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We experience a major paradigm shift in mobile networks. The infrastructure of cellular networks is
becoming mobile since it is being densified also by using mobile and nomadic small cells to increase
coverage and capacity. Furthermore, the innovative approaches such as green operation through sleep
scheduling, user-controlled small cells, and dynamic end-to-end slicing will make the network topol-
ogy and available resources highly dynamic. Therefore, the density of dynamic networks may vary
in time and space from sparse to dense or vice versa. This paper advocated that on density-awareness
is critical for dynamic mobile networks. Mobile cells, while bringing many benefits, introduce many
unconventional challenges that we present in this paper. Novel techniques are needed for adapting
network functions, communication protocols, and their parameters to the network density. Especially
when cells on wheels or wings are considered, static and man-made configurations will waste valuable
resources such as spectrum or energy if the density is not considered as an optimization parameter.
In this paper, we evaluate the dynamicity of nomadic cells in density-aware mobile networks in a
comprehensive and articulable way. The main challenges we may face by employing dynamic net-
works and how we can tackle these problems by using a density-oriented approach are discussed in
detail. As a key concern in dynamic mobile networks, we treat the density of base stations, which is
an indispensable performance parameter. For the applicability of such a parameter we present several
potential density estimators. We epochally discuss the impact of density on coverage, interference,
mobility management, scalability, capacity, caching, routing protocols, and energy consumption. Our
findings illustrate that mobile cells bring more opportunities in addition to some challenges which can
be solved, such as adapting mobile networks to base station density.

1. Introduction

The state of the art in a mobile cellular network has been
the centrally-managed, stationary, and relatively inflexible
architecture that was prosperous, albeit not scalable. The
present-day networks have already reached the spectrum lim-
itations. We have to densify cellular networks by spatial
multiplexing and employ mobile or nomadic cells to over-
come capacity limitations and coverage problems. However,
increasing the number of mobile base stations (BSs) may
cause severe interference and redundant coverage resulting
in energy wastage [1]. Centralized configurations or real-
time centralized monitoring are not applicable in this case
due to the difficulties in acquiring global information about
the dynamic network and computational complexity of the
tasks. For example, optimization of network management
and coordination usually require solving NP-hard problems.

The evolution and proliferation of the technologies bring
along rapidly increasing users demands such as more band-
width, a higher speed of the services with lower latency, and
the internet anywhere [2]. To meet these requirements and to
enhance the quality of service (QoS), 5G networks are intro-
duced with a new network architecture and novel technolo-
gies to ensure low latency, higher bandwidth, and to support
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higher mobility rates. In order to increase the network ca-
pacity, the cell densification is presented as a promising so-
lution. Densification, which is increasing the number of base
stations, brings up the small cell paradigm. Moreover, future
network architecture introduces novelties compared to the
present network architecture such as cloud-based core net-
work, virtualization, slicing, user-controlled or user-dependent
base stations (such as Wi-Fi routers in homes or offices),

moving base stations (drones, base stations on wings or wheels),

and self-organization. Accomplishing all these enablers also
poses many challenges in the dynamicity of the network [2,
3]. Specifically, due to the high flexibility of 5G networks’
topology, the number of base stations can be impact directly
by either reducing or sometimes by increasing in a specific
area of the network. All these aspects lead to a dynamic in-
frastructure that is not predictable in advance [4, 5]. Herein,
it should not be overlooked that the density of base stations
is ever-changing. If this erratic parameter is not handled as
an optimization parameter, it will negatively affect the net-
work performance. For instance, in dynamic networks due
to higher interference, insufficient coverage, massive power
consumption, and higher mobility ratio, the limited network
resources may not be used very efficiently [3]. Therefore,
new solutions should consider the effective density of base
stations to adapt the network performance to the highly dy-
namic structure.

As the network enlarges and becomes dynamic, its man-
agement and control become a symptomatic issue. Opera-
tor intervention requirements have to be drastically reduced
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by employing self-organization. There is a research gap be-
tween state of the art and the ambition of achieving a self-
organized, adaptive, and flexible networking architecture [6].

In this paper, we claim and illustrate that we need to an-
swer the following open research questions arising from the
dynamism of the future networks:

e How are the future networks different from the exist-
ing architectures?

e What is a density-aware dynamic mobile network?
e How does network density change?
e Why is the density of BSs critically important?

e Why must BSs density be considered as an optimiza-
tion parameter?

e Why may the solutions without considering BSs den-
sity fail?

e How can the density of BSs be estimated?

e How can BSs density be used in network applications
and communication stack?

Answering all of these questions is the aim of this paper.

In this paper, we elaborate one how dynamicity of BS
density can affect other network parameters such as inter-
ference models, channel models, energy management mod-
els, mobility models, scalability of networks, antenna type
selection, reliability of communications, latency, etc. We
also show how the density of BSs can be employed as an
optimization parameter for tackling challenges we will face
in the next generations of mobile networks such as interfer-
ence, modulation coding scheme adaptation, QoS, transmit
power adaptation, dynamic backhauling, densification, scal-
ability, etc. All in all, we can simply claim that cellular net-
works start resembling ad-hoc networks. A distributed, self-
organizing, -healing, and -adapting network architecture is
necessary. Based on this claim, the contributions and struc-
ture of this paper can be described as follows:

o The first contribution is that we present a new paradigm,
which is density-aware dynamic mobile networks, into
the forefront by exhibiting dynamic infrastructure co-
vary with moving base stations in addition to stating
the inadequacy of present architectures in Section 2.

e As the second contribution, a qualitative and novel
analysis of network density is presented. Section 2.4
claims that the network density is a crucial parameter
since it substantially influences the dynamic network
performance. We classified and explained the density
estimators in dynamic networks in Section 2.5.

e Challenges and enablers in density-aware mobile net-
works are extensively exposed by considering the dy-
namic topology in a mobile network as the third con-
tribution. In Section 3, the opportunities that can be

achieved by adapting the BS density in the current mo-
bile and wireless networks are investigated in a com-
prehensive manner. We present an extensive list of
research challenges in Section 3 by discussing them
in detail.

e As the last contribution, we reveal how the density of
base stations can be leveraged, and we illustrate the
idea behind this paper, which is the density-adaptive
solutions in Section 3. For example a novel aggregate-
interference technique is presented to control the in-
terference based on the density changes. Finally, the
most prominent ideas are summarized and concluded
in Section 4.

2. Why is Density-awareness Important?

In this section, we bring to the light future paradigm
changes in mobile networks. We clearly explain what the
definition of a density-aware mobile network is, and what its
differences from the present networks are. We claim that the
present architectures are inadequate. In these discussions,
we encounter that the network infrastructure changes, which
cause variations in the number of base stations in a specified
area. Therefore, in density-aware dynamic networks, net-
work density will change incessantly. This section qualita-
tively analyzes the impact of BSs density on the performance
of dynamic networks, and discusses density estimator algo-
rithms and categorize them based on their features.

2.1. Paradigm Changes in Mobile
Communications

One of the significant paradigm shifts happens in the
control domain of operators. In the past, network operators
used to plan, dimension, and install BSs. Before and after
the launch of the BSs, optimization was plausible. Perfor-
mance monitoring, failure mitigation, and corrections were
carried out by the network operator within the lifetime of a
BS. However, this scheme will change substantially in fu-
ture mobile networks, and operators will partially lose their
control on cell deployment, as we will explain in this paper.

