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Abstract

With the increase of multimedia traffic, the implementation of fast and accurate classification has become an important issue.
Besides, a manually captured dataset contains certain noise and mislabeled instances, which influences the accuracy of classifier
to some extent. Motivated by these observations, a novel feature selection and instance purification (FS&IP) method based on
consistency measure is proposed. It utilizes a linear consistency-constrained algorithm for feature selection. In each round of
iteration, it removes the instance with the minor labels in every pattern subset. Our method has three desirable properties: 1) it can
simultaneously achieve feature selection and data purification. 2) when purifying instance, it doesn’t need to annotate the noisy
instance with learned labels; that is because it is an unsupervised method in terms of data purification. 3) through data purification,
it is able to obtain a minimal feature subset on condition of maintaining accuracy. In addition, the proposed method can be used to
discover a new discriminative feature based on linking behaviors called the flow fragment (F — Frag), which can reflect important
information among the complex and multitudinous packet communication behaviors. The experimental results over six different
datasets demonstrate the advantages of the proposed technique compared to six existing methods, and the discriminative power of

the new flow fragment feature.

Keywords: Traffic classification, Feature selection, Instance purification, Flow fragment.

1. Introduction

One of the key components for supporting the QoS (Quality
of Service)-enabled Internet is the provision and management
of robust and automatic traffic classification (TC) [1, 2]. As a
core part of QoS-enabled Internet, TC can be employed by the
Internet service providers to identify various traffic categories
to provide different QoSs for various types of traffic. However,
with the increase of the volume and categories of multimedia
traffic [3], it has become a challenging task to ensure the
accuracy and cffectiveness of TC. To guarantee the overall
acceptability of an application or service perceived by the
end-user, an effective and fine-grained multimedia classification
system is necessary.

Due to the dynamic use of port numbers, the emergence
of traffic encryption and encapsulation, and the concern of
privacy protection in recent years, most of the port-based and
deep packet inspection (DPI)-based TC techniques [4] becomes
inapplicable anymore. Since machine learning (ML)-based
methods are able to address the aforementioned issues ef-
fectively, they have become the signs of future success in
TC [5]. Most ML-based methods construct the knowledge
system through extracting the flow-level statistical information
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from transport layer, which is divided into supervised methods
and unsupervised methods according to whether there is label
information. However, due to the giant volume of traffic, the
ML-based methods need much more time to train a model.
Besides, the big data can easily cause the overfitting problem
and degradation of time performance [6].

To address the problems of high time overhead and over-
fitting on high-dimensional dataset, model reduction is critical
[7]. Therefore, some feature selection methods for traffic
classification have been devised to improve the effectiveness
of classification system. The feature selection algorithms are
mainly split into the following three categories: filter, wrapper
and embedded methods [8]. The feature subset selected based
on wrapper and embedded methods is related to the subsequent
predetermined classifier, hence, the features subset may not be
suitable for other classifiers. Filter methods utilize the natural
characteristics (such as correlation and information entropy) of
data to rank and further select features [9]; therefore, the feature
subset is not related to the predetermined classifier. At the same
time, filter methods are usually more efficient than the wrapper
and embedded methods on large-scale dataset.

1.1. Challenges and motivations

Most current feature selection methods determine the fea-
tures in accordance with their relevance with the labels and the
redundancy between features. For example, the correlation-based
feature selection (CBF) is a widely used method, which con-
siders both the feature-label and feature-feature correlations
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during evaluation of features. However, this kind of method
may fail to discover some useful feature combinations that may
be significantly relevant and useful for a classification task, but
each of the associated individual feature is of low relevance to
some of the classes. One of the solutions is the consistency
based methods [10], which relies on consistency measure
to search for the best subset with high consistency score.
However, the speed of most consistence-based method becomes
slow when dealing with large volume of instances. Therefore,
how to implement faster and more effective feature selection for
large-scale and ceaseless traffic data is a challenging task.

Another key challenge is how to effectively purify traffic.
When capturing traffic data, there exist complex factors which
may influence the purity of the captured dataset, such as
the variation of network conditions and the occurrence of
some wild flows. These factors can cause some flows to be
mislabeled. Even in the benign network conditions, typically,
a non-negligible percentage of flow would be considered sus-
picious. These mislabeled instances are prone to misguiding
the classifier to make an inaccurate decision margins in the
training stage [11]. Therefore, data purification is important
to the classification performance.

Motivated by the above considerations, this paper aims to
develop new techniques to conduct feature selection and dataset
purification simultaneously for more accurate multimedia traf-
fic classification.

1.2. Key contributions
This paper makes four major contributions as follows.

e It designs a novel algorithm for joint feature selection
and instance purification. The proposed algorithm has
three advantages over other methods. First, it can achieve
feature selection and data purification simultaneously.
Second, as an unsupervised learning method (in terms
of data purification), it does not need to know or learn
the noisy instance labels. Finally, benefited from data
purification, it can obtain a smaller feature subset while
maintaining classification accuracy.

e A discriminative feature called flow fragment (F — frag)
is discovered based on networks link behavior. Moreover,
to measure the performance of the traffic features, a fea-
ture stability (FS) is proposed. The experimental results
show that this new feature can significantly improve the
accuracy of a classifier and have a good performance
in terms of FS. This is an important finding, in that it
provides a more insightful measure for classifier design.

e An integrated framework for multimedia traffic classi-
fication is developed, including data capturing, feature
extraction, feature preprocessing, feature selection and
classification. Among which, a traffic trace of 424.67G-
B size is captured, which comprises six multimedia
categories, and 44 QoS-aware flow-level features are
extracted to characterize multimedia flows.

e By using our own proposed algorithm and six other
algorithms, extensive experiments are carried out over
five UCI datasets and our multimedia traffic dataset.
These methods are compared with the proposed method
in terms of accuracy, running time and the subset size
ratio. Moreover, the feature stability is proposed to
evaluate the goodness of each feature. The experimental
results suggest that the proposed method is better than
other ones.

The remainder of this paper is organized as follows. Section
2 reviews related work. Section 3 defines the problem. Section
4 presents the overall framework of TC that comprises five
modules. Next, Section 5 presents the novel algorithm for
joint data purification and feature selection, and a new feature
— flow fragment. The experiments and comparisons with
existing methods are done in Section 6. Section 7 analyzes the
experimental results. Finally, Section 8 concludes the paper.

2. Related work

Feature selection is a crucial technique for Internet traffic
classification. There are much work on feature sclection for
traffic classification. In general, it includes three important
categories [12], which are the wrapper, filter and embedded
methods respectively. As mentioned earlier, filter methods
generally behave more efficiently for large-scale data [13].
Therefore, this paper mainly focuses on the filter methods.

