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ABSTRACT
While Android smart phones are widely used in 5G networks, third-party application platforms are
facing a rapid increase in the screening of applications for market launch. However, on the one hand,
due to the receipt of excessive applications for listing, the review requires a lot of time and computing
resources. On the other hand, due to the multi-selectivity of Android application features, it is diffi-
cult to determine the best feature combination as a criterion for distinguishing benign and malicious
software. To address these challenges, this paper proposes an efficient malware detection framework
based on deep neural network called DLAMD that can face large-scale samples. An efficient detec-
tion framework is designed, which combines the pre-detection phase of rapid detection and the deep
detection phase of deep detection. The Android application package (APK) is analyzed in detail, and
the permissions and opcodes feature that can distinguish benign from malicious are quickly extracted
from the APK. In addition, the random forest with good effect is selected for importance selection
and the convolutional neural network (CNN) which automatically extracted the hidden pattern inside
features is selected for feature selection, so as to select the feature subset that can distinguish the at-
tributes most. In the experiment, real data from AMD datasets and third-party application download
platform are used to verify the high efficiency of the proposed method. The results show that the
F1-score index of this method can reach 95.69%.

1. Introduction
The evolution of 5G networks has facilitated the develop-

ment of the IoT industry, whichmakes it possible to intercon-
nect everything. Along with convenience to people, cyber-
attacks are also increasing rapidly as the IoT is widely used
in providing e-commerce, giving online access to healthcare,
communication, and billing systems (including malware at-
tacks on the device). EspeciallyAndroid-based smartphones,
as one of the most popular IoT platforms at present, the oper-
ating system that has occupied 85% of the global smartphone
market [1] has received closer attention from hackers. Tak-
ing the Chinese market as an example, 360 Security Brain
alone intercepted about 1.809 million new malicious soft-
ware samples of mobile terminals in 2019, and intercepted
about 950 million malicious attacks against mobile phone
users nationwide [2]. Due to the openness of the Android
system, Android users can download software from the offi-
cial store, and can also obtain richer applications from third-
party sources, which provides attackers with more conve-
nient conditions to implement malicious behavior. With the
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emergence of malware, users and their devices face serious
damages and threats, including information leakage, system
damage, and mobile bots [3]. For this reason, it is necessary
to ensure that the applications provided by the third-party ap-
plication market to users are safe and reliable, and the appli-
cation market needs to strengthen the security audit of many
applications before they are put on the market. Therefore,
it is urgent to propose an efficient method for detecting An-
droid malware.

Android malware detection aims to classify applications
of unknown nature into benign and malicious, which is es-
sentially a classification problem. On this basis, its main
goal is to build a feasible classification model that can rep-
resent the relationship between APK features and labels (be-
nign and malicious), and then find the optimal solution of
the model. According to the different ways of acquiring fea-
tures, these methods are divided into source package-based
features, runtime-based features and hybrid-based features
methods [4, 5, 6]. The source package-based features anal-
ysis method usually obtains feature information by opening
APK and analyzing the files obtained [7, 8, 9, 10]. Runtime-
based features analysis utilizes runtime or simulated runtime
characteristics [11, 12]. As a result, source package-based
analysis has advantages over runtime-based analysis in terms
of time and computational consumption. In the face of mas-
sive samples, it is necessary to reduce the detection time
as much as possible in order to improve efficiency. There-
fore, the detection method based on source package analysis
is more appropriate. At the same time, in order to ensure
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the validity of the classification results, the selected features
must be representative. In the source package-based detec-
tion method, a Dalvik virtual machine instruction, which can
analyze the operation behavior of applications from the bot-
tom. It is designed by Google and is called opcode. The ex-
ecution of each opcode instruction results in the correspond-
ing operation in the internal register. So, this is a very rep-
resentative sample feature. Due to the increase in the num-
ber of opcodes in applications, the complexity of selecting
key opcode features increases and the timing sequence of op-
codes is lost. Further, it will be difficult to ensure the speed
and accuracy of detection by using opcodes as features to de-
tect a good deal of application samples. Therefore, detection
based on opcode faces two challenges in terms of ensuring
accuracy and improving detection speed.

Challenge 1: the high cost of detection. A wide range of
samples to be tested will inevitably lead to an increase in the
cost of calculation and time, which puts forward higher re-
quirements for detection methods. The process of the exist-
ing runtime-based features extraction method is more com-
plicated than that of the source-package-based features ex-
tractionmethod because it needs tomonitor the runtime state.
This way of working causes the method to take longer and
more computing resources [13, 14, 15, 16]. At the same
time, this method has the disadvantage of low code cover-
age, making it difficult to ensure that all execution routes of
the application are covered [17]. The detection methods that
hybrid-based features also has the defect of runtime-based
features extraction. Because it means extracting both run-
time and source-package features, this doubles the difficulty
of the extraction process, making time and computational
resources more expensive [18, 19]. However, some deep
learning analysis methods based on source package features
reduce the efficiency due to the design of overly complex
neural networks [20].These methods are especially not suit-
able for the situation with huge samples. Therefore, how to
efficiently solve a huge number of software detection prob-
lems is the first technical challenge.

Challenge 2: the problem of selecting features. The se-
lection of feature subsets will affect the results of the detec-
tion method, and different feature inputs will lead to differ-
ences in results. Android applications’ access to system re-
sources and user permissions is regulated by the permission
system, and different permissions correspond to different be-
haviors, so important permissions need to be filtered out.
Removing irrelevant features and redundant features without
causing loss of important information can make the classi-
fication results more accurate. The highest permissions re-
quired for clean and malicious applications are listed, but
only considering the frequency count of a single permis-
sion cannot provide better malware detection performance
[21]. However, using the Term Frequency-inverse Docu-
ment Frequency weighting method to calculate the permis-
sion value of each permission is not comprehensive [22],
and sometimes important permissions may not appear many
times. The same problem occurs in the selection of opcode
features[23].Only counting the distribution of opcodes will

not only lead to the situation that the frequency information
cannot be fully expressed, but also the problem of missing
the order information of the opcodes [24]. To make matters
worse, as the value of n in n-gram increases, the huge over-
head caused by the explosive growth of the parameter space
makes this method unable to handle longer sequences [25].
Therefore, how to choose the feature that best reflects the
difference is the second technical challenge.

