and the data plane to manage the adopted in-network fast-fail over mechanisms of incoming traffic flows in FatTire
programs. Although this method is an interesting step toward to the fault-aware SDN traffic flow policy management,
it suffers from fault recovery and fault prevention that matter in our solution.

2.3. Energy-aware Fog-supported solutions in SDNs/NFVs

Numerous works address the switch energy efficiency and energy-aware routing strategies in SDNs/NFVs [29,
30, 31, 32, 33]. In detail, the authors in [29] present a network-wide energy-aware routing method using OF maxi-
mizing aggregate network utilization and optimized load balancing in SDN. Their practical solution has problem with
scalability and does not even support the FRFP SFC aspects that this paper also targets.

More practically, in [30], the authors present an ETSI-support distributed VNF-supported infrastructure based on
MANO framework [31] to manage SDN-enabled switch (i.e., SDN node) energy consumption to meet regulatory and
environmental standards. It targets the CPU energy consumption of the node and partially turns off some hardware
components. Although this method is an available solution for practical scenarios, it should be carefully tuned to
balance the trade-off between energy efficiency and function performance or one-demand SLAs. Moreover, unlike
our solution, FRFP, it does not cover fog-supported SFC and fault tolerance failure recovery SDN-enabled switches.
Furthermore, the authors in [32] develop an energy-aware component SDN platform that targets data centers. This
energy-aware component adopts priority-based Dijkstra for flow routing and exclusive scheduling across the network.
This method has a big limitation, which backs to its traffic characteristics. In other words, it estimates neither the
failure prevention nor the fault tolerance per SDN-enabled switch. To cover the limitation of the previous work, the
authors in [33] present an energy-efficient routing solution in SDN by targeting the integral routing and discrete link
rates as traffic characteristics. They solve the optimal MILP solution using two sub-optimal heuristics and validate it
by single or multiple flows in a dynamic network. Overall, their contribution does not afford, by design and solution,
joint failure recovery and fault tolerance of the fog-supported SDN-enabled switches and does not support SFCs
variations in such a network that are addressed and validated in this paper.

Focusing on Fog computing appliances in SDNs/NFVs, there are limited works that target the routing in fog-
supported SDNs/NFVs, such as [34, 35, 36, 37]. In particular, the authors in [34] address Fog computing over SDNs
structures that preserve safety and non-safety services and are validated across two use cases: Data streaming and lane-
change assistance services. The authors do not present any discussion about the SFC fault probability minimization,
or failure recovery/prevention. In another work, in [35] the authors push the Fog Node to remain in edge to manage
the on-demand location-based applications flows received from mobile users engaged in SDNs/NFVs and analyze

4

the possible routing in such network. Unlike our method, it suffers from a lack of service chain management, fault-
awareness, failure prevention and SDN-enabled switch energy minimization.

Moreover, recently in another work [36], the authors address the resource allocation and total energy minimization
over the Fog Nodes by proposing a novel QoS-aware distributed and scalable scheduler. Although based on the authors
claim that it can be applied in real-time services, it fails to address the chain of services when it faces fault and failure
in such a dynamic network. Interestingly, our architecture, FRFP, can cover all the benefits of this method by covering
all the limitations addressed. The most recent method similar to our current work is our previous work [37] on SFC
management in SDNs/NFVs. We present energy-aware resource reallocation SFC algorithms for SDNs. We allocate
VNF to a set of flows and find several optimal and near-optimal solutions to optimize such network. Compared to our
contribution, the paper [37] has several limitations: (i) the presented routing algorithms do not exploit the capability of
routing all flows simultaneously, i.e., it is impossible to reroute a flow considering the possible routes of other flows;
and, (ii), we did not adopt the fog nodes to support fault probability minimization and failure recovery/prevention.

3. The Proposed Architecture

In this section, we define the problem and assumptions in Sec. 3.1 and provide a detailed discussion of the proposed
architecture and its components in Sec. 3.2.

3.1. Problem Definition and Assumptions

We consider multiple SDN-enabled routers/switches (referred as switches) with different fault probabilities that
change during time slots. A central controller is connected to the switches to fetch the network information and
configure the switches, using a southbound protocol to dynamically program the switches. There are several Fog
Nodes in the network connected to the edge switches, and a maximum of one Fog Node is connected to each switch.
We refer to the (Fog Node, switch) pair as a node throughout this paper. There are several types of servers in each
Fog Node, and these have different rates of energy consumption. For a given Fog Node, the processing load cannot
exceed a predefined threshold. Each Fog Node has a given processing capacity and can host several types of VNFs.
the set of supported VNFs on each Fog Node is given. Each type of VNF requires a different processing capacity to
process a unit of data, and the processing time for a VNF on different Fog Nodes for equal flow rates is the same.

Each flow needs to meet a set of VNFs along its path from the source to the destination switch (we refer to this
requirement as the SFC requirement of flows). The flow source, destination, set of required VNFs and rate are known.
In addition, the end-to-end delay of transmission and the processing time of a flow should be less than a predefined
threshold. We ignore queuing delay in the nodes. The traffic rate is dynamic and may change during the different time
slots.

We define two different problems: i) recovery of the network in case of failure of one or more nodes, in such a
way that the energy consumption of the network is minimized and the QoS requirement of the flows is satisfied; ii)
periodic reconfiguration of the network in order to optimize the probability of a fault in selected paths for the active
flows and reduce the overall energy consumption of the nodes.

3.2. Proposed Architecture

In this section, the proposed architecture and its components are presented. There are three layers in the proposed
architecture: i) the Application Layer; ii) the Control Layer; and iii) the Infrastructure Layer. The Application Layer
contains the resource assignment algorithms and routing protocols; in other words, the Application Layer is the brain
in our architecture. The Control Layer consists of components that are required to: i) gather information about the
network infrastructure or traffic patterns; and ii) force the switches and the Fog Nodes to operate based on the decisions
that are made in the Application Layer. The proposed architecture is shown in Fig. 1 and has four components: Failure
Recovery and Fault Prevention, Failure Detection, Switch Configuration, and Network Monitoring.

5

Figure 1: System Architecture: This architecture is based on the SDN principles and exploits server virtualization to run several VNFs on a single
server. Each Fog Node contains one or more physical server.

6

3.2.1. Failure Recovery and Fault Prevention (FRFP)
This component periodically assigns network and Fog Node resources to flows, in order to reduce the energy

consumption and simultaneously optimize the fault probabilities. In addition, if a switch undergoes a failure, this
component re-assigns resources to the flows passing through the failed node in real time. To this end, FRFP considers
three aspects: the QoS requirement of the flows, the energy consumption of the Fog Nodes, and the fault probability
of the new resource assignments. This component belongs to the Application Layer. We formulate this component
mathematically in Section 5 and provide a corresponding fast heuristic algorithm in Section 6. Three events activate
FRFP: i) the arrival of a new flow; ii) failure in one or more nodes; and iii) the end of the timer interval (periodically).
The input of this component in case of the arrival of a new flow is the specification of the flow (e.g., source, destination,
rate, and set of required VNFs) and the current state of the nodes (e.g., utilization of links and Fog Nodes). In case
of a failure, the input is the specification of the flows passing through the failed node(s) and the current state of the
network. It should be mentioned that if a node (switch or Fog Node) fails, the network topology and/or the list of
supported VNFs (in each Fog Node) may change. For periodic re-assignment of resources, the specification of all
flows along with the current state of the network is the input of the FRFP.