Another paradigm change is in the infrastructure of mo-
bile networks. In the past, we used to assume that locations
of the user equipment (UE) were stochastic, and the network
infrastructure was stationary. In the future, BSs may also be
mobile yielding a random infrastructure; e.g., drones may
provide service to blind spots [7, 8, 9]. We present some ex-
ample scenarios where the density of UEs and also BSs may
change in a dynamic fashion in Figure 1. The figure illus-
trates how cells on wings or wheels may change the infras-
tructure of mobile networks. Because of mobility and many
other factors that we present in this paper, the infrastruc-
ture of mobile networks start resembling ad hoc networks in
terms of their dynamism. As a consequence, the density of
BSs unpredictably change. As can be seen in these scenar-
ios, the density of users may increase suddenly because of
some emergency situation such as a car accident or a sports
event. As we can see on the left-hand side of Figure 1, the
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Figure 1: Two application scenarios of mobile BSs in future networks are presented.

area seems sparse initially. However, after the car accident,
the density of users increases dramatically. Therefore, mo-
bile or nomadic BSs are deployed in the area to maintain
the QoS in terms of coverage and/or capacity. In emergency
scenarios, pre-deployment planning may not be possible [9].
Communication services are of critical importance for pub-
lic protection and disaster recovery. Man-made or natural
disasters such as earthquakes may disrupt communication
services that are currently provided by stationary infrastruc-
tures. Employing drone BSs can be a viable approach for
establishing a communication infrastructure in affected ar-
eas and for providing coverage in blind spots. Drone BSs
can also be used for gathering data from rural fields where
no communication infrastructure exists. For instance, drone
cells may act as mobile sinks in applications of the Internet
of Things and in massive machine type communication sce-
narios [10].

Dynamic topology means that the number of base sta-
tions and the number of user equipment in a given area are al-

ways changing. This change is a run-time variation which is
not foreseeable in advance. In order to meet the requirements
while users’ demands are increasing, the number of base sta-
tions serving them should be increased. At this point, if
the density of base stations in a dynamic network increases,
then some problems such as interference or redundant en-
ergy consumption will come up [11]. Thus, dynamic net-
work solutions should consider the network density as a per-
formance optimization parameter. If we consider the density
of base stations, the resources will then be utilized more ef-
fectively, and the QoS can be enhanced.

As another scenario, a derby football match can be given.
Some flying BSs such as drones may provide coverage and
enhance QoS during the event, as presented on the right-
hand side of Figure 1. Before the event and after the event,
the user density in the stadium will be low. However, it will
be substantially higher during the match. Instead of incur-
ring the cost of deploying stationary cells inside or nomadic
cells around the stadium, cells on wings may be employed on
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the stadium to satisfy the QoS requirements of users by get-
ting closer to UEs. Depending on the user density, additional
BSs can be dynamically deployed, which in turn changes the
network density.

2.2. Why Does Infrastructure Become Dynamic?

Mobile cells have a huge potential to be employed in fu-
ture networks. In addition to cells’ mobility [12] [13], factors
which make a network dynamic are as follows:

e User-controlled BSs (e.g., femtocells bought and con-
trolled by end-users): When BSs are deployed in cus-
tomer premises (such as homes), users may turn them
on or off depending on consumption requirements [14].

e Green operation (e.g., sleep scheduling of BSs): BSs
may employ duty-cycling for energy conservation. De-
pending on the employed duty-cycling scheme, the ef-
fective density of BSs will be different over periods of
time [15].

e Incremental deployment: Gradual deployment of BSs
will change the network density throughout the de-
ployment time [16].

e Loss of control and failures in the topology: Deter-
ministic and pre-planning deployment are not promi-
nent anymore. The operator may have to comply with
the constraints imposed by the urban structure strictly.
Consequently, the deployment can be considered to be
stochastic [17].

e Support for various verticals (e.g., automotive, health),
multi-tenancy, and various scenarios (e.g., megacities
versus low average revenue per user (low-ARPU) re-
gions or sporadic events such as Olympics) by dynamic
network slicing [18].

The mobile network infrastructure will become stochas-
tic, and the location of small cells cannot be pre-planned
with the introduction of mobile cells. Considering the sce-
narios described above and shown in Figure 1, we can list
the major advantages of employing mobile or nomadic cells
as follows:

e Mobile cells may be rapidly deployed to mitigate cov-
erage holes without introducing site-acquisition costs
[19].

e Drone cells may facilitate ubiquitous coverage in rural
areas [20].

e Mobility of drones cells can be inline with the mo-
bility of the end-users providing a better approach for

group mobility, lowering the mobility management costs

[21].

e Mobile cells, together with edge/fog computing, may
bring processing power closer to the end-users, which
can decrease the power consumption and provide a
higher data rate by obtaining high signal-to-noise-plus-
interference-ratio (SINR) [22].

e Broadcast data rates can be improved, especially for
the UEs located at cell edges [23].

2.3. Why Will The Present Architectures Fail?

It is not possible today for present mobile communica-
tion networks to address these paradigm changes because of
their shortages and limitations [24, 25, 26]:

e Inflexible architecture, static and manual configura-
tions: When the infrastructure is dynamic, it is clear
that the static configurations will waste resources. Man-
ual configurations make the network inflexible to the
dynamism in the topology and are subject to severe
human errors. Softwarized networks cast light onto
these problems.

e Lack of common control functions and interfaces: Real-
time and holistic management is almost impossible
because of vendor lock-in and vendor-dedicated hard-
ware and software components requiring trained/expert
administrators. Softwarization and virtualization of
the networks may help solve this problem.

e Limited backhauling capacity: By considering the ca-
pacity of current fronthaul, backbone, and backhaul in
the network architecture, a limited amount of data can
be transferred among network entities. To fulfill the
requirements of the aforementioned paradigm changes
by overcoming the above limitations, heterogeneous
networks consisting of mobile, nomadic, or stationary
small cells can be a feasible approach. Integrated ac-
cess backhaul may help solve this problem by trans-
ferring traffic from backhaul links into relays, which
provides a flexible node deployment for capacity and
coverage expansion.

e Connection-centric, but not context-aware network: Due
to the high variance of traffic demands in time and
space, we need content-delivery based services for the
next generation of mobile networks. However, the cur-
rent connection-based networks are not designed to
cope with such a high traffic load or to provide com-
munication and content services in the correct time
and location for UEs. Therefore, the ability to man-
age information context for achieving broader insight
over network conditions, including traffic, the density
of nodes, and mobility of network elements, is manda-
tory for future networks, which is not achievable within
current networks.

e High latency: In the current network architecture, gen-
erally user applications, such as video streaming and
websites, can cope with the latency through the imple-
mentation of caching techniques in the network model.
However, future connected devices such as autonomous
cars, remotely-controlled robots, health monitoring equip-
ment, drone cells, and automation systems, due to their
critical applications and real-time data, cannot tolerate
high latency during their communications.
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Table 1
The qualitative discussion of the impact of the density regime on network performance.
Sparse (4 <4,) Phase Transition Dense (4 >4.) References

Network capacity low maximum below maximum [27, 28, 29, 30]
Inter-cell Interference low to be managed high 31, 32]
End-to-end throughput low maximum below maximum 33, 34, 35]
Coverage patchy resource-efficient redundant [34, 36, 37]
Mobility management disruptive optimal high cost [34, 36, 37]
Number of relay base stations few minimal large [38, 39, 40]
Possibility of multi-path routing | none very low high [38, 39, 40]
Redundancy assisted topology N/A possible possible [41, 42]
control
Resilience to failures N/A low high [43, 44]
Energy consumption low optimum high [45, 46]
Spectral efficiency low maximum below maximum [47, 48]
CAPEX and OPEX low optimal high [49, 50]

2.4. Impact Analysis of Base Station Density

A qualitative analysis of the impact of BS density on var-
ious mobile network parameters and performance measures
is shown in Table 1. The analysis is based on the follow-
ing simple scenario. Assume a set of homogeneous BSs are
incrementally and randomly deployed in a field-of-interest.
Suppose BSs are initially deployed sparsely, and service can
only be given in a cluster of isolated coverage areas. As
the density of BSs (4) gradually increases (e.g., more and
more BSs are deployed), isolated clusters merge and pro-
duce a huge cluster at a critical density (4,.). At this stage,
the global topology (macroscopic properties) of the network
changes, and this phenomenon is called phase transition.