Aiming at the above challenges, a phased detection frame-
work based on the combination of pre-detection method and
deep learning method is proposed. It is designed to reduce
the time and computing cost of detection in large-scale appli-
cations as much as possible. In the pre-detection phase, the
important permission features filtered by the random forest
are combined with the back propagation (BP) network clas-
sifier for rapid screening. Pre-detection quickly divides the
samples to be detected into malicious and suspicious, which
can greatly save time and improve detection efficiency. It is
ensured that only suspicious samples need to enter the sec-
ond phase of deep detection, and the overall detection effi-
ciency is improved by reducing the number of samples en-
tering the deep detection phase. In the deep detection phase,
after the enhancement of the CNN and the extraction of key
local information, the opcode sequence features are classi-
fied by using the long short-term memory network (LSTM)
which is good at processing the temporal information. The
purpose of this is to ensure that CNN automatically extracts
important opcodes features and obtains relative position in-
formation of the sequences.The problem of manually select-
ing the opcodes is solved, the relative position information
lost due to the truncated sequence is retained, and more ac-
curate features are selected for LSTM.
1.1. The goal and contributions of the paper

The goal of this paper is to provide a more efficient mal-
ware detection framework for third-partymarkets of 5G-supported
Android applications, which can reduce the adverse effects
of malware introduced into 5G networks. The contributions
are summarized as follows.

• For Android malware detection, an efficient detection
framework based on hybrid deep neural networks is
proposed, which can quickly and effectively identify
malware and benign software.

• A pre-detection method of BP network based on per-
mission features and a joint deep detection method of
CNN and LSTM based on opcodes features are de-
signed. The pre-detection adopts the permission fea-
tures extracted rapidly and selects important features
in combination with the random forest. The results
of pre-detection can reduce the number of samples to
be tested in the deep detection phase and improve the
detection efficiency of large samples. In the deep de-
tection phase, a feature selectionmethod that automat-
ically extracts the hidden mode of the opcodes is de-
signed. It employs CNN to extract local key informa-
tion to obtain the key opcodes and the timing sequence
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characteristics of the relative position information be-
tween the key opcodes, which improves the accuracy
of detection.

• Experimental results of real data sets demonstrate the
high efficiency of proposedmethod. Experiments were
carried out on the pre-detection phase and the deep de-
tection phase respectively, and the accuracy reached
more than 93%. Especially in the experiment of the
whole detection framework, the accuracy is improved
by about 2%-3% compared with a single stage. In
comparison experiments with traditionalmachine learn-
ing algorithms, the accuracy is improved by about 10%-
20%.

The organization of the rest of entire paper is shown be-
low. Section 2 is a description of android software detection
problems. The Section 3 expounds the DLAMD method,
including the framework and special details and Section 4
conducts experiments to estimate the composite indicator of
DLAMD. Section 5 and Section 6 are related work and con-
clusions respectively.

2. Problem Statement

2.1. Problem Definition
Dalvik is a virtual machine designed by Google for the

Android platform. There are Dalvik instructions in the smali
file obtained by decompilation. Opcode is derived fromDalvik
instructions in smali files, such as "iput-object", "invoke-
direct" and "return-void". These opcodes all represent differ-
ent operations and contain sequence information in the order
of appearance. An APK can be represented as a sequence of
opcodes composed of opcodes. At this time, the problem
of malware detection is transformed to the judgment of be-
nign and malicious applications based on opcodes features
by analyzing the different manifestations of corresponding
instruction sequences on their respective labels.

2.2. Problem Decomposition
There are hundreds of opcodes, and some of them will

appear repeatedly in different positions. Since only extract-
ing the frequency of the opcodes cannot fully express all
the information, and truncating the opcode sequence will
lose the order information. Therefore, it is a relatively good
choice to consider using opcode sequences to represent APK
behavior. However, excessive length of opcodes sequence
will lead to the introduction of redundant information and
reduce the detection efficiency. By now, the problem of mal-
ware detection based on opcodes features can be decom-
posed into two subproblems:

1) The inefficiency caused by length dependence based
on opcodes features. First, the permissions that can be ob-
tained more quickly are obtained, then the key features are
sorted by random forest, and finally the BP network is used

for rapid pre-detection. The detailed process of pre-detection
is described in Section 3.2.

2) Key feature selection based on opcodes features. Af-
ter a quick pre-detection phase, the nature of the part of the
sample judged to be malware is determined. The other part
of the software that is classified as suspicious will enter the
deep detection phase to obtain its opcodes features and uti-
lize CNN to extract key opcode features and relative position
information to provide more accurate judgments.

Figure 1: The framework of the malware detection method

3. Methodology
In this section, the structure of theDLAMD is first shown

to have a global view. Then, we concretely represent how to
use the permission feature for pre-detection, as well as the
rules for selecting permission feature. For explaining the
principle of the deep detection network clearly, the structure
and parameter settings of the combined deep learning net-
work are depicted.
3.1. Framework

The architecture of DLAMD is shown in Figure. 1, and
DLAMD is separated into two parts: the pre-detection and
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the deep detection. The APK to be detected under 5G net-
work is the input of the framework. Two typical features of
APK are used in the DLAMD framework: permissions and
opcodes. The input of the pre-detection phase in DLAMD
is the features vector containing permissions information.
Then, according to the result of the pre-detection, applica-
tions are divided into suspicious and malicious. Finally, the
opcodes feature vector of the suspicious softwares will be
the input of the deep detection in the classification model.