3.2.2. Failure Detection
This component is responsible for the detection of node failures or crashes. In case a switch or Fog Node fails,

this component sends the new network topology and the set of supported VNFs for each Fog Node to the FRFP
component. This component is part of the Control Layer.

3.2.3. Switch Configuration
The task of this component is to apply the decisions made in the Application Layer to the switches, via the

configuration of the switch forwarding tables. In other words, this component allocates/reallocates resources to flows
by rescheduling the forwarding tables. This component is part of the Control Layer.

3.2.4. Network Monitoring
This component continuously monitors the network traffic by gathering information from switches and sending

the information to the Application Layer. In other words, this component can obtain the current flow matrix and
network topology by querying the SDN switches. This component is part of the Control Layer.

4. System Model

In this section, we describe the notations used in this paper. Table 1 defines the symbols, presents their type and
units, their appearances in the equations and provides a brief description of them. Let N be the number of SDN-
enabled switches. We represent the network topology with a matrix BN×N where B(i, j) denotes the capacity of the
link from the switch i to the switch j. Similarly, the propagation delay of links is modeled via matrix DN×N where
D(i, j) denotes the propagation delay of the link from the switch i to the switch j. Let F be the number of flows in
the network. In order to simplify the understanding of the notations, a sample for the each element of the proposed
notations is presented. For example, for the topology illustrated in Fig. 1, the matrix B and D are as follows (N = 6):

The source and destination of flows are determined by vectors s f and d f , respectively. The matrix AN×N×F(t) is the
assignment of network resources (links) to the flows, such that if A f

(i, j)(t1) = 1, then the flow f passes the link i→ j in
time slot t1. If we set f = 1, t = t1, s1 = 1, and d1 = 2, then the matrix A1(t1) becomes as follows:

A1(t1) =

0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

,

where s1 = 1 indicates that the source of the flow is the switch number 1. Therefore, we should trace the path from
the first row of A1(t1). As can be seen, the third element of A1(t1) in the first row is one which means that the flow will
leave the switch 1 toward the switch 3. At this point, the third row of A1(t1) should be checked. Since the 5th column

7

Table 1: Main Notation.

Symbol Definition Type - Unit Appears in Eq.
Input Parameters

N Set of switches,
∣∣∣N ∣∣∣ , N - -

F Set of flows,
∣∣∣F ∣∣∣ , F - -

X Set of functions,
∣∣∣X∣∣∣ , X - -

E Number of links Integer - [units] -
T Total number of time slots Integer - [units] -
Ψ Maximum number of required functions for each flow Integer - [units] -

B(i, j) Matrix of link bandwidth between i-th and j-th switches Continues - [Mb/s] (1)
D(i, j) Links propagation delay Continues - [ms] (4)
µ Maximum link/Fog-Node utilization Continues - [units] (1)

MT Maximum tolerable joint failure probability Continues - [ms] (12),(8)
T f Maximum tolerable delay of flow Continues - [ms] (3)

T Px Processing time of VNF x for one unit of data Continues - [ms] (3)
C f (t) Bandwidth requirement matrix for the f -th flow in time slot t Continues - [Mb/s] (1)

s f Vector of source switch for the f -th flow Integer - [units] (2)
d f Vector of destination switch for the f -th flow Integer - [units] (2),(8),(9)

FPx Required processing for the x-th function Continuous - [units] (17)
NCi Nodes processing capacity for the i-th node Continuous - [units] (17)

FN(i,x) Function x associated with i-th node Binary - [units]
R f

x (t) Requested functions for the f -th flow in time slot t Binary - [units] (15)
Ei Power consumption for i-th node Continuous - [W] (18)

pi(t) Failure probability for switch i in time slot t Continuous - [units] (8)

Variables
Pr(t) Fault probability for path ID r in time slot t Continuous - [units] (12)

A f
(i, j)(t) Network resource assignment matrix between i-th and j-th switches with the flow f in time slot t Binary - [units] (19),(8),(9),(14),(1),(2),(5),(4)

U f
(i,x)(t) Used services for the i-th switch with the flow f that runs the function x in time slot t Binary - [units] (13),(14),(15),(16),(17),(20)

T f
d Maximum tolerable propagation delay of flow f Continues - [ms] (3),(4)

Oi(t) ON/SLEEP nodes in time slot t Binary - [units] (18),(20)
Z f (t) Index of selected path for flow f in time slot t Integer - [units] (9),(11)
E(t) Total energy Consumption in time slot t Continuous - [J] (18),(21)

NS (t) Network side-effect of flow rerouting in time slot t Integer - [units] (21)
J f

i (t) Path allocation vector i used for flow f in time slot t Binary - [units] (10), (11), (12)

B =

0 B(1,2) B(1,3) B(1,4) 0 0
B(2,1) 0 B(2,3) 0 0 0
B(3,1) B(3,2) 0 B(3,4) 0 B(3,6)
B(4,1) 0 B(4,3) 0 B(4,5) 0

0 0 0 B(5,4) 0 B(5,6)
0 0 B(6,3) 0 B(6,5) 0

D =

∞ D(1,2) D(1,3) D(1,4) ∞ ∞

D(2,1) ∞ D(2,3) ∞ ∞ ∞

D(3,1) D(3,2) ∞ D(3,4) ∞ D(3,6)
D(4,1) ∞ D(4,3) ∞ D(4,5) ∞

∞ ∞ ∞ D(5,4) ∞ D(5,6)
∞ ∞ D(6,3) ∞ D(6,5) ∞

of the third row is 1, the flow will leave switch number 3 to reach the switch number 5. The flow will go to switch
number 4 because the fourth element of row 5 in matrix A1(t1) is one. Finally, since the second column of the forth
row is one, the flow will go to switch number 2. Note that we consider loop-free routing, i.e., nodes and links cannot
be used twice in the routing of a flow. We will enforce this behavior with specific constraints in our formulation.

Considering X different VNFs, each flow can request at most Ψ ≤ X VNFs. The set of requested VNFs for each
flow is shown by matrix RF×X . Therefore, if R f

x (t) is 1, then the VNF x is requested for the flow f in time slot t. As an
example, considering X = 4 and Ψ = 3 in time slot t for flow f = 1, the matrix R1

4(t) is as follows:

R1
4(t) =

[
1 0 0 1

]
,

The first and the last elements of R1
4(t) are one, meaning that the flow should deliver service from VNF number

one and three. The matrix C f (t) specifies the flow rates in time slot t. The ith row of this matrix defines the traffic rate
requirement of the ith flow. Vector T f specifies the maximum processing and communication delay that the flow can
tolerate. The vector T P1×X specifies the processing time of one unit of data over each VNF; e.g., T Px = 3 [ms] means
that VNF x needs 3 [ms] to process one [unit] of data. T F

d is the maximum tolerable propagation delay1 of the flows.

1Note that in this paper we do not consider the queuing delay

8

The required processing capacity of each VNF for a unit of flow rate is expressed by the vector FPX , where FPx

specifies the required processing capacity of VNF x ∈ X. Therefore, the VNF x will require a processing capacity
FPx · C f (t) to process the flow f with rate C f (t) in time slot t. The vector NC1×N identifies the processing capacities
for each Fog Node. The VNFs associated with each Fog Node are identified by matrix FNN×X . Therefore, FN(i,x)
specifies whether VNF x is supported by Fog Node i or not. We consider a Fog Node connected to each switch. If
no Fog Node is connected to switch i, then

∑X
x=1 FN(i,x) = 0. UF

N×X(t) denotes the assignment of the VNFs and Fog
Nodes to the flows in time slot t. If U f

(i,x)(t) is 1, then flow f receives service from VNF x on Fog Node i in time slot
t. Taking f = 1, an example matrix U1(t1) is:

U1(t1) =

0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

.