Many filter algorithms have been developed, including the
information theory-based methods [14], similarity-based
methods [15], sparse learning-based methods [16] and so on.
Furthermore, great efforts have been made for feature selection
in the TC field. For example, Ambusaidi et al. in [13]
proposed a features selection algorithm based on mutual
information and used the rank search method to select the best
subset for building an intrusion detection system. Senliol et al.
[17] presented a fast correlation-based filer (FCBF) method to
separate and prioritize the sensor data from the multimedia
traffic. Such an FCBF method is implemented using data
segmentation, where the original data are split to an
appropriate number of segments. The relevance of each feature
for representing the target class is evaluated in each of the
segments. The importance of each feature is then determined
according to their overall performance. Note that, FCBF only
considers the correlation relation between individual features,
and does not consider the effects of the interaction of features.

Dong et al. [1] found some useful flow-level features and
exploited the consistency-based method and information
theory-based method jointly to select the best feature subset
for achieving the fine-grained video traffic classification. It is
known that the existence of noise in data may degrade the
performance of a classifier especially when the trained
classifier is applied to new data. To achieve more accurate
selection of feature subsets, Adil et al. [18] put forward three
evaluation criteria to assess feature selection from three
aspects, and further developed an integrated feature selection
technique by combining the results of five algorithms.



Although it can get more accurate results, it requires
considerable computation power and time. Dong ct al. [19]
introduced a feature selection method based on a heuristic
search algorithm (called RFPSO) to mitigate the problem of
highly dimensional traffic classification.

Among the aforementioned methods, the
consistency-based algorithms have many advantages over
other methods [20], such as more efficiency of finding feature
interaction and reduction of feature redundancy. Many feature
selection methods have been developed based on consistency.
Liu et al. [21] devised the INTERACT method, which uses the
symmetric uncertainty to rank features and then evaluates
individual features by the consistency contribution (CC).
Although this feature selection method is fast, the resulting
feature subset usually contains a relatively larger number of
features.  Following the INTERACT, Shin and Xu [22]
introduced the linear consistency constrained (LCC) and
complete consistency constrained (CCC) algorithms. Besides,
the steepest-descent consistency-constrained —algorithm
(SDCC) was presented in [21], which exploits the monotony
of consistency and applics the steepest descent method as
search strategy. However, it needs more time to search the
optimal subset. Shin et al. [23] presented an extended
definition of consistency and theoretically proved that the
binary measure has the best sensitivity among fifteen
measures, based on which, the CWC algorithm developed
based on a binary measure was presented. To accelerate the
speed of CWC and LCC, the binary search is utilized in [24] to
make the two algorithms suitable for dealing with big data.

In terms of instance purification, the editing neighbor
nearest (ENN) [25] utilises the ‘nearest neighbor rules’ to
remove the noisy instances in order to increase the classifier’s
generalization ability. However, this method only operates in
continuous space and the selection of neighbors for nearest
neighbor classifier needs additional consideration. In addition,
ENN and its variants only work when a very small amount of
noise is presented.

Different from other studies in the literature, by considering
possible noisy samples and outliers, this paper proposes a novel
approach that is able to realize the feature sclection and data
denoising simultaneously. For illustration, the main notations
used in this article are summarized in Table 1.

3. Problem statement

For simplicity of description, the feature selection method
based on information entropy (IE) is used as an example here.
Let I(F; C) represent the mutual information between feature
set F and the corresponding label set C. Then, the sum of
relevance (S R) with respect to I(F; C) is defined as:

SR(E = {fifor - iD= Y IO, (D)

where S R represents the sum of relevance of the feature set with
labels. The classical examples of S R-based feature selection
algorithm include the Relieff algorithm [26], FCBF [17] and so
on.

Table 1: Main notations used in this article.

Symbol  Description
a(s) The feature vector of instance a with regard to
feature subset § ’
C The class label set, namely, {c;, ¢z, -+ , ¢y} -
D The knowledge system, a finite discrete dataset.
F A set of features, namely, {f1, f2,- -, fi}-
& A pattern of D.
1 The instance set of D.
S.G The feature subset of F.
1, The pattern subset {a € Dl|a(S) = &}.
L, The pattern count list with respect to .
Ds_ocoy  {a€Dla(S) =& Aa(C) =y}
T[i] The ith element of the vector T'.
o The consistency threshold.
|A] The cardinality of set or vector A.

Table 2: An example of the problem of feature interaction and redundancy.

bil f 5 C
1 0 1 0
0 1 1 1
1 0 0 1
0 1 0 0
1 0 1 0
0 1 1 1
0.081 0081 0 I(f;;C)

Table 2 gives an example showing a knowledge system with
feature set {f1, f>, f3} and the class labels C = {0, 1}.
This paper aims to tackle the following three key problems:

1. Feature interaction. In many situations, a single feature
may be of low relevance or importance to the label, but
when it interacts with other features, the interactions could
play a significantly important role in indicating the label.
For example, the class label in Table 2 can be completely
determined based on the combination of f; and f;3 - say
using the XOR relationship between them, but note that
SR(f1,f2) = SR(fi,f3) and I(f3,C) = 0 holds. According
to the SR rule, the feature set fi, f> is better than fi, f3.

2. Feature redundancy. As shown in Table 2, f; and f,
represent the same knowledge with respect to class label,
because their values are the operation of pointwise
inversion. Therefore, one of the two features can be
removed without loss of any information. However,
SR(fi,f>) is bigger than either SR(f;) or SR(f;). The
S R-based methods inevitably deem the subset of {fi, f>}
and are better than either f] or f, separately.

3. Noisy labels. Noisy labels are a significant problem in the
real-world data collection in TC [27]. The most
straightforward and accurate method to acquire labelled
data is to only allow one category of traffic flow to pass
through the capturing device. However, even in benign
network conditions, there are typically a non-negligible
percentage of flows which would be considered suspicious.
Due to these influencing factors (e.g., network instability,



some mixed flows), some instance labels tend to drift to an
adjacent category from the actual one. Therefore, some
noisy instances in the decision boundaries may cause the
performance degradation of classifiers. In the example
shown in Figure 1, in the boundary area, there exist some
noisy points denoted by red dots. During data learning, the
classifiers will be easily misguided, unless necessary means
are taken. Unfortunately, the mislabeled instances can not
be distinguished from actual labeled ones in advance.
Therefore, it is desirable that a method can remove the
noisy instances without any pre-training.

* class1

x  class2

Figure 1: Some noises at the boundary between classes in a binary dataset.