The macro-behavior of the system below and above the
critical density A, is considerably different. The coverage
area as an important component in the network consists of
active BSs in the dense networking regime where 4 > 4.
Whereas, the network is partitioned, and there exist cover-
age holes in the sparse networking regime where 4 < 4.
The macroscopic behavior of the network changes from dis-
rupted networking (i.e., isolated coverage areas having large
capacity) to degraded performance (full coverage with high
interference) as the density increases. In this transition, at
some density slightly larger than A, resource-efficient oper-
ation of the network is possible. Therefore, the performance
of the network is largely dependent on its topology that can
be represented as a graph.

In graphs, a phase transition is a concept where the prob-
ability of the presence of a feature in a graph jumps from
zero to one rapidly at a threshold value of the controllable
parameter. The left- and right-hand sides of the threshold
can be considered as static and chaotic regions. The region
around the threshold is referred to as the phase transition re-
gion where innovations occur in a resource-efficient fashion.

Take transmit power adaptation as an example. At a crit-
ical threshold of the transmit power, the connectivity of the
network jumps from disconnected to highly-connected state
[51]. Alevel of transmit power less than the threshold causes
a disconnected network, and the network is dysfunctional.
Whereas, increasing the transmit power beyond the thresh-

old causes a fully-connected network while increasing the
interference and wasting resources. Operating at the critical
threshold facilitates resource-efficient networking.

Similar phase transitions can be observed in many net-
work design problems that are NP-hard such as drone cell
placement [52]. The complexity of such problems in the
phase transition region surges. The centralized solutions of
such problems do not scale in large networks. The network
has to configure itself locally for using resources efficiently
through cell selection [53], service time maximization [54],
or bandwidth allocation [55].

The macro-behavior of the system at different density
levels (below and above the critical density 4,) is described
in Table I. As the density of small cells increases, the cov-
erage and capacity will grow due to a high level of spatial
multiplexing. On the other hand, as the density of a network
increases, the capacity will eventually converge due to inter-
ference in dense networks [27, 28, 29, 30]. Although, the
total network capacity will be low in sparse networks due
to the coverage holes and partitioning, the received inter-
cell interference will be reduced due to the low amount of
interference. On the other hand, in dense networks where
the cells are located very close to each other, the amount
of inter-cell interference is high. This can be managed by
optimizing the density of active BSs [31, 32]. The densifi-
cation of networks in fact can provide more available chan-
nels and increase throughput [33, 34, 35]. Moreover, the
cost of mobility management escalates in dense networks
due to the very high number of handovers. Whereas, in
sparse networks, the mobility support would be disruptive
due to patchy coverage [34, 36, 37]. Concurrent multi-path
transfer, multi-homing and utilization of relay BSs also be-
come infeasible in sparse networks due to possible cover-
age holes in the network [38, 39, 40]. Topology control by
exploiting redundancy in dense networks is possible, which
can be useful in flexible networks [41, 42]. For instance,
sleep scheduling of BSs can be employed considering the
load in the network. The same fact also increases the re-
silience of the network to failures in dense networks [43, 44].
The amount of energy consumption will increase by deploy-
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Table 2

Approaches for estimating density of nodes in a network.

Category Requirement Advantages Disadvantages References
The  coordinates
of devices  loca- Extra energy consump-
Location-based . ' Ease of integration tion, errors in GPS | [61, 62, 63, 64]
tion pre-awareness measurement
(e.g., GPS)

Monitoring and an-
alyzing traffic, bea-
coning and neigh-
bor discovery

Neighborhood-

based ployed

Existing functions in
a stack can be em-

Not scalable, limited to
transmission range, ac-
curacy depends on traf-
fic

[5, 65, 66, 67, 68, 69]

Ease of integration,

. . . Sensitive to channel
Received signal | no other auxiliary characteristics that
Power-based strength or SINR | function, or mon- . . [58, 70, 71, 72]
o . may not be uniform in
measurements itoring  traffic  of .
a field
network

ing more BSs. Therefore, the optimal density of BSs (4,)
is vital for enhancing energy efficiency in networks [45, 46].
Spectral efficiency (SE) will improve until the density of BSs
reaches to its critical level (4, ) and will dramatically degrade
by over-deployment of BSs, due to the growth of the over-
all received interference in the network [47, 48]. Moreover,
although when density of BSs is below 4, the capital expen-
diture (CAPEX) and operational expenditure (OPEX) can be
low due to the sparsity of BSs, it can not satisfy the minimum
QoS requirement in the network. However, when the num-
ber of BSs per unit area is around 4., although the cost of im-
plementation and maintenance may increase, we can satisfy
all UEs QoS requirements with the minimum cost [49, 50].

In dynamic dense networks, collisions over random ac-
cess channels, high congestion levels, and inconstant capaci-
ties may be the significant challenges [56]; whereas in sparse
networks, partitioning is the key challenge [57]. Dynamic
networks have to collaborate locally for coverage preserva-
tion, mobility management, interference control, and effi-
cient resource allocation. However, the state-of-the-art ar-
chitectures do not rely on localized cooperation. For carry-
ing out those tasks in a density-adaptive fashion, BSs have
to discover their neighborhood or estimate the density in an
incessantly changing topology. Edge computing can be a
valuable technology towards this aim by providing a higher-
level perspective and having more processing power with re-
spect to BSs; it can collect and evaluate the required data
for density measurements from BSs (such as received signal
strength (RSS), channel quality indicator (CQI), SINR, etc.)
and provide more accurate results [58, 59].

As the cells become sporadic and their size changes, the
mobility management will be more cumbersome. When large
cells are employed, paging costs are lower since the desti-
nation terminal is searched in fewer cells. When the cell
sizes become small, paging consumes valuable in-band re-
sources since a large number of cells are paged, considering
a constant location area mapping. Therefore, real-time de-
centralized management of cell sizes and coverage may have
an adverse impact on mobility management [60].

2.5. How Can the BS Density be Estimated?

As explained in the previous sections, the control of the
BS density is important for an efficient network operation.
An important question is then how to estimate the BS den-
sity. The network density is highly correlated with the lo-
cation of BSs, the neighborhood structure, the quality of re-
ceived signals from other BSs or user equipment, and popu-
lation data [73]. We can roughly categorize the network den-
sity estimation approaches as shown in Table 2. Location-
based estimators employ auxiliary positioning systems such
as global positioning system (GPS) that consume extra en-
ergy [61, 62,63, 64]. Neighborhood-based estimators, which
are not scalable and suffer from inaccurate results, infer den-
sity from a census on packet traffic [5, 65, 66, 67, 68, 69].
Power-based estimators combine the merits of location- and
neighborhood-based estimators [70, 58, 71, 72], although
RSS is not a robust distance estimator. While some of these
approaches are designed for ad hoc networks, they can gen-
erally be employed in any wireless network with minor mod-
ifications.