In the first row of U1(t1), the third element is one, implying that, the flow uses the VNF number three which is
hosted by the Fog Node number 1. Similarly, since the second element of the fourth row is one, the VNF 2 will be
delivered to the flow in Fog Node 4. In our formulation, we substitute a Fog Node that has more than one server with
several nodes where each node has a Fog Node which has only one server. Figure 2 illustrates an example of how a
Fog Node which has three servers can be substituted with three Fog Nodes where each Fog Node has only one server.

(a) Before substitution.

(b) After substitution.

Figure 2: Substituting a Fog Node with three server with three Fog Nodes each one containing one server.

Each Fog Node has two different modes: ON and IDLE. If no VNF is active on a Fog Node, the Fog Node goes to
IDLE mode, otherwise, the Fog Node is in ON mode. The energy consumption of Fog Nodes in ON mode are stated
using vector E1×N , where Ei, i ∈ N specifies the energy consumption of Fog Nodes i. In the IDLE mode, the energy
consumption is a fraction of full-rate energy consumption E − (δ · E). The current state of Fog Nodes is specified by
O1×N(t) ∈ {0, 1} where Oi(t1) = 1 means that the Fog Node i is in ON mode in time slot t1. The variable µ states the
maximum link and Fog Node utilization. Focusing on the fault prevention, the end-to-end fault probability of routing
in the network for flow f should be less than a predefined threshold MT . The fault probability of switches is stated
using pN(t), e.g., pi(t1) specifies the fault probability of switch i in time slot t1.

9

5. Problem Formulation

In this section, we present the SFC-aware congestion control system with the goal of minimizing energy consum-
ption of the Fog Nodes. Also, we focus on the fault probability of the selected path for each flow. Hence, it guarantees
the required service functions of each flow to be delivered via the selected path. Additionally, it ensures the end-to-end
fault probability of the selected path for each flow to be less than a predefined threshold. In this section, we initially
detail each set of constraints, and then we provide the complete formulation.

5.1. QoS, Routing, and Delay

Focusing on the link capacity, constraint (1) checks the link capacity between each pair of switches.

F∑
f =1

(
A f

(i, j)(t) · C f (t)
)
≤ µ · B(i, j),∀i, j ∈ N . (1)

Focusing on the flow conservation, constraint (2) presents the flow management limitations. The first equality
states that a flow leaves its source only once. The second equality imposes states that a flow enters a destination and
does not leave it. Also, the third equality forces the input and output of each node to be equal (i.e., except for the
source and destination).

N∑
j=1

A f
(i, j)(t) −

N∑
j=1

A f
(j,i)(t) =

1 if i = s f

−1 if i = d f

0 Otherwise
,∀ f ∈ F , ∀i ∈ N , (2)

Constraint (3) denotes the maximum communication delay which is the propagation delay of the path from the
source switch to first selected Fog Node, from the first selected Fog Node to the other Fog Nodes (if applicable), and
from the last selected Fog Node to the destination switch.

T f
d = T f −

X∑
x=1

(
T Px · R

f
x (t) ·C f (t)

)
, ∀ f ∈ F (3)

Focusing on the propagation delay, constraint (4) is used to control the propagation delay for each flow. In order
to prevent loops for each flow, constraint (5) is applied.

N∑
i=1

N∑
j=1

(
A f

(i, j)(t − 1) · D(i, j)

)
≤ T f

d , ∀ f ∈ F , (4)

N∑
j=1

A f
(i, j)(t) ≤ 1, ∀i ∈ N , ∀ f ∈ F , (5)

A f
(i, j)(t) ∈ {0, 1} , ∀i, j ∈ N , ∀ f ∈ F , ∀t ∈ T .

5.2. Faults

In order to minimize the effect of faults in the network, we formulate the probability of a fault in each network
path. To this end, we calculate the survival probability of the path and then calculate its fault probability. Let pi(t)
denote the fault probability for switch i in time slot t under independent failure assumptions. Therefore, the switch i
will survive with probability 1 − pi(t). Thus, the survival probability of path r is

∏
∀i∈r (1 − pi(t)) in time slot t and

consequently the fault probability of path r in time slot t is 1 −
∏
∀i∈r (1 − pi(t)).

a ,
(
1 − pd f (t)

)
(6)

10

In this way, a, which is defined in constraint (6), denotes the survival probability of the destination switch d f of flow
f in time slot t.

b ,
∏
∀i∈N

(1 − pi(t)) ·
N∑

j=1

A f
(i, j)(t)

 (7)

Correspondingly, b (in constraint (7)) denotes the survival probability in the rest switches of the selected path r for
flow f in time slot t. Therefore, the survival probability of the selected path r for flow f in time slot t will be (a × b).
Consequently, the fault probability of the selected path r in time slot t is 1 − (a × b).
We define constraint (8) to guaranty the probability of end-to-end switching fault be less than a predefined maximum
tolerable.

1 −

∏
∀i∈N

(1 − pi(t)) ·
N∑

j=1

A f
(i, j)(t)

 · (1 − pd f (t)
) ≤ MT, ∀ f ∈ F ,∀t ∈ T (8)

However, constraint (8) is a non-linear constraint and next we describe hot to handle it. Without loss of generality, we
substitute the constraint (8) with Eqs. (9)-(12) to keep the formulation in linear form. To this end, we generate an ID
to differentiate between different paths. The paths with the same fault probabilities have the same ID. Focusing on the
path selection, Z f (t) identifies the ID that is assigned to the path selected for flow f in time slot t. If the path which
is selected for flow f includes switch number i, then 2(i−1) is added toZ f . Consequently, the paths which contain the
same set of switches, are considered to have the same ID. This happens becauseZ f (t) is used to differentiate between
paths with different fault probability and those paths that have the same set of switches have similar fault probability.
E.g., if flow f1 passes throw switch i in time slot t but flow f2 does not pass throw that switch in time slot t then
Z f1 (t) , Z f2 (t).
Let ID f

i (t) ,
∑N

j=1 A f
(i, j)(t) · 2

(i−1) denote the ID number sets for SDN-enabled switch i for flow f in time slot t. In

another words, if flow f passes throw switch i in time slot t, then the ID f
i (t) will be 2(i−1), otherwise it will be zero.

Therefore, Z f (t) can be calculated as follows:

Z f (t) ,
N∑

i=1

 N∑
j=1

A f
(i, j)(t) · 2

(i−1)

 + 2(d f−1), ∀ f ∈ F ,∀t ∈ T (9)

According to Section 4, if the destination of flow f is d f , then A f
(d f , j)(t) will be 0. Hence, ID f

d f
(t) is always zero for

destination switch. Because of this, 2(d f−1) is added to constraint (9) to include the impact of the fault probability of
the destination switch on the selected path r for flow f . In brief, for a network with N switches, the value of Z f (t)
can be a number between 0 - 2N .

2N∑
r=1

J f
r (t) = 1, ∀ f ∈ F (10)

Variable J f
r (t) specifies whetherZ f (t) is r or not, e.g., J f

r (t) = 1 meansZ f (t) = r. Note that there are several different
paths that have equal ID value (i.e., all paths that have same set of switches (with different ordering) have identical
path ID). Equation (10) guarantees that in each time slot, only one ID is assigned to flow f .

