
When Machine Learning Meets Congestion Control:
A Survey and Comparison

Huiling Jiang, Student Member, IEEE, Qing Li, Member, IEEE, Yong Jiang, Member, IEEE,
GengBiao Shen, Student Member, IEEE, Richard Sinnott, Member, IEEE, Chen Tian, Member, IEEE,

and Mingwei Xu, Member, IEEE

Abstract—Machine learning (ML) has seen a significant surge
and uptake across many diverse applications. The high flexibil-
ity, adaptability and computing capabilities it provides extends
traditional approaches used in multiple fields including network
operation and management. Numerous surveys have explored ML
in the context of networking, such as traffic engineering, perfor-
mance optimization and network security. Many ML approaches
focus on clustering, classification, regression and reinforcement
learning (RL). The innovation of this research and contribution
of this paper lies in the detailed summary and comparison of
learning-based congestion control (CC) approaches. Compared
with traditional CC algorithms which are typically rule-based,
capabilities to learn from historical experience are highly desir-
able. From the literature, it is observed that RL is a crucial trend
among learning-based CC algorithms. In this paper, we explore
the performance of RL-based CC algorithms and present current
problems with RL-based CC algorithms. We outline challenges
and trends related to learning-based CC algorithms.

Index Terms—Congestion Control; Machine Learning; Rein-
forcement Learning; Learning-based

I. INTRODUCTION

AS a fundamental component of computer networks, CC
plays a significant role in improving the network resource

utilization to achieve better performance. With the emergence
of a large number of new technologies and new networks, e.g.,
data centers (DCs), WiFi, 5G and satellite communications, the
complexity and diversity of network transmission scenarios
and protocols have increased dramatically. This has brought
significant challenges to transmission protocol design. A rich
variety of CC algorithms have been designed for specific
scenarios. However, the variety of network scenarios and more
importantly the intrinsic dynamics of the network, make it
extremely difficult to design efficient generic CC algorithms.
Therefore, CC algorithms based on ML have been proposed
to provide a generic CC mechanism that could potentially

H. Jiang is with Tsinghua-Berkeley Shenzhen Institute, Tsinghua Univer-
sity, 518055 Shenzhen, China e-mail: jiang-hl19@mails.tsinghua.edu.cn

Q. Li is with Institute of Future Networks, Southern University of Science
and Technology, 518055 Shenzhen, China e-mail: liq8@sustech.edu.cn.

Y. Jiang is with Computer Science and Technology, Tsinghua University,
100091 Beijing, China e-mail: jiangy@sz.tsinghua.edu.cn.

G. Shen is with Computer Science and Technology, Tsinghua University,
100091 Beijing, China e-mail: gengbiao shen@126.com.

R. Sinnott is with School of Computing and Information Systems, Univer-
sity of Melbourne, 3004 Melbourne, AUS e-mail: rsinnott@unimelb.edu.cn.

C. Tian is with Computer science, Nanjing University, 210093 Nanjing,
China e-mail: tianchen@nju.edu.cn.

M. Xu is with Computer Science and Technology, Tsinghua University,
100091 Beijing, China e-mail: xumw@tsinghua.edu.cn.

underpin different network scenarios. In this paper, we provide
a background analysis on traditional CC. Based on this,
we investigate current works and research challenges in the
application of ML in the field of CC.

A. Traditional Congestion Control

The Internet transmission protocol is based on packet
switching over best-effort network forwarding [1]. End-to-end
transmission control is required to provide a reliable service
for applications. To avoid network degradation caused by
congestion, CC algorithms are typically employed to improve
reliable transmission over the network. Network congestion
occurs when excessive numbers of data packets are sent over
the network by hosts [2]. The objective of CC algorithms is to
achieve higher network throughput while avoiding packet loss
caused by network overload. CC should ideally also guarantee
the fairness between end-to-end sessions.

The traditional CC algorithms can be categorized into two
types: end-to-end CC [3]–[5] and network-assisted CC [6]–
[8]. End-to-end approaches only require the collaboration of
senders and receivers, and hence they do not rely on any ex-
plicit signals from the network. Network-assisted approaches
require support of network devices, e.g. congestion informa-
tion from routers. These are essential to achieve fairness and
responsiveness in complex networking scenarios.

For end-to-end CC, one of the main challenges is to identify
network congestion from implicit session signals, including
packet loss and transmission delays. There are three main types
of end-to-end CC approaches: loss-based CC, delay-based CC,
and hybrid CC.

Generally, loss-based approaches such as [9]–[11] adjust
the sending rate when a given sender has not received a
corresponding acknowledgement (ACK) over a given (long)
time period, which typically indicates packet loss. Loss occurs
when the buffer in a given network device is overloaded, thus
loss-based approaches are supposed to attain high throughput
through high bandwidth utilization. However, for some delay-
sensitive applications, lower transmission times cannot be
guaranteed. Besides, a packet loss may not be triggered by
network congestion (e.g., random packet dropping), which
may mislead any CC decision.

Therefore, delay-based approaches such as [12]–[14] have
been proposed. Delay-based approaches rely on detected trans-
mission delays caused by the network. Compared with loss-
based approaches, delay-based approaches are more suited for

ar
X

iv
:2

01
0.

11
39

7v
1

 [
cs

.N
I]

 2
2

O
ct

 2
02

0

high-speed and flexible networks such as wireless networks,
as they are not influenced by random packet loss. However,
calculating the exact transmission delay remains a significant
challenge. For example, a slight change in packet processing
time in the host stack may cause deviations in the measured
transmission delay, leading to erroneous decisions related to
the sending rate.

To take full advantage of both loss and delay, hybrid
approaches such as [15]–[17] have been put forward. Although
it is noted that these approaches cannot identify the network
status precisely based on implicit signals related to packet loss
and transmission delay.

To solve this problem, network-assisted CC approaches such
as [18], [19] have been proposed, where network devices
provide explicit signals related to the network status for hosts
to make sending rate decisions. When the network device is
congested, some packets will be marked with a signal: Explicit
Congestion Notification (ECN). The receiver will send back
the ECN signal in the ACK and the sender will adjust the
sending rate accordingly. The ECN signal for congestion is
employed in [20]. To further improve CC performance, multi-
level ECN signals for congestion are employed in [21], which
provides finer-grained CC.

With the emergence of a large number of new technologies
and networks, e.g., DCs, WiFi, 5G and satellite communica-
tions, the complexity and diversity of network transmission
scenarios have increased dramatically. This has brought sig-
nificant challenges to CC. Whilst traditional CC approaches
may work well in one scenario, they may not guarantee the
performance in diverse network scenarios. Furthermore, the
changing traffic patterns in one network scenario may also
affect the performance of the solution. Therefore, an intelligent
CC approach is required.

B. Learning-based Congestion Control

The dynamic nature, diversity and complexity of network
scenarios have brought significant challenges for CC. As such,
it is difficult to design a generic scheme for all network
scenarios. Furthermore, the dynamic nature of even the same
network can make the performance of CC unstable. Current
network environments may also include both wired networks
and wireless networks, making the detection of packet loss
more difficult [22]–[24].

To solve the aforementioned problems, learning-based CC
algorithms have been proposed. Different from traditional
CC algorithms, learning-based schemes are based on real-
time network states to make control decisions instead of
using predetermined rules. This allows them to have better
adaptability to dynamic and complex network scenarios.

Based on different mechanisms, learning-based CC algo-
rithms can be divided into two groups: performance-oriented
CC algorithms and data-driven CC algorithms. Performance-
oriented CC algorithms employ objective-optimization meth-
ods to train the model and get the output. Generally, this
kind of algorithms require manually effort to determine the
parameters in utility function. The learning process is supposed

to converge to the optimal value of the utility function.
There are some typical performance-oriented CC algorithms.
Remy [25] is an early version among performance-oriented
CC algorithms, whose utility function consists of throughput
and delay. To maximize the expected value of the utility
function, Remy finds the mapping based on pre-computed
lookup table. Thence, corresponding sending rate is estimated.
PCC [26] and PCC Vivace [27] show great performance as
well based on designing utility functions which cover basic
performance metrics such as the round-trip time (RTT). In
[28], GCC applies Kalman filter which is a method that
uses the linear system state equation to optimally estimate
the system state through observation data. Based on Kalman
filter, GCC estimates the end-to-end one way delay variation
to dynamically control the sending rate. In [29], Copa op-
timizes the objective function based on current throughput
and packet delay to adjust the sending rate. Compared with
performance-oriented CC algorithms mentioned above, data-
driven CC algorithms are more dependent on data sets and
have problems with convergence. However, because data-
driven CC algorithms update their parameters based on current
data instead of relying on given constant parameters, they show
stronger adaptability and satisfy diverse network scenarios
through learning. Moreover, the mainstream research focuses
more on data-driven CC algorithms. In this paper, our focus
is on data-driven CC algorithms as well.

With regards to data-driven CC algorithms, machine learn-
ing techniques are used to train the model including supervised
learning techniques, unsupervised learning techniques and RL
techniques. Supervised and unsupervised learning techniques
have been widely employed to improve network CC [22], [24],
[30]. However, these schemes are only partially successful
because they are trained offline and are not capable of classi-
fying realistic wireless and congestion loss [23]. RL has more
advantages in dealing with realistic congestion in networks
with dynamic and sophisticated state space [31], [32]. There-
fore, RL techniques have been shown to be beneficial for CC
because of the higher online learning capability [33], [34]. At
present, much research focuses on RL-based CC schemes.

However, learning-based CC is still in its infancy. Most
learning-based CC algorithms adjust the congestion window
(CWND) to control the sending rate instead of adjusting the
sending rate directly. Therefore, burstiness is still a problem in
high speed networks because the CWND can increase sharply
when multiple ACKs arrive [35]. Current learning-based CC
algorithms such as [36], [37] generally focus on end-to-end CC
instead of network-assisted CC. Designing a general purpose
learning-based CC scheme that can work in real network
scenarios is still a major goal of both academia and industry.

C. Overall Analysis

In addition to considering current learning-based CC al-
gorithms and providing systematic analysis and comparison,
we conduct comprehensive experiments of learning-based
CC under diverse dynamic network scenarios and compare
them with more traditional algorithms. The implementation

of learning-based CC algorithms in real network stacks has
shown that they are often lacking because intelligent learning
decisions cannot be made fast enough, i.e. in the order of
100 milliseconds with a GPU with 1Gb real network data
transmission. Therefore, in order to judge the pros and cons
of decision models we conduct comprehensive experiments of
various schemes using the NS3 emulator [38].

In the simulation, we compare the RL-based CC algorithms
of Deep Q Learning (DQL) [39], Proximal Policy Opti-
mization (PPO) [40] and Deep Deterministic Policy Gradient
(DDPG) [41] with the traditional CC algorithm NewReno [42].
We design three different scenarios with different configura-
tions of bandwidth and delay. The network with high band-
width and low delay simulates a typical data center networks.
The network with low bandwidth and high delay simulates
typical wide area networks. The network with low bandwidth
and low delay simulates ad hoc wireless networks. These
three network environments represent the diverse environments
needed for learning-based CC algorithms. In order to fully
evaluate the performance of learning-based CC schemes, we
generate network traffic traces with 80% elephant flows and
20% mice flows for experiments. The experimental results
show that learning-based CC algorithms are more suitable for
dynamic environments with higher Bandwidth Delay Product
(BDP). For networks with low BDP, i.e. the link bandwidth
is low or the link delay is low, learning-based CC algorithms
are too aggressive to learn and deal with dynamic network
stability. Moreover, the performances of these three learning-
based CC algorithms shows no difference in our simulated
environments because the complexity of the environments
are limited. Therefore, all of them can handle these network
scenarios.

In realistic scenarios, RL-based CC algorithms are influ-
enced by the computation time needed for RL. This impacts
the feasibility of these schemes. Therefore, we propose three
potential solutions to deal with this problem. Firstly, designing
lightweight models based on mapping tables of states and
actions to decrease the time consumption of learning decisions.
Secondly, decreasing the frequency of decisions to provide bet-
ter feasibility under low-dynamic network scenarios. Finally,
asynchronous RL can improve the decision speed of RL-based
CC algorithms.

Based on this analysis, we further explore the challenges
and trends for future works in the area of learning-based
CC. Current challenges of learning-based CC algorithms are
mainly focused on engineering related issues such as param-
eter selection, high computational complexity, high memory
consumption, low training efficiency, hard convergence and
incompatibility. In the future, learning-based CC needs to
receive more attention both from academia and industry. Based
on the understanding and analysis of the current learning-based
CC solutions, we identify trends in learning-based CC. First,
because of their capability for dealing with network congestion
with dynamic and sophisticated state spaces, RL-based CC will
be a significant research trend moving forward. Second, given
the excessive time and cost of learning decisions, lightweight

learning-based CC will be a key research direction. Third, an
open network test platform that provides massively differenti-
ated dynamic network scenarios to support the exploration and
verification of learning-based CC mechanism, requires further
contributions in the study of learning-based CC algorithms.

The rest of the paper is structured as follows. In Section II,
we present related background knowledge. In Section III, IV
and V, we consider supervised learning-based CC algorithms,
unsupervised learning-based CC algorithms and RL-based CC
algorithms respectively as representatives of three main groups
of learning-based CC algorithms. In Section VI, we provide
an overview of the setup of simulations. In Section VII, we
conduct simulations and compare performances between RL-
based CC algorithms and traditional CC algorithms. In Section
VIII, we outline challenges and trends of learning-based TCP.
Finally in Section IX, we conclude the paper.

II. BACKGROUND

A. CC mechanisms

CC mechanisms typically involve four key issues: slow start,
congestion avoidance, re-transmission and fast recovery [43].
To illustrate the procedure of CC, we adopt the window-based
CC. The sliding CWND determines the next packet to be sent.