In cellular networks, the spatial distribution of BSs is
vital for the analysis of connectivity, coverage, and perfor-
mance [69]. The proper adjustment of spatial distribution
and configuration of cells in simulators produce credible mod-
els which are important for capacity planning. In [69], the
information of BS location obtained from different operators
in Germany is used to find out the utility and restrictions of
population data as a base for similar cellular deployments,
and it is shown that the density of the network is highly corre-
lated to population data. They also figure out that relatively
populated areas can be considered as a reasonable co-variate
to model large-scale deployments. This study validates that
predicting the number of BSs per unit area based on the pop-
ulation density is sensible only for the small areas with par-
tially populated areas. Proposing accurate density estimators
is an open research challenge with huge potential in stochas-
tic geometry, especially for non-uniform deployments [74].

To summarize, current mobile networks, due to their lim-
ited backhauling capacity, static and manual configurations,
have a limited flexibility to cope with the dynamicity in fu-
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ture networks. However, the density-awareness in future net-
work architecture is essential because BSs may also be mo-
bile, such as the drone cells, yielding a random infrastruc-
ture. Therefore, dynamic network solutions should consider
the network density as a performance optimization param-
eter for enhancing the utilization in the resources, and for
improving the network QoS. To do so, we need an appropri-
ate density estimator for adapting network parameters such
as the modulation techniques, antenna types, and transmit
power to the estimated BS density in a dynamic fashion. In
the following, we evaluate the potential difficulties we may
encounter in dynamic mobile networks in addition to poten-
tial solutions to mitigate these difficulties.

3. Challenges and Opportunities

Various opportunities and challenges are accompanied
by the future 5G networks [75, 76]. Table 3 categorizes and
summarizes these challenges by featuring the enabler tech-
nologies or solutions. Since a feature of dynamic mobile
networks may provide an opportunity together with some
research challenges, we analyze research challenges and its
possible solutions by discussing benefits and enablers specif-
ically. In this section, by considering the density-awareness
perspective, we introduce possible solutions for specified chal-
lenges, which we will face in the next generations of net-
works.

3.1. Densification

In order to satisfy 5G networks requirements, including
higher data rate for a massive number of network entities,
densification is introduced as a key feature to enhance the
system capacity requirements as stated in [77, 78, 79, 80].
By densifying the mobile networks through employing small
cells, higher SINR can be achieved, which can provide a
higher data rate for individual UEs and reduce the latency in
the network [81]. One of the major drawbacks of small cells
is limited coverage area they provide due to their low power
functionalities. Moreover, small cells can also provide ser-
vice for a low number of UEs due to their limited resources
[3, 80]. Therefore, we need to tackle these problems by em-
ploying density-adaptive algorithms, which can optimize the
density of BSs in order to prevent coverage holes in the net-
work while UEs can achieve higher throughput by connect-
ing to BSs with higher capacity and lower load. Many re-
search studies consider and manifest that small cells resem-
ble random ad hoc networks, which is a well-known observa-
tion [2]. In such dense networks the area spectral efficiency
is directly susceptible to base station density, as stated in [2].

3.2. Quality of Service and Experience

Channel quality may vary in time and frequency. In milli-
meter-wave (mmWave) band small cells, gNBs are equipped
with multi-user, multiple input, multiple output (mu-MIMO)
antennas, and user mobility is low, one may assume dynamic
channels (due to the high attenuation level in mmWave band)
while the channel quality does not vary considerably in time

(a) Initially, the femto BS is operational on the first floor and
users, instead of using outdoor BS, connect to the mobile net-
work through the femto BS that can enhance QoS and conserve
energy.

(b) The household decides to move the access point to the
ground floor which causes an uncontrolled BS failure for some
time.

Figure 2: A scenario where the household is able to change
the location of a femto-cell deployed inside the house.

[82]. In this case, user multiplexing over different carri-
ers is a smarter option compared to time-domain channel
scheduling. Depending on the physical layer dynamics, the
radio link control has to support segmentation and concate-
nation of the frames. This is a clear requirement for a cross-
layer design. Moreover, multi-homing techniques can also
be employed for enhancing QoS [83], hence schedulers also
have to deal with the reliability of connections and cross-
link interference management, which can increase the pro-
cessing load in the network. Wireless signals are consid-
erably attenuated while penetrating inside the buildings in
mobile networks. The attenuation substantially decreases
the SINR, and consequently, the achievable data rates. In-
stead of outdoor deployments, indoor small cells may em-
ploy lower power levels and provide higher data rates com-
pared to outdoor BSs. This scheme reduces energy con-
sumption, improves the quality of experience (QoE), em-
ploys the spectrum efficiently, facilitates the use of licensed
bands for home networking, lowers the level of electromag-
netic radiations, minimizes the costs for the mobile opera-
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Table 3

Density-aware Mobile Networks

The challenges of dynamic mobile networks and some of the existing enabling technologies
that can be employed to address these challenges.

Challenges

Solutions

References

Densification

Small cells, density-adaptive algorithms, coverage preservation
techniques

[2, 3, 77, 78, 79, 80]

Quality of service and ex-

. Small cells, multi-homing in user plane, MEC, mu-MIMO, [74, 82, 83]
perience
Modulation techniques Density aware small cells, cyclic-prefix insertion, adaptive MCS [84, 85, 86, 87]
Ubiquitous coverage and | Cells on wings or wheels, network densification, D2D, relaying, [88, 89, 90]

connectivity

ad hoc networks of BSs (MANET, FANET), NTN

Mobility management of
cells

Multi-homing, group mobility support by mobile cells, MEC,
lightweight-EPC, motion and deployment planning, DTN, virtual
cell

[49, 91, 92, 93, 94]

Reliable communication

Multi-homed protocols, dual-connectivity, fault tolerance tech-
niques, MEC

[95, 96, 97, 98, 99, 100]

Distributing management and resource allocation, inter-

Scalability numerology interference management NFV, SDN, C-RAN, NTN [101, 102]
Antenna Type Selection Directional, Omnidirectional, MIMO [103, 104]
Dynamic (in-band) back- ) e o nomadic cells, mu-MIMO, IAB [105, 106]

hauling

Low latency

Distributed and collaborative caching, D2D, mobile cells

[107, 108, 109, 110, 111,
112]

Energy efficiency and
green operations

Small cells, MEC, sleep scheduling, cell zooming

[59, 80]

Management of dynamic

SDN and NFV, slicing, orchestration, self-organizing and self-
healing functions, density- and dynamics-aware protocols, an-

[46, 47, 113, 114, 115,

architecture

tenna directivity, tilt or antenna count, MEC

116, 117

Transmit power adapta-
tion

MEC, cell-zooming techniques

[46, 118]

Interference management

MEC, density- and interference-aware protocols, e-ICIC

[65, 119, 120, 121, 122,
123, 124]

tor and provides true ubiquity and coverage for subscribers.
However, operators lose their control over BS deployment.
As an example, there is an indoor Femto BS deployed in
a house, as shown in Figure 2a, the location of the Femto
BS which is changed based on user decision. Furthermore,
this deployment change causes uncontrollable interference
to neighboring houses after the BS becomes operational at its
new location. Therefore, by implementing adaptive density
algorithms, the density of active BSs can be estimated fre-
quently by leveraging multi-access edge computing (MEC)
utility in order to maintain and enhance QoS (higher through-
put, lower delay, interference, outage and etc.) in future net-
works. In [74], the BS distribution for different cities are
modeled, and they claim the proposed model can be used to
prevent coverage holes and interference in the network.