4. The overall framework

The framework of the proposed method is shown in Figure
2, which gives the bird’s view to the overall procedure of our
work. The blocks with red border and slashes present the major
works of this paper.

The first step is the data collection. The data flowing
through the network interface card (NIC) was captured in the
campus network of Nanjing University of Posts and
Telecommunications from the beginning of September to the
end of October of 2018. To guarantee the ground truth of
dataset, the traffic flow traces were captured over three time
periods, that is, morning, afternoon and evening. The captured
data was eventually stored in the database in the five-meta
format, and the data include the packet arriving time, source IP
address, destination IP address, packets size, and protocol.
Though two-month data capturing, 1636 flows were obtained
comprising the following six categories: Internet live video
(ILV), game, streaming video (SV), pear to pear video (P2PV),
conversational video (CV) and web browsing (WB). The
detailed information of the dataset is listed in Table 3.

Table 3: Description of our multimedia dataset.

Category #Flow  Size (Gb) Application
ILV 284 147.28 Sopcast’, CNTV?
GAME 476 5.37 Dota®, FWJ*, NZ?
SV 360 182.90 Iqiyi®, Youtube’
P2PV 206 82.97 Xunlei video?
(Y 126 3.21 Skype video®, WeChat video'’
WB 184 2.94 Sina'!, Csdn'?

The next step is the feature extraction module. To better
utilize the statistical knowledge, 44 QoS-aware flow-level
features were extracted simultaneously. Furthermore, these 44
features can be divided into the three groups of downlink,
uplink and datalink features. The downlink features are the
downstream statistical characteristics associated with local IP.
Similarly, the uplink features are the upstream statistical
characteristics associated with local IP. The datalink features
are the statistical characteristics of bi-direction flows. All the
44 features are summarized at Table A1 in the Appendix.

Then, a feature preprocessing procedure is carried out
which includes data normalization and data discretization. It is
noted that some of the extracted feature have a large range of
values (e.g. the downlink packet rate ranging from 0.179 to
48183 bytes/s), therefore, z-score method [28] is used for data
normalization so that they have the same order of magnitude.
Previous work [29, 30] has discovered that data discretization
is conducive to boost the effectiveness of back-end classifier,
and elevates the classification accuracy. Thus, discretization is
carried out. It uses an equal-width-interval algorithm [31] to
separate the varying range of each variable (feature) into N
intervals (N=10 in the present study). After data
preprocessing, it uses the proposed feature selection method to
select the best feature subset and purify data. At the end,
multiple classifiers are used to identify the multimedia traffic.
The processed features are fed into classifiers to identify the
traffic types.  The classification results can be used in
subsequent module, such as QoS mapping, resource allocation,
and network surveillance.

5. Methodology

Thereinafter, a pattern is part of an instance without class
label. It is a vector of real valued features in the feature subset
[23]. Let D be a finite knowledge system consisting of a

1 http://www.sopcast.com/
2http://tv.cntv.cn/
3https://www.dota2.com.cn/index.htm
4http://xyq. 163.com/
Shttps://nz.qq.com/
Ohttps://www.iqiyi.com/
7https://www.youtube.com/
8http://x.xunlei.com/
“hitp://skype.gmw.cn/
10https://weixin.qq.com/
Uhttps://www.sina.com.cn/
12https://wwwx:sdn.net/
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Figure 2: The proposed framework of video traffic classification.

feature set F = {fi,fo, -+, fi} and a class variable C.
According to the pattern, the instance set can be divided into
pattern subsets because some instances in dataset D share the
same patterns. Specifically speaking, a pattern subset
I.(I; C D) is a combination of instances defined as follows: the
value of an instance in the feature subset S is equal to . It is
formally defined as:

I ={a € Dla(S) = &}, 2
where a(S) denotes the vector of feature values for an instance
a from feature subset S'.

The pattern subset can be further partitioned into smaller
subsets I} by class labels as follows:

I ={a € Dla(S) = & Aa(C) = y)}. 3
Thereby, the inconsistent count for pattern £ is defined as:
I1C(e) = |I,| — max || 4)
y

With regard to the feature subset S of dataset D, there is a finite
countable set of patterns &, &, -+ ,&,. The inconsistency rate
cquals to the ratio of inconsistent count of all the patterns to the
number of all instances of D. Formally,

ZlSisP I1C (&)

ICR(¢) = W ,

)
where I is the whole instance set of dataset D.

For simplicity, ICR(S; C) is used to represent the process
of calculating the inconsistency rate for feature subset S, where
S € F, and C is the corresponding class label set.

The inconsistency rate has the following properties [23]:

1. ICR(S,C) = 0, if and only if, F determines C.
2. If S € G, ICR(S,C) > ICR(G, C) holds.

3. ICR(S,C) < %, where n is the number of classes.

As mentioned above, the consistency-based methods have
some advantages. First, the consistency rate can be used to
discover the interacting feature sets while removing redundant
features. Second, the inconsistent rate increases with the

Initialization

Calculate  Calculate
e W

Output

instances

Parameter
Optimization

Figure 3: Flowchart of proposed algorithm.

Feature subset search

decrease of features according to Property 2. It is a
monotonous function, which can be utilized to speed up the
process of feature selection.

5.1. Algorithm

This subsection presents a novel method based on
inconsistent rate which can be used to select a feature subset
while purifying the instance (referred as FS&IP). Figure 3
presents the overall procedure of the proposed method. The
first step comprises initialization, feature ranking and
parameter optimization. After that, the feature subset search is
carried out, where the ICR and IPR are calculated and
meanwhile noisy instances are removed at each iteration.
Finally, the selected feature set and purified instance sct are
calculated as the output. In the following, the technical details
of each step are presented.

Pattern count vector (PCV) is defined for pattern &
according to the labels as:

(6)

LE:[r19r23“' 3rn]

where r; is the occurrence ratio ¢ for class i, which is calculated
by |Ij}.| /|1s|. We define the majority label as the class label with
the max pattern count of L,. Formally,

majority label = arg max(L.[y]).
yeC

(N

Assuming that a pattern only attributes to one class, it
should belong to the majority label, so its occurrences in other
classes should be viewed as noise. Because of the data
capturing error and mixing with noise, it is possible that the
patterns belonging to one class migrate to other patterns
belonging to other adjacent classes. As a result, it may cause
the emergence of other minor labels.



To purify the dataset, the instances with the pattern whose
occurrence ratio is lower than a threshold could be removed.
Therefore, the impurity ratio (IPR) is defined as the threshold
to make instance purification more flexible. Given a pattern &,
the removal set (RS) is given as:

RS: = | | Ds=eca» 1i < IPR, ®)
cieC

where C is the label vector.

