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Abstract—Machine learning (ML) has seen a significant surge
and uptake across many diverse applications. The high flexibil-
ity, adaptability and computing capabilities it provides extends
traditional approaches used in multiple fields including network
operation and management. Numerous surveys have explored ML
in the context of networking, such as traffic engineering, perfor-
mance optimization and network security. Many ML approaches
focus on clustering, classification, regression and reinforcement
learning (RL). The innovation of this research and contribution
of this paper lies in the detailed summary and comparison of
learning-based congestion control (CC) approaches. Compared
with traditional CC algorithms which are typically rule-based,
capabilities to learn from historical experience are highly desir-
able. From the literature, it is observed that RL is a crucial trend
among learning-based CC algorithms. In this paper, we explore
the performance of RL-based CC algorithms and present current
problems with RL-based CC algorithms. We outline challenges
and trends related to learning-based CC algorithms.

Index Terms—Congestion Control; Machine Learning; Rein-
forcement Learning; Learning-based

I. INTRODUCTION

S a fundamental component of computer networks, CC

plays a significant role in improving the network resource
utilization to achieve better performance. With the emergence
of a large number of new technologies and new networks, e.g.,
data centers (DCs), WiFi, 5G and satellite communications, the
complexity and diversity of network transmission scenarios
and protocols have increased dramatically. This has brought
significant challenges to transmission protocol design. A rich
variety of CC algorithms have been designed for specific
scenarios. However, the variety of network scenarios and more
importantly the intrinsic dynamics of the network, make it
extremely difficult to design efficient generic CC algorithms.
Therefore, CC algorithms based on ML have been proposed
to provide a generic CC mechanism that could potentially
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underpin different network scenarios. In this paper, we provide
a background analysis on traditional CC. Based on this,
we investigate current works and research challenges in the
application of ML in the field of CC.

A. Traditional Congestion Control

The Internet transmission protocol is based on packet
switching over best-effort network forwarding [1]]. End-to-end
transmission control is required to provide a reliable service
for applications. To avoid network degradation caused by
congestion, CC algorithms are typically employed to improve
reliable transmission over the network. Network congestion
occurs when excessive numbers of data packets are sent over
the network by hosts [2]]. The objective of CC algorithms is to
achieve higher network throughput while avoiding packet loss
caused by network overload. CC should ideally also guarantee
the fairness between end-to-end sessions.

The traditional CC algorithms can be categorized into two
types: end-to-end CC [3[]-[5] and network-assisted CC [6]-
[8]. End-to-end approaches only require the collaboration of
senders and receivers, and hence they do not rely on any ex-
plicit signals from the network. Network-assisted approaches
require support of network devices, e.g. congestion informa-
tion from routers. These are essential to achieve fairness and
responsiveness in complex networking scenarios.

For end-to-end CC, one of the main challenges is to identify
network congestion from implicit session signals, including
packet loss and transmission delays. There are three main types
of end-to-end CC approaches: loss-based CC, delay-based CC,
and hybrid CC.

Generally, loss-based approaches such as [9|—[11] adjust
the sending rate when a given sender has not received a
corresponding acknowledgement (ACK) over a given (long)
time period, which typically indicates packet loss. Loss occurs
when the buffer in a given network device is overloaded, thus
loss-based approaches are supposed to attain high throughput
through high bandwidth utilization. However, for some delay-
sensitive applications, lower transmission times cannot be
guaranteed. Besides, a packet loss may not be triggered by
network congestion (e.g., random packet dropping), which
may mislead any CC decision.

Therefore, delay-based approaches such as [12]-[14] have
been proposed. Delay-based approaches rely on detected trans-
mission delays caused by the network. Compared with loss-
based approaches, delay-based approaches are more suited for



high-speed and flexible networks such as wireless networks,
as they are not influenced by random packet loss. However,
calculating the exact transmission delay remains a significant
challenge. For example, a slight change in packet processing
time in the host stack may cause deviations in the measured
transmission delay, leading to erroneous decisions related to
the sending rate.

To take full advantage of both loss and delay, hybrid
approaches such as [[15]—[17]] have been put forward. Although
it is noted that these approaches cannot identify the network
status precisely based on implicit signals related to packet loss
and transmission delay.

To solve this problem, network-assisted CC approaches such
as [18]], [[19] have been proposed, where network devices
provide explicit signals related to the network status for hosts
to make sending rate decisions. When the network device is
congested, some packets will be marked with a signal: Explicit
Congestion Notification (ECN). The receiver will send back
the ECN signal in the ACK and the sender will adjust the
sending rate accordingly. The ECN signal for congestion is
employed in [20]]. To further improve CC performance, multi-
level ECN signals for congestion are employed in [21]], which
provides finer-grained CC.

With the emergence of a large number of new technologies
and networks, e.g., DCs, WiFi, 5G and satellite communica-
tions, the complexity and diversity of network transmission
scenarios have increased dramatically. This has brought sig-
nificant challenges to CC. Whilst traditional CC approaches
may work well in one scenario, they may not guarantee the
performance in diverse network scenarios. Furthermore, the
changing traffic patterns in one network scenario may also
affect the performance of the solution. Therefore, an intelligent
CC approach is required.