The first phase is the pre-detection, which is used for pre-
liminary rapid detection of various Android applications and
is intended to exclude somemalware with obvious character-
istics. It greatly reduces the time and computing cost of deep
detection and improves the detection efficiency of the whole
framework. Pre-detection requires preliminary screening of
awide range of applications, so its characteristics such as fast
detection speed and easy feature extraction are necessary.
Pre-detection is designed for two considerations. On the one
hand, the permission mechanism, as the core of the Android
system security mechanism, can remind users of the appli-
cation permissions required by applications and help users
make decisions to avoid data leakage or malicious attacks.
At the same time, permissions required by the application
must be declared in the Androidmanifest.xml file, which is
easy to obtain. On the other hand, the random forest algo-
rithm and BP neural network are both lightweight detection
methods, which can meet the requirements of fast detection
speed required for pre-detection.

The second phase is the deep detection. Applications
that are judged to be suspicious in the pre-detectionwill serve
as inputs to this phase.This can not only reduce the pressure
of deep detection but also improve the accuracy of detection.
This phase mainly utilizes the CNN and LSTM to detect the
applications by using opcodes feature. It avoids manual se-
lection of feature, and can also take care of the time sequence
of the opcodes and improve the detection efficiency.
3.2. Pre-detection phase

The pre-detection is specially designed to avoid time over-
head and calculation cost in consideration of actual require-
ments. Here, the pre-detection is described in detail in three
subsections: rapid extraction of features, selection of per-
mission features, and implementation of preliminary classi-
fication.
3.2.1. Extraction of Permission Features

Here is a detailed description of the permissions features
extraction process. To boost the detection speed of the pre-
detection phase,instead of the currently widely used open
source tools such as Androguard [26], we chose the more
direct parsing method, which only gets permission charac-
teristics from the Androidmanifest.xml file. This can effec-
tively speed up the extraction.

Since the AndroidManifest.xml file is usually stored as
an encrypted binary file, it needs to be further parsed to ex-
tract the permissions features. This file consists of four parts:
Header (including the magic number and file size of the file);
String Chunk (the string resource pool); ResourceId Chunk

(the system resource id information); XmlContent Chunk
(the specific information in the manifest file). All the per-
missions information we need is stored in String Chunk, so
we only need to parse this part to get the required informa-
tion, and it can also reduce the time taken for extraction.
First, we need to locate this part, then read the binary in-
formation byte by byte, finally convert them into string in-
formation that we can understand, and extract the permission
information.

For all the samples of the experiment, we extracted a
total of about 330 types of permissions features as feature
dictionaries for detection model training and classification.
For each sample, permissions feature extracted corresponds
to the selected feature dictionary word vectorization, that is,
the position in the feature dictionary is marked as 1 and the
other positions are marked as 0. The vectorization of the bag
of words is used to indicate the extracted permission feature.
3.2.2. Selection of Permission Features

In order to better detect malicious applications, improve
the generalization ability of detection of unknown applica-
tions, and reduce overfitting, it is necessary to obtain the im-
portance ranking of features through the process of selecting,
deleting, and merging all permission features.Here’s how to
use the random forest to select permissions obtained in the
previous section.

A permission feature selection method based on random
forest and Gini coefficient is established. Consider the selec-
tion strategy of permissions features from two perspectives,
one is whether the permission function is different. If the
selected features are not different in the samples of the two
labels, then this permission is not helpful for analysis and de-
tection applications. Another point is whether the selection
permissions are related to the classification of the applica-
tion. More relevant functions are considered more impor-
tant for application detection. Therefore, it is necessary to
choose an appropriate, correct and robust feature selection
method. Because random forest has high accuracy and ro-
bustness, and is easy to use, the pre-detection phase adopts
random forest-based methods, and uses the Gini coefficient
to measure the important coefficient of each permission fea-
ture, and then determines the advantages and disadvantages
of the feature according to the value of the coefficient.

Random forest based on subsets belong to the training
data set and train multiple decision trees. In the decision
tree building step, permissions are used as a segmentation
feature. To ensure that the selected permission feature is the
best segmentation feature in all feature subsets, it is neces-
sary to ensure that the permission feature has sufficient im-
portance compared to other features, that is, the degree of
importance is higher than other features. Using random for-
est to select the permission features of an application is to
make a decision based on the degree of contribution of each
permission feature on each decision tree, then the average
value is taken, and finally the permission features are se-
lected based on the contribution value. In other words, we
need to calculate the contribution of each permission feature,
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and then compare them one by one according to the thresh-
old set in advance. If it is greater than the threshold, it is the
selected permission feature.

Meanwhile, the method which aims at calculating the
feature contribution is particularly critical. Gini coefficient
is a widely used measurement method similar to information
entropy and information gain, which can be used to represent
the impureness of data. The Gini coefficient is a number be-
tween 0 and 1. When it is closer to 1, it means that the degree
of inequality is higher, and vice versa. The best segmenta-
tion permission feature is usually selected according to the
degree of impureness of the child nodes after segmentation.
The lower the degree of impureness, the more inclined the
class distribution is. Generally, the smallest Gini coefficient
is used as the basis for division. The Gini function of the
probability distribution is defined as:

Q(r) =
S
∑

s=1
rs(1 − rs) = 1 −

S
∑

s=1
r2s . (1)

Among them, S indicates S categories, and rs and the prob-ability that a sample is assigned to the s categories. Then
we assume that the data set V is classified into sub-dataset
V1 and V2, based on the condition that whether feature U is
equal to a certain value u. In this case, the Gini of V is:

Q(V ,U ) =
|V1|
|V |

Q(V1) +
|V2|
|V |

Q(V2), (2)
Q(V ,U ) is the uncertainty of V divided by feature U = u.
The larger the Gini coefficient, the greater the uncertainty of
the sample set.The Gini coefficient and the important value
score of each permission feature are calculated respectively,
and the most important permission feature is selected for de-
tecting malicious application functional programs.