Slow Start. At the initial stage of transmission, due to the
unknown network transmission capability, CWND starts with
a low value to prevent congestion caused by a large amount
of data being injected to the network in a short period of
time. This process is called slow start. In the classic slow start
process, if an ACK is not delayed, each time a good ACK is
received, it means that the sender can send twice the numbers
of packets last sent, which will cause the sender’s window
to grow exponentially over time. Normally, a link buffer is
under-loaded because the in-flight data is limited. Therefore,
slow start can improve the link utilization due to the increasing
speed.

Congestion Avoidance. In the slow start phase, CWND
can grow rapidly, to a given threshold. Once the threshold
is reached, it means that there may be more available trans-
mission resources. If all resources are occupied immediately,
severe packet loss and re-transmissions will occur on other
connections sharing the queue of the router, resulting in
unstable network performance. In order to get more trans-
mission resources without affecting the transmission of other
connections, TCP implements a congestion avoidance strategy.
Once the slow start threshold is established, TCP will enter the
congestion avoidance phase, and increase the value of CWND
each time based approximately on the size of the successfully
transmitted data segment. The increasing speed is much slower
than the slow-start exponential growth. More precisely, CWND
will update as follows for each new ACK:

CWNDt+1 = CWNDt + SMSS ∗ SMSS/CWNDt (1)

SMSS is the maximum segment packet size of the sender.
With the arrival of each ACK, CWND will have a small

increase, and the overall growth rate will be slightly sub-
linear. This growth process has been termed additive increase.
Through this process, if congestion is detected, CWND will
be reduced by half.

Re-transmission. Re-transmission includes timeout re-
transmission and fast re-transmission. Timeout re-transmission
starts a timer after sending a given packet. If no acknowledged
packet of the datagram is sent within a certain period of time,
the data is re-transmitted until the transmission is successful.
A key parameter that affects the efficiency of the timeout re-
transmission protocol is the re-transmission timeout (RTO).
Setting the value of RTO too large or too small will adversely
affect the protocol. Fast re-transmission requires the receiver to
send a duplicate ACK immediately after receiving an out-of-
sequence segment so that the sender knows as soon as possible
that there is a segment that has not reached the designated
server, rather than waiting to send data confirmation itself.
The re-transmission mechanism in CC ensures that data can
be transmitted from the sender to the receiver.

Fast recovery. Fast recovery means that when the sender
receives three duplicate ACKs in succession, it executes a
multiplication reduction algorithm and halves the slow start
threshold to prevent network congestion. The CWND increases
slowly and linearly. The CWND then increases in an accu-
mulative manner, causing the CWND to increase slowly and
linearly. The fast recovery algorithm can avoid congestion and
gradually reduce the window to affect the link utilization.

Among traditional CC algorithms, the above four mecha-
nisms make up the basic approaches while learning-based CC
algorithms do not adopt strict rules to control congestion. To
guarantee flexibility for different scenarios, learning-based CC
algorithms can however learn different strategies to adjust the
CWND instead of following fixed rules.

B. Rate Adjustment Mechanisms of Congestion Control algo-
rithms

To control the sending rate of input data, there are three
rate adjustment mechanisms in CC algorithms: window-based
techniques, rate-based techniques and pacing.

Window-based strategies adjust CWND directly. CWND
reflects the transmission capacity of the network. The actual
window of the sender is the smaller of the CWND and
the window of the receiver. Considering the convenience of
window-based strategies, there are multiple traditional CC
algorithms such as the classic algorithm DCTCP [35]. Though
window-based techniques are efficient, burstiness is a big
issue especially in networks with high bandwidth. When a
bunch of ACKs arrive, CWND will increase dramatically.
Thus window-based strategies can result in variations, low
throughput and high delay.

Rate-based strategies control the actual sending rate directly,
so they are able to fully make use of the bandwidth without
burstiness. There are many rate-based strategies. In [44], an
early version of a rate-based strategy was presented to control
congestion in asynchronous transfer mode (ATM) services.
[45] combined control theory with rate-based strategies to

deal with flow control in continuous-time networks. However,
because rate-based strategies rely on pre-designed rules that
can adjust in each interval, the responsiveness is relatively
lower compared with window-based strategies. Moreover, the
complex rate-based strategies are often resource-consuming.

Therefore, a hybrid strategy was presented based on packet
pacing in [46]. Packet pacing is acknowledgement-driven,
which is similar to window-based strategies. As a result,
responsiveness is guaranteed. In addition, based on packet
pacing strategies, senders can allocate transmission tasks in
given time intervals and hence burstiness can be avoided.
In [47], packet pacing strategies were shown to avoid the
burstiness caused by bunches of arriving ACKs. However,
packet pacing performs worse in throughput and fairness in
some network scenarios including the initial period of the TCP
communication [48].

As shown above, different adjustment strategies can satisfy
diversified network scenarios. Among traditional CC algo-
rithms, most algorithms are window-based. With the devel-
opment of CC algorithms, more and more rate-based CC
algorithms and pacing techniques are designed. Based on the
literature, most learning-based CC algorithms adopt window-
based CC algorithms.

C. Performance Metrics of Congestion Control algorithms

CC algorithms are expected to achieve various goals and
objectives as shown in Table I.

Throughput represents the amount of data that passes
through a network (or channel, interface) in a given time
interval. High throughput means high link utilization. Max-
imizing throughput is crucial. Given the link bandwidth, high
throughput indicates high efficiency in transferring data.

RTT measures the time including the transmission time, the
propagation time, the queue time and the processing time.
Flow completion time (FCT) indicates the time required to
transfer the flows. RTT and FCT are expected to be small.
For users, RTT and FCT show the delays that they may have
to tolerate. However, it may be the case that maximizing
throughput and minimizing RTT or FCT can be orthogonal.
High throughput means making use of the link bandwidth as
much as possible, which can give rise to an increased queue
length that may cause delays.

The packet loss rate indicates the efficiency of the data
transmission. For CC, minimizing the packet loss rate is
important as it shows the control capability and stability of
the network.

Fairness is a measure of equality of the resource allocation
of the network. Increased fairness requires CC algorithms to
fairly allocate resources between flows to user’s satisfaction
and in turn improve the Quality of Service (QoS).

Responsiveness reflects the speed of the CC to deal with
real-time flows. A high responsiveness level means that the
algorithms can detect the congestion quickly and rapidly adjust
the CWND to an optimal value.

These objectives are important for all CC algorithms, but
they are hard to achieve. To get good performance for some

TABLE I
OBJECTIVES OF LEARNING-BASED CC ALGORITHMS

Objective Description

Maximizing throughput

To maximize throughput, bandwidth utilization is supposed to be high. High throughput contradicts low

RTT or flow completion time since high throughput means the environment tolerates high queue lengths,

which may cause long delays.

Minimizing RTT or flow completion time
Minimizing RTT or flow completion time is a basic requirement expected to be met. For each task, the flow

completion time reflects the delay, which is supposed to be as small as possible.

Minimizing packet loss rate
Minimizing the packet loss rate is a basic goal of CC algorithms. Low packet loss rate means that there. is

a stable network environment and low delay.

Fairness
Fairness is important for multiple users. Resource allocation should be as fair as possible between users

and consider diverse applications.

Responsiveness

Updating the frequency and adjustment policy of CWND can influence the responsiveness of algorithms. High

responsiveness is expected, which implies high resource-consumption as well. Therefore,

responsiveness needs to be balanced based on different scenarios.

targets, can mean that others have to be sacrificed. In different
scenarios, the targets may also have different priorities and
hence trade-offs are necessary. Based on the previous liter-
ature, different CC research focus on different performance
aspects including: throughput, RTT and the packet loss rate. In
our simulations, we measure these three parameters in detail.

III. SUPERVISED LEARNING-BASED CONGESTION
CONTROL ALGORITHMS

In this section, we introduce supervised learning-based CC
algorithms. Supervised learning techniques train given samples
to obtain an optimal model, and then use this model to map
all inputs to corresponding outputs. By performing judgments
on the outputs and their ability to achieve classification,
supervised learning techniques have the ability to perform data
classification. Classic supervised learning methods include
decision trees, random forests, Bayes, regression and neural
networks.

In the networking domain, supervised learning methods are
used to predict congestion signals for end-to-end networks
and manage queue length for network-assisted networks. Con-
gestion signal prediction consists of loss classification and
delay prediction. As mentioned before, congestion is detected
implicitly based on packet loss or delay when congestion
occurs in traditional CC algorithms. In supervised learning-
based CC algorithms, congestion is estimated in advance based
on current and previous network states such as the queue
length and the network delay. The key basis for this approach
is that network states form a continuous time series, where
the future state can be predicted by past states. Through
this, supervised learning-based CC algorithms can be more
intelligent compared with traditional CC algorithms.

A. Congestion Detection in End-to-end Networks

1) Loss Classification: Loss is a crucial but indirect signal
used to detect congestion. It gives nodes feedback in networks
only when congestion has already happened. In addition, basic

loss-based CC algorithms cannot distinguish the cause of
packet loss. Therefore, the classification of loss is essential
to understand CC.

Wireless networks provide many classic scenarios required
to distinguish the wireless loss and congestion loss. In wireless
networks, loss may be caused by erroneous wireless links, user
mobility, channel conditions and interference. There has been
a body of research related to loss classifications in wireless
networks based on traditional CC algorithms. In [49], the
proposed algorithm (Biaz) use the packet inter-arrival time to
classify wireless loss and congestion loss. If the packet inter-
arrival time is confined to a range, the missing packets are
lost due to wireless loss. Otherwise, the loss is considered
congestion loss. In [50], a new designed loss classifier for
relative one-way trip time (ROTT) was used (Spike) to differ-
entiate loss types. If the connection of ROTT was relatively
higher, the loss was supposed to be caused by congestion.
In other cases, the loss was assumed to be wireless loss. In
[51], the amount of losses and ROTT were used to distinguish
the types of loss. The presented algorithm, provided a hybrid
algorithm (ZigZag) that was more efficient than the above two
algorithms.

These loss classifiers are effective in some specific scenarios
but have their limitations. Biaz [49] is suitable for wireless
last hop topology instead of the wireless bottleneck links with
competitive flows while Spike [50] shows better performance
in wireless backbone topology with multiple flows. ZigZag
[51] is relatively more general, and hence is able to satisfy
different topology scenarios however it is sensitive to the
sending rate.

Considering the limitations of traditional loss classifiers for
wireless networks, supervised learning techniques offer several
advantages. To fully understand the loss information, multiple
parameters can be taken into consideration. In [22], the one-
way delay and inter-packet times were used as states to predict
loss categories. In [23], the queuing delay, the inter-arrival time
and lists of packets were used as inputs. In addition, diverse

supervised learning techniques were applied. In [52], deci-
sion trees, decision tree ensembles, bagging, random forests,
extra-trees, boosting and multi-layer perceptrons were used
to classify the types of loss. Simulations show that these
intelligent loss classifiers achieve high accuracy in different
network scenarios.

Beyond wireless loss, contention loss is common in Optical
Burst Switching (OBS) networks. OBS provide an advanced
network, which saves the sources due to wavelength reser-
vation. However, because of the lack of buffers in OBS,
contention loss is generated when there is a burst at the core
nodes. There are some supervised learning-based CC algo-
rithms designed to tackle this. In [53], some classic contention
resolutions are discussed and measured including wavelength
conversion, deflection routing selection and buffering with
shared feedback fiber delay line. To measure the efficiency
of these strategies, burst loss probability and burst probability
were considered. These strategies show good performances
related to OBS contention issues. While in [54], a Hidden
Markov Model was used to classify contention loss, congestion
loss and control congestion separately. Simulations showed the
effectiveness of loss classifiers in different network scenarios.

Reordering loss cannot be ignored in networks with multi-
channel paths. In networks, when packets are reordered,
reordering loss occurs. Supervised learning-based CC algo-
rithms are able to deal with the associated classification
issues. In [55], out-of-order delivery causes variations of RTT.
Therefore, RTT related with reordering and RTT related with
congestion show different distributions. In [24], a Bayesian
algorithm was used to represent the distributions of RTT for
two types of losses. The proposed algorithm showed high
prediction accuracy.

In conclusion, wireless loss, contention loss and reordering
loss impact the detection of congestion loss. Supervised learn-
ing techniques show advantages in classifying types of losses
in different network scenarios. The mechanism is shown in
Figure 1 and Table II summarizes the studies related with loss
classifiers based on supervised learning methods. However,
there are some issues related with these supervised learning-
based CC algorithms.

Mis-classification is one issue. In wireless networks, pre-
defined parameters determine the errors in classifying con-
gestion loss and wireless loss. If the congestion loss is
more easily classified than wireless loss, the classifier shows
bad performances in wireless networks since the network is
supposed to react when loss is detected. However, due to the
mis-classification, the network considers congestion loss as
wireless loss and does not control the sending rate quickly.
Therefore, congestion can not be reduced. Otherwise, if the
wireless loss is more easily classified as congestion loss, the
algorithm is ineffective in wireless scenarios because there
exists considerable wireless losses. As a result, the wireless
network may overreact to loss signals. Therefore, parameters
in the algorithms need to be considered carefully to balance
performance in different network scenarios.

The balance between computational complexity and predic-

tion accuracy is another issue. As shown in [52], compared
with decision trees, boosting algorithms achieve higher accu-
racy but consume much more network resources. Therefore,
considering the limited improvements in accuracy of boosting,
decision trees show more advantages, although there is always
a trade-off.

Fig. 1. Loss Classification Based on Supervised Learning Algorithms

2) Delay Prediction: As a congestion signal, the delay
of transmissions reflects the amount of in-flight data, which
shows the overall load on the network. There are some classic
delay-based CC algorithms such as Vegas that measures delay
accurately [4]. However, in dynamic networks, traditional
delay-based CC algorithms are not flexible enough. As Fig-
ure 2 shows and Table III concludes, supervised learning
techniques have high learning capabilities and are efficient
in predicting future delays and reacting quickly to avoid
congestion.