2N∑
r=1

(J f
r (t) × r) = Z f , ∀ f ∈ F (11)

Since Z f (t) is the ID of the selected path which is captured from matrix A(t), constraint (11) checks the consistency of
the formulation. Finally, constraint (12) states the condition under which end-to-end fault probability of the selected
path is lower than a predefined threshold.

2N∑
r=1

(J f
r (t) × Pr(t)) ≤ MT, ∀ f ∈ F (12)

11

5.3. Service Function Chaining (SFC)

Regarding the constraints in (13)- (17), some remarks are in order. The constraint (13) indicates that each flow
crosses a valid function chain while passing through the switches.

N∑
i=1

U f
(i,x)(t) ≥ R f

x (t), ∀x ∈ X, ∀ f ∈ F , (13)

Moreover, constraint (14) imposes the service delivery only on crossed nodes. Constraint (15) checks whether the
requesting function is supported on the specified node.

N∑
i=1

A f
(i, j)(t) ≥ U f

(j,x)(t), ∀x ∈ X, ∀ j ∈ N − {s f }, ∀ f ∈ F , (14)

U f
(i,x)(t) ≤ FN(i,x), ∀ f ∈ F , ∀i ∈ N , ∀x ∈ X, (15)

Constraint (16) prevents using a service function more than once for each flow. Constraint (17) controls the capacity
of nodes providing a service.

N∑
i=1

U f
(i,x)(t) = 1, ∀ f ∈ F , ∀x ∈ X, (16)

F∑
f =1

X∑
x=1

(
U f

(i,x)(t) · FPx · C f (t)
)
≤ NCi, ∀i ∈ N , (17)

U f
(i,x)(t) ∈ {0, 1} , ∀i ∈ N , ∀ f ∈ F , ∀x ∈ X, ∀t ∈ T .

5.4. Energy and Network Side-effect

Let E(t) be the energy consumption of the network in time slot t which is calculated as

E(t) =

N∑
i=1

Oi(t) · Ei, (18)

and the network side-effect (i.e., the number of forwarding table elements that should be changed to apply the new
configuration) of flow rerouting in time slot t as

NS (t) =

N∑
i=1

N∑
j=1

F∑
f =1

∣∣∣∣A f
(i, j)(t) − A f

(i, j)(t − 1)
∣∣∣∣, (19)

(1 + F · X) Oi(t) ≥
F∑

f =1

X∑
X=1

U f
(i,x)(t), ∀i ∈ N , (20)

Constraint (20) specifies which Fog Nodes must be ON (those that deliver at least one service to the flow).

5.5. Overall Formulation

The OPTIMAL FOG-SUPPORTED ENERGY-AWARE SFC (OFES) rerouting problem in FRFP architecture
presented in Fig. 1. which aims at minimizing jointly the energy and side-effect of the SDN-enabled switches at each
time slot t. In another words, the objective function (21) is to optimize both the number of Fog Nodes that are required
to be turned ON and the network side-effect of flow rerouting in time slot t. OFES is formulated as follows:

min
O,A

[
α · E(t) + β · NS (t)

]
, (21)

12

subject to:
QoS, Routing, and Delay (1) − (5)
Fault (9) − (12)
SFC (13) − (17)
Energy and Network Side-effect (18) − (20)

under control variables: A(i, j)(t) ∈ {0, 1}, Oi(t) ∈ {0, 1} and U f
(i, j)(t) ∈ {0, 1}. Moreover, α and β ∈ [0,1], where α+β = 1

are assigned weight factors that tune the desired trade-off between SDN consumed energy and SDN side-effect facing
with failures and faults.

6. Heuristic Fog-supported Energy-aware SFC rerouting algorithm (HFES)

Since the optimal solution is very challenging and complex to be solved even for instances of small-size real-
time network reconfigurations, we propose the Heuristic fog-supported Energy-aware SFC rerouting algorithm called
(HFES) to practically tackle it. Algorithm 1 reports the HFES pseudocode. The HFES algorithm is a recursive
algorithm which guaranties that the probability of fault in the selected path is less than a predefined threshold.

In detail, in line 1 of the Algorithm 1, we check the fault probability (1 − PR) of the selected path to be less than
a predefined threshold MT . Note that we consider PR as survival probability of a selected path that can be between
0 to 1. When PR == −1, it means that the current path should not be traversed due to exceeding the predefined
threshold MT of the fault rate (i.e., it stands as stopping criteria in the HFES recursive algorithm). The solution is
found if all of the required VNFs are met: R == ∅, and the final state of the selected path is the destination of the
flow: (CN == d). On the other hand, if all required VNFs are met, but the last switch of the selected path is not the
destination of the flow (line 3) (i.e., the flow is unable to reach to the desired destination), the algorithm finds the next
hop NH of the shortest path from the current state to the flow destination and adds it to the selected path by invoking
algorithm HFES with new inputs (lines 4–12). In detail, the algorithm removes nodes that are met to prevent loop
using Remove function (line 6). In line 7 we calculate the survival probability of considering NH as the last hop of
the selected path CP. The algorithm uses the HFES recursively in order to check whether a valid solution is found
or not (line 8). Lines 13-22 handle the cases where all of the required VNFs are not delivered to the flow (R , ∅).
In this case, a node which is directly connected to the current node CN and has the minimum energy consumption is
selected as the next hop NH (line 15). Thereafter, the flow receives services from VNFs that are active in the current
node CN (line 16). These steps are iterated in HFES algorithm until NH be empty (lines 17-23). The goal of HFES
is to provide a path with a guaranteed fault probability while minimizing the length of the paths and minimizing Fog
Nodes energy consumption (line 25).

Since the computational complexity of the recursive Algorithm 1 is not deterministic and depends on the input,
in order to have an algorithm with a deterministic computational complexity, Algorithm 2 is proposed which is a
greedy non-recursive solution for the proposed optimization problem. In line 1, for each flow the process of resource
allocation is done in a sequential manner. Until all of required VNFs are met (line 2) the following actions are
repeated:

• all links that have a free capacity less than the required rate of the flow are removed,

• based on the fault probability of the switches, shortest paths from the current node CN to all other nodes are
calculated in line 4,

• Fog Nodes that have a processing capacity less than the required processing capacity for providing service to
the flow are removed from the list of shortest paths from CN to other nodes,

• at this point, the node NH which has a minimum energy consumption and can provide service to the flow is
selected (the shortest path to NH is specified with pth) (line 6),

• in lines 7 and 8 the shortest path to NH is added to chosen path CP and the passed nodes are removed from
bandwidth matrix to prevent loops,

13

Algorithm 1 Pseudo-Code of the HFES algorithm
INPUT: CN, d, R, B, NC, FP, p, PR,CP

CP: Chosen Path
CN: Current Node
PR: Survival probability of path

OUTPUT: <CP, PR>
1: if PR≥ 1-MT then return <CP, -1>
2: else if R==∅ and CN==d then return <CP, 0>
3: else if R==∅ then
4: do
5: NH=NextHubShortestPath(CN,d,B);
6: B′=Remove(B,NH);
7: PR′=PR×(1-pNH);
8: [CP′, PR]=HFES(NH,d,R,B′,NC,FP,p,PR′,CP′);
9: if PR, -1 then