Therefore, on the premise of obtaining the importance of
features, the steps of feature selection for permissions are as
follows. The first is to calculate the importance of Android
features and sort them in descending order. The second is
to set the proportion of features to be deleted, and then ob-
tain a new permission feature set according to the calculated
importance of permission features.The third is to repeat the
above operation until a threshold number of permission fea-
tures are left. So far, the feature selection work is completed.
Figure. 2 shows the top 20 most important Android applica-
tion permission features, and we can find that the features of
permissions such as READ_PRIVILEGED_PHONE_STATE
and WRITE_SYNC_SETTINGS are more important. By
constructing the random forest using permissions features
and calculating the Gini coefficient, it is possible to further
normalize and obtain the important value scores of each per-
mission. Among the extracted 330 permission features, the
most important 45 are selected as the key features for detec-
tion.
3.2.3. Implementation of Pre-detection

The optimized design of BP network structure is also
carried out to ensure that the classification index can be im-

Figure 2: Top 20 permissions distribution

proved as much as possible while the rapid detection is en-
sured.The classification method based on permission feature
and BP neural network is introduced in detail.

The neural network is a simplified artificial intelligence
algorithm modeled after biological neurons. BP neural net-
work is a classic network structure in artificial neural net-
works. The BP neural network model has good non-linear
mapping capabilities, which can solve more complex de-
tection problems, and has a strong self-learning ability for
feature information. But the BP neural network is not per-
fect and has certain limitations. When designing a structural
model based on BP neural network, the following optimiza-
tions were performed in this paper: adjusting model param-
eters and network structure, optimizing the learning strat-
egy and loss function of the network model, accelerating the
model’s convergence speed, and enhancing the classification
accuracy of the model. The BP network structure usually
includes the input layer, hidden layer, and output layer. For-
ward propagation calculation and back propagation training
are two components of neural network structure. Based on
the above rules, the network model designed in this section
is an input layer, an output layer and four hidden layers. All
neuron nodes use RELU as the activation function. To pre-
vent model overfitting, dropout is introduced into the net-
work and the random inactivation probability is set at 0.2.

The above contents have described the basic network struc-
ture of pre-detection. Based on the above network struc-
ture, the output value of the network model can be calcu-
lated forward. It is also necessary to use the final output of
forwarding propagation to calculate the partial derivative of
the error, to obtain the loss function, to evaluate and back
propagate to tune the network parameters. To enhance train-
ing model’s convergence speed and detection results of the
algorithm model, this paper chooses Adam optimization al-
gorithm and cross-entropy loss function.Adam adaptive es-
timation algorithm not only guarantees effective on sparse
gradients but also has good performance on non-steady-state
and online problems. This algorithm is helpful for the ef-
ficient calculation of the entire algorithm model, while re-
quiring less memory, and is suitable for non-steady-state tar-
gets and high noise or sparse matrix problems. With cross-
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entropy as the loss function, the similarity between the distri-
bution of real labels and the distribution of model prediction
labels can be predicted to optimize the network structure ’s
parameters. Besides, the adopted loss function avoids the
gradient dispersion problem to a certain extent and acceler-
ates the convergence rate of the model.
3.3. Deep Detection Phase

The deep detection method based on CNN and LSTM
using opcode is described in detail. As shown in Figure. 3,
we divide the detection process of this phase into three mod-
ules: opcode extraction, feature enhancement and selection,
and deep detection.
3.3.1. Opcode Extraction

Here is about the process of extracting the opcode se-
quence features of the input for deep detection, and the gen-
eration process of the opcode sequences conversion into the
data format that can be input into the detection network.

Extracting the opcode sequences from theAPKfilemainly
includes the following three important steps [27]. Firstly, the
smali file is obtained from the decompiled APK file. Then,
we extract only the Dalvik opcode from the file and discard
the operands. Finally, an opcode sequence file is obtained
from the Android opcode constant list. The decompiler Ap-
ktool [28] used in this section is an open source tool that
is often used for reverse engineering. It can decompile An-
droid programs and rebuild them after modifications. After
decompiling the samples using Apktool, the files with the
suffix smali is extracted, which is the core of the applica-
tion samples at runtime. This file contains all the method
functions required for the execution of the samples, and we
only need to extract and record the opcodes representing the
methods. Finally, we map these opcode files to the list of
android Dalvik instruction set to get the numeric opcode se-
quence file. Its concrete representation is the hexadecimal
representation of the 0-255 sequence of numbers, represent-
ing the corresponding opcode.

Figure 3: Deep Detection Structure

After the previous step, we obtain the opcode sequences.
Because of data format problems, these sequences cannot be
directly used as input data for CNN, and further transforma-
tions are required to make them into the matching data for-

mat. All opcodes are converted into one-hot vectors, that is,
vectors with index bits of 1 and the remaining bits being 0.
In this way, the opcode sequence can be transformed into an
opcode matrix which can be input into the CNN. However,
a new question appeared at this time, that is, the opcode ma-
trix is too sparse and the dimension is too high, which will
cause the efficiency of the feature extraction of the convolu-
tional layer to become very low. Therefore, it is necessary to
centralize the feature information to improve calculation ef-
ficiency. We multiply the opcode matrix by a randomly ini-
tialized embedding matrix, which concentrates the feature
information, thereby obtaining the final form of the input
convolutional neural networkM .
3.3.2. Feature Enhancement and Selection

Given the continuity of the feature code sequence, this
paper chooses to use a CNN model that is used for classifi-
cation. The reason is that this model can amplify the corre-
lation between opcode features, which can select and obtain
key features accurately.It is described how CNN enhances
and selects the features of opcode sequences while ensuring
that sequence information is obtained.