For example, given a pattern set £ which is partitioned by
the labels, we can count the amount of instances with the same
pattern according to labels. Assuming the obtained PCV, L, =
[60/65,0,5/65], if the IPR is set to be 0.1, apparently, the five
instances for the third class need to be removed. The detailed
purifying process is shown in Algorithm 1.

Algorithm 1 Data Purifying Process
Input: A pattern g, IPR y, class set C;
Output: The removal set R;

1: function Remove(e, C, u)

2: R « 0,

3 Calculate L, [ry, 72, - ,1,] according to classes;
4: fori={1,---,T}do
5
6

if r; < and r; # 0 then

R«<—RU DS:s,C:c,
return R

Actually, the proposed purification method can be adopted
in most consistency based feature selection methods to realize
instance purification and feature selection simultaneously. In
this paper, LCC is applied and embedded into the proposed
method because of its effectiveness and concision among
consistency-based methods.

The overall procedure of the proposed method is presented
in Algorithm 2. It takes the dataset and uses two preset
thresholds, (namely, the thresholds of inconsistency o and /PR
() as inputs and outputs of the minimal feature subset S and
purified instance set P. Firstly, due to its good robustness and
stability property, the minimum Redundancy Maximum
Relevance (mRMR) algorithm [32] is used to rank the features.
Then let the minimal feature set S and purification instance set
G as the universal set of feature and instance respectively. In
the following, at each iteration, a feature is eliminated from S
and checks if the inconsistency rate reaches the inconsistency
threshold o, whilst purifying the dataset at the 9¢th and 11th
line. The algorithm terminates when the inconsistent rate
reaches the threshold o

In addition, to exploit the monotonicity of consistency, the
binary search is carried out to boost the speed of search [24].
The search complexity is O(log(Ny)), where Ny is the number
of features.

Figure 4 illustrates the relationship among the inconsistency
rate, instance purification and feature selection. Through data
purification the inconsistency will decrease, while as the feature
selection progresses, the /CR will increase until the inconsistent
rate reaches o. Therefore, with the instance purification, the

Algorithm 2 FS&IP
Input: A dataset D can be described by features F =
{fi,---, fit and instances I = {i;, - - - , i,,} respectively, label
set C, inconsistency threshold o and /PR y;
Output: A minimal feature subset S,
A purifying instance set P;
1: function FS&IP(D, o, u)
2 Sort F in the incremental order of mRMR;
3 LetS « F, P« I;
4: fori={1,---,l}do
5
6

R—0,IC <0
S can be divided into {g1, &2, - - , &} according to
the patterns;

7: for j=1,2,--- ,k; do

8: IC « IC(&,)+IC

o: RS < Remove(gy,, C,u) URS
10: ICR « IC/|P|

11: P «— P\RS

12: if /ICR < o then

13: S « S\fi

14: else

break
return S and P

o <
& 2
G ICR e
& %
(<]

IS

Promote smaller subse
Instance .
- . Feature Selection
Purification

Figure 4: The relationship among feature selection, instance selection and /CR.

increasing trend will slow down, so that the proposed algorithm
can obtain a smaller feature subset.

To give a clear illustration of the performance of the above
process, featurc selection is conducted by FS&IP on our
dataset. Figure 5 shows the process of feature selection with
three different thresholds of /PR. Because the linear search
method (at each iteration, one feature would be eliminated
from the feature set.) is adopted and the monotonicity of
inconsistency, it is can be observed that the overall inconsistent
rate is continuously increasing when y = 0 (this change also
adapts to other datasets). However, when y = 0.1 or 0.2, the
curves decline slightly in certain areas because of data
purification, causing it to reach the threshold a bit late, and as a
result, a smaller subset is obtained by proposed method than
the original LCC algorithm.

5.2. Parameter optimization

There are two significant parameters in the proposed
algorithm, which are the threshold of /PR and ICR, y and 0. u
determines the amount of removed instances for a pattern
subset and o accounts for when the algorithm terminates.
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Figure 5: The relationship between /CR and feature subset under different
IPRs.

To scale down the region of search, the value search ranges
of two parameters are set in advance. Though /PR and ICR
have the same value range [0,1], the values in predesigned
search ranges need to be the most probable values for both
thresholds. If IPR is too large, the algorithm will be disabled
due to the fact that it would remove more instances even the
instance with majority label. Therefore, IPR (impurity ratio) is
selected from O to 0.3. If o is too large, it would lead to no
feature selected. In addition, with regard to the range value of
ICR, we referred to literature [33, 34]. Consequently, ICR
(inconsistent ratio) threshold is set from O to 0.1. However,
there is still a problem that it is expensive to use the exhaustive
search for the optimal solution. Therefore, the heuristic search
method genetic algorithm is utilized [35] to expedite the
process, which can use many mechanisms such as gene
mutation, gene crossover to skip local optimum for getting
global optimum.

Among dataset, there are a certain proportion of instances
with noise which should be removed. On the other hand,
instances collection requires some cost, especially for the
medical or biology field; therefore, we hope algorithm can
remove instances as few as possible but guarantee the
accuracy. Meanwhile, it is desired that the output feature
subset has less features. Consequently, the objective function
is designed to search its minimum for the expectation to make
a balance between accuracy and data reduction.

_ N (=p) - Sp S
f2p- (=AY 5 (= ) )

where A denotes the average accuracy of classifier with
10-fold cross validation, S; means the amount of selected
instances, and N; represents the total amount of instances in
dataset. S, is the selected feature subset, N, is the whole
number of feature and ¢ denotes the rth generation of genes.
The first term on the right hand side of Eq. (9) accounts for the
overall accuracy, and the second term for the data reduction. p
is a weight coefficient ranging from O to 1 to adjust the

i:’ 0.020
<
>
o
2
°
£ 0.015
=
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2
2
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5 10 15 20
Generation

Figure 6: The parameters optimization for /CR and /PR by genetic algorithm
(gotten by proposed traffic dataset).

important degree of two parts in the objective function. If p is
more than 0.5, it suggests that the accuracy of classifier is
more important, or else, data reduction takes more priority,
where p is set to 0.8 in the paper.

In genetic algorithm, the maximum iteration number is set
to 100 and the size of gene population is taken to 40, and the
two parameters /CR and /PR are initialized with random values
within the search ranges. In addition, to avoid wasting too much
time after convergence, the additional stop condition where the
average fitness value of last generation minus that of the present
generation is less than 107> is added. The scores of objective
function through multiple generations are plotted as Figure 6.