10: CP=CP′;
11: end if
12: while NH, ∅
13: else
14: do
15: NH=EnergyAwareNextHub(CN,d,B,R);
16: [R′, NC′]=DeliverService(R,NH,NC,FP);
17: B′=Remove(B,NH);
18: PR′=PR×(1-pNH);
19: [CP′, PR]=HFES(NH,d,R,B′,NC′,FP,p,PR′,CP′);
20: if PR, -1 then
21: CP=CP′;
22: end if
23: while NH, ∅
24: end if
25: return <CP, -1>

Algorithm 2 Pseudo-Code of the non-recursive HFES algorithm

INPUT: CN, d, R, B, P, F, C
OUTPUT: <CP>

1: for f ∈ F do
2: while R, ∅ do
3: B′=PruneLinks(B,C);
4: SP=ShortestPathBasedOnFault(CN,d,B′);
5: SP=PruneFog Nodes(SP,C);
6: <NH,pth>=SelectNextNodeEnergy-Aware(CN,d,B′);
7: CP={pth}∪ CP;
8: B=Remove(B,pth);
9: R=ProvideServices(R,pth,C,F);

10: end while
11: B′=PruneLinks(B,C);
12: SP=ShortestPathBasedOnFault(CN,d,B′);
13: CP={SP}∪ CP;
14: end for
15: return <CP>

14

• supported VNFs that are requested by the flow are delivered to it in line 9.

When all of the required VNFs are met by the flow f , the flow moves to the destination switch via a path with
minimum fault probability.

6.1. Computational Complexity

Table 2: Traffic Generator Notations and Inputs for 9 scenarios.

Notation Definition S1 S2 S3 S4 S5 S6 S7 S8 S9
B f Ratio of flow size to link capacity 0.01 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05
γ Ratio of Fog Nodes to switches 0.5 0.5 0.5 0.5 0.7 1 0.5 0.5 0.5
R f Average number of requested VNFs that a flow needs 2 2 2 2 2 2 2 4 6
Xγ Ratio of VNFs hosted by a Fog Node 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
R f

min Minimum number of requested VNFs per flow 2 2 2 2 2 2 2 2 2
R f

max Maximum number of requested VNFs per flow 5 5 5 5 5 5 5 5 5
τ Edge switches ratio 1 1 1 1 1 1 1 1 1
τs Ratio of edge switches that are source of a flow 1 1 1 1 1 1 1 1 1
τd Ratio of edge switches that are destination of a flow 1 1 1 1 1 1 1 1 1
ω Coefficient of number of generated flows per source 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fm Maximum number of generated flows per source 10 10 10 10 10 10 10 10 10
X Number of different VNFs 10 10 10 10 10 10 10 10 10

OFES: The problem can be reduced to capacity-aware multi commodity problem which is categorized as an NP-hard
problem.
HFES: The computational complexity of lines 1 and 2 of algorithm 2 are in the order of O(F) and O(ψ), respectively.
The order of the computational complexity of lines 3, 4, 5, and 12 are O(E + N · log N) while it is O(N) for lines 6, 7,
8, and 9. Similarly, the computational complexity of line 11 is O(E). Therefore, the total computational complexity
of HFES is O

(
F · ψ ·

[
N · log N + E + N

])
.

7. Scenario Description

The following subsections detail the pursued scenarios, methodology and the traffic generator for the applied
scenarios.

7.1. Simulation Setup

In this paper, we consider Abiliene [38] as the network topology which is shown in Fig 3. We consider the capacity
of all links (maximum bandwidth) to be equal to 1 Gbps. Each Fog Node has two states: ON (i.e., working with full
rate energy consumption) and SLEEP (i.e., working with a fix minimum energy consumption). The processing power
of a Fog Node is a factor of the input bandwidth. Similarly, the energy consumption is a factor of processing power.
Traffic flows are generated using geometric distribution where the rate of flows are a fraction of links bandwidth,
referred to B f .

Figure 3: Abilene Network Topology.

15

7.2. Traffic-Demand Generator
In order to investigate the performance of these resource allocator/reallocator algorithms, a traffic-demand gener-

ator is proposed. It takes multiple input parameters and generates network traffic flows with different specifications:
rate, source and destination, VNF requirements, and end-to-end tolerable delay. Table 2 presents the input parameters
of the traffic generator. It is important to note that the described algorithm is meant to generates the traffic pattern (and
not the traffic packets). We consider the flows as unidirectional. The variable τ specifies the percentage of switches
that act as edge switches. In other words, variable τ stands for the percentage of switches that can be source or des-
tination of a flow. As an example, τ = 1 means that all switches can be considered as an edge switch while τ = 0
means that there is no edge switch. Therefore, the number of edge switches is τ × N. Similarly, the variables τs and
τd are the percentage of edge switches that can act as the source or the destination of a flow, respectively. Thus, the
number of source switches is Ns = τ× τs ×N and the number of destination switches is Nd = τ× τd ×N. The number
of possible source-destination pairs is Ns × Nd.

We want ω × Nd to be the average number of flows that are generated by a source node. We assume that the
number of generated flows for each source switch follows a geometric distribution [39] with 1/(ω×Nd) as the success
probability. For practical reasons, we also include in the model the maximum number of flows Fm that can be
generated by a source node. Therefore, the flows will be generated with a truncated geometric distribution and the
average number of flows from each source node will be smaller than ω × Nd. γ is the ratio of Fog Nodes to switches,
therefore, γ × N is the number of Fog Nodes. On the other hand, Xγ is the fraction of VNF types hosted by a Fog
Node, meaning that a Fog Node can host at most Xγ × X different VNFs, where X is the number of different types
of VNFs. The number of VNFs that are needed by a flow is generated according to geometric distribution with
average R f . In order to make realistic scenarios, we consider R f

max and R f
min as the maximum and minimum number

of VNFs that a flow needs, respectively. If the generated number is greater than R f
max, the number is set to R f

max and
similarly for the minimum (note that this approach changes the average number with respect to the average of the
initial geometric distribution). The average traffic rate demand of a flow is a fraction B f of the capacity of the link,
i.e., it is B f × link capacity. In particular, the rate of generated flows follows a uniform distribution between 0 and
2 × B f × link capacity. According to the Fig. 3, the number of switches, links and functions (or VNFs) are 11, 14,
and 10, respectively. Moreover, Maximum joint failure probability equal to 0.1, link propagation delay 100 [ms], and
T Px = 3 [ms].

7.3. Scenarios
In order to investigate the impact of the different traffic patterns and network resources we evaluate the perfor-

mance of the proposed solutions over different traffic scenarios which are presented in Table 2. We generate the traffic
demands based on three main characteristics: i) flow size, ii) number of Fog Nodes, and, iii) number of required
VNFs. In order to evaluate the impact of the flow size, three different values for B f (i.e., 0.01, 0.05 and 0.1}) are
considered (see the three first scenarios, S1, S2 and S3, in Table 2). By changing the value of γ among {0.5, 0.7, or
1} the impact of the number of Fog Nodes is investigated (see the scenarios 7 to 9). Finally, to investigate the impact
of number of VNFs required by the flows, three different values for R f (i.e., 2, 4, and 6) are considered (see the last
three scenarios).

8. Simulation Results

In this section, proposed solutions named OFES and HFES are compared using several metrics (see subsec-
tions 8.3). In this section, the solutions are compared over i) total energy consumption of the processing Fog Nodes,
ii) average fault probability of the selected paths, iii) average path length, and, iv) the side-effect of network reconfig-
uration.