Themodel designed here adopts some design advantages
of Text-CNN [29] model to maintain the order information
of opcode sequences. In order to match the features of the
opcode sequences, multiple filters with a width equal to the
width of the feature matrix input of the embedding layer are
used in the convolutional network. The convolution opera-
tion is performed to extract new features under the condition
that the width of each filter is kept constant. Multiple fil-
ter convolution operations yield multiple feature maps. The
formula is defined as follows:

ci = Relu(Conv(M,wi) + bi), (3)
where, the activation function is RELU . The convolution
operation on the input matrix M is represented by Conv.
The weight of j-th filter is wj ∈ ℝ(ℎ × g), and the bias is
bj . n − ℎ + 1 convolution operations is implemented in the
j-th filter in the entire input matrix, and the corresponding
feature map in obtained. Summary of the different feature
maps extracted for all filters is as follows.

C = [c1|c2|...|cp]T . (4)
The convolutional network layer mainly obtains the out-

put matrix C by performing a convolution calculation on the
opcode sequence represented in the input matrix M . After
convolution, the result matrix needs to be input to the pool-
ing layer for further feature extraction. Generally speaking,
max-pooling and k-max pooling [30] is applied to the fea-
ture mapping after convolution to select important one or k
important features. However, the input of LSTM is a spec-
ified sequence input, and pooling will destroy the structure
of the sequence due to the discontinuity of the selected fea-
tures. Therefore, considering that LSTM is connected be-
hind CNN, pooling is not applied after convolution opera-
tion.At this point, the process of extracting the feature in-
formation of the convolutional neural network module is all
completed.
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3.3.3. Deep Detection
The function of deep detection is to use LSTM network

to detect and analyze the feature vectors of the output of
CNN.LSTM network is a kind of time-delay neural network,
which ismore suitable for time series operation behavior.The
unit structure of LSTM is more complex, and it has a better
training effect on sequence data.

The core operation is mainly calculated and controlled
by three “gates”, and the cell status is selected to be up-
dated by using the information at the previous moment and
the current input feature information. The specific LSTM
model is shown in Figure. 4. X = x1, x2,… , xn is the
input sequence of the LSTM model, namely the interme-
diate feature vector of the output of the convolutional net-
work, andH = ℎ1, ℎ2,… , ℎn be the LSTMmodel calculates
vector sequence of hidden layer nodes, then calculate Y =
y1, y2,… , yn , the corresponding output vector sequence. Thecontrol and calculation of transmission state is implemented
using a set of “ gates ” in each time step of the LSTM, which
remember feature information that needs to be memorized
for a long time, and forget unimportant feature information.
The LSTMmodel mainly determines and calculates the tran-
sition between ct (the time step cell state) and ℎt (the currenthidden state) through ℎ(t − 1) (the hidden state) of the pre-
ceding time step and the input vector xt of the current time
step, and three calculation control “ gates ”, namely “ output
” ot, “ forget ” ft, “ input ” it. The calculation conversion
process of LSTM is specifically defined as follows.

Figure 4: Long Short-Term Memory Network

First of all, in the LSTM model, it is necessary to de-
termine which opcode feature information will be discarded
out of the cell state ct at time t by the forget gate ft. The
formula is defined as follows:

ft = �(Wf ⋅ [ℎ(t − 1), xf ] + bf ), (5)
where � represents the sigmoid function, which can map a
real number to the range (0,1). At this time, the sigmoid
method will read the hidden state ℎt during t − 1 time and
the input sequence xt , and output a value to each opcode
characteristic information in the cell state c(t − 1) at time
t − 1 in order to decide whether the information is retained.

Secondly, howmuch new opcode feature information needs
to be input into the cell state at time t is determined by the
LSTM model. In first part, the decision to decide which in-
formation is updated lies in the input gate it. Here is the

formula definition:
it = �(Wi ⋅ [ℎ(t − 1), xt] + bi), (6)

where the effect of the sigmoid function is similar to that of
the forget gate. In the second part, lt decides which opcode
characteristic information will be the candidate update con-
tent. The formula is defined as follows:

lt = tanh (Wl ⋅ [ℎ(t − 1), xt] + bl), (7)
where tanℎ is a hyperbolic tangent function, which can map
real numbers to activation functions in the interval between
(-1,1). By combining these two steps, the cell status can be
updated.

Again, the LSTMmodel will update the cell state at time
t based on the forget gate ft and the input gate it. The for-mula is defined as follows:

ct = ft ⊙ c(t − 1) + it ⊙ bo, (8)
where ⊙ represents the multiplication of the corresponding
elements of the operation matrix and requires proof of the
same type. Finally, it is up to the LSTM model to determine
which part of the cell state at time t can be delivered from
the ot output. The formula is defined as follows:

ot = �(Wo ⋅ [ℎ(t − 1), xo] + bo), (9)
where the effect of the sigmoid function is also similar to
that in the above formula. At the same time, the hidden state
ℎt at time t need to be updated to facilitate participation in
the calculation in the next cell. The formula is defined as
follows:

ℎt = ot ⊙ tanh (ct). (10)
Through the continuous cycle of forgetting, input and

output of the cells, the LSTM model can fully analyze the
time sequence of the opcode sequences feature. The input
of the fully connected layer is the output of LSTM model,
and then this layer outputs the results. Finally, the classi-
fication output layer chooses to use the softmax model to
judge the malicious and non-malicious behavior of the ap-
plication. The function realized by this layer is to perform
mathematical calculations on the weights of the features of
the foregoing layer, to gain an accurate mixture of the ele-
ments, and output the result of the corresponding target.