RTT prediction is a major topic in delay prediction. Based
on the measured RTT, other parameters can be calculated
such as RTO. There has been a body of research exploring
the prediction of RTO based on RTT. In [56], estimation of
RTT was dynamically changed to estimate RTO in wireless
network. In [57], RTT was used to predict RTO and bandwidth
utilization. In [58], a fixed-share expert was used to compute
the RTO in mobile and wired scenarios relying on RTT
estimations. In addition, in [59] and [60], the fixed-share
leveraged exponentially weighted moving average technique
demonstrates a more accurate algorithm.

Moreover, there has been various research measuring RTT
based on other parameters in the network. In [61], linear
regression was used to establish the relationship between RTT
and the sending rate. In [62], a Bayesian technique was used
to simulate the distribution between delay and the sending rate
and then to predict delay based on the sending rate. This is
needed in real-time video applications and wireless networks.

Delay prediction is also significant for delay-sensitive net-
works that require networks with increased responsiveness.
Several intelligent algorithms for the prediction of RTT using
limited parameters and simple techniques to guarantee the low
computational complexity and high responsiveness have been
proposed. Further research is needed to push the boundary and

TABLE II
SUPERVISED LEARNING: LOSS CLASSIFICATION IN END-TO-END CC ALGORITHMS

Algorithms Scenarios Input Output

Decision Tree Boosting [22] Wireless networks One-way delay, inter-packet times Link loss or Congestion loss

Bayesian [24] Networks with Reordered events RTT of lost packets Reordering loss or Congestion loss

Hidden Markov Model [54] Optica Burst Switching
The number of bursts successfully received

at an egress between any two bursts
Contention loss or congestion loss

DT, Bagging, Boosting,

Neural Networks [23]
Wireless networks Queuing delay, inter-arrival times, lists of packets Wireless loss or Congestion loss

Decision Trees,

Decision Tree Ensembles,

Bagging,

Random Forests,

Extra-trees,

Boosting, Multilayer

Perceptrons,

K-Nearest neighbors [52]

Wireless networks

The standard deviation, the minimum, and the

maximum of the one-way delay, inter-packet time

for the packets

Wireless loss or Congestion loss

deal with more complex related parameters and techniques to
improve delay predictions.

Fig. 2. Delay Prediction Based on Supervised Learning Algorithms

Fig. 3. Queue Length Management Based on Supervised Learning
Algorithms

B. Queue Length Management in Network-assisted Networks

Queue length management is a key focus for network-
assisted CC algorithms. There has been a body of research
related with the AQM family of ECN techniques. However,
the original AQM algorithms detect the current queue length
and react to the environment. Some research has shown that
the future queue length can be predicted. The prediction
process is shown in Figure 3. Moreover, Table IV summa-
rizes some related research. [63] and [64] showed the long-
range dependence between previous traffic patterns and future
queueing behavior. Multiple supervised learning techniques
have been applied including linear minimum mean square
error estimation [65], normalized least mean square algorithm
[66], neural networks [67] [68], deep belief networks [69] and
neural-fuzzy [70].

These algorithms share similar features in that they employ
the time series of previous traffic as input without considering
diverse parameters in the network. As a result, these algorithms
leave space for further exploration of dependencies between
related parameters and the queue length.

IV. UNSUPERVISED LEARNING-BASED CONGESTION
CONTROL ALGORITHMS

In this section, another category of learning-based CC
algorithms is presented: unsupervised learning-based CC al-
gorithms. Unsupervised learning techniques are used when
the category of data is unknown, and the sample set needs
to be clustered according to the similarity between samples
in an attempt to minimize the intra-class gap and maximize
the inter-class gap. Classic unsupervised learning algorithms
include K-means and Expectation Maximization. Compared
to supervised learning-based CC algorithms, unsupervised
learning-based CC algorithms are not widely used. They are
mainly used to cluster loss and delay characteristics.

TABLE III
SUPERVISED LEARNING: DELAY MEASUREMENT IN END-TO-END CC ALGORITHMS

Algorithms Scenarios Details of the algorithms

Fixed-share experts [58] Delay-sensitive networks
Employ the experts framework to predict the RTT and then

adjust the network environment to improve the goodput

Fixed-share with exponentially

weighted moving average

without increasing computational

complexity [59]

Networks with fluctuating time scales
Propose a technique to estimate the RTT in scenarios with

diversified RTT.

Bayesian theorem [62]
Real-time video applications

and wireless networks
Adapt the sending rate based on the estimated delay

Linear Regression [61] Interactive video applications

Build a statistical function between the sending rate and RTT

and adjust the sending rate based on the linear regression given

the estimated RTT

TABLE IV
SUPERVISED LEARNING: QUEUE MANAGEMENT IN NETWORK-SUPPORTED CC ALGORITHMS

Algorithms Scenarios Details of the algorithms

Neural networks [68], [67] ATM networks Predict the future value of the traffic based on the past traffic flows

Neural-fuzzy [70] ATM networks
Use the estimated average queue length to calculate loss and then control the

sending rate

Linear minimum mean square error

estimation [65]
Networks supporting AQM

Establish a relationship between long-range traffic flows to estimate the future

traffic based on past traffic flows

Normalized least mean square [66] Networks supporting AQM Employ adaptive techniques to estimate the instantaneous queue length

Deep belief networks [69] NDN
Calculate the average queue length based on the prediction of pending interest

table entries

A. Congestion Detection in End-to-end Congestion Control
Algorithms

1) Loss Clustering: In networking, unsupervised learning
techniques are used to cluster loss into several groups and
allocate resources for each group to achieve CC as shown in
Figure 4. A detailed summary is shown in Table V.

In [71], the packet delay variations reflect the available
bandwidth and loss types. Therefore, loss-delay pairs are used
to cluster the loss in networks. In [30] and [72], loss-delay
information is utilized. When a packet is lost, it will be marked
and tagged with the RTT value. Based on the RTT distribution,
these losses can be clustered into two groups: wireless losses
and congestion losses. The simulation shows that congestion
losses have a higher mean value of RTT while wireless losses
have a lower mean and higher variation for RTT. In [54],
the expectation maximization clustering technique is used to
cluster losses into contention losses and congestion losses in
OBS.

Unsupervised learning techniques are useful for training
but on their own, they cannot meet the demands of com-
plex networks. Compared with supervised learning techniques,
unsupervised learning methods are relatively basic, and are
mostly used to represent state spaces [73] and deal with data

aggregation [74]. Therefore, research based on this approach
is limited.

2) Delay Prediction: There are only a limited number of
unsupervised learning-based CC algorithms suitable for delay
prediction because of the high processing demands for delay
calculation. Typical algorithms such as k-means [75] and the
associated mechanisms are presented in Figure 5 and Table VI.
Data such as the message size, validity of messages, distance
between vehicles and RUSs and the type of message is divided
into different groups and the lowest delay in each group is
selected as the communication parameter for each cluster.
Based on the communication parameter, a specific sending
rate will be assigned to each cluster. Therefore, based on the
measurement of delay, CC can be achieved.

Based on delay features of the network states, clustering
is achievable, however, given dynamic and diverse network
environments, unsupervised learning techniques are not so
well suited compared to supervised learning algorithms.

V. RL-BASED CONGESTION CONTROL ALGORITHMS

RL algorithms typically include a value function and a
policy function. The value function is responsible for mea-
suring the value of specific actions given the network state, to
determine if a given action can be chosen. The policy function

TABLE V
UNSUPERVISED LEARNING: LOSS CLUSTERING IN END-TO-END CC ALGORITHMS

Algorithms Scenarios Details of the algorithms

Hidden Markov Models [30], [72] Wired/wireless networks
Uses delay-loss pairs to cluster data into several groups and assign

the specific sending rate for each group

Expectation Maximization Clustering [54] Optical burst switching networks
Cluster loss into contention loss and congestion loss and adjust the

environment separately

TABLE VI
UNSUPERVISED LEARNING: DELAY CLUSTERING IN END-TO-END CC ALGORITHMS

Algorithms Scenarios Details of the algorithms

K-means [75] Vehicular ad hoc networks

Cluster the data into groups based on message size, validity of messages, distance

between vehicles and RSUs, types of message and direction of message sender and assign a sending

rate for each cluster

Fig. 4. Loss Clustering based on Unsupervised Learning Algorithms

Fig. 5. Delay Clustering based on Unsupervised Learning Algorithms

is used to choose the action based on a given set of rules. In
a given iteration, the system chooses an action based on the
policy and the system provides feedback. The value function
then calculates the value of the action and updates it ac-
cordingly. Based on different mechanisms, RL algorithms are
divided into value-based schemes and policy-based schemes.
Typical value-based schemes include Q Learning and DQL.
Typical policy-based schemes include Policy-Gradient, Actor-
Critic (AC), Advantage Actor-Critic (A2C) and Asynchronous
Advantage Actor-Critic (A3C). The difference between value-

based schemes and policy-based schemes is that policy-based
schemes estimate the policy for actions and whether they
can satisfy scenarios with different actions, while value-based
schemes predict the value of actions directly. As a consequence
they are only suitable for the small set of actions. RL al-
gorithms can be applied in specific networks to improve the
efficiency of CC.

Amongst the different learning-based CC algorithms, RL
has gained the most attention. Different to supervised learning
methods, RL algorithms monitor the status of environment
continuously and react to the environment to optimize a utility
function, which leverages the information from the environ-
ment. Therefore, RL algorithms are more suitable to variable
and unstable network environments. Two main trends are
related with this kind of network. First, ubiquitous applications
in data centers and cloud computing require efficient CC
algorithms to deal with complicated network topologies [76].
In this context, reliability can be extremely important given the
variances that can appear in the system. RL algorithms adapt
to the errors in a timely manner based on learning from the
environment. Second, mobile devices such as smart phones,
often connect to wireless networks including WIFI and 4G
cellular in an ad hoc fashion. As such, more flexible network
topologies and diversified flows are a major challenge [77].
Traditional ML approaches are not dynamic enough to cope
with diverse network environments based on trained models,
unlike RL algorithms. These two trends are driving RL-based
CC algorithms. In RL-based CC algorithms, RL are used
to update CWND based on different scenarios in end-to-end
networks and to manage the queue length in network-assisted
environments.

A. Window Updating in End-to-End Networks

Compared to supervised learning and unsupervised learn-
ing techniques, RL algorithms are more responsive to envi-
ronment changes. Instead of predicting congestion loss and
delay as with supervised and unsupervised learning-based
CC algorithms, RL-based CC algorithms learn the CC rules

directly based on different environment information. Since RL
algorithms can incorporate real-time network conditions and
define actions accordingly, real-time control is possible in RL
algorithms.

Various explorations have focused on RL-based CC algo-
rithms that use RL to update CWND for specific scenarios.
The mechanism of RL-based CC algorithms are shown in
Figure 6 and the summary is shown in Table VII.

ATM is a typical network suitable for RL-based CC algo-
rithms. ATM networks are classic networks that support multi-
media applications. For different multimedia traffic, ATM
offers different QoS such as cell loss rate and delay. However
in ATM, highly time-varying traffic patterns can increase
the uncertainty of network traffic. Moreover, the small cell
transmission time and low buffer sizes in ATM networks
require more adaptive and high responsive CC algorithms. In
[78], an AC algorithm is applied to deal with these problems.
In the proposed CC algorithm, AC focuses on the performance
function based on the cell loss rate and voice quality. In
each step, the algorithm measures the action according to
the performance. In this way, different traffic patterns are
connected with corresponding actions. Simulation results show
that the cell loss rate is low and voice quality is maintained.

Software Defined Networks (SDNs) provide a new archi-
tecture for future networks that separate the forwarding and
control planes. The control plane has the ability to manage
the overall network centrally. Efficient CC algorithms are
essential for SDNs. In [76], Q learning is used to tackle such
advanced networks. The trained algorithm show that higher
link utilization can be achieved.

Named Data Networking (NDN) is an emerging future
network architecture as well. The main characteristic of NDN
is connectionless, providing content perceptibility and in-
network caching. Typical applications of NDN are mobile
and real-time communications. Therefore, CC algorithms are
expected to cope with diverse and dynamic content. In [39], the
deep RL algorithm considers the diversity of different content
and adds a prefix when requesting content into the network.
Therefore, the variety of content is considered when a given
action is taken.

Satellite communication networks are dynamic and have
time-varying flows. High bandwidth and high elasticity are key
features. Video streaming is one representative application. In
satellite communication networks, frequent satellite handover
can be a severe problem, which may result in routing failures,
packet blocking and channel quality impacts. To deal with
these problems, [41] employs DDPG to design a multi-path
TCP. By measuring the re-transmission rate of each sub-flow,
the RTT and ACK number are considered and the algorithm
degrades the possibility of handover.

Internet of Things (IoT) is a product of rapidly evolving
wireless technology. Some core features of IoT are local com-
putation, high variability of use and potential computational
demands. In [79], Q learning was used to satisfy diverse
IoT networks with reduced computational needs with strong
learning capabilities. The proposed algorithm showed that the

adjustment action was suitable for real-time processors and
memory demands of IoT environments.

Wired networks are not typical scenarios in learning-based
CC field. Wired networks are relatively stable compared
to wireless networks. Of course, some research covers this
scenario as well e.g. [80]. In [80], high bandwidth and under-
buffered bottleneck links were taken into consideration, as
typical features of wired networks. The states of the algorithm
included multiple parameters such as packet inter-sending time
and inter-arrival time of input ACK reflecting the information
of the current available buffer information. Therefore, the
algorithm achieved a better balance between throughput and
delay.

Wireless networks are a research hot-spot for learning-based
CC algorithms especially Ad hoc Wireless Networks (AWNs).
AWNs are a collection of mobile wireless nodes without
any fixed infrastructure. Therefore, AWNs have constrained
resources, limited processing and unpredictable mobility. They
are also highly dynamic. In [81], Finite Action-set Learn-
ing Automata, a learning automata whose unique feature is
learning the network state faster with reduced information
and negligible computational requirements, contains a finite
number of actions. The algorithm takes effect in learning
the dynamic wireless environment with limited consumed
resources. While in [82], Continuous Action-set Learning
Automata was applied in AWNs. The discretization of Fi-
nite Action-set Learning Automata may not be proper in
all situations, e.g. the discretization can be too coarse or
too fine-grained. Therefore, Continuous Action-set Learning
Automata was introduced to deal with an infinite number of
actions. It maintains an action probability distribution. The
advanced algorithm achieves better performance. Of course,
more computational and training resources are consumed.
Moreover, in [83], Q learning combined with a grey model was
used to predict throughput and performance of CC algorithms
in AWNs. Due to the real-time evaluation of throughput, the
algorithm adapts to the dynamic environments better.