8.1. Energy Consumption
Figure 4 compares the energy consumption of OFES and HFES in different traffic scenarios. In this figure, the

blue and red points in S i specifies the energy consumption of OFES and HFES in traffic scenario i, respectively.
From Fig. 4, the energy consumption of HFES is near the energy consumption of the OFES (which is the optimal
solution) in all traffic scenarios. In order to investigate the impact of increasing the average rate of flows, the value

16

of red and blue points in S 1, S 2, and S 3 should be compared. Increasing the average rate of flows increases the total
energy consumption in both OFES and HFES. Considering the difference between the result of OFES and HFES as
the optimality gap of HFES, increasing the average rate of flows increases the optimality gap. On the other hand,
increasing the number of Fog Nodes (S 4, S 5, and S 6) decreases both the total energy consumption and the optimality
gap. However, increasing the average number of required VNFs per flow (S 7, S 8, and S 9) does not have a predicable
impact on the optimality gap. Our simulations show that the energy consumption of HFES is at most 3% more than
the energy consumption of OFES.

Figure 4: Power Consumption.

8.2. Average Fault Probability

Figure 5 presents average fault probability of selected paths of OFES and HFES in different traffic scenarios.
Based on this figure, increasing average flow rate decreases the average fault probability of both OFES and HFES.
This happens because increasing the average rate of flows forces the algorithms to turn ON more Fog Nodes to serve
the flows. This helps the algorithms to find low faulty paths for flows. In brief, increasing the rate of flows increases
the number of active Fog Nodes and the energy consumption but decreases the fault probability. On the other hand,
it decreases the optimality gap of fault probability of HFES because the number of different paths that a flow can go
through decreases (due to links capacity limit). Increasing the number of Fog Nodes increases the optimality gap of
HFES since it increases the number of links that flows can cross and consequently increases the number of possible
valid results. When the number of valid results increases the probability of HFES on finding a non-optimal result
increases. Similar to the previous subsection, the impact of increasing the number of required VNFs per flow on the
average fault probability is not predictable.

Figure 5: Fault Probability.

17

8.3. Average Path length and Network Side-effect

We consider the number of forwarding table entries that need to be setup in network reconfiguration as network
side-effect of a solution. Figure 6 shows the average path length and network side-effect of failure recovery using
HFES and OFES in different traffic scenarios. The figure shows that the average path length and network side-effect
of reconfiguration in HFES are lower than OFES. This is because the focus of OFES is on optimization of power
consumption and the fault probability. HFES can reduce the average path length and network side-effect up to 50%
compared with OFES.

(a) Path Length. (b) Network Side-effect.

Figure 6: OFES vs. HFES Comparisons.

8.4. Link and Fog Node Utilization

In this subsection, we investigate the impact of the flow rate, number of Fog Nodes, and number of required
VNFs on link and Fog Node utilization. Since the focus of the OFES is on optimizing the energy consumption and the
probability of fault, the average link and Fog Node utilization of HFES is lower than OFES. Figure 7 shows the impact
of average flows rate on link and Fog Node utilization. As can be seen, increasing the average flows rate increases
the average link and Fog Node utilization. Increasing the flows rate lead to more higher traffic load inputs, therefore,
the link utilization increases. Similarly, the amount of data that should be processed by the Fog Nodes increases and
consequently the Fog Nodes utilization grow up.

(a) Link Utilization. (b) Fog Node Utilization.

Figure 7: Impact of Flow Rate.

From Fig. 8 one can say that increasing the number of Fog Nodes increases the link utilization and Fog Node
utilization. This happens because on one hand, when the number of Fog Nodes are increased, both HFES and OFES
have a higher chance to find a hub Fog Node which has enough processing power to serve a lots of flows. On the
other hand, the algorithms tries to reduce the energy consumption, therefore, they sends the unnecessary Fog Nodes

18

(a) Link Utilization. (b) Fog Node Utilization.

Figure 8: Impact of number of Fog Nodes.

to the IDLE mode. This leads to an increment in the Fog Nodes utilization since some nodes are not working and
consequently they are not considered in the utilization measurement (Fig. 8a. Similarly, since the algorithms tries to
bring lots of flows into hub Fog Nodes, the path length and link utilization increases (Fig. 8b.

Figure 9 investigate the impact of number of required VNFs per flow on the link and Fog Node utilization. As can
be seen, the number of required VNFs does not have a predicable impact on these metrics. This is because when the
number of required VNFs increases, the algorithms try to provides service to the flows without using new Fog Nodes,
therefore, the average link and Fog Node utilization increases. But when the requests go high, the algorithms turn new
Fog Nodes ON, therefore, the average link and Fog Node utilization decreases.

(a) Link Utilization. (b) Fog Node Utilization.

Figure 9: Impact of Number of Required VNFs per flow.

Figure 10 presents the maximum link and Fog Node utilization versus different scenarios. As can be seen, increas-
ing average flows rate increases the maximum link and Fog Node utilization. It has a higher impact on the maximum
link utilization compared with maximum Fog Node utilization. Similarly, increasing the number of Fog Nodes in-
creases the maximum link utilization of OFES dramatically more than the maximum link utilization of HFES. This
happens because when the number of Fog Nodes increases the chance of OFES for finding a hub Fog Node and uses
that Fog Node to serve higher number of flows increases. Therefore, the maximum link utilization of the network
grows because more flows crosses the hub Fog Node. Additionally, when a hub Fog Node is detected OFES puts a
higher number of Fog Nodes in IDLE mode, therefore, the maximum link and Fog Node utilization increases. Finally
the impact of increasing the number of required VNF on the OFES is not predicable while it increases the maximum
link and Fog Node utilization in HFES. When the number of required VNFs increases, OFES turns ON more Fog
Nodes to deliver service to the flows, therefore, the maximum link and Fog Node utilization decreases in scenario 9
compared to scenario 8. On the other hand, when the number of required VNFs increases if the algorithms do not put
new Fog nodes in ON mode, the maximum Fog Node utilization increases since the amount of request is increased.
Similarly, the flows have to pass extra hops to receive all of required VNFs, therefore, the maximum link utilization

19

increases, too.

Figure 10: Max Link and Fog Node Utilization.

8.5. Impact of α and β on OFES

In order to investigate the impact of α and β in Eq. (21) on the performance of the optimal solution, the performance
of OFES for different values of α and β is presented in Table 3. To this end, we set β = 1 − α and measure the energy
consumption and the network side-effect of OFES. As expected, increasing the value of α increases the network
side-effect but decreases the energy consumption.

Table 3: Impact of α and β in OFES.