5.3. Complexity analysis

Given one dataset, the parameter optimization only needs
to be carried out once. Thus, in addition to the process of the
parameter optimization, the computing complexity of the
proposed method mainly comprises two parts, i.e., the feature
ranking and subset selection.

The first phase of the proposed method is feature ranking
where different algorithms can be specified. Suppose the
complexity of ranking algorithm is O(R). The second is subset
searching. When binary search is applied to boost the speed of
search, the complexity degree of the search method is
O(log,Ny), where N represents the number of features in the
dataset. In addition, at each round of search, the ICR
(inconsistent ratio) only needs to be calculated once. By
employing a hashing mechanism where it actually would take
certain time in constituting the hash table, the complexity
degree of computing inconsistency is O(N;) [36], where N; is
the number of instances given the dataset. Besides, the ICR
and /PR are almost calculated simultaneously, the calculation
of IPR does not need additional time complexity. Therefore,
the asymptotic time complexity of the searching algorithm is
O(Njlog,Ny). Overall, the time complexity degree of proposed
method is O(max(N;log,Ny, R)).



5.4. A novel feature-flow fragment

This subsection presents a set of discriminative features
which has some unique properties and can significantly
improve classification accuracy and performance. Firstly, we
introduce the concept of flow in this paper. A flow is defined as
a series of packets within a certain time which is serviced by a
sequence of servers/routers along the path from the source to
the destination in the network.

We only record the transport-layer session information of
the packet header to avoid violating individual privacy. Hence,
a packet is represented by a five-meta tuple:

x = {time, srcIP, desIP, proto, packetsize}, (10)

where time is the timestamp to indicate when the packet is sent
to the destination, srcIP and desIP are the source and
destination IP addresses respectively, proto is the transport
layer protocol (e.g. TCP and UDP), and finally, packetsize is
the size of packet.

At the same time, we divide a datalink into the downstream
link (DS L) and the upstream link (US L) by local IP address
of the data capturing device. The DSL and USL are defined
respectively as:

DS L = {xj|desIP(x;) = locall P}, 11

USL = {xj|srcIP(x;) = locall P}, (12)

where x; denote the ith packet arriving at NIC (network
interface card).

Figure 7 shows the communication graph of DSL
(downstream link) of one flow. Each session of downlink is
represented by plotting a line. What we can see from
communication graph is that each category indeed has its
various behavioral representations, which are reflected by the
linking condition, the protocol used for transferring and so
forth. However, it is significantly complex, and this is the only
downlink session.  Therefore, it is necessary to extract
sufficient discriminative features in order to identify these
multimedia categories accurately.

From this complex communication behavior, we observe a
group of unique linking behaviors for each category, called the
flow fragment (F — Frag), which enables better distinction
among different categories.

Definition 1. A F-Frag in downstream link is defined as the
continuous series of packets that have the same source IP
address. Formally,

F — Frag = {xj|desIP(x;) = locallP}

. . (13)
s.t. 118 consecutive

Our study shows that there are many such flow fragments in
symmetric traffic. Therefore, the F — Frag existing in DSL
can be exploited to identify traffic generated by various
applications.

To get the statistical characteristics, we count the number of

F — Frags, the average/entropy/variance of linking number of
F — Frags, and the total bytes of F' — Frags.

6. Experiments

This section describes the details related to the experiments,
including the evaluation metrics, baseline methods, benchmark
datasets and the experiment procedure.

6.1. Evaluation metrics
1. Overall accuracy (OA). Overall accuracy is the ratio of true
samples to all the tested samples, which is expressed as:

- TP+TN
" TP+FP+TN+FN’

OA (14)
where TP is the true positive instances; TN is the true
negative instances; as such, FP and FN are the false
positive and false negative instances, respectively. OA is
used to assess the accuracy of feature subset in specific
classifiers.

2. Subset size ratio (S ). Besides the effectiveness of a feature
subset, its size also needs to be considered. The subset size
ratio is defined as:

Sy

N

where S ; is the selected feature subset, and Ny is the whole

feature set. A smaller value of S, represents a smaller subset
S.

Sr (15)

3. Runtime of algorithms. To measure the speed of algorithm,
the average runtime of each algorithm is calculated.

4. Data volume. To intuitively present the reduced volume of
data, the data volume is defined as:
Sr S,
Data volume = 27, =L (16)
Ny N
where S ; is the amount of selected feature set, Ny is the
amount of total feature set, S; is the amount of purified
instance set and N; denotes the amount of the total instance
set.

5. Feature stability (F'S).

Definition 2. The feature stability is defined to measure the
quality of one feature as:

T 184

FSU =7 0 1= 1)), a”

i=1 j=1

where FS(f,) is the stability of feature f,, and I(r) is the
indicator function; that is: I(¢) is 1, if the event ¢ is true; it is
0, otherwise. T represents the number of participating
algorithms and S is the selected subset of the ith algorithm.
However, considering the ranks of features in one
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Figure 7: The communication graph of DS L of one flow for each category.

algorithm, the feature with higher rank should have the
bigger weight. Therefore, we design the weighted item for
each feature appearing in the subset. The final equation of
FS is defined as:

T 184
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(18)

where rank(-) is the rank function which outputs the rank of
features in descending order. The best feature in the subset
multiplies by weight 1, while the feature with the lowest
rank multiplies by ﬁ A feature with lower rank is
assigned with a lower weight. F'S (feature stability) can not
only represent the occurrence number of one feature, but
also reflect the rank in one algorithm. A better feature has a
higher F'S score. Note that in the present study feature
stability (FS) is defined as the robustness property or
representative performance of a feature for some specific
classification purposes, when evaluated using several or
many different algorithms. FS employs the weighted
frequency of each feature to evaluate feature performance
on one dataset. It is known that different feature selection
algorithms may generate different results, this is because
different methods select features from different views.
Therefore, given one feature, if it can achieve higher scores
by different feature methods, it will then be treated as a
good feature with stable discriminative ability.