The RL-based CC algorithms above focus on single sce-
narios, however there are some RL-based designed for more
complex (multiple) network scenarios. For instance, [84], [85],
[36] and [32] propose an AC algorithm to deal with congestion
problems in networks with time-varying flows. In [77], the RL-
based CC algorithms are used in networks with sparse rewards
such as video games, while in [86], the scenario focuses on
continuous, large state-action spaces.

From the above, it can be seen that RL-based CC algorithms
can satisfy diverse network scenarios with high adaptability
and strong flexibility. However, there are some limitations. For
instance, convergence is very hard to guarantee for continuous
tasks and complex algorithms. In addition, state abstraction is
challenging. Current algorithms require significant storage to
store states and actions and demand considerable memory re-
sources. Moreover, their computational complexity is relatively
high. As a result, though RL algorithms show strong learning
capabilities, realistic applications require further exploration
due to the engineering issues identified.

TABLE VII
RL: WINDOW UPDATING IN END-TO-END CC ALGORITHMS

Algorithms Scenarios Details of the Algorithms

AC [78] ATM networks
Employ the actor critic algorithm to minimize packet loss

rate and preserve video/voice quality

Q learning and Sarsa [76] SDN

Train an off-policy method based Q learning and an

online-policy method based on Sarsa to control congestion.

Both algorithms achieve good link utilization

DQL [39] NDN
Learn an optimal CC policy by taking the diversified contents

in NDN

DDPG [41] MPTCP in satellites communications
Present an intelligent algorithm to improve the performance

of low earth orbit satellite communications

Fuzzy Kanerva-based Q Learning [79] IoT
Reduce the amount of memory needed to store the algorithm

history to support larger state spaces and action spaces

Q learning [80]
Wired networks with under-buffered

bottleneck links

Input acknowledgement inter-arrival time, packet inter-sending

time, the ratio of the current RTT, minimum RTT, the slow start

threshold and CWND size to get adjustment information

Finite Action-set Learning Automata [81] AWNs
Input the data including the inter-arrival times of ACKs and

duplicate packets and output the window size

Continuous action-set learning automata [82] AWNs Maintain an action probability distribution

Q learning [83] AWNs
Take throughput and RTT into consideration when projecting

the state spaces to action spaces

DQL [34] Wireless networks
Input the states consisting of CWND, RTT and the

inter-arrival time and then output the sending rate

Continuous action-set learning automata [87]

Wireless networks: Multi-hop,

single-hop such as wireless LANs,

cellular, and satellites networks

Maintain an action probability distribution

AC [84] Network with time-varying flows
Design a multi-agent congestion controller based on the

actor-critic framework

AC [85] Network with time-varying flows

AC algorithm is applied in LSTM-based representation networks,

which shows effectiveness and superiority compared with

well-known MPTCP CC algorithms such as wVegas

A3C [77]
Task with sparse reward such as video

games

Propose a partial action learning method which supports delayed

and partial rewards

Q learning [86] Continuous or large state-action space
Abstract the state space and action space based on Kanerva

coding

PPO [40]
Internet services such as live video,

virtual reality and internet-of-things

Detect network and data patterns such as latency to get the

necessary adjustment

Q learning [36] Dynamic networking
Detect the average packet arrival interval, average ACK

interval and average RTT to adjust the CWND size

A3C [32] Network with diversified flow size
Employ the RL algorithm to configure the initial window

and CC policy

Fig. 6. Window Updating based on RL Algorithms

Fig. 7. Queue Length Management based on RL Algorithms

B. Queue Length Management in Network-assisted Networks

For the queue length management of RL-based CC algo-
rithms, RL is used to manage the queue length based on
the current state as shown in Figure 7 and Table VIII. In
queue management, Proportional Integral Derivative (PID) is
the most commonly applied RL technique. In [88]–[90], PID is
used to maintain the queue length given the target threshold by
calculating the dropping probability. Congestion notification is
used to control the queue length as well in [91]. The proposed
algorithm employs Q learning to properly utilize buffer size in
disruption tolerant networks. With the objective of maximizing
the link utilization based on the queue length management,
[92] and [93] use loading information to optimize router
decisions relying on RL algorithms.

Compared with window updating for end-to-end networks,
the queue length management for network-assisted CC algo-
rithms requires more computational resources because multi-
ple nodes can be used to control congestion such as routers
in network-assisted networks. Therefore, it may be a burden
for the network to support RL-based CC algorithms given
the larger state space and high computational complexity.
In addition, current queue length management based on RL
techniques only cover limited state parameters such as the
past queue length and buffer size. However, more parameters
are required to improve the performance of RL-based CC
algorithms.

VI. SIMULATION SETUP

In this section, we introduce the simulation setup for RL-
based CC algorithms as representatives of learning-based
CC approaches. We conduct experiments based on realistic
network environments with challenges caused by large delay
and their high complexity. We perform experiments based
on the NS3 platform and explore the performances of RL-
based CC algorithms and traditional CC algorithms. In the
NS3 platform, the computational process related to the RL
algorithms is separated from data transmission in pipeline. As
a result, the computational complexity of RL algorithms has
no impact on network communications.

In the following sections, we compare algorithms, perfor-
mance metrics and network environments.

A. Compared Algorithms

In the simulation, three RL algorithms are chosen: DQL,
DDPG and PPO, as typical examples of RL algorithms.
Generally, DQL is the simplest among these three algorithms,
hence it is suitable for relatively simple environments. DDPG
and PPO have stronger learning capabilities, and hence they
can be applied in more complex scenarios. Considering the
limited complexity of our network environment, these three
algorithms are expected to perform similarly. To compare
them with a benchmark algorithm, NewReno was selected,
which is a classic traditional CC algorithm and is the default
CC algorithm of NS3 as well. These four algorithms are
summarized in Table IX.

1) DQL-based Congestion Control Algorithms: Different
from Q Learning or Sarsa which considers the state as a
discrete finite set, DQL can deal with large scale problems. In
the DQL algorithm, the value function is expressed by neural
networks such as Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM). For the value function of DQL algorithms,
there are two main methods. One method uses the state and
action as inputs, to get the action value as the output from
the neural networks. Another method is where the state is the
input, and actions and related action values are the outputs.
These two methods imply that the action space provides a
finite number of discrete actions. Because DQL approximates
the value function through the neural network, DQL can
solve large-scale problems. However, DQL has a problem,
in that it does not necessarily guarantee the convergence of
the Q network. As such, it may not be able to get the Q
network parameters after convergence. This will result in a
poorly trained model. However, in the network field, DQL
still exhibits high performance especially when dealing with
complex networks.

TCP-Drinc is an efficient RL-based CC algorithm which
uses a deep CNN concatenated with a LSTM network to
learn from historical data. It determines the next action and
then adjusts the CWND size. LSTM is suitable for processing
and predicting important events with very long intervals and
delays in time series. In Drinc, LSTM is utilized to handle
auto-correlations within the time-series introduced by delays

TABLE VIII
RL: QUEUE MANAGEMENT IN NETWORK-SUPPORTED CC ALGORITHMS

Algorithms Scenarios Details of the Algorithms

PID controller [88] Networks supporting AQM Employ PID to adapt the parameters in networks by stabilizing the router queue length

Adaptive neuron PID [89] Networks supporting AQM
Given different traffic loading, scenarios, RTTs, bottleneck link capacities, maintain

the queue length around a target queue length

Q learning [93] Networks supporting AQM Use RL to optimize router decisions based on traffic history

Neuron RL [92] Networks supporting AQM Control the queue length and maximize the link utilization based on queue management

Neural network PID controller [90] Networks supporting AQM Based on the learning rate, calculate the dropping probability

Q learning [91] Disruption tolerant networks Employ the congestion state to support congestion notifications

TABLE IX
COMPARED CC ALGORITHMS

Techniques Applied scenarios Mechanism Advantage Limitation

DQL
Wired/wireless network,

NDN

Input state and output action values

based on neural networks

Have the ability to solve large-scale

RL problems

Cannot guarantee convergence

of networks

DDPG
MPTCP in satellites

communications

Combine DQL and AC algorithms,

consisting of two Actor networks and

two Critic networks. In addition, they

adopt a deterministic policy in each step

Obtain good performance and converge

quickly in continuous action spaces

Not suitable for random

environments

PPO

Internet services such as

live video, virtual

reality and

internet-of-things

Propose a new objective function that

can be updated in small batches with

multiple training steps, solving

the problem that the step size in the

policy gradient algorithm is difficult

to determine

Guarantee the convergence and

performance

The speed of policy updating is

related with the direction of policy

gradient which ignores the space

structure of policy parameters.

Therefore, the speed of training

a policy may be slow

NewReno Wired networks

Consist of four parts: slow start,

congestion avoidance, re-transmission

and fast recovery

Avoid inefficiency of slow start

processes and guaranteed throughput

Cannot proactively determine

congestion and predict packet loss

and related information. Therefore, the DQL framework is
robust and has a better learning capability. Moreover, Drinc is
designed for multi-agent networks and can deal with varying
network conditions [34].

DQL is relatively simple compared with other Deep RL
and has the capability to deal with relatively simple networks.
Except for the convergence issue, DQL is promising because
the model is lighter.

2) DDPG-based Congestion Control Algorithms: DDPG is
an optimized version of the AC algorithm, which converges
quickly and performs well. To better understand DDPG algo-
rithms, AC algorithms are introduced.

The AC algorithm is based on the policy gradient method,
which is a policy-based RL algorithm. For value-based RL
algorithms such as Q Learning and DQL, these methods
generally only deal with discrete actions and hence they can-
not handle continuous actions nor solve stochastic problems.
Therefore new approaches to cover these scenarios such as
policy-based methods are required. In value-based methods,
the value function is approximated and used to calculate the

action value based on the input of the state and the associated
action. In policy-based methods, the algorithm adopts a similar
approach but approximates the strategy instead.

AC algorithms combine policy-based methods and value-
based methods. The actor part is used to approximate the
policy function and is responsible for generating actions
that interact with the environment. Given a policy function∏
θ(s, a), the critic part is used to approximate the value

function and evaluate the performance of the actor of the next
stage. The most commonly used policy function is the Softmax
strategy function. It is mainly used in discrete spaces. The
Softmax strategy uses a linear combination of characteristics
(ϕ(s,a)) describing the state and the parameter θ to weigh the
probability of a behavior occurring. The function is given as:

∏
θ

(s, a) =
eϕ(s,a)

T θ∑
be
ϕ(s,b)T θ

(2)

The corresponding score function is obtained by derivation

and is given as:

5θlog
∏
θ

(s, a) = ϕ(s, a)− E∏
θ
ϕ(s, a) (3)

The function of parameter for updating for the policy is θ:

θ = θ + α5θlogprodθ(st, at)vt (4)

where vt is the Q value given state st and action at.
The critic unit, refers to the DQL-based CC algorithm which
employs Q learning as a critic and obtains the action value,
before updating the parameter of Q learning.

AC takes advantage of both mainstream RL algorithms, but
they can be difficult to converge since there are two neural
networks which are related to each other and both require
updating of the gradient.

The early versions of AC-based CC algorithms were de-
signed for routing-based algorithms. In [78], the proposed
algorithm was designed for CC for multi-media traffic in ATM
networks through deep neural networks. The result showed
that the presented algorithm achieved a high voice/video
quality by reducing losses and delays [94]. Later an AC-based
algorithm was used as an effective technique for multi-path
CC. Similar to DQL-based algorithms, the proposed AC-based
algorithm integrated LSTM to represent the state-action space.
Simulations showed that the presented algorithm was flexible
for networks with continuous action spaces and performed
favorably to traditional CC algorithms [85].

AC-based CC algorithms offer advanced explorations which
are not always robust. The performance of this kind of algo-
rithms depends on the interaction of the two neural networks.
This requires further research to guarantee their convergence
and overall efficiency.

DDPG is another category of RL algorithm to deal with
the convergence issue of AC. It employs experience reply and
double networks. On the one hand, compared with traditional
policy gradient algorithms, DDPG outputs a deterministic
policy instead of a random policy. Traditional policy gradient
algorithms calculate the gradient based on the stochastic
strategy gradient. On the other hand, DDPG adopts double
actor networks and double critic networks. For the double actor
networks, one is responsible for updating policy parameters
and the other selects the next action based on sampling from
experience replay data sets. For the double critic networks,
one updates the parameters related to the Q value and the
other calculates the Q value. In satellites communications, a
DDPG-based algorithm was designed to deal with multi-path
CC problems and achieved a high degree of effectiveness [41].

As shown above, compared with DQL, DDPG has stronger
capability to train models in more complex environments.
However, DDPG exhibits other problems which make it un-
suitable for random environments. In addition, training DDPG
models can be more difficult.

3) PPO-based Congestion Control Algorithms: PPO is a
deep RL algorithm based on AC schemes. PPO is used to
solve problems where the traditional policy gradient method is
not good enough to determine the learning rate or step size. If

the step size is too large, the policy will keep moving and will
not converge. However, if the step size is too small, it is time-
consuming. To deal with this problem, PPO limits the updating
range of new policies by using the ratio between the new and
old policy, making the policy gradient less sensitive to slightly
larger step sizes. To achieve this, PPO uses an adaptive penalty
to control the change in policy. In this way, PPO provides an
optimized AC algorithm as well as improving the efficiency
of convergence.