3.3. Modulation Techniques

In the next generation of mobile networks, by employing
multi-carrier modulation, we can immune our system to fad-
ing due to the simultaneous transmission of data over mul-
tiple paths (multipath fading), which can also prevent cross-
link interference during communication among cells. How-
ever, when multi-carrier modulation is employed, simultane-
ous transmission over sub-carriers may lead to greater devia-
tions in instantaneous signal power and push amplifiers into

the non-linear regions. This phenomenon leads to a larger
amount of power consumption and dramatically increases
the costs of amplifiers. Moreover, frequency selectivity fad-
ing will lead to higher bit error rates and degrade the quality
of the channel [84]. In order to cope with these problems,
density aware small cells are adequate candidates since the
terminal-to-base distances in small cells are shorter, which
can reduce the average transmit power and cost of ampli-
fiers. Typically, less frequency selectivity is experienced in
small cells [85]. Additionally, to combat frequency selectiv-
ity, cyclic-prefix insertion can be employed in multi-carrier
modulation, and the length of the prefix depends on the chan-
nel delay spread, which can be affected by BSs density vari-
ations. Therefore, cyclic-prefix can be adapted to the net-
work density to prevent inter-symbol interference in the net-
work [125]. Moreover, choosing an appropriate modulation
coding scheme (MCS) is vital for satisfying 5G networks’
requirements, such as ultra-reliable low-latency communi-
cations (URLLC) and enhanced mobile broadband (eMBB).
Because, in URLLC communication signals need to be inter-
pretable quickly, which require lower MCS, while in eMMB
communications, a high number of bits need to be coded for
each transmission to achieve high throughput in the network.
Therefore, MCS in the future networks needs to be tuned not
only by considering the received SINR value (like LTE) but
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Figure 3: Mobile or stationary BSs may form an ad hoc infras-
tructure to backhaul traffic to the core network; for example,
when a stationary BS fails as we exemplify here.

also it needs to be adapted to the BSs density [86, 87].

3.4. Ubiquitous Coverage and Connectivity

In future networks, UEs have different requirements and
expect to receive service everywhere. Therefore, future net-
works need to be equipped with a flexible network coverage
and topology. The topology and coverage of the dynamic
networks must be controlled since it significantly impacts
the performance in terms of capacity, delay, and resilience of
the network under node and link failures. The topology de-
pends on many controllable parameters and uncontrollable
factors. Interference, attenuation, environmental parame-
ters such as obstructions, especially for mmWaves, multi-
path propagation effects, fading, and noise, can be consid-
ered as uncontrollable factors which impact the link quality,
and consequently the topology. These uncontrollable fac-
tors produce time- and space-variant links that are not pre-
dictable in advance. Cell mobility or presence may or may
not be a controllable parameter that may sporadically cause
blind spots or redundant coverage. The transmit power, an-
tenna directivity, tilt, or antennae count are the controllable
parameters that can be used to change the network topology
as required to make the network adaptive to density changes.
Topology and coverage control decisions should be given au-
tonomously based on the estimated density by BSs or by a
MEC entity. MEC entities have a broader perspective over
network topology in comparison to BSs facilitating decen-
tralized optimizations. For instance, in [58, 59], authors by
adapting the transmit power of BSs to the network density,
managed to enhance the network capacity and increase the
throughput while coverage holes are prevented . Future net-
works guarantee the ubiquitous connectivity in case of a dis-

aster, which causes a dysfunction of the network infrastruc-
ture [88]. At this point, with the help of device-to-device
communication (D2D) and integrated access-backhaul (IAB)
opportunity, BSs can form an ad hoc network. They estab-
lish a dynamic infrastructure to backhaul traffic to the core
of the network as we show in Figure 3 in case of a net-
work failure to sustain communication and enhance reliabil-
ity through mobile BSs in the network [88, 89]. As claimed
in [89, 90], in D2D communications, an optimal threshold
value for density of BSs is required to enhance the network
performance.

3.5. Mobility Management of Cells

In stationary networks, coverage is restricted to the range
of BSs. However, by employing mobile BSs, network in-
frastructure will also be dynamic, which can enhance the
network capacity, throughput, and coverage in future net-
works [34, 126]. For instance, flying BSs can form an ad hoc
network and establish a dynamic infrastructure to backhaul
traffic to the core network, as we show in Figure 3 in case
of a network failure to sustain communication and enhance
reliability through mobile BSs in the network. Although
the implementation costs, maintenance, and the battery re-
quirements of drone networks currently are a considerable
challenge, the availability of cheap commodity hardware in
the future presents a new avenue for provisioning such net-
works [50]. In particular, with the advent of Google’s Sky
Bender! and Facebook’s Internet drone”, drone empowered
small cell networks (DSCNs) can be considered as a solu-
tion in future networks. Due to lower computational require-
ments and light payload, implementing drone cells can pro-
vide a lower CAPEX (in comparison with stationary BSs)
and OPEX (with respect to energy consumption and mainte-
nance) for network operators [49]. Due to the BSs’ mobility,
not only the users but also the BSs have to be tracked, and
their locations have to be registered. Motion and deploy-
ment planning, handover management, and new (dynamic)
location area concepts are required and can be considered
as open research challenges. Even when the users are sta-
tionary, handovers may be necessary when the BSs move.
One of the promising solutions for maintaining QoS in dy-
namic mobile networks and reducing handovers is employ-
ing a user-centric mechanism such as virtual cells where UEs
can be connected to more than one BS [91]. In dense deploy-
ments, UEs may camp on multiple base stations simultane-
ously, and dual-connectivity, concurrent multi-path transfer
or multi-homing may be possible. At this point, accurate es-
timation of location plays a vital role in cooperative mobile
BSs. In current networks, location estimation methods such
as the GPS are mainly used to calculate the coordinates of
nomadic communication terminals and usually is sufficient
to determine nodes’ locations. In case GPS is not available,
by employing proximity-based techniques or beacon nodes,

Uhttps://www.theguardian.com/technology/2016/jan/29/project-
skybender-google-drone-tests-internet-spaceport-virgin-galactic

Zhttps://www.theguardian.com/technology/2017/jul/02/facebook-
drone-aquila-internet-test-flight-arizona
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we can estimate the nodes’ coordination. Due to various mo-
bility models of cells on wings or wheels, we need a highly
accurate location estimator with a small delay. GPS has 10
to 15 m error in location estimation. The location informa-
tion can be received with one second, which may not be ap-
plicable when multiple mobile BSs is emloyed, since it can
cause a collision among them under fast mobility or affect
the channel conditions among them. To reduce the estima-
tion error, assisted or differential GPS (AGPS or DGPS) can
be used that can enhance the accuracy of estimation for about
10 cm by employing ground-based reference points [92, 93].
To estimate location faster by equipping UAVs with an in-
ertial measurement unit (IMU), which can be calibrated by
the help of GPS, the location of mobile BSs can be retrieved
faster and with higher accuracy [94].