6.2. The baseline methods and parameter setting

The proposed method is compared with the following six
state-of-the-art algorithms: the improved correlated-based
feature selection (ICFS) [37], FCBF [17], super-LCC (SLCC)
[24], Steepest-Descent Consistency-Constrained (SDCC) [10],
SCWC[23] and RFPSO [19] algorithms respectively; these
methods directly output the optimal subset rather than the

feature ranking. Among all seven methods, the consistency
threshold for SLCC and SDCC is 0.01 (0.01 is the typical
value from literature [24, 38]), which is a positive threshold
obtained through multiple trials; the threshold value for the
proposed method, however, is optimized by genetic algorithm.
The number of particles in RFPSO is set at 50, and the number
of iteration is 100; the fitness function is the same as in [39].
The threshold of FCBF and ICFS is set to 0.01. In this study,
three classifiers, namely, decision tree (J48 version) (DT),
SVM with RBF kernel (SVM-rbf) and Naive Bayes(NB), are
used to verify the generalization and robustness performance
of the selected feature subsets. Moreover, a grid search is
implemented to search a better parameter combination of SVM
through cross-validation since it is more sensitive to the
hyper-parameter ~ settings, = where we evaluated the
regularization parameter C = [1, 10,100, 1000] and kernel
efficient y = [0.0001, 0.001].

6.3. UCI Datasets

In addition to our multimedia dataset, five UCI datasets are
also used to evaluate the performance of each algorithm. Table
4 lists the size of instances and features, the classified
categories, and the ratio of the number of instances to the
number of features (In/F). From Table 4, we can see that these
datasets incorporate both binary and multivariate data, and
they are ranked by the ratio of In/F in order to compare the
performances of algorithms in multi-class and binary
classification tasks and also to investigate the effect of In/F on
algorithms.

6.4. Experiment setup

An overview of experiment is shown in Figure 8, where the
blocks with slashes represent the algorithm modules;
particularly, the red one employs our proposed method. The
data is divided into training and test sets for 10-fold cross



Table 4: Description of our multimedia dataset.

Dataset  #Instance  #Feature Category In/F  Reference

Har 7352 561 6 13.10 [40]
Traffic 360 40 6 9.00 [1]

Madelon 4000 500 2 8.00 [41]
Hiva 3845 1617 2 2.37 [42]
Gisette 6000 5000 2 1.20 [41]
Gene 801 20531 5 0.03 [43]
Arcene 100 10000 2 0.01 [41]
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Figure 8: Experiment system overview.

validation (CV). In each CV, one fold is used as test set and
remaining folds are employed as training set. The
discretization algorithms are employed in training set to
generate the discretized cut-points; then, the entire dataset is
input into the feature selection algorithm to reconstruct dataset
based on features and instances. The reconstructed dataset is
used to train classifier and get the test score. Though
discretization may lead to information loss, it can also remove
some redundant information. As long as using discretized
intervals to achieve adequate number, the accuracy of
classifiers will be probably higher than that in the continuous
space. We set the discretized intervals at the best value 10
through multiple tests.

To make the fair comparison, all experiments were
conducted with Python on a computer running Windows 10,
with the configuration of an Intel® Core™ 3 GHZ CPU and
16G of RAM. In addition, some data analysis in the early stage
was done on WEKA!, including the analysis of data
distribution and data visualization.

7. Results and Discussions

7.1. Results on noisy multimedia traffic dataset

Because of the difficulty of visualizing the dataset with
multiple features, we carry out feature reduction by principal
components analysis (PCA) to observe the results, which
consists of two principal components. The compared scatter
plots of the proposed dataset are shown in Figure 9, where the
horizon and vertical axes of two subgraphs are the first and
second principal components respectively.

As shown in Figure 9, it is noteworthy that the closer it is
to the overlapping area, the more points are removed.
Moreover, these points which deviate from the area of its own
self-category and enter other categories are removed by the
algorithm. It can help improve the performance of
classification.

1https://www.cs.waikato.ac.nz/nﬂ/weka/
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Figure 10: Comparison between the processed dataset and the original one,
where the average OA is obtained by three mentioned classifiers.

7.2. Accuracy comparisons

Figure 10 shows the comparison between the processed
dataset and the original one. It can be observed that the OA
(overall accuracy) is improved by about 6% and the fluctuation
becomes smaller, suggesting that the proposed method is able
to select a good feature subset, and reduce the performance
variation of classifier. In terms of data volume, the proposed
method is capable of reducing the volume by about 77% over
the original dataset for both features and the number of
instances. Large reduction of data volume can reduce the
computational memory and increase effectiveness of back-end
classifier. Therefore, it can be validated that proposed method
is largely conducive to multimedia traffic classification.

Figures 11 and 12 shows the OA of DT (decision tree),
SVM and NB (Naive Bayes) to reflect the accuracy of selected
feature subset, and S, score which measures the size of the
selected feature subset. The proposed method FS&IP has a
significantly better performance than ICFS, FCBF and SDCC.
Compared with SLCC, our method behaves better when using
the DT and NB classifiers; at the same time, it selects a smaller
size of feature subset. It is because that our method employs
data selection to make traffic data purer. The results indicate
that our method is able to generate a better feature and instance
subset to improve classification performance. In comparison
with SCWC, our method achieves more accurate classification
though it produces feature subset with bigger size. On
accuracy, RFPSO has similar performance with our method.
However, in terms of the dimension of feature, our method
only uses about one seventh of the features selected by RFPSO
to achieve the close accuracy.

The above comparisons demonstrate that the proposed
method can find a set of more discriminative representatives
(features and instances) for multimedia traffic classification.

7.3. Feature stability

Ten algorithms are compared to evaluate features stability,
including Relieff [26], Chi2 [44], CMIM [14], six baseline
methods, and the proposed method. Because mRMR, Chi2 and
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CMIM only give the rank of features, we select the subset of
top 10 features in the rank for evaluation. As shown in Figure
13, the F'S score for each feature is calculated, and 10 features
with top F'S scores are presented.

In Figure 13, the abscissa axis shows the serial number of
features which are presented in Appendix in the descending
order of F'S score. In particular, the red bar represents the
performance of the counts of F' — Frags. It is observed that the
proposed feature (the counts of flow fragments) behaves best
in terms of F'S, about 7% higher than the second best feature.
This suggests that the probability of F — Frag based features
to be selected is higher and they rank high among these
features. Different traffic types have different network link
behaviors, while the set of feature based on F — Frags is
calculated on the basis of link behaviors, that is the reason
behind the success of the proposed features.

7.4. Comparison on UCI datasets

In this subsection, we make comparison over seven public
datasets listed in Table 5. Because SDCC uses the exhausted



Table 5: The performance comparison on public datasets.