To adapt to the variable network conditions, such as change-
able link flows and end to-end latency, PPO is presented
as a RL-guided CC algorithm [95]. The designed algorithm,
Aurora takes advantage of PPO to generate efficient policies
for learning and ensuring that the learning procedure is stable.
Simulations show that the proposed algorithm outperforms
traditional CC algorithms in different contexts by generating
optimal policies.

PPO has proven to be an outstanding deep RL method and
the combination with CC shows the potential of PPO in a
wide array of network applications. However, there exist some
challenges such as the speed of training a policy related to the
parameter structures. As a result, the training efficiency of PPO
can be a major issue.

4) NewReno: NewReno is a loss-based CC algorithm based
on Reno. It offers a slow start, congestion avoidance, re-
transmission and fast recovery. Compared with classic CC
algorithms, NewReno modifies the fast recovery part. In the
fast recovery of Reno, the sender quits the fast recovery
state after receiving a new ACK. In NewReno, it enters
the fast recovery state only after all messages have been
acknowledged. Therefore, TCP distinguishes situations such
as losing multiple packets in one congestion from multiple
congestion scenarios, and then halves the CWND only once
after each congestion occurs, thereby improving the robustness
and throughput. In our experiments, NewReno algorithm is
used as the representative of traditional CC algorithms.

B. Performance Metrics
Based on the literature, the network cares about several

critical parameters including throughput, RTT and packet loss
rate. Therefore, in our experiments, our performance metrics
focus on throughput, RTT and packet loss rate. Throughput
counts the amount of data successfully transmitted in a given
unit of time, measured in Mbps. RTT measures the data
transfer time from the sender to the receiver based on the
average RTT in seconds. Packet loss rate calculates the ratio
of packet loss in a given time interval.

C. Network Environment
1) Internet: All simulations employ the same network

topology, comprising the same dumbbell topology with the
same access delay and bandwidth. To simulate different net-
work environments, the bottleneck bandwidth and bottleneck
delays are varied.

Based on previous research, learning-based CC algorithms
are more suitable for high speed networks such as satel-
lite communications networks [25], ATM networks [68] and

networks with time-varying flows [84]. We speculate that
learning-based CC algorithms are suitable in networks with
high BDP (Bandwidth-delay Product) since they are more
aggressive in making use of higher BDP. The BDP can be
a critical parameter to measure the network as it is used
to control congestion in BBR as well [96]. Therefore, we
design three scenarios as shown in Table X to compare the
performance of the NewReno algorithm and the RL-based CC
algorithms.

In the scenarios, there are two senders and two receivers in
the dumbbell network. The access bandwidth is 1000Mbps and
the access delay is 0.01 milliseconds. In our experiments, high
BDP and low BDP are relative and not absolute. In scenario
I, the BDP is high and the bottleneck bandwidth is high.
However, the bottleneck delay is low. In scenario II, the BDP is
high, but the bottleneck bandwidth is low and the bottleneck
delay is high. In scenario III, the BDP is low, however the
bottleneck bandwidth and bottleneck delay are low.

In scenario I, the bottleneck delay is set to 2.5 milliseconds.
The bottleneck bandwidth changes from 100M to 140M in
5 seconds. More specifically, the bottleneck bandwidth is
100M initially and incremented by 10M each second up to
a maximum of 140M.

In scenario II, the bottleneck delay is set to 25 milliseconds.
The bottleneck bandwidth changes from 10M to 50M in
15 seconds. Every three seconds, the bottleneck bandwidth
increases by 10M. Because the bottleneck delay is longer,
more simulation time is required in scenario II compared to
scenario I. This allows to observe the performance of different
CC algorithms.

In scenario III, the bottleneck delay is set to 2.5 milliseconds
and the bottleneck bandwidth changes from 10M to 50M in 5
seconds, i.e. every second the bottleneck bandwidth increases
by 10M.

2) States: States often vary in different research ap-
proaches. In DQL-based CC algorithms, states mainly focus
on CWND differences, RTT and the inter-arrival time of ACKs
[34]. In a multi-agent CC based on AC, states are based on the
buffer length and sending rate [84]. In the A3C framework,
states are based on throughput, loss and RTT [32]. In self-
learning CC algorithms relying on DDPG, states are based on
CWND, RTT, ACK and the cumulative rate number of re-
transmissions of the sub-flow [97]. While in PPO, the states
are designed in three parts: the latency gradient, the latency
ratio and the sending ratio [95]. It is clear that there are
no guaranteed rules underpinning RL-based CC algorithms.
According to previous literature, states are used to tackle
two key areas: congestion signals including RTT, loss, ACK,
throughput and the parameter used to control congestion such
as the CWND size and the sending rate. In CC algorithms,
the environment adjusts the sending rate or the CWND size
based on the congestion signals.

Considering the focus on performance metrics, the states
considered here are throughput, RTT, packet loss rate.

3) Actions: In the simulations, all adjustments are window-
based. By adjusting the CWND size, there are different rules

that are applied. In [80], there are four actions: -1, 0, +1,
+3. When the action is -1, the CWND will decrease one
packet size. In [36], three actions are designed: -1, 0, +10.
The increasing action is more aggressive (up to 10). In [75],
the action space is much larger. Seven actions are predefined:
+1, *1.25, *1.5, 0, -1, *0.75, *0.5. When the action is *1.25,
the size of new CWND is 1.25 times the original CWND. In
our experiments, we considered four actions: -1, 0, +1, +3, as
aligned with [80].

4) Rewards: Similar to states, rewards can have different
definitions as well. In a DQL-based CC algorithm, the utility
function of reward is defined as shown below [75].

Utility(t) = αi ∗ log(throughputi(t))− βi ∗RTT i(t)
−γi ∗ lossi(t)− δ ∗ reorderingi(t)

(5)

In the PPO-based CC algorithm [95], the utility function is
defined as shown below:

Utility = 10∗throughput−1000∗latency−2000∗loss (6)

In a A3C-based algorithm [32], the utility function is given
as: log(throughput/RTT). In a DDPG-based algorithm, the
utility function is more complicated [97] and given as:

Utility =
∑

i
(αCWNDt − βrttt − εrtat − kackt) (7)

To define the reward, the purpose of the simulation should
be defined first. Reward is used for feedback of the action
given the current state. Using this, it measures the performance
of the action. Thus the reward is a reflection of the perfor-
mance of actions. From the above, the definition of reward
covers throughput, delay and packet loss rate. Considering
these factors, the reward includes RTT and throughput. The
utility function is shown below where the value of the utility
reward is based on [75]. The bandwidth in the equation means
the bottleneck bandwidth. MinRTT means the minimum RTT
of the pipeline. P is used for the packet loss rate.

Utility = log(throughput/(bandwidth))

−log(RTT −MinRTT) + log(1− p)
(8)

VII. SIMULATIONS

In this section, we present the results of the simulations of
the four algorithms: traditional CC algorithm NewReno and
the RL-based CC algorithms, DQL, DDPG and PPO. The
simulations were conducted on the NS3 platform.

Based on previous research, the state space con-
sidered includes five parameters: throughput, RTT and
packet loss rate. The reward function is given as
log(throughput/bandwidth) − log(RTT − MinRTT) +
log(1 − p). The action is used to adjust the CWND once a
new ACK arrives. A dumbbell network topology was adopted.

A. Simulation Results

The overall simulation results are shown in Table XI and
Figures 8-30 including timeline figures showing the changes
of performances, bar figures showing the average and the
variances of performances and cumulative distribution function

TABLE X
SIMULATION SCENARIOS

Scenarios Experiment Setting BDP

Scenario I

Access bandwidth: 1000M

Access delay: 0.01ms

Bottleneck bandwidth: changing from 100M to 140M in 5 seconds (bottleneck bandwidth increases by 10M every second)

Bottleneck delay: 2.5ms

High

Scenario II

Access bandwidth: 1000M

Access delay: 0.01ms

Bottleneck bandwidth: changing from 10M to 50M in 15 seconds (bottleneck bandwidth increases by 10M every three seconds)

Bottleneck delay: 25ms

High

Scenario III

Access bandwidth: 1000M

Access delay: 0.01ms

Bottleneck bandwidth: changing from 10M to 50M in 5 seconds (bottleneck bandwidth increases by 10M every second)

Bottleneck delay: 2.5ms

Low

TABLE XI
SIMULATION RESULTS

Scenarios BDP CWND Throughput RTT Packet Loss Rate

Scenario I High Substantial Increase Substantial Increase Limited Increase Limited Increase

Scenario II High Substantial Increase Substantial Increase Limited Increase Limited Increase

Scenario III Low No big difference No big difference No big difference Limited Increase

Fig. 8. CWND for the Three Scenarios Fig. 9. Throughput for the Three Scenarios

Fig. 10. RTT for the Three Scenarios Fig. 11. Packet Loss Rate for the Three Scenarios

Fig. 12. ACK Interval for Realistic Network Simulation

(CDF) figures showing the rough distributions of perfor-
mances.

To check the performance of RL-based CC algorithms in
realistic networks, we use Python to build sockets and send
real data using the Linux platform. The result shows that the
ACK interval is influenced by the computational complexity
of the algorithms. As shown in Figure 12, the ACK interval
of RL-based CC algorithms is much larger than NewReno,
resulting in low increase in speed of CWND. Since RL-
based CC algorithms require considerable time to calculate
and obtain the action, the ACK will not be transferred in
a timely fashion. It is noted that even amongst RL-based
CC algorithms, there exist differences as well. Moreover, the
delayed ACK influences the measurement of real throughput
and RTT. Therefore, RL-based CC algorithms may be not
applicable for realistic networks.

To compare performances of RL-based CC algorithms and
NewReno, we show the output based on NS3 where the delay
caused by the RL algorithms is excluded. In the following
sections, the detailed performances are discussed including
CWND and performance metrics.

1) CWND: Among the three RL-based CC algorithms,
there is minimal difference between them in the three scenarios
as shown in Figure 8. Moreover, we observe that the size of
CWND of RL-based CC algorithms is much larger than rule-
based CC algorithms in scenario I and scenario II, which both
have high BPD as expected. While in scenario III, there is not
much difference between these four algorithms. From Figure
13 to Figure 15, the CDF figures show distributions of CWNDs
in three scenarios. As expected, in scenario I and scenario
II, the sizes of CWND tend to be larger when RL-based CC
algorithms are applied.

2) Throughput: Theoretically, throughput of RL-based CC
algorithms is expected to exceed the throughput of NewReno
due to the increased average of CWND of RL-based CC
algorithms in scenario I and scenario II. As shown in Figure
9, our speculation is verified. In scenario I and scenario II,
throughput is improved when the RL-based CC algorithms are
used. While in scenario III, RL-based CC algorithms show
no advantage. For the detailed distribution and timeline of
throughput, more figures from Figure 16 to Figure 21 augment
the results and explanation.

3) RTT: The RTT of NewReno is small and stable, which
represents the benchmark of RTT. In three scenarios, compared
with NewReno, RTT is higher in networks with RL-based CC

algorithms as shown in Figure 10,25,26 and 27. Because the
increase of CWND is more aggressive among RL-based CC
algorithms, it is understandable that RTT is higher. However,
from the Figure 22 to 24, it shows that increments of RTT are
limited and bounded compared with increments of throughput
in scenario I and scenario II.

4) Packet Loss Rate: As shown in Figure 11, the packet loss
rate of NewReno is almost zero while there are minimal packet
loss in networks with RL-based CC algorithms. Moreover,
the distribution information shows the increased packet loss
rate in RL-based CC algorithms from Figure 28 to Figure 30.
Considering the aggressiveness of RL-based CC algorithms,
bounded packet losses are understandable.

B. Analysis of Results

From the simulation results, it can be seen that RL-based CC
algorithms can achieve high throughput with limited increased
RTT and packet loss rate in networks with relatively high BDP.
Moreover, in our network environments, three RL-based CC
algorithms exhibited similar performance. Because the space
complexity was not so high and the dynamic fluctuation was
limited, these three algorithms handled these scenarios well.
Therefore, our experiments showed that RL-based CC algo-
rithms have advantages in high BDP networks (as simulated
using NS3).

In realistic network, CC algorithms react to the ACK arrival
time. When a new ACK comes, the algorithm detects the delay
or loss in the network and then adjusts the CWNDs or the
sending rate. For traditional CC algorithms, there is a minor
cost in time to compute the action because the adjustment rule
are pre-designed and stable, while RL-based CC algorithms
require lots of time to input the states to the neural network; get
the output; update the action value and then take the appropri-
ate actions. This process is clearly time-consuming especially
with the potential size of ACK transmission rates. As such,
it is hard for RL-based CC algorithms to measure the actual
transmission time of ACKs and almost impossible to measure
the real network throughput, RTT and packet loss rate. On
the NS3 platform, these problems are not revealed because
the NS3 platform separates the computation and transmission
parts. Therefore, no matter how time-consuming the algorithm
is, there is no impact on the ACK transmission. However in
real world applications, such time must be considered. Thus
whilst RL-based CC algorithms are applicable on the NS3
platform, they are limited to realistic environments.

C. Proposed Solutions

Based on the simulation results and analysis, it can be
observed that current RL-based CC algorithms process rewards
based on arrival of ACKs, which are transferred and received
one by one. As discussed, these RL-based CC algorithms are
feasible on the NS3 simulator which separates the calculation
and ACK transmission, however, the implementation of RL-
based CC algorithms is still a problem. As a result, there are
several possible future research trends.