4. EXPERIMENTAL STUDIES
This section verifies the optimality of theDLAMD through

experiments. First, the data set is used to validate the perfor-
mance of the pre-detection and deep detection. More impor-
tantly, the comparison experiment between the deep detec-
tion algorithm and the overall framework will also be con-
ducted, which can verify the necessity of stratification and
pre-detection. Other machine learning models are then used
to compare with the DLAMD presented in this paper.
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4.1. Experimental Setup
The data set used in the experiment, the evaluation index

of android software detection results, and the description of
the experimental environment are shown below.

Data set description: The dataset in this paper contains
positive and negative samples, namely malicious applica-
tions and benign applications. Among them, the malicious
data set mainly comes from VirusTotal [31] and the pub-
lic data set Drebin. Virustotal is a website that provides
free suspicious file analysis services with a regularly up-
dated virus definition library. The benign software used in
this paper is collected from third-party application platforms
in China, such as Tencent App Store and 360 App Market.
Therefore, all applications have been effectively tested. 2000
malicious APKs and 2000 benign APKs were extracted for
experimental analysis. In order to further verify the perfor-
mance of DLAMD in large-scale data sets, a data set con-
taining 7800 applications including 3900 benign and 3900
malware is introduced. We divide the data set as follows,
90% of which are the training and validation sets, and the
remaining 10% as the test set.

Evaluation criteria: The following five parameters are
used as evaluation indicators in this article to quantitatively
evaluate the effectiveness of the detection model network.
The calculation formula is shown below:

Accuracy = RC + RA
RC + RA + FC + FA

, (11)
Recall = RC

RC + RA
, (12)

Precision = RC
RC + FC

, (13)
F1 − Score = 2RC

2RC + FC + FA
, (14)

AUC =

∑

insi∈positiveclass rankinsi −
M×(1+M)

2
M ×N

, (15)

whereRC andRA respectively represent the number of real
correct and real negative, while FC and FA are the number
of fake correct and fake negative respectively.

Experiments environment: The experimental environ-
ment is built based on the Python language, and the experi-
mental platform mainly uses open source packages or tools
such as pandas, sklearn, matplobtlib, and numpy. The tools
for extracting features of opcodes of Android applications
are mainly baksmali and apktool. The framework for deep
learning is built with TensorFlow, cuda and cudnn. The
training and testing stages of the model are all completed
on the GPU server, and the main GPUs used are Tesla K80
GPU and GTX 1080 T1.
4.2. Result analysis

The experimental results of the data set will be analyzed
in detail here. To reflect the accuracy of the overall frame-
work, the pre-detection phase and the deep-detection phase
are tested separately. Finally, the detection performance of
the separate deep detection and the overall detection frame-
work is compared.

4.2.1. Pre-detection
The results and performance of the pre-detection are ex-

perimentally verified. From the perspective of model train-
ing and classification results, experimental demonstrations
are carried out.

The data sets are trained the network detection model,
and the evaluation indices of training and verification are
recorded respectively. First enter the data set network detec-
tion model for training, and record the loss and accuracy of
training and verification. As shown in Figure. 5, with the in-
crease of experimental steps, the loss of the model gradually
decreases, and the training result of the detection model is
judged. We use the loss function to compare the gap between
the predicted value and the actual value of the detection net-
work to help optimize the detection network. At the same
time, it can quantitatively show the effect of pre-dection in
distinguishing the properties of the software. The value of
this loss function is expected to be extremelyminimal, which
means that the classification effect of the model meets the
expectation. Meanwhile,it can quantitatively display the de-
tection effect of the detection model. The smaller the loss
function value is, the better the detection effect of the ob-
tained detection model will be.

Figure 5: Loss and accuracy of pre-detection’s training

After the detection model is trained, it needs to be tested
and verified on the test set to more objectively and accurately
measure the detection effect of the detection model. The ex-
perimental effect of the pre-detection is verified by compari-
son with related algorithms, such as support vector machine
(SVM), logistic regression (LR), random forest (RF), deci-
sion tree (DT), multinomialNB (MNB) and multilayerper-
ceptron (MLP).The results of the pre-detection are shown on
two data sets. Pre-D400 and Pre-D7800 represent the test re-
sults of the pre-detection on 400 and 7800 data samples after
training and verification, respectively. Through a series of
experimental tests on the test set, multiple test results such as
accuracy, recall, accuracy , F1-score and AUC are obtained.
As shown in Figure 6, on the 400 sample data set, the accu-
racy of the model test results obtained by the pre-detection is
about 93%. At the same time, the precision and recall indica-
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Table 1
Pre-detection’s training and detection time results

Number of sample Training time Number of sample Detection time

APK files(3600) 39.06s APK file(1) 0.0275s

tors have reached more than 91%. In the 7800 large samples
dataset, although the index has declined slightly because of
the dramatic increase in the number of samples, it still main-
tains 84.12% on the comprehensive measurement index of
F1-score, which is 5.57% higher than the 78.55% of MNB.

Figure 6: comparison results of pre-detection’s and other
methods

It can be seen from the above results that the pre-detection
model proposed in this paper has good detection results on
both test data set and training data set. In view of the fact that
the main application scenario proposed in the pre-detection
phase is to solve the preliminary detection of many unknown
applications in the application market.Therefore, the detec-
tion speed of the detection method is more critical, that is,
the training time of the model and the detection time of the
unknown Android application are also particularly critical.
Based on the above considerations, this section also designs
corresponding experiments and records the time consumed
by the experiment. Table 1 shows specific information.