3.6. Reliable Communication

Requirements for reliable end-to-end communication, avail-

ability of resources, lasting connectivity, and seamless han-
dover can be addressed by employing multi-homed trans-
port protocols and dual-connectivity not only in the con-
trol plane but also in the user/data plane. Multi-homing and
dual-connectivity in the user plane ease the mobility man-
agement burden [95, 96]. In dense deployments, UEs may
camp on multiple BSs at the same time. Reliable end-to-
end communication requirements can then be addressed by
employing multi-homed transport protocols not only in the
control plane but also in the user/data plane. Cell discov-
ery, security, access scenarios have to be tackled in dynamic
networks when multi-homing is employed. Future dense
networks have various types of wireless technologies such
as LTE-Advanced, LTE, 3G, WiMAX, Satellite, WiFi, Zig-
Bee, and Bluetooth. In these networks, tablets, IP-Cameras,
laptops, sensors, smartphones, game devices, wearable de-
vices, and other IP-enabled devices located on buses, air-
craft, trains, satellites, etc. define a different application and
user requirements. With the evolution of densification and
mobility, which is the binding nature of the future networks,
in addition to dynamically changing user preferences and
QoS requirements, some challenges may arise, such as avail-
ability of resources, fault tolerance, lasting connectivity, and
seamless handover [97, 98]. These developments in wireless
communication systems equip users to concurrently receive
content through multiple radio access technologies (RAT)
for homogeneous or heterogeneous network environments.
To do so, having a powerful and fast (low delay) process-
ing unit such as MEC close to BSs can enhance the inter-
face selection accuracy within a short time. Multi-homed
protocols meet these requirements that can be implemented
in the network communication stack. Multi-homing can use
multiple network paths simultaneously to provide the lasting
connectivity and the reliability of user requirements [99]. As
demonstrated in [98], the transport layer multi-homed proto-
col has a better solution in order to provide reliable handover
and connectivity. However, as we presented in Figure 2 and
Figure 3, the density of BSs may fluctuate during each time
slot. Therefore, future multi-homed algorithms need to con-

sider the density of active BSs into their models to provide
a reliable communication path in the network [100].

3.7. Scalability

In one-cell frequency reuse, the same time-frequency re-
sources can be reused in neighboring cells. To increase the
network capacity, operators can employ IAB, where the same
radio technology standard is used for backhaul and access
communications [101]. Although this approach eases net-
work deployment and increases spectral efficiency, it may
also cause significant variations in SINR due to a high amount
of interference. Enhanced inter-cell interference control (e-
ICIC) is a solution to this problem that has to be density-
adaptive since BS topology changes in dynamic networks
and the type received interference will be dynamically changed
as it is shown in Figure 4. In the next generations of mo-
bile networks, to fulfill the UEs requirement, different nu-
merologies need to be employed [127]. However, by us-
ing mobile BSs, cells with different numerologies can travel
in the network, which can cause Inter-Numerology Interfer-
ence (INI) among cells [102]. Therefore, future interference
cancellation models need to consider the variation of BSs
numerologies with respect to the density of active BSs in
time and space. In non-terrestrial networks (NTN), airborne
or space-borne BSs are used for transmission. NTN may
require delay-tolerant networking (DTN) protocols. When
backhauling is not possible, mobile BSs may have to manage
the functions of the core network themselves. Lightweight
evolving packet core (lightweight-EPC) and DTN may have
to be considered for BSs on wheels or wings. Furthermore,
location area planning cannot be stationary anymore since
the infrastructure becomes dynamic. Interference manage-
ment models will be affected by mobile BSs since the cell
layout will dynamically change by the movement of BSs. In
such networks, the dynamicity of frequency reuse is high
and cannot be handled by current interference management
models. Therefore, adaptive interference management and
resource allocation models for dynamic networks with mo-
bile BSs are needed.

3.8. Antenna Type Selection

The antenna structure is another vital constraint for an
efficient dynamic network. In a dynamic network, in case of
using a more powerful radio signal to transmit data to longer
destinations, although the coverage range is expanded, the
link variation and loss can also increase too. Choosing an
appropriate antenna type is another parameter that can af-
fect the QoS in the dynamic networks. On the one hand,
because BSs’ locations can change frequently, by choosing
omnidirectional antennas, there is no need to access nodes’
locations, which can ease the communication in the network
[103]. On the other hand, directional antennas can trans-
mit signals to a more considerable distance in comparison
with omnidirectional antennas, which can reduce hope count
and latency in the network. The capacity of the network can
also be enhanced by using directional antennas, which have
higher spatial reusability with respect to the omnidirectional
antennas. However, for moving topologies using directional
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Figure 4: Different interference sources [foreseen] in dynamic
networks.

antennas can be challenging [104]. Therefore, choosing an
appropriate antenna in the dynamic networks is another im-
portant constraint which is needed to be evaluated for the
future networks. By employing density-adaptive algorithms,
the number of antennas by considering density of active BSs
can be optimized. By using beam-forming techniques, den-
sity of BSs can be optimized in a way that interference is
reduced, and overall system throughput is enhanced.

3.9. Dynamic (in-band) Backhauling

By introducing mobile BSs for future networks, channel
models have to be revised. For cells on wings, air-to-ground,
ground-to-air and air-to-air, channels have to be studied and
modeled accordingly. The mobility of BSs can cause new
challenges such as reflections from the ground (for drone
cells), variations of drone attitude, considering changes in
weather conditions for different altitude, environmental clut-
ter, interference from other BSs in three dimensions (possi-
bly four including time), and jamming by hostiles. All these
additional constraints have to be evaluated in the channel
modeling of BSs [128, 129, 130]. With the help of mobile
BSs, there is a considerable potential for relay BS where no-
madic nodes can be used to reduce the congestion in backhaul-
links and provide higher capacity and faster communication

in the network. Moreover, in-band (converged access/backhaul)

or out-of-band relaying can be employed. The trade-offs be-
tween these approaches need to be evaluated [131]. Addi-
tionally, in 5G networks for increasing the network capacity,
and provide reliable, secure, and lasting services, mmWave
and massive multiple-input multiple-output (MIMO) can be
considered as a solution [105]. This paradigm shift is an-
alyzed in [106], in terms of network secrecy and network
connection outage by demonstrating how base station den-
sity, mmWave small cells, and mu-MIMO affect each other
through analytic models considering the base station density.
They prove that if base station density is higher, then mu-
MIMO-enabled networks along with mmWave small cells,
dramatically decreases the network outage probability. There-

fore, due to dynamicity of mobile BSs, employing the den-
sity of BSs in channels’ models play a vital role for achieving
accurate and adaptive models in the next generation mobile
networks.

3.10. Low Latency

Due to the tremendous pace of increasing multimedia
services, current network link capacity and bandwidth can-
not satisfy the growth of users’ demands. As it is mentioned
previously, one of the main concerns in the dynamic net-
works is reducing the delay and response time in the network
[107]. For instance, in delay-sensitive applications such as
reconnaissance, packets need to be delivered within a spe-
cific delay bound. When multiple mobile BSs (such as drone
BSs) are deployed together to provide coverage, commu-
nication delay among those BSs needs to be low to avoid
any collisions among them. However, current protocols that
are developed for mobile ad-hoc networks (MANETS) may
not be applicable to flying ad-hoc networks (FANETS) of
BSs [108]. To achieve this goal, network operators, by ap-
plying mobile content caching in the intermediate network
infrastructures, reduce duplicate data and response time in
the network [109, 110]. However, one of the main issues
of caching in the dynamic network is to decide where the
appropriate place for caching is [111]. In the current net-
works, by implementing caching toward the network edge,
the amount of redundant data and delay can be reduced sig-
nificantly. However, due to the mobility of infrastructures in
the dynamic network, future networks need to be equipped
with content-centric networking (CCN) architecture [112].
The main concern in CCN is to distribute caching in ev-
ery network infrastructure, even to UEs, which can ease the
data access and reduce the response time in the dynamic net-
works. When UEs request particular data in CCN, an interest
packet will be transmitted to its neighbors, and the requested
data can be delivered from the caching store of any node in
the network. If the requested data is not available at neigh-
bors, routers propagate interest packet in the network and
push the cached data toward the requester. However, due to
the universal distribution of caches in the network, cooper-
ative policies need to consider diversity, freshness, number
of replications, and their locations in the network topology.
Moreover, by employing density of BSs as an optimization
parameter in routing and caching techniques, the amount of
time required for transmitting the cached data to the desti-
nation can be reduced by optimizing number of active BSs.
The size of required cached dataset in the network can also
be optimized which can decrease the transmission load and
bandwidth needed in the network.