Fig. 13. CDF of CWND in Scenario I Fig. 14. CDF of CWND in Scenario II Fig. 15. CDF of CWND in Scenario III

Fig. 16. Timeline of Throughput for Scenario I Fig. 17. Timeline of Throughput for Scenario IIFig. 18. Timeline of Throughput for Scenario III

Fig. 19. CDF of Throughput for Scenario I Fig. 20. CDF of Throughput for Scenario II Fig. 21. CDF of Throughput for Scenario III

Fig. 22. Timeline of RTT for Scenario I Fig. 23. Timeline of RTT for Scenario II Fig. 24. Timeline of RTT for Scenario III

Fig. 25. CDF of RTT for Scenario I Fig. 26. CDF of RTT for Scenario II Fig. 27. CDF of RTT for Scenario III

Fig. 28. CDF of Loss Rate for Scenario I Fig. 29. CDF of Loss Rate for Scenario II Fig. 30. CDF of Loss Rate for Scenario III

Firstly, designing lighter models based on mapping tables
to deal with the problem of time-consuming RL-based CC
algorithms. After a RL-based model is trained in network
emulators, it can save the state and action to a table. Therefore,
a mapping table can be prepared in advance. This process
can be done off-line. When the model is deployed, only
the mapping table is used. Given the state of the network
environment, the action is given based on the mapping table.
The time of this process is relatively small. This method can be
efficient and time-saving. However, there are some challenges.
The simple mapping table may be large and unwieldy in
continuous scenarios. Therefore, more efficient mapping tables
might be explored address these limitations.

Another solution is decreasing the frequency of decisions,
such as employing RL to select CC algorithms in a given
time interval instead of selecting CWND size based on ACK
arrival intervals. This means that the time interval for updating
is much larger than the delay caused by the calculation of RL.
Therefore, the impact of the delay can be ignored. Of course,
the drawback is that the updating speed and responsiveness
of the RL algorithm would be slower. To balance these two
performance issues, further research is required.

Finally, asynchronous RL algorithms are supposed to deal
with delayed ACKs due to the algorithms’ computational
complexity. In an asynchronous RL framework, there are
multiple actors. These actors take effect asynchronously, which
can eliminate the effects of delayed ACKs. Therefore, in
the network thread, ACKs are not blocked by the RL agent
thread. In [98], to handle the delay of rewards, one action
generates several partial actions. Therefore, each partial action
can interact with the network environment independently. In
addition, in [99], an asynchronous RL training framework,
TorchBeast, combined with Pantheon network emulators, is
used to handle delayed actions. The proposed algorithm,
MVFST-RL, separates the network transmission and RL agents
in realistic network communications based on multiple asyn-
chronous actions. Though the algorithm eliminates the effect
of delayed actions, the high resource-demanding training pro-
cess is a problem since there are multiple actors to be trained
and the state space is larger compared to synchronous RL-
based CC algorithms. Therefore, the training process is more
difficult. More research is required to address this issue.

VIII. CHALLENGES AND TRENDS OF LEARNING-BASED
CONGESTION CONTROL SCHEMES

A. Challenges of Learning-based Congestion Control schemes

For rule-based CC algorithms, the main issue is to detect
congestion promptly and react quickly. The challenge of this
kind of algorithm is dealing with flexibility. It is hard to satisfy
different scenarios with a single algorithm. For learning-based
CC algorithms, flexibility is improved but there are some
issues that need to be addressed.

Parameter Selection influences the performance heavily
especially with RL algorithms. State space, action space,
reward design and other hyper-parameters related to algorithm
structures need to be considered carefully. Using reward design
as an example. In a RL-based CC algorithm, throughput and
RTT are used to calculate the reward. While in other RL-based
CC algorithms, packet loss rate and delay are considered when
calculating the reward. For supervised learning, predefined pa-
rameters determine potential classification errors which affect
the performance of CC. For unsupervised learning algorithms,
parameters such as the number of clustering groups and initial
cluster centers influence the final clustering results. Therefore,
optimizing parameters is a non-trivial activity.

High Computational Complexity is a significant issue
for learning-based CC algorithms. For supervised learning
techniques, especially for hybrid and complex methods such
as boosting and bagging, the prediction accuracy can be
extremely high, but the computational complexity can also be
high. For RL algorithms, the computational complexity results
in delayed actions and rewards. This impacts on the utilization
of bandwidth.

High Memory Consumption needs to be taken into con-
sideration. The training of RL-based CC algorithms requires
considerable storage space especially for continuous network
environments. Therefore, abstracting the state-action space and
obtaining representative data is needed for an efficient training
process. For example, LSTM [85] and Kanerva coding [86]
are used to represent and abstract the network states. Some
advanced RL frameworks such as DDPG [97] and A3C [98]
have a strong capability to deal with continuous network
environments by representing the state-action space using
complex neural networks. Abstracting representative state is
thus key. Currently, a huge space representation is a major
limitation of complex scenarios.

Low Training Efficiency is related to the feasibility of
deployment. For learning-based CC algorithms, the training
process may be time- and resource-consuming. State abstrac-
tion is important to improve the training efficiency. Optimal
parameter selection can be helpful to improve the training ef-
ficiency as well. Tackling this requires more research. Current
learning-based CC algorithms require significant amounts of
training data to guarantee the performance based on simula-
tions. However, though diverse network topologies and traffic
flows can be simulated, the algorithms cannot always avoid
over- and under-fitting problems.

Hard Convergence impacts RL-based CC algorithms. Con-
sidering complex algorithms with multiple neural networks, it
can be difficult to attain convergence. Current RL algorithms
propose different approaches to contribute to convergence,
however for realistic networking, this cannot always be guar-
anteed.

Incompatibility is an open question requiring future re-
search. Current learning-based CC algorithms are often used
as a built-in component or an independent controller to control
congestion. There is still a long way to go for the issues related
to compatibility between learning-based CC algorithms and
traditional CC algorithms to be resolved.

B. Trends of Learning-based Congestion Control Algorithms

Considering the issues associated with learning-based CC
algorithms as mentioned above, there are several trends that
should be considered.

Firstly, engineering issues related with RL-based CC algo-
rithms are a key research topic due to the high online capability
of RL algorithms. Based on the previous literature, most RL-
based CC algorithms are based on simulations using network
emulators. On the one hand, simulations with network emula-
tors eliminate unrelated factors and are more suitable to design
network scenarios. On the other hand, engineering issues can
be ignored, e.g. parameter selection and computational com-
plexity. In realistic network communications, such engineering
issues are significant for RL-based CC algorithms. To design
more applicable algorithms, simulations in realistic network
environments will be a primary focus moving forward.

In addition, lightweight learning-based CC algorithms will
be a hot topic in the future. Robust domain knowledge is
needed to realize lightweight learning-based CC algorithms.
Current learning-based CC algorithms have high complex-
ity and can require considerable time to make decisions,
with significant demands on memory and storage. Therefore,
lighter-weight learning-based CC algorithms are required to
be more applicable and deployable. To make models lighter,
domain knowledge supporting model-driven techniques look
promising. Compared with the solid foundation of traditional
CC algorithms which cover underlying theories such as RTT
distributions in different scenarios and reordering schemes,
current learning-based CC algorithms are relatively coarse-
grained with limited knowledge support. Learning-based CC
algorithms require a complete and detailed state space to train

the model, making the model heavier. Lightweight models
using fewer optimally chosen parameters is needed.

Finally, an open network platform that provides massively
differentiated dynamic network scenarios supporting the ex-
ploration and evaluation of various learning-based CC algo-
rithms is needed to facilitate further research in learning-based
CC algorithms. Pantheon [?] belongs to this kind of platform.
Though this platform covers diverse nodes, professional and
specific network environments are not offered, e.g. flexible
ad hoc wireless networks. Therefore, there is a demand for a
general platform providing a professional and realistic simu-
lation environment to train learning-based CC algorithms. In
this way, the development of learning-based algorithms will
be faster.

IX. CONCLUSION

Due to the limitations of traditional CC algorithms in
dynamic networks, learning-based CC algorithms have seen
a recent trend in academia. In this paper, we provided a
review of state of the art in learning-based CC algorithms
together with simulations focused on different RL-based CC
algorithms as representatives of learning-based CC algorithms
are conducted. In the simulations, it was shown that RL-
based CCs algorithms exhibit better performances compared
to traditional CC algorithms in different scenarios such as net-
works with high bandwidth and low delay. We presented and
discussed limitations with current RL-based CC algorithms
for realistic deployments and outline some approaches that
may be used in future research. We identified challenges and
trends associated with learning-based CC algorithms including
dealing with engineering issues related to RL-based CC algo-
rithms. In the future, network environments are expected to
be increasingly complicated. Given this, there is a clear need
for addressing such complexity and flexibility. To improve
the performance and robustness, further research is required
to deal with issues such as computation time, data storage
and pre-designed parameters. We argue that lightweight and
efficient learning-based models with general learning-based
platforms are needed and will be a future research focus.

REFERENCES

[1] J. Postel, “Rfc0793: Transmission control protocol,” 1981.
[2] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM ’88,

Proceedings of the ACM Symposium on Communications Architectures
and Protocols, Stanford, CA, USA, August 16-18, 1988, 1988, pp.
314–329. [Online]. Available: https://doi.org/10.1145/52324.52356

[3] T. R. Henderson, S. Floyd, A. V. Gurtov, and Y. Nishida, “The newreno
modification to tcp’s fast recovery algorithm,” RFC, vol. 6582, pp.
1–16, 2012. [Online]. Available: https://doi.org/10.17487/RFC6582

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP
vegas: New techniques for congestion detection and avoidance,” in
Proceedings of the ACM SIGCOMM ’94 Conference on Communications
Architectures, Protocols and Applications, London, UK, August
31 - September 2, 1994, 1994, pp. 24–35. [Online]. Available:
https://doi.org/10.1145/190314.190317

[5] J. Sing and B. Soh, “Tcp new vegas: improving the performance of tcp
vegas over high latency links,” in Fourth IEEE International Symposium
on Network Computing and Applications. IEEE, 2005, pp. 73–82.

[6] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp.
397–413, 1993. [Online]. Available: https://doi.org/10.1109/90.251892

https://doi.org/10.1145/52324.52356
https://doi.org/10.17487/RFC6582
https://doi.org/10.1145/190314.190317
https://doi.org/10.1109/90.251892

[7] S. S. Kunniyur and R. Srikant, “Analysis and design of an
adaptive virtual queue (AVQ) algorithm for active queue management,”
in Proceedings of the ACM SIGCOMM 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, August 27-31, 2001, San Diego, CA, USA, 2001, pp.
123–134. [Online]. Available: https://doi.org/10.1145/383059.383069

[8] G. Zeng, W. Bai, G. Chen, K. Chen, D. Han, Y. Zhu, and L. Cui,
“Congestion control for cross-datacenter networks,” in 27th IEEE
International Conference on Network Protocols, ICNP 2019, Chicago,
IL, USA, October 8-10, 2019, 2019, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/ICNP.2019.8888042

[9] S. Floyd, “Highspeed TCP for large congestion windows,” RFC, vol.
3649, pp. 1–34, 2003. [Online]. Available: https://doi.org/10.17487/
RFC3649

[10] C. Caini and R. Firrincieli, “TCP hybla: a TCP enhancement for
heterogeneous networks,” Int. J. Satellite Communications Networking,
vol. 22, no. 5, pp. 547–566, 2004. [Online]. Available: https:
//doi.org/10.1002/sat.799

[11] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion
control (BIC) for fast long-distance networks,” in Proceedings
IEEE INFOCOM 2004, The 23rd Annual Joint Conference of
the IEEE Computer and Communications Societies, Hong Kong,
China, March 7-11, 2004, 2004, pp. 2514–2524. [Online]. Available:
https://doi.org/10.1109/INFCOM.2004.1354672

[12] C. Jin, D. Wei, S. H. Low, J. Bunn, H. D. Choe, J. C. Doylle,
H. Newman, S. Ravot, S. Singh, F. Paganini et al., “Fast tcp: From
theory to experiments,” IEEE network, vol. 19, no. 1, pp. 4–11, 2005.

[13] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “Tcp lola:
Congestion control for low latencies and high throughput,” in 2017 IEEE
42nd Conference on Local Computer Networks (LCN). IEEE, 2017,
pp. 215–218.

[14] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, D. Zats et al., “Timely: Rtt-based congestion
control for the datacenter,” in ACM SIGCOMM Computer Communica-
tion Review, vol. 45, no. 4. ACM, 2015, pp. 537–550.

[15] C. P. Fu and S. C. Liew, “TCP veno: TCP enhancement for
transmission over wireless access networks,” IEEE J. Sel. Areas
Commun., vol. 21, no. 2, pp. 216–228, 2003. [Online]. Available:
https://doi.org/10.1109/JSAC.2002.807336

[16] R. King, R. G. Baraniuk, and R. H. Riedi, “Tcp-africa: an adaptive and
fair rapid increase rule for scalable TCP,” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies, 13-17 March 2005, Miami, FL, USA, 2005, pp. 1838–1848.
[Online]. Available: https://doi.org/10.1109/INFCOM.2005.1498463

[17] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound
TCP approach for high-speed and long distance networks,” in
INFOCOM 2006. 25th IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Computer and
Communications Societies, 23-29 April 2006, Barcelona, Catalunya,
Spain, 2006. [Online]. Available: https://doi.org/10.1109/INFOCOM.
2006.188

[18] K. K. Ramakrishnan and S. Floyd, “A proposal to add explicit
congestion notification (ECN) to IP,” RFC, vol. 2481, pp. 1–25, 1999.
[Online]. Available: https://doi.org/10.17487/RFC2481

[19] J. Ye, R. Liu, Z. Xie, L. Feng, and S. Liu, “EMPTCP: an ECN based
approach to detect shared bottleneck in MPTCP,” in 28th International
Conference on Computer Communication and Networks, ICCCN 2019,
Valencia, Spain, July 29 - August 1, 2019, 2019, pp. 1–10. [Online].
Available: https://doi.org/10.1109/ICCCN.2019.8847013

[20] D. Shan and F. Ren, “Improving ECN marking scheme with micro-
burst traffic in data center networks,” in 2017 IEEE Conference
on Computer Communications, INFOCOM 2017, Atlanta, GA,
USA, May 1-4, 2017, 2017, pp. 1–9. [Online]. Available: https:
//doi.org/10.1109/INFOCOM.2017.8057181

[21] J. Zhang, W. Bai, and K. Chen, “Enabling ECN for datacenter
networks with RTT variations,” in Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies,
CoNEXT 2019, Orlando, FL, USA, December 09-12, 2019, 2019, pp.
233–245. [Online]. Available: https://doi.org/10.1145/3359989.3365426

[22] I. El Khayat, P. Geurts, and G. Leduc, “Improving tcp in wireless net-
works with an adaptive machine-learnt classifier of packet loss causes,”
in International Conference on Research in Networking. Springer, 2005,
pp. 549–560.