Methods α
0 0.001 0.004 0.005 0.1 0.75 1

E(t)[kJ] 1.6 1.2 1.2 0.8 0.8 0.8 0.8
NS 19 19 19 21 21 21 53

9. Conclusion and Future Work

In this paper, an efficient failure recovery and fault prevention algorithm for SDN-based networks was introduced.
The problem was mathematically formulated and an optimal scheme was proposed to solve the corresponding op-
timization problem called OFES. The proposed formulation optimizes the Fog Nodes’ energy consumption while
guarantying the QoS constraints. Due to high computational complexity of the proposed solution, we introduced
a heuristic approach, called HFES, which is a sub-optimal solution with low computational complexity. The com-
putational complexity of HFES was discussed and showed that it is applicable to real-world networks. HFES was
compared with OFES for power consumption, fault probability, average path length, network side-effect, and average
link and node utilization. Additionally, the impact of flow rate, number of Fog Nodes, and the number of required
VNFs on the proposed algorithms was discussed. Our simulations show that the energy consumption of HFES is at
most 3% more than OFES, while the average path length and network side-effect of HFES is 50% less than OFES.
Besides, the maximum link and Fog Node utilization of HFES are up to 75% less than those of the OFES. Both OFES
and HFES can assign resources in a way that the average fault probability stays below a predefined threshold, how-
ever, the average fault probability of OFES is at most 40% lower than HFES. Due to high computational complexity
of OFES, its solution is applicable only for very small networks, while HFES are applicable to large-scale networks.
Future works will be dedicated to consider the energy consumption of networking devices (switches and links). To
this end, switches and links that are not used should be turned off. Additionally, the formulation and the heuristic
algorithm could be extended to consider the VNFs ordering. Another field of interest is consideration of queuing
delay in configuration of the network.

20

Acknowledgment

This work has received funding from the Horizon 2020 EU project SUPERFLUIDITY (grant agreement No.
671566). Mauro Conti is supported by a Marie Curie Fellowship funded by the European Commission (agree-
ment PCIG11-GA-2012-321980). This work is also partially supported by the EU TagItSmart! Project (agreement
H2020-ICT30-2015-688061), the EU-India REACH Project (agreement ICI+/2014/342-896), by the project CNR-
MOST/Taiwan 2016-17 “Verifiable Data Structure Streaming”, the grant n. 2017-166478 (3696) from Cisco Univer-
sity Research Program Fund and Silicon Valley Community Foundation, and by the grant ”Scalable IoT Management
and Key security aspects in 5G systems” from Intel.

References

[1] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, X. Hesselbach, Virtual network embedding: A survey, IEEE Communications Surveys &
Tutorials 15 (4) (2013) 1888–1906.

[2] B. Naudts, W. Tavernier, S. Verbrugge, D. Colle, M. Pickavet, Deploying sdn and nfv at the speed of innovation: Toward a new bond
between standards development organizations, industry fora, and open-source software projects, IEEE Communications Magazine 54 (3)
(2016) 46–53.

[3] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, R. Boutaba, Distributed service function chaining, IEEE Journal on Selected Areas in
Communications PP (2017) 1–10.

[4] E. G. Amoroso, Software-defined networking and network function virtualization security, in: Computer and Information Security Handbook
(Third Edition), Elsevier, 2017, pp. 953–961.

[5] R. Gargees, B. Morago, R. Pelapur, D. Chemodanov, P. Calyam, Z. Oraibi, Y. Duan, G. Seetharaman, K. Palaniappan, Incident-supporting
visual cloud computing utilizing software-defined networking, IEEE Transactions on Circuits and Systems for Video Technology 27 (1)
(2017) 182–197.

[6] M. Peng, S. Yan, K. Zhang, C. Wang, Fog-computing-based radio access networks: issues and challenges, IEEE Network 30 (4) (2016)
46–53.

[7] K. Liang, L. Zhao, X. Chu, H.-H. Chen, An integrated architecture for software defined and virtualized radio access networks with fog
computing, IEEE Network 31 (1) (2017) 80–87.

[8] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, T. Magedanz, Service function chaining in next generation networks: State
of the art and research challenges, IEEE Communications Magazine 55 (2) (2017) 216–223.

[9] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, H. A. Chan, Optimal virtual network function placement in multi-cloud service function
chaining architecture, Computer Communications 102 (2017) 1–16.

[10] V. S. Reddy, A. Baumgartner, T. Bauschert, Robust embedding of vnf/service chains with delay bounds, in: Network Function Virtualization
and Software Defined Networks (NFV-SDN), IEEE Conference on, IEEE, 2016, pp. 93–99.

[11] B. Zhang, P. Zhang, Y. Zhao, Y. Wang, X. Luo, Y. Jin, Co-scaler: Cooperative scaling of software-defined nfv service function chain, in:
Network Function Virtualization and Software Defined Networks (NFV-SDN), IEEE Conference on, IEEE, 2016, pp. 33–38.

[12] A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, L. Veltri, Implementation of virtual network function chaining through segment
routing in a linux-based nfv infrastructure, arXiv preprint arXiv:1702.05157.

[13] S. Kulkarni, M. Arumaithurai, K. Ramakrishnan, X. Fu, Neo-nsh: Towards scalable and efficient dynamic service function chaining of elastic
network functions, in: Innovations in Clouds, Internet and Networks (ICIN), 2017 20th Conference on, IEEE, 2017, pp. 308–312.

[14] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, On orchestrating virtual network functions, in: Network and Service Management
(CNSM), 2015 11th International Conference on, IEEE, 2015, pp. 50–56.

[15] G. Even, M. Rost, S. Schmid, An approximation algorithm for path computation and function placement in sdns, in: International Colloquium
on Structural Information and Communication Complexity, Springer, 2016, pp. 374–390.

[16] M. Ghaznavi, N. Shahriar, R. Ahmed, R. Boutaba, Service function chaining simplified, arXiv preprint arXiv:1601.00751.
[17] M. Rost, S. Schmid, Service chain and virtual network embeddings: Approximations using randomized rounding, arXiv preprint

arXiv:1604.02180.
[18] J. W. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang, Joint vm placement and routing for data center traffic engineering, in: INFOCOM, 2012

Proceedings IEEE, IEEE, 2012, pp. 2876–2880.
[19] N. G. Nayak, F. Durr, K. Rothermel, Incremental flow scheduling & routing in time-sensitive software-defined networks, IEEE Transactions

on Industrial Informatics PP (2017) 1–10.
[20] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer, M. Schöller, P. Smith, Resilience and survivability in communication

networks: Strategies, principles, and survey of disciplines, Computer Networks 54 (8) (2010) 1245–1265.
[21] D. Kreutz, F. Ramos, P. Verissimo, Towards secure and dependable software-defined networks, in: Proceedings of the second ACM SIG-

COMM workshop on Hot topics in software defined networking, ACM, 2013, pp. 55–60.
[22] J. M. S. Vilchez, I. G. B. Yahia, N. Crespi, Self-healing mechanisms for software defined networks, in: 8th International Conference on

Autonomous Infrastructure, Management and Security (AIMS 2014), 2014.
[23] P. Fonseca, E. Mota, A survey on fault management in software-defined networks, IEEE Communications Surveys & Tutorials.
[24] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, Openflow: Meeting carrier-grade recovery requirements, Computer Commu-

nications 36 (6) (2013) 656–665.
[25] N. L. Van Adrichem, B. J. Van Asten, F. A. Kuipers, Fast recovery in software-defined networks, in: Software Defined Networks (EWSDN),

2014 Third European Workshop on, IEEE, 2014, pp. 61–66.

21

[26] R. C. Turchetti, E. P. Duarte, Implementation of failure detector based on network function virtualization, in: Dependable Systems and
Networks Workshops (DSN-W), 2015 IEEE International Conference on, IEEE, 2015, pp. 19–25.

[27] M. Reitblatt, M. Canini, A. Guha, N. Foster, Fattire: Declarative fault tolerance for software-defined networks, in: Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking, ACM, 2013, pp. 109–114.