3.11. Energy Efficiency and Green Operations
Small cells may reduce CO,-equivalent gas emissions
per second. However, in ultra-dense networks, the total sum
may not be negligible. Furthermore, the new dimension of
energy efficiency research will be trying to reduce the power
consumed for the mobility of BSs. Energy consumption,
CO,-equivalent gas emissions, and the impact of the battery-
driven operation of mobile BSs have to be carefully inves-
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tigated. By increasing the density of small cells, and maxi-
mizing the energy efficiency, BS density needs to be adapted
and optimized by considering the overall network condition.
On the other hand, the network needs to be smart enough to
maintain QoS when the density of base stations dynamically
changes [80]. For instance, by turning off a BS in a het-
erogeneous network, its traffic load needs to be adaptively
handled by its neighbor cells to prevent coverage holes in
the network. In [59], authors introduced a density-adaptive
algorithm which can jointly enhance energy efficiency by
adapting the density of BSs to network condition while cov-
erage and throughput are enhanced by adapting BSs’ trans-
mit power to the effective density of BSs.

3.12. Management of Dynamic Architecture

Software-defined networking (SDN) and network func-
tion virtualization (NFV) are two distinct concepts that may
help implement dynamic networks [113]. The integration of
SDN and NFV can be used to optimize resource allocation in
the network, while centralized and stationary resource allo-
cation may waste valuable resources [114]. Through mobile
edge computing, hybrid approaches may be developed. End-
to-end slicing will significantly be more complicated than
the present approaches since to-be-solved optimization prob-
lems morph with a higher frequency [115, 116, 132]. One
should also not forget the scalability requirements. End-to-
end slicing and limited computation resources’ sharing are
important challenges of the future networks. Cloud radio ac-
cess network (C-RAN) is a novel mobile network architec-
ture with joining the processing resources of the base-band
unit in a pool, and virtualizing base-band units with the help
of SDN and NFV [115]. C-RAN enables the aliasing of the
limited computation resources, and can not be used from the
other nodes in traditional radio access network (RAN) archi-
tecture on demand. For enhancing interference management
and reduce the power consumption, C-RAN can dynamically
allocate radio resource heads (RRHs) by considering the net-
work condition. In future networks, the enabling of such a
feature introduces the concept of cloudification. Techniques
such as coordinated multipoint (CoMP), carrier aggregation,
and MEC, and their hybrid approaches may be developed for
the enhancement of the joint resource usage at centralized
baseband units.

Self-organizing networks (SONs) have many functions
(such as energy efficiency (EE), coverage and capacity opti-
mization (CCO), mobility load balancing (MLB), etc.), which
can enable BSs to adapt themselves automatically to the net-
work condition. However, these functions may conflict with
each other if the density of BSs is not considered. For in-
stance, by increasing EE without considering BSs’ density,
CCO functionality may negatively be affected due to the re-
duction of SE in the network. In order to increase SE to its
maximum level, BSs’ density needs to be optimized [47].
Moreover, SE will be increased when the density of BSs is
optimized, and in case of over-deployment SE will be de-
graded drastically [47]. Therefore, by optimizing the den-
sity of BSs, EE and CCO can be enhanced simultaneously.

In [117], authors present an energy-efficient mechanism by
considering the density of BSs and controlling the transmit
powers for a dynamic SON. As it is shown in [46], by evalu-
ating the density of BSs, a threshold value for the minimum
received SINR in each cell can be obtained, which is used
for optimizing coverage, energy consumption and SE in the
network. Thus, by employing the density of BSs in SON, the
possible conflicts among SONs’ functions will be prevented.

3.13. Transmit Power Adaptation

Optimizing downlink power allocation is another criti-
cal parameter that plays a vital role in enhancing throughput
and user satisfaction in the network. On the one hand, if the
power is excessively allocated in BSs” downlink channel, it
can cause interference among neighboring cell, which can
reduce the QoS and throughput in the network. On the other
hand, degrading too much the downlink power can cause
coverage holes and reduce the throughput in the network.
Therefore, the downlink transmission power needs to be cho-
sen wisely, and it needs to be adapted to the density of BSs
in dynamic networks. In [46], by employing MEC in the
network architecture, the minimum required received SINR
for maintaining QoS in the network with respect to the den-
sity of active BSs is calculated. The obtained value will be
transferred to BSs, and BSs adapt their transmit power in a
distributed manner to reduce the interference in the network
while the overall throughput is enhanced. For density-aware
mobile networks, cell zooming is a key concept regarding
with preserving coverage, controlling network outage, and
improving the energy efficiency [118]. Adapting transmit
power based on the effective density of base stations is one
of the dynamic solutions for cell zooming. To control the
network coverage and outage, changing the transmit power
of each base station depending on the base station density
can be a handy solution as clearly illustrated in [118]. We
conduct a Monte Carlo simulations by leveraging the out-
age and transmit power models proposed in [118] to clearly
observe the impact of the network density on the network
outage and the transmit power of base stations. The simula-
tion parameters are presented in Table 4. In our simulations,
we randomly deployed a set of base stations and user equip-
ment as a three-dimensional network. In each run, a UE is
randomly selected as a reference point, and received signal
strength values are collected by this UE from its closest base
station. If the collected RSS value is less than a threshold
value, this run is considered as an outage. We compute the
ratio of simulation runs that yields outage to the total number
of runs as the outage probability. The simulation results are
compared with the provided analytic model for the network
outage based on the actual density. As can be seen in Fig-
ure 5, the density of BSs needs to be higher for the network
with lower transmit power to achieve the same outage proba-
bility in two networks equipped with BSs that have different
transmit power levels (10 mW and 20 mW"). Additionally, as
we explained in Table 1, when BS density reaches the tran-
sition phase, increasing the density of BSs will not enhance
the outage probability anymore, and it can increase the inter-
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Table 4

The nomenclature for symbols, notations, values and units of the simulations’ parameters.

Parameter Default Value  Units Ref
Actual density, 4 [0.001,0.003] nodes/m® [118]
Path-loss exp. y 1.5<y<2 [133]
Reference distance, r, 1 m [70]
Transmit power, P, [10,100] mw [59]
Simulated outage probability, P, [0,1] [118]
Nearest neighbor index, k.n 6 [118]
radius, R 300 m [118]
K ~40.046 dB [118]

ference and the energy consumption in the network. As can
be seen in Figure 5, to achieve the same outage probability
in case of different transmit power levels, the density of BSs
in the network with lower transmit power needs to be higher.
Therefore, by considering density-aware approaches, we can
reach an adaptive and flexible model for dynamic networks
where BS density and BS transmit power can be varied in
each time slot.
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Figure 5: Impact of BSs density (1) (nodes/m?) on the proba-
bility of network outage (P,) when the transmit power of base
stations (P,) is changing.

3.14. Interference Management

In future networks, high-speed and ubiquitous connec-
tivity will be a leading demand that can be satisfied by densi-
fication. Network densification provides higher capacity by
performing spatial reuse and less congestion with offload-
ing. However, interference, depending on the spatial distri-
bution of base stations, will be a significant problem to be
tackled [121]. Density-aware interference management will
increase link capacity and spectral efficiency in dynamic net-
works [122].