[23] ——, “Enhancement of tcp over wired/wireless networks with packet
loss classifiers inferred by supervised learning,” Wireless Networks,
vol. 16, no. 2, pp. 273–290, 2010.

[24] N. Fonseca and M. Crovella, “Bayesian packet loss detection
for TCP,” in INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies, 13-17 March
2005, Miami, FL, USA, 2005, pp. 1826–1837. [Online]. Available:
https://doi.org/10.1109/INFCOM.2005.1498462

[25] K. Winstein and H. Balakrishnan, “TCP ex machina: computer-
generated congestion control,” in ACM SIGCOMM 2013 Conference,
SIGCOMM’13, Hong Kong, China, August 12-16, 2013, 2013, pp.
123–134. [Online]. Available: https://doi.org/10.1145/2486001.2486020

[26] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
re-architecting congestion control for consistent high performance,”
in 12th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015, 2015,
pp. 395–408. [Online]. Available: https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/dong

[27] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey,
and M. Schapira, “PCC vivace: Online-learning congestion control,”
in 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018, 2018,
pp. 343–356. [Online]. Available: https://www.usenix.org/conference/
nsdi18/presentation/dong

[28] G. Carlucci, L. D. Cicco, S. Holmer, and S. Mascolo, “Analysis
and design of the google congestion control for web real-time
communication (webrtc),” in Proceedings of the 7th International
Conference on Multimedia Systems, MMSys 2016, Klagenfurt, Austria,
May 10-13, 2016, 2016, pp. 13:1–13:12. [Online]. Available:
https://doi.org/10.1145/2910017.2910605

[29] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in Proceedings of the Applied Networking
Research Workshop, ANRW 2018, Montreal, QC, Canada, July 16-16,
2018, 2018, p. 19. [Online]. Available: https://doi.org/10.1145/3232755.
3232783

[30] J. Liu, I. Matta, and M. Crovella, “End-to-end inference of loss nature
in a hybrid wired/wireless environment,” 2003.

[31] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1871–1879.

[32] X. Nie, Y. Zhao, Z. Li, G. Chen, K. Sui, J. Zhang, Z. Ye,
and D. Pei, “Dynamic TCP initial windows and congestion control
schemes through reinforcement learning,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1231–1247, 2019. [Online]. Available:
https://doi.org/10.1109/JSAC.2019.2904350

[33] N. Jay, N. H. Rotman, B. Godfrey, M. Schapira, and A. Tamar,
“A deep reinforcement learning perspective on internet congestion
control,” in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, 2019, pp. 3050–3059. [Online]. Available: http:
//proceedings.mlr.press/v97/jay19a.html

[34] K. Xiao, S. Mao, and J. K. Tugnait, “Tcp-drinc: Smart congestion
control based on deep reinforcement learning,” IEEE Access, vol. 7,
pp. 11 892–11 904, 2019. [Online]. Available: https://doi.org/10.1109/
ACCESS.2019.2892046

[35] S. Ryu, C. Rump, and C. Qiao, “Advances in internet congestion
control,” IEEE Commun. Surv. Tutorials, vol. 5, no. 1, pp. 28–39, 2003.
[Online]. Available: https://doi.org/10.1109/COMST.2003.5342228

[36] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “QTCP: adaptive
congestion control with reinforcement learning,” IEEE Trans. Network
Science and Engineering, vol. 6, no. 3, pp. 445–458, 2019. [Online].
Available: https://doi.org/10.1109/TNSE.2018.2835758

[37] N. Jay, N. H. Rotman, P. B. Godfrey, M. Schapira, and A. Tamar,
“Internet congestion control via deep reinforcement learning,” CoRR,
vol. abs/1810.03259, 2018. [Online]. Available: http://arxiv.org/abs/
1810.03259

[38] P. Gawlowicz and A. Zubow, “ns3-gym: Extending openai gym for
networking research,” CoRR, vol. abs/1810.03943, 2018. [Online].
Available: http://arxiv.org/abs/1810.03943

[39] D. Lan, X. Tan, J. Lv, Y. Jin, and J. Yang, “A deep reinforcement
learning based congestion control mechanism for NDN,” in 2019 IEEE
International Conference on Communications, ICC 2019, Shanghai,

https://doi.org/10.1145/383059.383069
https://doi.org/10.1109/ICNP.2019.8888042
https://doi.org/10.17487/RFC3649
https://doi.org/10.17487/RFC3649
https://doi.org/10.1002/sat.799
https://doi.org/10.1002/sat.799
https://doi.org/10.1109/INFCOM.2004.1354672
https://doi.org/10.1109/JSAC.2002.807336
https://doi.org/10.1109/INFCOM.2005.1498463
https://doi.org/10.1109/INFOCOM.2006.188
https://doi.org/10.1109/INFOCOM.2006.188
https://doi.org/10.17487/RFC2481
https://doi.org/10.1109/ICCCN.2019.8847013
https://doi.org/10.1109/INFOCOM.2017.8057181
https://doi.org/10.1109/INFOCOM.2017.8057181
https://doi.org/10.1145/3359989.3365426
https://doi.org/10.1109/INFCOM.2005.1498462
https://doi.org/10.1145/2486001.2486020
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://www.usenix.org/conference/nsdi18/presentation/dong
https://www.usenix.org/conference/nsdi18/presentation/dong
https://doi.org/10.1145/2910017.2910605
https://doi.org/10.1145/3232755.3232783
https://doi.org/10.1145/3232755.3232783
https://doi.org/10.1109/JSAC.2019.2904350
http://proceedings.mlr.press/v97/jay19a.html
http://proceedings.mlr.press/v97/jay19a.html
https://doi.org/10.1109/ACCESS.2019.2892046
https://doi.org/10.1109/ACCESS.2019.2892046
https://doi.org/10.1109/COMST.2003.5342228
https://doi.org/10.1109/TNSE.2018.2835758
http://arxiv.org/abs/1810.03259
http://arxiv.org/abs/1810.03259
http://arxiv.org/abs/1810.03943

China, May 20-24, 2019, 2019, pp. 1–7. [Online]. Available:
https://doi.org/10.1109/ICC.2019.8761737

[40] Z. Li, P. Liu, C. Xu, H. Duan, and W. Wang, “Reinforcement
learning-based variable speed limit control strategy to reduce traffic
congestion at freeway recurrent bottlenecks,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 11, pp. 3204–3217, 2017. [Online].
Available: https://doi.org/10.1109/TITS.2017.2687620

[41] Z. Ji, “Self-learning congestion control of mptcp in satellites communi-
cations,” in IWCMC 2019, 2019.

[42] S. Floyd and T. R. Henderson, “The newreno modification to tcp’s
fast recovery algorithm,” RFC, vol. 2582, pp. 1–12, 1999. [Online].
Available: https://doi.org/10.17487/RFC2582

[43] M. Allman, V. Paxson, and W. R. Stevens, “TCP congestion
control,” RFC, vol. 2581, pp. 1–14, 1999. [Online]. Available:
https://doi.org/10.17487/RFC2581

[44] F. Bonomi and K. W. Fendick, “The rate-based flow control framework
for the available bit rate atm service,” IEEE network, vol. 9, no. 2, pp.
25–39, 1995.

[45] S. Keshav, “A control-theoretic approach to flow control,” Computer
Communication Review, vol. 25, no. 1, pp. 188–201, 1995. [Online].
Available: https://doi.org/10.1145/205447.205463

[46] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the
dynamics of a congestion control algorithm: The effects of two-
way traffic,” in SIGCOMM ’91, Proceedings of the Conference
on Communications Architecture & Protocols, Zürich, Switzerland,
September 3-6, 1991, 1991, pp. 133–147. [Online]. Available:
https://doi.org/10.1145/115992.116006

[47] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz, “The effects of
asymmetry on TCP performance,” MONET, vol. 4, no. 3, pp. 219–241,
1999. [Online]. Available: https://doi.org/10.1023/A:1019155000496

[48] A. Aggarwal, S. Savage, and T. E. Anderson, “Understanding the
performance of TCP pacing,” in Proceedings IEEE INFOCOM 2000,
The Conference on Computer Communications, Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies,
Reaching the Promised Land of Communications, Tel Aviv, Israel,
March 26-30, 2000, 2000, pp. 1157–1165. [Online]. Available:
https://doi.org/10.1109/INFCOM.2000.832483

[49] S. Biaz and N. H. Vaidya, “Discriminating congestion losses from
wireless losses using inter-arrival times at the receiver,” in Proceedings
1999 IEEE Symposium on Application-Specific Systems and Software
Engineering and Technology. ASSET’99 (Cat. No. PR00122). IEEE,
1999, pp. 10–17.

[50] Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, “Achieving
moderate fairness for udp flows by path-status classification,” in Pro-
ceedings 25th Annual IEEE Conference on Local Computer Networks.
LCN 2000. IEEE, 2000, pp. 252–261.

[51] S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end differentiation
of congestion and wireless losses,” IEEE/ACM Trans. Netw., vol. 11,
no. 5, pp. 703–717, 2003. [Online]. Available: https://doi.org/10.1109/
TNET.2003.818187

[52] P. Geurts, I. E. Khayat, and G. Leduc, “A machine learning approach
to improve congestion control over wireless computer networks,” in
Proceedings of the 4th IEEE International Conference on Data Mining
(ICDM 2004), 1-4 November 2004, Brighton, UK, 2004, pp. 383–386.
[Online]. Available: https://doi.org/10.1109/ICDM.2004.10063

[53] C. M. Gauger, M. Kohn, and J. Scharf, “Comparison of contention
resolution strategies in obs network scenarios,” in Proceedings of 2004
6th International Conference on Transparent Optical Networks (IEEE
Cat. No. 04EX804), vol. 1. IEEE, 2004, pp. 18–21.

[54] A. Jayaraj, T. Venkatesh, and C. S. R. Murthy, “Loss classification in
optical burst switching networks using machine learning techniques:
improving the performance of TCP,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 6-Supplement, pp. 45–54, 2008. [Online]. Available:
https://doi.org/10.1109/JSACOCN.2008.033508

[55] V. Paxson, “End-to-end internet packet dynamics,” IEEE/ACM Trans.
Netw., vol. 7, no. 3, pp. 277–292, 1999. [Online]. Available:
https://doi.org/10.1109/90.779192

[56] W. Lou and C. Huang, “Adaptive timer-based tcp control algorithm
for wireless system,” in 2005 International Conference on Wireless
Networks, Communications and Mobile Computing, vol. 2. IEEE, 2005,
pp. 935–939.

[57] P. Karn and C. Partridge, “Improving round-trip time estimates
in reliable transport protocols,” Computer Communication Review,

vol. 25, no. 1, pp. 66–74, 1995. [Online]. Available: https:
//doi.org/10.1145/205447.205455

[58] B. A. A. Nunes, K. Veenstra, W. Ballenthin, S. Lukin, and K. Obraczka,
“A machine learning framework for tcp round-trip time estimation,”
EURASIP Journal on Wireless Communications and Networking, vol.
2014, no. 1, p. 47, 2014.

[59] Y. Edalat, J. S. Ahn, and K. Obraczka, “Smart experts for network
state estimation,” IEEE Trans. Network and Service Management,
vol. 13, no. 3, pp. 622–635, 2016. [Online]. Available: https:
//doi.org/10.1109/TNSM.2016.2586506

[60] ——, “Network state estimation using smart experts,” in 11th
International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, MOBIQUITOUS 2014, London,
United Kingdom, December 2-5, 2014, 2014, pp. 11–19. [Online].
Available: https://doi.org/10.4108/icst.mobiquitous.2014.257949

[61] T. Dai, X. Zhang, Y. Zhang, and Z. Guo, “Statistical learning based
congestion control for real-time video communication,” CoRR, vol.
abs/1905.05998, 2019. [Online]. Available: http://arxiv.org/abs/1905.
05998

[62] T. Dai, X. Zhang, and Z. Guo, “Learning-based congestion control
for internet video communication over wireless networks,” in IEEE
International Symposium on Circuits and Systems, ISCAS 2018,
27-30 May 2018, Florence, Italy, 2018, pp. 1–5. [Online]. Available:
https://doi.org/10.1109/ISCAS.2018.8351530

[63] A. Erramilli, O. Narayan, and W. Willinger, “Experimental queueing
analysis with long-range dependent packet traffic,” IEEE/ACM Trans.
Netw., vol. 4, no. 2, pp. 209–223, 1996. [Online]. Available:
https://doi.org/10.1109/90.491008

[64] W. Willinger, V. Paxson, and M. S. Taqqu, “Self-similarity and heavy
tails: Structural modeling of network traffic,” A practical guide to heavy
tails: statistical techniques and applications, vol. 23, pp. 27–53, 1998.

[65] Y. Gao, G. He, and J. C. Hou, “On exploiting traffic predictability
in active queue management,” in Proceedings IEEE INFOCOM 2002,
The 21st Annual Joint Conference of the IEEE Computer and
Communications Societies, New York, USA, June 23-27, 2002, 2002,
pp. 1630–1639. [Online]. Available: https://doi.org/10.1109/INFCOM.
2002.1019416

[66] A. Jain, A. Karandikar, and R. Verma, “An adaptive prediction based
approach for congestion estimation in active queue management
(APACE),” in Proceedings of the Global Telecommunications
Conference, 2003. GLOBECOM ’03, San Francisco, CA, USA,
1-5 December 2003, 2003, pp. 4153–4157. [Online]. Available:
https://doi.org/10.1109/GLOCOM.2003.1259009

[67] B. Hariri and N. Sadati, “Nn-red: an aqm mechanism based on neural
networks,” Electronics Letters, vol. 43, no. 19, pp. 1053–1055, 2007.