The training time in Table 1 is the time used for train-
ing 3600 samples after the permission features have been
extracted, including feature selection time and model train-
ing time. The detection time of the pre-detection is the de-
tection time of an APK file, including the sum of the ex-
traction features time, feature selection, and classification
time. In order to further compare the time saved by the
pre-detection for the overall detection framework, this pa-
per compares the extraction time of permission features and
opcode features.Because the opcode feature extraction took
too long, the batch of samples was processed twice.It can be
seen fromTable 2 that the extraction efficiency of permission
features is much higher than the extraction speed of opcode
features, which can be said to be an order of magnitude time
surpass.Here, the advantages of pre-detection can be clearly
demonstrated. Pre-detection can quickly screen out a part of
malicious samples for deep detection, reducing the number

Table 2
Two types of features extraction time

Number of sample Feature type Extraction time

APK files(7788) permission 172.8625s

APK file(7795) opcode 5h07min18s + 7h12min19s

of samples that need to extract opcode features and perform
deep detection, thereby improving detection efficiency.

Therefore, the pre-detectionwhich is proposed in this pa-
per has absolute advantages in ensuring the detection effect
and detection speed.
4.2.2. Deep Detection

It is necessary to verify the effectiveness of the deep de-
tection phase. To verify the detection effect of the proposed
detection model based on CNN and LSTM.

Figure 7: Loss and accuracy of Deep detection’s training

In the deep detection, we propose a detectionmodel based
on CNN and LSTM. During the experiment, the CNN and
the LSTM network are simultaneously trained as an overall
model.It is necessary to adjust the hyperparameters such as
convolution filters and the number of network layers to make
the model in a relatively optimal state, thereby improving
various evaluation indicators. As Figure 7 shows , in the
process of increasing the epoch value of the abscissa to 20,
the loss and accuracy respectively maintained gradually de-
creasing and increasing trend. After reaching 30 epoch, the
curve was basically stable. At this time, the model gradually
converges and stabilizes, indicating that the training effect is
as expected.

In Figure. 7, the accuracy of the training model and
the accuracy of the validation set improves gradually as the
value of the horizontal axis slowly increases, and the detec-
tion accuracy reaches more than 91% after about 20 epochs.
While the time of training iterations is increasing, the train-
ing loss and verification loss of themodel gradually decrease,
and finally stabilize to about 0.25, which proves that themodel
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Table 3
Experimental results of whole detection framework and sepa-
rate deep detection

Model Accuracy Precision Recall F1-Score AUC

Detection Framework 0.9583 0.9524 0.9615 0.9569 0.9584

Deep Detection 0.9375 0.9457 0.9385 0.9421 0.9374

gradually converges. Figure. 7 shows that the detection
model has good performance in the training phase, and can
gradually reduces fluctuations, and eventually tends to con-
verge.

Like the pre-detection, the deep detection needs to be
tested and verified on the test set after training, in order to
measure the detection effect of the model more objectively
and accurately.Through a series of experimental tests, the
accuracy, precision, recall and other test results were ob-
tained.At the same time, the DLAMD is compared with a
separate deep detection model to further verify the advan-
tages of the detection framework.In order to follow the prin-
ciple of experimental fairness, the same data set is used in
the comparison experiment, and the proportion of training
set, verification set and test set is consistent.

As shown in TABLE 3, the proposed DLAMD and the
separate deep detection have achieved good detection results,
of which the DLAMD has obtained an accuracy of 95.83%
and an precision of 95.24%. Compared with using only the
deep detectionmodel, theDLAMDhas significantly enhanced
in various evaluation indicators. The F1-score has increased
to 95.69%, which is 1.48% higher than before. The AUC in-
creased to 95.84%, which is 2.1% higher than before. Other
evaluation indicators have been improved to varying degrees.
It can be seen that the detection framework which is pro-
posed in this paper can enhance the performance of Android
application software detection.
4.3. Performance Comparison of DLAMD and

Machine Learning Methods
The experimental verification of the performance indi-

cators of the entire detection model is crucial.And the com-
parative experiment betweenDLAMDandmachine learning
methods is described in detail in the following content.

In order to further verify the detection performance of
the overall detection framework proposed in this paper, a set
of comparative experiments are designed to illustrate.Some
machine learning algorithmswith better classification effects
are selected for simulation.The same data set is compared
and analyzed to ensure the fairness of the detection frame-
work applied to Android applications.The specific experi-
mental results are shown in Table 4. In order to more intu-
itively evaluate the framework proposed in this paper, De-
cision tree, logistic regression, naive Bayes, random forest
and multilayer perceptron are selected to carry out the com-
parison experiment. All comparative experiments employ
the same dataset, with 2000 malware and 2000 benign soft-
wares. The training and testing datasets have the same divi-

sion ratio. The experiment results are reported in five eval-
uating indexes mentioned above. The results of compara-
tive experiments confirm that the accuracy of the proposed
DLAMD exceeds other detection algorithms by about 5%-
10%, and the same increase is also seen in precision and re-
call. Stable comprehensive evaluation indexes of F1-Score
and AUC can be increased by 10% -20%. The detection
framework proposed in this paper is more optimized and
stable than the better-performing random forest.This proves
that the detection framework in this paper is more robust
and improves the detection effect. The detection framework
which is proposed in this paper is more optimized and stable
than random forest detection.

Specifically, methods such as logistic regression and naive
Bayes, as shown in Table 4, have large fluctuations in re-
call and precision, and low detection accuracy.This is due
to the difficulty of opcodes feature selection and sequence
information, which makes the detection algorithm unstable,
and it is difficult to understand the internal laws of malicious
applications.The DLAMD in this paper utilizes an efficient
deep learning detection framework, adopts the pre-detection
to filter out part of applications, and then employs the CNN
to initially extract the features of opcode sequences, and fi-
nally analyzes the sequence relationship between the opcode
sequences through LSTM.The detection framework is more
comprehensive and fully analyzes the local opcode informa-
tion. Therefore, the experimental results are relatively bet-
ter, and the detection efficiency is improved while ensuring
performance indicators as much as possible.