Dataset Method Best_dis  Best_con  Mean_dis (Std)  Mean_con (Std) S, Time (Sec.)
Proposed 0.800 0.896 0.776 (0.033) 0.871 (0.012) 0.023 642.08
ICFS 0.549 0.682 0.519 (0.042) 0.639 (0.054) 0.021 1142.276
Har FCBF 0.499 0.628 0.496 (0.003) 0.589 (0.038) 0.018 434.741
In/E: 13.10 SLCC 0.753 0.826 0.706 (0.034) 0.756 (0.102) 0.023 624.541
T SCWC 0.922 0.951 0.863 (0.064) 0.901 (0.065) 0.082 625.796
PSO 0.962 0.975 0.835 (0.153) 0.909 (0.075) 0.631 1947.541
Whole 0.962 0.979 0.826 (0.167) 0.906 (0.073) 1.000
Proposed 0.949 0.945 0.940 (0.008) 0.938 (0.010) 0.250 8.54
ICFS 0.714 0.821 0.706 (0.008) 0.720 (0.082) 0.150 6.12
Traffic FCBF 0.926 0.938 0.915 (0.010) 0.913 (0.031) 0.250 7.51
In/F: 9.00 SLCC 0.873 0.936 0.853 (0.014) 0.855 (0.079) 0.325 8.96
T SCWC 0.945 0.950 0.931 (0.011) 0.908 (0.056) 0.550 8.04
PSO 0.944 0.950 0.938 (0.008) 0.913 (0.045) 0.550 9.41
Whole 0.938 0.942 0.867 (0.100) 0.907 (0.045) 1
Proposed 0.826 0.790 0.751 (0.052) 0.748 (0.045) 0.042 43.983
ICFS 0.762 0.738 0.675 (0.070) 0.680 (0.047) 0.012 113.361
Madelon FCBF 0.785 0.789 0.698 (0.051) 0.716 (0.049) 0.020 14.551
In/E: 8.00 SLCC 0.782 0.807 0.749 (0.062) 0.738 (0.051) 0.046 42.115
T SCWC 0.792 0.804 0.717 (0.087) 0.730 (0.051) 0.054 39.260
PSO 0.736 0.724 0.689 (0.061) 0.635 (0.082) 0.624 248.994
Whole 0.763 0.742 0.642 (0.065) 0.602 (0.012) 1.000
Proposed 0.965 —* 0.965 (0.0003) — 0.021 580.64
ICFS 0.945 — 0.924 (0.012) — 0.032 1085.24
Hiva FCBF 0.958 — 0.947 (0.000) — 0.006 45.65
In/F: 2.37 SLCC 0.964 — 0.943 (0.016) — 0.026 599.85
T SCWC 0.961 — 0.951 (0.001) — 0.023 641.90
PSO 0.964 — 0.959 (0.010) — 0.625 526.70
Whole 0.969 — 0.960 (0.010) — 1
Proposed 0.973 0.952 0.949 (0.041) 0.920 (0.012) 0.004 1233.443
ICFS 0.970 0.967 0.882 (0.084) 0.891 (0.082) 0.020 3699.329
Gisette FCBF 0.856 0.844 0.834 (0.021) 0.795 (0.062) 0.002 457.382
In/F: 1.20 SLCC 0.957 0.926 0.935 (0.031) 0.908 (0.010) 0.004 909.943
T SCWC 0.948 0.972 0.924 (0.017) 0.903 (0.056) 0.031 939.656
PSO 0.973 0.973 0.946 (0.019) 0.903 (0.056) 0.615 4450.637
Whole 0.964 0.971 0.941 (0.023) 0.916 (0.061) 1.000
Proposed 0.960 0.960 0.947 (0.011) 0.942 (0.002) 0.001 77.453
ICFS — — — — — —
Gene FCBF 0.755 0.748 0.698 (0.072) 0.732 (0.001) 0.0005 1085.611
In/F: 0.03 SLCC 0.958 0.955 0.944 (0.012) 0.944 (0.003) 0.001 50.012
SCwWC 0.974 0.978 0.964 (0.008) 0.971 (0.001) 0.001 51.974
PSO 0.976 0.966 0.965 (0.017) 0.901 (0.032) 0.607 1873.561
Whole 0.978 0.971 0.925 (0.043) 0.910 (0.023) 1.000
Proposed 0.790 0.780 0.747 (0.033) 0.733(0.017) 0.001 0.912
ICFS 0.560 0.580 0.533 (0.019) 0.550 (0.036) 0.002 0.927
Arcene FCBF 0.580 0.610 0.557 (0.001) 0.590 (0.014) 0.002 46.228
In/F: 0.01 SLCC 0.742 0.700 0.727 (0.025) 0.610 (0.021) 0.003 0.559
T SCwWC 0.780 0.760 0.740 (0.036) 0.717 (0.031) 0.004 0.667
PSO 0.761 0.730 0.653 (0.054) 0.670 (0.085) 0.611 209.889
Whole 0.800 0.742 0.690 (0.086) 0.720 (0.012) 1.000

* Hiva is a discretized dataset originally; thus it have no the results in the columns Best_con and Mean_con.
“* ICFS did not complete the job probably because of lack of memory or takes much time.

search to select features, it will spend much time with
large-scale dataset, which cannot meet the demand of
effectiveness in TC, so SDCC is not considered in this
comparison. Table 5 shows the overall performance of six
feature selection algorithms using three classifiers on seven
datasets. Among them, the ‘Best_dis’ and ‘Best_con’ columns
are the best OA of three classifiers (including SVM, DT, NB)
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for each algorithm in discretized and continuous datasets
respectively. The ‘Mean_dis’ and ‘Mean_con’ columns present
the average OA of three classifiers in the discretized and
continuous datasets. For each dataset, the “Whole’ represents
that the classification is conducted with its all features. The
values highlighted in bold are the top scores in each dataset
with regard to the certain criteria. Since the ICFS algorithm



involves very high time overhead, it fails to finish running
within 2h on Gene dataset.

From Table 5, we can observe that the proposed method
outperforms other algorithms on three datasets in terms of
accuracy, in the case of selecting smaller feature subset.
Compared with SLCC, our method always obtains better
results with smaller or equal size subset, which is due to the
instance purification. RFPSO also gets the high accuracy
score, but its feature subset as input of classifier is 30 times
bigger than that of proposed method on average. Besides, it
needs much runtime to select features. SCWC also works best
on two datasets, which has the similar performance to the
proposed method, but it tends to select bigger subset than the
proposed method.

In terms of the dimension of selected features, FCBF and
ICFS tend to select a relatively smaller number of features, but
cannot obtain the accurate and stable results. RFPSO is able to
achieve the high good accuracy, but it is inclined to select the
feature subset with bigger size, and require long running time.
Among the consistency-based methods, our method is able to
select the smallest subset and still get similar or better results.