In 4G mobile networks, if a UE is located at cell edges,
it can receive signals from multiple contiguous cells. Inter-
cell interference may originate from various types of BSs.
Different UEs can also interfere with each other, as shown
in Figure 4. What will be of notable importance is the in-

terference from nomadic or mobile cells in future networks.
In Figure 4, we present a scenario where a cell on wheels
(mobile BS) interferes with a UE. This type of interference
is the most challenging if centralized solutions are to be em-
ployed [122, 123, 124].

Mobile operators may control interference at three lev-
els: at the RAN, between RAN and UE, and within UE.

In coordinated multi-point operation, BSs have to syn-
chronize with each other over the X2 interface (the signal-
ing interface which is used between eNodeBs) to transmit
the same information to edge terminals. In this case, inter-
cell interference becomes a constructive phenomenon which
is regarded and processed by the terminals using techniques
to combat multipath fading [120]. With this approach, the
broadcast is increased more in small cells in comparison to
macro cells.

Network density is used as an optimization parameter in
[65] to enhance network capacity. Authors consider the ex-
pected link rate, which depends on both user association and
interference distribution, as a function of network density.
Interference and network throughput models based on BSs’
density are also presented to clarify the trade-off between
the density of BSs and network throughput or interference.
By densification, network throughput will increase until the
BSs’ density reaches a threshold. Crossing the threshold de-
grades throughput because of the high acceleration of inter-
ference and increases service disruption due to large num-
bers of handovers. High link capacities or high SINRs do not
always guarantee high throughput in a network. Under con-
gestion, the performance can become low. That is why a UE
may not connect to a BS even when it provides the highest
RSS. It is shown that a robust and optimized network den-
sity estimator is an essential requirement for maximizing the
network capacity [65].

Different or the same frequency bands can be used by
femtocells as macro cells do. However, employing co-channel
femtocells results in inter-cell interference with their adja-
cent macro cells, which can reduce the performance of cell-
edge UEs. An adaptive solution is presented in [119] for re-
ducing the downlink interference caused by femtocells. That
solution exploits the orthogonal fractional frequency reuse
(FFR) for radio resource allocation and FFR resource hop-
ping based on the femto-BS density and locations. If the
density of femto-BSs near the macro BS is high, then femto-
BSs should use orthogonal sub-channels based on the FFR
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method proposed. If the density of femto-BSs is low, they
should choose a sub-channel randomly for a while and then
hop to other sub-channels. However, such an approach is
not sufficient to avoid inter-macro-cell interference in the
case of high femto-BS density. The analysis of the impact
of the femto-BS density shows that the density of femto-
BSs should be considered to successfully combat interfer-
ence [119].

A

Macro-cell BS

a A

Mobile Users Small Cells BS

Figure 6: A cellular network scenario including a set of base
stations, user equipment and a macro-cell for backhauling.

As a simple back-of-the-envelop calculation, we consider
a network where the base stations are randomly deployed
with an effective density of A nodes/m? in a two-dimensional
Euclidean space as illustrated in Figure 6. This corresponds
to the 2-D Poisson point process. The joint probability den-
sity function (PDF) of random distances from a randomly se-
lected reference point up to the n'" nearest neighbor is given
in [134] as fg (11,79, ....7,) = e 2a A [T, ri We
consider the simple path-loss model; the received signal power
by a randomly positioned user equipment from the k** near-
est base station that is r, meters away is x; = K (ro/r¢)’,
where y is the path-loss exponent, K accounts for the attenu-
ation factor at r(, the impact of non-distance-related factors
and the transmission power. The mean of the received inter-
ference power from the closest n base stations to a randomly
located UE is then

2Kz A T(n+1— 5
SRR G y )

where I'(.) is the Euler gamma function and y < 2. Un-
fortunately, we could not derive a closed-form formula for
the PDF of the aggregate interference in this formulation. In
large scale networks, the aggregate interference from a huge
number of interferers approaches to
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Figure 7: Impact of path loss exponent y and density A on
aggregate interference from all nodes.

by using Stirling’s approximation of the quotient of gamma
functions. We present aggregate interference in Figure 7 that
are validated by Monte-Carlo simulations implemented in
Matlab. In the simulations, a set of base stations are uni-
form randomly deployed in a circular field with the cho-
sen density. As shown in Figure 6, the processing power of
BSs can be enhanced by equipping the network with MECs.
For instance, in this scenario the density of BSs can also
be obtained by a density estimator model (as also explained
in Section 2.5) deployed in MEC [58]. The simulation pa-
rameters are presented in Table 4. The downlink received
signal strength for a randomly located UE is computed fol-
lowing the simple-path loss model. We fix K = —40.046
dB including the transmit power. Figure 7a depicts that for
the same path-loss exponent, when the density of BSs de-
creases, aggregated interference also diminishes because of
lower received power. When the network conditions such
as channel quality are harsh, we can deploy more base sta-
tions to enhance the QoS. Aggregate interference grows up
by increasing the density, as shown in Figure 7a. The conver-
gence is only possible when y < 2. As the path-loss exponent
increases, the aggregate interference will drop as expected.
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The average absolute percentage deviation (AAPD %) of the
analytic aggregate interference results from those of the sim-
ulations are shown in Figure 7b. As the path loss exponent
goes to 2, the AAPD values increases and gets closer to 10%-
15% range. Since this model leverages the average received
signal strength, the accuracy of the results is subject to the
positions of the nodes, and the topology. If the user is near
to the middle, then the accuracy of the results will be higher.
However, if the user or the nodes at the corner of the topol-
ogy, then the accuracy of the results will degrade. These
results provide us an intuition about how UE’s downlink ca-
pacity changes as the density of the network increases. Prac-
tical issues such as shadowing, fading, transmit power adap-
tation have to be addressed for dense networks to draw ade-
quate conclusions.

All in all, one size protocols that are statically configured
will not fit all scenarios in dynamic networks. Robust inter-
ference management, coverage control and SON techniques
that take mobile cells into account have to be developed.
Such approaches may increase the cost of control. Back-
hauling from cells on wheels or wings to the infrastructure
may increase the load on and the cost of transport networks.
Traffic from mobile cells may overload the whole system if
not controlled. Topology control and resource allocation be-
come a very important challenge that cannot be easily ad-
dressed with the present inflexible management planes.

4. Conclusion

With the invent of mobile BSs such as drone cells, not
only the user’s devices but also the elements in the infras-
tructure of the network has also become mobile, introduc-
ing many novel and not-addressed challenges. A flexible
and density-adaptive mobile communications architecture is
required. However, there is a significant research gap be-
tween state of the art and the ambition of achieving a self-
organized, adaptive, and flexible networking architecture. In
this paper, we present this gap by presenting the paradigm
changes in mobile communications and the consequences
thereof. The existing architectures have severe limitations
and shortages to be able to address the introduced paradigm
changes. We stress in this paper that density-aware and -
adaptive networking is crucial in future networks by present-
ing a qualitative and quantitative analysis of the impact of
density on network performance. We also categorized differ-
ent density estimators to illustrate how the density of BSs can
be obtained in dynamic networks. We investigate opportuni-
ties can be achieved, and challenges can be faced by adapt-
ing the density of BSs in the current mobile and wireless
networks to maintaining and improving quality of service
and experience, latency, energy efficiency, resource man-
agement, interference management, mobility management,
etc. in a comprehensive manner. We also evaluate how the
density of BSs can be leveraged in the density adaptive solu-
tions by providing a novel aggregate interference technique
that can control the interference based on the density changes
in dynamic networks. With the light of the comprehensive

analysis and results for the density-aware and -adaptive so-
lutions, the density can be as an opportune and a practical
solution which should be considered in network communi-
cation stack to increase the network performance in addition
to reducing the energy consumption and resource wastage at
run-time.
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