[68] W. Jang, J. Byun, and M. L. Hambaba, “An intelligent architecture
for ATM traffic congestion control,” Journal of Intelligent and Fuzzy
Systems, vol. 5, no. 2, pp. 155–165, 1997. [Online]. Available:
https://doi.org/10.3233/IFS-1997-5206

[69] T. Liu, M. Zhang, J. Zhu, R. Zheng, R. Liu, and Q. Wu, “ACCP:
adaptive congestion control protocol in named data networking
based on deep learning,” Neural Computing and Applications,
vol. 31, no. 9, pp. 4675–4683, 2019. [Online]. Available: https:
//doi.org/10.1007/s00521-018-3408-2

[70] S.-J. Lee and C.-L. Hou, “A neural-fuzzy system for congestion control
in atm networks,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 30, no. 1, pp. 2–9, 2000.

[71] V. Paxson, “Measurements and analysis of end-to-end internet dynam-
ics,” 1997.

[72] D. Barman and I. Matta, “Model-based loss inference by tcp over
heterogeneous networks,” in Proceedings of WiOpt, 2004, pp. 364–73.

[73] H. Valpola and J. Karhunen, “An unsupervised ensemble learning
method for nonlinear dynamic state-space models,” Neural Computation,
vol. 14, no. 11, pp. 2647–2692, 2002. [Online]. Available: https:
//doi.org/10.1162/089976602760408017

[74] H. He, Z. Zhu, and E. Mäkinen, “A neural network model to minimize
the connected dominating set for self-configuration of wireless sensor
networks,” IEEE Trans. Neural Networks, vol. 20, no. 6, pp. 973–982,
2009. [Online]. Available: https://doi.org/10.1109/TNN.2009.2015088

[75] N. Taherkhani and S. Pierre, “Centralized and localized data
congestion control strategy for vehicular ad hoc networks using a
machine learning clustering algorithm,” IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 11, pp. 3275–3285, 2016. [Online]. Available:
https://doi.org/10.1109/TITS.2016.2546555

https://doi.org/10.1109/ICC.2019.8761737
https://doi.org/10.1109/TITS.2017.2687620
https://doi.org/10.17487/RFC2582
https://doi.org/10.17487/RFC2581
https://doi.org/10.1145/205447.205463
https://doi.org/10.1145/115992.116006
https://doi.org/10.1023/A:1019155000496
https://doi.org/10.1109/INFCOM.2000.832483
https://doi.org/10.1109/TNET.2003.818187
https://doi.org/10.1109/TNET.2003.818187
https://doi.org/10.1109/ICDM.2004.10063
https://doi.org/10.1109/JSACOCN.2008.033508
https://doi.org/10.1109/90.779192
https://doi.org/10.1145/205447.205455
https://doi.org/10.1145/205447.205455
https://doi.org/10.1109/TNSM.2016.2586506
https://doi.org/10.1109/TNSM.2016.2586506
https://doi.org/10.4108/icst.mobiquitous.2014.257949
http://arxiv.org/abs/1905.05998
http://arxiv.org/abs/1905.05998
https://doi.org/10.1109/ISCAS.2018.8351530
https://doi.org/10.1109/90.491008
https://doi.org/10.1109/INFCOM.2002.1019416
https://doi.org/10.1109/INFCOM.2002.1019416
https://doi.org/10.1109/GLOCOM.2003.1259009
https://doi.org/10.3233/IFS-1997-5206
https://doi.org/10.1007/s00521-018-3408-2
https://doi.org/10.1007/s00521-018-3408-2
https://doi.org/10.1162/089976602760408017
https://doi.org/10.1162/089976602760408017
https://doi.org/10.1109/TNN.2009.2015088
https://doi.org/10.1109/TITS.2016.2546555

[76] R. Jin, J. Li, X. Tuo, W. Wang, and X. Li, “A congestion control
method of SDN data center based on reinforcement learning,” Int. J.
Communication Systems, vol. 31, no. 17, 2018. [Online]. Available:
https://doi.org/10.1002/dac.3802

[77] M. Shaio, S. Tan, K. Hwang, and C. Wu, “A reinforcement learning
approach to congestion control of high-speed multimedia networks,”
Cybernetics and Systems, vol. 36, no. 2, pp. 181–202, 2005. [Online].
Available: https://doi.org/10.1080/01969720590897224

[78] A. A. Tarraf, I. W. Habib, and T. N. Saadawi, “Reinforcement learning-
based neural network congestion controller for atm networks,” in Pro-
ceedings of MILCOM’95, vol. 2. IEEE, 1995, pp. 668–672.

[79] W. Li, F. Zhou, W. Meleis, and K. R. Chowdhury, “Learning-based and
data-driven TCP design for memory-constrained iot,” in International
Conference on Distributed Computing in Sensor Systems, DCOSS 2016,
Washington, DC, USA, May 26-28, 2016, 2016, pp. 199–205. [Online].
Available: https://doi.org/10.1109/DCOSS.2016.8

[80] Y. Kong, H. Zang, and X. Ma, “Improving TCP congestion control
with machine intelligence,” in Proceedings of the 2018 Workshop
on Network Meets AI & ML, NetAI@SIGCOMM 2018, Budapest,
Hungary, August 24, 2018, 2018, pp. 60–66. [Online]. Available:
https://doi.org/10.1145/3229543.3229550

[81] V. Badarla, B. S. Manoj, and C. S. R. Murthy, “Learning-
tcp: A novel learning automata based reliable transport protocol
for ad hoc wireless networks,” in 2nd International Conference
on Broadband Networks (BROADNETS 2005), 3-7 October 2005,
Boston, Massachusetts, USA, 2005, pp. 521–530. [Online]. Available:
https://doi.org/10.1109/ICBN.2005.1589652

[82] V. Badarla and C. S. R. Murthy, “Learning-tcp: A stochastic approach
for efficient update in TCP congestion window in ad hoc wireless
networks,” J. Parallel Distributed Comput., vol. 71, no. 6, pp. 863–878,
2011. [Online]. Available: https://doi.org/10.1016/j.jpdc.2010.12.012

[83] H. Jiang, Y. Luo, Q. Zhang, M. Yin, and C. Wu, “Tcp-gvegas with
prediction and adaptation in multi-hop ad hoc networks,” Wireless
Networks, vol. 23, no. 5, pp. 1535–1548, 2017.

[84] K. Hwang, M. Hsiao, C. Wu, and S. Tan, “Multi-agent congestion
control for high-speed networks using reinforcement co-learning,” in
Advances in Neural Networks - ISNN 2005, Second International
Symposium on Neural Networks, Chongqing, China, May 30 - June 1,
2005, Proceedings, Part III, 2005, pp. 379–384. [Online]. Available:
https://doi.org/10.1007/11427469 61

[85] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path TCP meets deep reinforcement
learning,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1325–1336,
2019. [Online]. Available: https://doi.org/10.1109/JSAC.2019.2904358

[86] W. Li, F. Zhou, W. Meleis, and K. R. Chowdhury, “Dynamic
generalization kanerva coding in reinforcement learning for TCP
congestion control design,” in Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo,
Brazil, May 8-12, 2017, 2017, pp. 1598–1600. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3091375

[87] V. Badarla and C. S. R. Murthy, “A novel learning based solution for
efficient data transport in heterogeneous wireless networks,” Wireless
Networks, vol. 16, no. 6, pp. 1777–1798, 2010.

[88] J. Sun, S. Chan, K.-T. Ko, G. Chen, and M. Zukerman, “Neuron pid: a
robust aqm scheme,” in Proceedings of ATNAC, vol. 2006. Citeseer,
2006, pp. 259–262.

[89] J. Sun and M. Zukerman, “An adaptive neuron AQM for a stable
internet,” in NETWORKING 2007. Ad Hoc and Sensor Networks,
Wireless Networks, Next Generation Internet, 6th International
IFIP-TC6 Networking Conference, Atlanta, GA, USA, May 14-
18, 2007, Proceedings, 2007, pp. 844–854. [Online]. Available:
https://doi.org/10.1007/978-3-540-72606-7 72

[90] Q. Yan and Q. Lei, “A new active queue management algorithm based on
self-adaptive fuzzy neural-network pid controller,” in 2011 International
Conference on Internet Technology and Applications. IEEE, 2011, pp.
1–4.

[91] A. P. Silva, K. Obraczka, S. Burleigh, and C. M. Hirata, “Smart
congestion control for delay- and disruption tolerant networks,” in 13th
Annual IEEE International Conference on Sensing, Communication,
and Networking, SECON 2016, London, United Kingdom, June 27-30,
2016, 2016, pp. 1–9. [Online]. Available: https://doi.org/10.1109/
SAHCN.2016.7733018

[92] C. Zhou, D. Di, Q. Chen, and J. Guo, “An adaptive aqm algorithm

based on neuron reinforcement learning,” in 2009 IEEE International
Conference on Control and Automation. IEEE, 2009, pp. 1342–1346.

[93] S. Masoumzadeh, G. Taghizadeh, K. Meshgi, and S. Shiry, “Deep blue:
A fuzzy q-learning enhanced active queue management scheme,” in 2009
International Conference on Adaptive and Intelligent Systems. IEEE,
2009, pp. 43–48.

[94] M. Hsiao, K. Hwang, S. Tan, and C. Wu, “Reinforcement
learning congestion controller for multimedia surveillance system,”
in Proceedings of the 2003 IEEE International Conference on
Robotics and Automation, ICRA 2003, September 14-19, 2003,
Taipei, Taiwan, 2003, pp. 4403–4407. [Online]. Available: https:
//doi.org/10.1109/ROBOT.2003.1242282

[95] N. Jay, N. H. Rotman, B. Godfrey, M. Schapira, and A. Tamar,
“A deep reinforcement learning perspective on internet congestion
control,” in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, 2019, pp. 3050–3059. [Online]. Available: http:
//proceedings.mlr.press/v97/jay19a.html

[96] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: congestion-based congestion control,” Commun.
ACM, vol. 60, no. 2, pp. 58–66, 2017. [Online]. Available:
https://doi.org/10.1145/3009824

[97] T. Mai, H. Yao, Y. Jing, X. Xu, X. Wang, and Z. Ji, “Self-learning
congestion control of MPTCP in satellites communications,” in
15th International Wireless Communications & Mobile Computing
Conference, IWCMC 2019, Tangier, Morocco, June 24-28, 2019, 2019,
pp. 775–780. [Online]. Available: https://doi.org/10.1109/IWCMC.2019.
8766465

[98] M. Bachl, T. Zseby, and J. Fabini, “Rax: Deep reinforcement learning
for congestion control,” in 2019 IEEE International Conference on
Communications, ICC 2019, Shanghai, China, May 20-24, 2019, 2019,
pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICC.2019.8761187

[99] V. Sivakumar, T. Rocktäschel, A. H. Miller, H. Küttler, N. Nardelli,
M. Rabbat, J. Pineau, and S. Riedel, “Mvfst-rl: An asynchronous rl
framework for congestion control with delayed actions,” arXiv preprint
arXiv:1910.04054, 2019.

https://doi.org/10.1002/dac.3802
https://doi.org/10.1080/01969720590897224
https://doi.org/10.1109/DCOSS.2016.8
https://doi.org/10.1145/3229543.3229550
https://doi.org/10.1109/ICBN.2005.1589652
https://doi.org/10.1016/j.jpdc.2010.12.012
https://doi.org/10.1007/11427469_61
https://doi.org/10.1109/JSAC.2019.2904358
http://dl.acm.org/citation.cfm?id=3091375
https://doi.org/10.1007/978-3-540-72606-7_72
https://doi.org/10.1109/SAHCN.2016.7733018
https://doi.org/10.1109/SAHCN.2016.7733018
https://doi.org/10.1109/ROBOT.2003.1242282
https://doi.org/10.1109/ROBOT.2003.1242282
http://proceedings.mlr.press/v97/jay19a.html
http://proceedings.mlr.press/v97/jay19a.html
https://doi.org/10.1145/3009824
https://doi.org/10.1109/IWCMC.2019.8766465
https://doi.org/10.1109/IWCMC.2019.8766465
https://doi.org/10.1109/ICC.2019.8761187

	I Introduction
	I-A Traditional Congestion Control
	I-B Learning-based Congestion Control
	I-C Overall Analysis

	II Background
	II-A CC mechanisms
	II-B Rate Adjustment Mechanisms of Congestion Control algorithms
	II-C Performance Metrics of Congestion Control algorithms

	III Supervised Learning-based Congestion Control Algorithms
	III-A Congestion Detection in End-to-end Networks
	III-A1 Loss Classification
	III-A2 Delay Prediction

	III-B Queue Length Management in Network-assisted Networks

	IV Unsupervised Learning-based Congestion Control Algorithms
	IV-A Congestion Detection in End-to-end Congestion Control Algorithms
	IV-A1 Loss Clustering
	IV-A2 Delay Prediction

	V RL-based Congestion Control algorithms
	V-A Window Updating in End-to-End Networks
	V-B Queue Length Management in Network-assisted Networks

	VI Simulation Setup
	VI-A Compared Algorithms
	VI-A1 DQL-based Congestion Control Algorithms
	VI-A2 DDPG-based Congestion Control Algorithms
	VI-A3 PPO-based Congestion Control Algorithms
	VI-A4 NewReno

	VI-B Performance Metrics
	VI-C Network Environment
	VI-C1 Internet
	VI-C2 States
	VI-C3 Actions
	VI-C4 Rewards

	VII Simulations
	VII-A Simulation Results
	VII-A1 CWND
	VII-A2 Throughput
	VII-A3 RTT
	VII-A4 Packet Loss Rate

	VII-B Analysis of Results
	VII-C Proposed Solutions

	VIII Challenges and Trends of Learning-based Congestion Control Schemes
	VIII-A Challenges of Learning-based Congestion Control schemes
	VIII-B Trends of Learning-based Congestion Control Algorithms

	IX Conclusion
	References