On runtime, RFPSO seems to need more time to complete
classification task, and because of each run of heuristic search,
its performance is not stable. ICFS is at the second place and it
tends to consume a lot of memory. The consistency-based
methods generally take the shorter runtime. Specially, for the
dataset with the small size of instances and large-scale features
like Gene and Arcene, they show the significant advantage
over other methods. Therefore, the methods based on
consistency are particularly suitable for these datasets with
smaller In/F. Among three consistency based methods, the
proposed method consumes more time than others, because it
needs additional time to check and remove the noise in each
iteration, while FCBF seems to take shorter time on the dataset
with many instances. Regarding discretization, it is interesting
that it indeed redounds to improve the performance of some
classifiers on some datasets. But the degree of improvement
depends on both classifiers and datasets.

Now we look back to the three major problems as stated in
Section 3. With regard to the first two problems, although
some works have been done previously, such as the FCBF
[17], SLCC [24] and SCWC [23], our work can solve these
problems more effectively and accurately, as shown in Figure
11 and Table 5. This is mainly because our work is based on
the consistency measure, while considering data purification at
the same time. The consistency measure can spontaneously
discover the feature interaction and reduce the redundant
features. While the data purification enables the feature
selection algorithm to choose a more compact feature set, as
illustrated in Figure 5. As for the third problem, although the
denoising approaches have been adopted by previous works
[27, 45], our work can solve it more effectively. Because there
is no need to pre-learn these mislabeled instances, instead, it
utilizes the natural characteristics of the dataset, consistency
measure, to purify data; specifically, it removes the instances
with lower PR (impurity ratio) in PCV (pattern count vector).
More importantly, FS&IP can solve these problems
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Figure 14: Comparison of all six methods with Nemenyi posthoc test; groups
of methods that are not significantly different (at = 0.1) are connected with
bold lines.

concurrently, and the processes of feature selection and data
purification are mutually advancing without the learning stage.
Therefore, the proposed method can better solve the stated
three problems and achieve better overall performance in
comparison with the compared methods.

7.5. Statistical analysis

To determine if an algorithm significantly more sensitive to
the heterogeneity of different datasets, two statistical
hypothesis tests are performed: Friedman test followed by
Nemenyi post-hoc test [5]. Friedman test compares the results
of the proposed method and other methods on different
datasets to determine whether there are statistically significant
differences between them by ranking the results given by each
method on different datasets. Particularly, the best method is
ranked at the first place, the second best one is ranked at the
second place, and so on. If null-hypothesis is rejected, we
proceed to Nemenyi posthoc test in a pairwise manner. The
performances of two methods are significantly different if their
corresponding average ranks differ by at least the critical
k(1)

difference CD = ¢, ent where k is the number of methods,
G is the amount of datasets (G = 8 in the experiment), and g is
based on the studentized range statistic divided by V2. When
comparing all the algorithms against each other, the results of
the post-hoc tests are visually represented with a simple
diagram in Figure 14, where the groups of the algorithms,
which are not significantly different, are connected.

The analysis reveals that FS&IP, FCBF and PSO are more
likely to perform significantly better than ICFS and FCBF in



terms of OA. For S, (subset size ratio), the results confirms
that FCBEF, ICFS and FS&IP have the better performance than
that of PSO. With regard to running time, PSO has the
significant worst performance and the group of methods
FS&IP, FCBF, SCWC, SLCC has insignificant differences.
Overall, the proposed method performs well when in terms of
the accuracy, subset size and running time.

8. Conclusions and future work

How to efficiently select features to solve the
aforementioned problems of interest, while cleaning up noisy
data becomes a pivotal point in TC (traffic classification). This
paper proposes a novel technique to address the above
problems simultaneously, which not only makes use of the
measure of the inconsistency rate (/CR defined in Eq. (5)) for
selecting the most relevant features in each iteration, but also
employs a newly proposed measure, called the impurity ratio
(IPR), for removing noisy instances during each iteration. In
addition, the experimental results suggest that the proposed
method outperforms other methods on most datasets in terms
of accuracy, running time and S, score. Following that, a type
of more discriminative features termed as F — Frag based on
the network connection behaviors is proposed and an
evaluation criteria on the goodness of features F'S is defined.
The empirical results suggest that the proposed features are
more valid than other features in terms of F'S. The source of
this work is available on Github at the wurl
https://github.com/wuzheng 1994/FS-IP.git.

Still, this work can be extended in several ways. First, in
FS&IP it uses the mRMR serves for feature ranking, and the
employment of other feature ranking algorithms may lead
FS&IP to produce different performances, and some
algorithms may perform better than mRMR. In future work,
other feature selection methods will be considered and
integrated to the proposed framework if they work better.
Besides, the consistency-based methods are proved efficient
consisting of a large number of variables or features. While for
datasets with large-scale instances, to reduce the runtime for
feature selection will be one of the focuses in our future work.
Finally, in this paper, the performance of seven algorithms are
compared over six datasets. More extensive experiments can
be carried out in order to statistically analyze the performance
of different algorithms.
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Appendix. Collection of statistical features

Table A1 lists 44 statistical flow-level features used in this paper with their serial number used in Section 7.3.

Table A1: Collection of features used in this paper.
No.  Feature

1 Average downlink packetsize

2 Average uplink packetsize

3 Maximum downlink packetsize

4 Maximum uplink packetsize

5 Valid protocol ratio of downlink

6 Average uplink rate

7 Average downlink rate

8 Variance of uplink packetsize

9 Variance of downlink packetsize

10 Maximum downlink arrival interval

11 Maximum uplink arrival interval

12 Average downlink arrival interval

13 Average uplink forward interval

14 Variance of downlink arrival interval

15 Variance of uplink forward interval

16  Information entropy of downlink packetsize
17 Valid IP ratio of datalink

18  Rate ratio of downlink to uplink

19 Packet counts ratio of downlink to uplink
20  Bytes ratio of downlink to uplink

21 Entropy of downlink interval

22 Average datalink packetsize

23 Average datalink interval

24 Variance of datalink packetsize

25  Maximum datalink packetsize

26 Variance of datalink interval

27  Maximun datalink interval

28  Datalink flow fragment counts

29 Average links of datalink flow fragments
30  Variance of links of datalink flow fragments
31 Information entropy of datalink flow fragments

32 Average bytes of datalink flow fragments

33 Coefficient variance of downlink arrival rate
34 Variance of downlink packetsize

35 Coeflicient variation of downlink arrival interval
36  Coeflicient variation of uplink packetsize

37  Variance of uplink packetsize

38  Coeflicient variation of uplink forward interval
39 Variance of uplink interval

40  Coefflicient variation of datalink packetsize

41 Coeflicient variation of datalink interval

42 Coeflicient variation of datalink rate

43 Average datalink rate

44 Variance of datalink rate
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