[28] A. Guha, M. Reitblatt, N. Foster, Machine-verified network controllers, in: ACM SIGPLAN Notices, Vol. 48, ACM, 2013, pp. 483–494.
[29] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, N. McKeown, Elastictree: Saving energy in data center

networks., in: Nsdi, Vol. 10, 2010, pp. 249–264.
[30] R. Bolla, C. Lombardo, R. Bruschi, S. Mangialardi, Dropv2: energy efficiency through network function virtualization, IEEE Network 28 (2)

(2014) 26–32.
[31] N. ETSI, Network functions virtualisation (nfv); management and orchestration, NFV-MAN 1 (2014) v0.
[32] H. Zhu, X. Liao, C. de Laat, P. Grosso, Joint flow routing-scheduling for energy efficient software defined data center networks: A prototype

of energy-aware network management platform, Journal of Network and Computer Applications 63 (2016) 110–124.
[33] M. K. Awad, Y. Rafique, R. A. MHallah, Energy-aware routing for software-defined networks with discrete link rates: A benders

decomposition-based heuristic approach, Sustainable Computing: Informatics and Systems 13 (2017) 31–41.
[34] N. B. Truong, G. M. Lee, Y. Ghamri-Doudane, Software defined networking-based vehicular adhoc network with fog computing, in: Inte-

grated Network Management (IM), 2015 IFIP/IEEE International Symposium on, IEEE, 2015, pp. 1202–1207.
[35] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, L. Sun, Fog computing: Focusing on mobile users at the edge, arXiv preprint arXiv:1502.01815.
[36] M. Shojafar, N. Cordeschi, E. Baccarelli, Energy-efficient adaptive resource management for real-time vehicular cloud services, IEEE Trans-

actions on Cloud computing 99 (2016) 114.
[37] M. M. Tajiki, S. Salsano, M. Shojafar, L. Chiaraviglio, B. Akbari, Joint energy efficient and qos-aware path allocation and vnf placement for

service function chaining, arXiv preprint arXiv:1710.02611.
[38] Abilene network, [Online; posted 24-March-2012] (Jun 2017).

URL https://uit.stanford.edu/service/network/internet2/abilene
[39] X. Zou, Computer communication networks cs 6/75202 g1 project source traffic modeling and generation.

22

https://uit.stanford.edu/service/network/internet2/abilene
https://uit.stanford.edu/service/network/internet2/abilene

Biographies

Mohammad M. Tajiki is a PhD candidate at Tarbiat Modares University, spending his sabbat-
ical period in University of Rome Tor Vergata. His main research interests are Network QoS,
media streaming over the Internet, data center networking, traffic engineering, service function
chaining, IPv6 segment routing, and software-defined networking (SDN).

Mohammad Shojafar is currently an Intel Innovator and Senior Researcher in SPRITZ Security
and Privacy Research Group at the University of Padua, Italy. He was CNIT Senior Researcher
at the University of Rome Tor Vergata contributed on European Horizon 2020 “SUPERFLUID-
ITY project. Also, he contributed in some Italian projects named “SAMMClouds”, “V-FoG” and
“PRIN15” which are supported by the University of Sapienza Rome and the University of Mod-
ena and Reggio Emilia, Italy, respectively. He received the Ph.D. degree in ICT from Sapienza
University of Rome, Rome, Italy, in May 2016. He is an author/co-author of 88+ peer-reviewed
publications (h-index=20, citations=1436+) in prestigious conferences (e.g., ICC, GLOBECOM,
ISCC, MASS) and journals in IEEE, Elsevier, and Springer publishers. He served as an associate
editor in Springer Cluster Computing and an editor in TJCA and WMWN as TPC in several con-
ferences such as I-SPAN, ICWMC, and UCC. Since 2013, he is the membership of IEEE Systems
Man and Cybernetics Society Technical Committee on Soft Computing. His research interests
include 5G networks, cloud data centers, network security, and optimization techniques. He was
a programmer and analyzer in exploration directorate section at National Iranian Oil Company
(NIOC) and Tidewater Co. in Iran from 2008-2013, respectively.

Behzad Akbari received the B.S., M.S., and PhD degree in computer engineering from the
Sharif University of Technology, Tehran, Iran, in 1999, 2002, and 2008 respectively. His re-
search interest includes Computer Networks, Multimedia Networking Overlay and Peer-to-Peer
Networking, Peer-to-Peer Video Streaming, Network QOS, Network Performance Analysis, Net-
work Security, Network Security Events Analysis and Correlation, Network Management, Cloud
Computing and Networking, Software Defined Networks.

Stefano Salsano received his PhD from University of Rome La Sapienza in 1998. He is Asso-
ciate Professor at the University of Rome Tor Vergata. He participated in 15 research projects
funded by the EU, being project coordinator in one of them and technical coordinator in two of
them. He has been the principal investigator in several research and technology transfer con-
tracts funded by industries. His current research interests include Software Defined Networking,
Network Virtualization, Cybersecurity, Information-Centric Networking. He is a co-author of an
IETF RFC and of more than 140 peer-reviewed papers and book chapters.

Mauro Conti is a Professor at the University of Padua, Italy. His main research interest is in
the area of security and privacy. In this area, he published more than 200 papers in topmost
international peer-reviewed journals and conference. He is Associate Editor for several journals,
including IEEE Communications Surveys & Tutorials and IEEE Transactions on Information
Forensics and Security. He was Program Chair for TRUST 2015, ICISS 2016, WiSec 2017, and
General Chair for SecureComm 2012 and ACM SACMAT 2013. He is Senior Member of the
IEEE.

23

Mukesh Singhal is a Chancellor’s professor and the chairman in the electrical engineering and
computer science at the University of California, Merced. From 2001 to 2012, he was a profes-
sor and Gartner Group endowed chair in Network Engineering in the Department of Computer
Science, University of Kentucky. His current research interests include distributed and cloud
computing, cyber-security, and computer networks. He received 2003 IEEE Technical Achieve-
ment Award. He has published over 260 refereed articles in these areas. He has coauthored
four books, including Advanced Concepts in Operating Systems, McGraw-Hill, New York, 1994
and Distributed Computing Systems. He has served in the editorial board of IEEE Transactions
on Dependable and Secure Computing, IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Data and Knowledge Engineering, and IEEE Transactions on Computers.
He is a fellow of the IEEE.

24

	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Related Work
	2.1 SFC solutions in SDNs/NFVs
	2.2 Failure recovery and fault-aware solutions in SDNs/NFVs
	2.3 Energy-aware Fog-supported solutions in SDNs/NFVs

	3 The Proposed Architecture
	3.1 Problem Definition and Assumptions
	3.2 Proposed Architecture
	3.2.1 Failure Recovery and Fault Prevention (FRFP)
	3.2.2 Failure Detection
	3.2.3 Switch Configuration
	3.2.4 Network Monitoring

	4 System Model
	5 Problem Formulation
	5.1 QoS, Routing, and Delay
	5.2 Faults
	5.3 Service Function Chaining (SFC)
	5.4 Energy and Network Side-effect
	5.5 Overall Formulation

	6 Heuristic Fog-supported Energy-aware SFC rerouting algorithm (HFES)
	6.1 Computational Complexity

	7 Scenario Description
	7.1 Simulation Setup
	7.2 Traffic-Demand Generator
	7.3 Scenarios

	8 Simulation Results
	8.1 Energy Consumption
	8.2 Average Fault Probability
	8.3 Average Path length and Network Side-effect
	8.4 Link and Fog Node Utilization
	8.5 Impact of and on OFES

	9 Conclusion and Future Work