5. Related Work
In the 5G era, the terminal security of the Internet of Ev-

erything is particularly important, especially for the applica-
tion security of android phones with huge number of users,
which requires more extensive research into new technolo-
gies [32, 33, 34, 35].In general, runtime feature and hybrid
feature detection methods can also achieve good detection
results. Because they both need to obtain the data and behav-
ior of the application at runtime, they need to be simulated
in a sandbox or run in a real device, resulting in high compu-
tational cost and time consuming.Obviously, these two anal-
ysis methods are not suitable for the large-scale detection of
the third-party application market under the 5G environment
concerned, which requires an efficient and accurate detection
method. Here, the focus of this paper is the detectionmethod
based on the features of the source package.

In terms of run-time feature analysis methods and hy-
brid feature methods, Zhang W et al. [36] combined run-
time features and permissions of system categories, analyzed
the trigger points of malicious code and established a birth-
mark library. They used DAMBA to design a hybrid detec-
tion method to reduce the range of possible malware fami-
lies to obtain better accuracy. The scheme in [37] incorpo-
rated network traffic and system permissions, and proposed
a hybrid detection model called NTPDroid. They used the
FP-Growth algorithm to develop the proposed model and
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Table 4
Comparison of different detection methods

Methods Benign/Malware Acc. Pre. Recall F1-Score AUC

Logistic Regression 2000/2000 0.7502 0.9811 0.5203 0.6795 0.7489

Random Forest 2000/2000 0.8500 0.8889 0.8001 0.8422 0.8501

Decision Tree 2000/2000 0.8000 0.8750 0.7000 0.7778 0.8001

Naive Bayes 2000/2000 0.7101 0.6428 0.9000 0.7502 0.7000

Multilayer Perceptron 2000/2000 0.8102 0.9903 0.6012 0.7482 0.8000

DLAMD 2000/2000 0.9583 0.9524 0.9615 0.9569 0.9584

to produce frequent patterns making up of traffic character-
istics and permissions. A hybrid feature detection method
combining static extracted permission features and API fea-
tures extracted under running program state was proposed
[18], achieving 93% accuracy. Feng P et al. [13] proposed
EnDroid, which was used to classify malicious software by
the integration algorithm by extracting the behavior charac-
teristics of the monitoring program at run time, achieving
good performance. Cai H et al. [38] proposed DroidCat, a
dynamic application classification technology. It used a va-
riety of dynamic characteristics based on method calls and
inter-component communication intentions without involv-
ing permissions, application resources, or system calls. The
use of runtime features of the above methods will cause sig-
nificant time and resource consumption for samples’ pre-
processing. However, the hybrid feature analysis method
needs to acquire both runtime and source package-based fea-
tures, whichwill consumemore time and computing resources.
Therefore, considering the large-scale data facing, this paper
will not consider using these methods.

In the source package-based feature analysismethod, Alotaibi
A proposed a network called MalResLSTM [39]. To collect
complex functions and underground structures frommalware,
this method imposes time restriction on the architecture of
deep learning. Since this method only extracted eight inde-
pendent and different static features, the generated vector has
no semantic information and no deep semantic information
of feature mining. The framework proposed by Kim T G et
al. [40] considered various features of Android. The eigen-
vector selection method is optimized by using the methods
based on existence and similarity, and the classification is
carried out by using the multi-mode machine learning. The
excessively complex network design results in the increase
of computing resources and the consumption of time. An
Androidmalware classificationmodel based on sensitive op-
code sequence analysis of code-specific semantic informa-
tion was proposed [41]. They used opcodes, sensitive APIs,
STRs, and actions to construct sensitive semantic feature-
sensitive opcode sequences, and proposed to analyze specific
semantic information of the code, and generated semantic
correlation vectors for Android malware family classifica-
tion based on this feature. Because the model only extracts
the opcodes contained in methods that contain sensitive el-

ements, the model may not be able to generate sensitive op-
code sequences for further analysis, which may affect the
final detection results. Arora A et al. [42]built a malware
diagram and compare it to a normal sample diagram by ex-
tracting permission pairs from the application’s manifest file.
Due to the existence of dangerous permission pairs, many
normal social and communication applications of Google
Play Store have been identified as malicious applications, so
the proposed model has a high FPR. Kang B J et al. [25] pro-
posed a method based on n-gram opcode features, and used
machine learning to identify and classify malware. It used
data segmentation technology to perform feature selection
and can be extended to 10-gram opcodes. As the value of n
increases, the amount of calculations processed will increase
exponentially, and sequence information may be lost.

Unlike the above methods, the method proposed in this
paper designs a two-stage detection, which provides a rapid
screening method for large numbers of samples. Moreover,
CNN is used to realize automatic mining of internal seman-
tic information, which not only extracts the key information
of input, but also ensures the relative position information.
LSTM are well suited for dealing with issues that are highly
correlated with time series and provide a strong guarantee
for subsequent classification.

6. Conclusion
Aiming at large-scale of android applications with un-

known attributes to be detected, an efficient detectionmethod
based on combined deep neural network under 5G network is
proposed. It divides the detection into two stages. Firstly, the
pre-detection features are obtained by combining the quickly
acquired permission features with the random forest feature
selection, and the BP network is combined to carry out rapid
classification. Then, a CNN-based key opcodes time series
feature selection method is adopted to reduce the impact of
reduced efficiency caused by ultra-long sequences and au-
tomatically obtain key time sequence information. LSTM
learns and classifies the automatically filtered time sequence
features, and obtains the final classification result of suspi-
cious samples. Therefore, it has certain usability for mal-
ware detection in large-scale third-party application market
in the 5G era.
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