B. Learning-based Congestion Control

The dynamic nature, diversity and complexity of network
scenarios have brought significant challenges for CC. As such,
it is difficult to design a generic scheme for all network
scenarios. Furthermore, the dynamic nature of even the same
network can make the performance of CC unstable. Current
network environments may also include both wired networks
and wireless networks, making the detection of packet loss
more difficult [22]-[24].

To solve the aforementioned problems, learning-based CC
algorithms have been proposed. Different from traditional
CC algorithms, learning-based schemes are based on real-
time network states to make control decisions instead of
using predetermined rules. This allows them to have better
adaptability to dynamic and complex network scenarios.

Based on different mechanisms, learning-based CC algo-
rithms can be divided into two groups: performance-oriented
CC algorithms and data-driven CC algorithms. Performance-
oriented CC algorithms employ objective-optimization meth-
ods to train the model and get the output. Generally, this
kind of algorithms require manually effort to determine the
parameters in utility function. The learning process is supposed

to converge to the optimal value of the utility function.
There are some typical performance-oriented CC algorithms.
Remy [25]] is an early version among performance-oriented
CC algorithms, whose utility function consists of throughput
and delay. To maximize the expected value of the utility
function, Remy finds the mapping based on pre-computed
lookup table. Thence, corresponding sending rate is estimated.
PCC [26] and PCC Vivace [27] show great performance as
well based on designing utility functions which cover basic
performance metrics such as the round-trip time (RTT). In
[28], GCC applies Kalman filter which is a method that
uses the linear system state equation to optimally estimate
the system state through observation data. Based on Kalman
filter, GCC estimates the end-to-end one way delay variation
to dynamically control the sending rate. In [29], Copa op-
timizes the objective function based on current throughput
and packet delay to adjust the sending rate. Compared with
performance-oriented CC algorithms mentioned above, data-
driven CC algorithms are more dependent on data sets and
have problems with convergence. However, because data-
driven CC algorithms update their parameters based on current
data instead of relying on given constant parameters, they show
stronger adaptability and satisfy diverse network scenarios
through learning. Moreover, the mainstream research focuses
more on data-driven CC algorithms. In this paper, our focus
is on data-driven CC algorithms as well.

With regards to data-driven CC algorithms, machine learn-
ing techniques are used to train the model including supervised
learning techniques, unsupervised learning techniques and RL
techniques. Supervised and unsupervised learning techniques
have been widely employed to improve network CC [22]], [24],
[30]. However, these schemes are only partially successful
because they are trained offline and are not capable of classi-
fying realistic wireless and congestion loss [23]]. RL has more
advantages in dealing with realistic congestion in networks
with dynamic and sophisticated state space [31], [32]]. There-
fore, RL techniques have been shown to be beneficial for CC
because of the higher online learning capability [33]], [34]. At
present, much research focuses on RL-based CC schemes.

However, learning-based CC is still in its infancy. Most
learning-based CC algorithms adjust the congestion window
(CWND) to control the sending rate instead of adjusting the
sending rate directly. Therefore, burstiness is still a problem in
high speed networks because the CWND can increase sharply
when multiple ACKs arrive [35]. Current learning-based CC
algorithms such as [36]], [|37]] generally focus on end-to-end CC
instead of network-assisted CC. Designing a general purpose
learning-based CC scheme that can work in real network
scenarios is still a major goal of both academia and industry.

C. Overall Analysis

In addition to considering current learning-based CC al-
gorithms and providing systematic analysis and comparison,
we conduct comprehensive experiments of learning-based
CC under diverse dynamic network scenarios and compare
them with more traditional algorithms. The implementation



of learning-based CC algorithms in real network stacks has
shown that they are often lacking because intelligent learning
decisions cannot be made fast enough, i.e. in the order of
100 milliseconds with a GPU with 1Gb real network data
transmission. Therefore, in order to judge the pros and cons
of decision models we conduct comprehensive experiments of
various schemes using the NS3 emulator [38].

In the simulation, we compare the RL-based CC algorithms
of Deep Q Learning (DQL) [39], Proximal Policy Opti-
mization (PPO) [40]] and Deep Deterministic Policy Gradient
(DDPG) [41] with the traditional CC algorithm NewReno [42]].
We design three different scenarios with different configura-
tions of bandwidth and delay. The network with high band-
width and low delay simulates a typical data center networks.
The network with low bandwidth and high delay simulates
typical wide area networks. The network with low bandwidth
and low delay simulates ad hoc wireless networks. These
three network environments represent the diverse environments
needed for learning-based CC algorithms. In order to fully
evaluate the performance of learning-based CC schemes, we
generate network traffic traces with 80% elephant flows and
20% mice flows for experiments. The experimental results
show that learning-based CC algorithms are more suitable for
dynamic environments with higher Bandwidth Delay Product
(BDP). For networks with low BDP, i.e. the link bandwidth
is low or the link delay is low, learning-based CC algorithms
are too aggressive to learn and deal with dynamic network
stability. Moreover, the performances of these three learning-
based CC algorithms shows no difference in our simulated
environments because the complexity of the environments
are limited. Therefore, all of them can handle these network
scenarios.

In realistic scenarios, RL-based CC algorithms are influ-
enced by the computation time needed for RL. This impacts
the feasibility of these schemes. Therefore, we propose three
potential solutions to deal with this problem. Firstly, designing
lightweight models based on mapping tables of states and
actions to decrease the time consumption of learning decisions.
Secondly, decreasing the frequency of decisions to provide bet-
ter feasibility under low-dynamic network scenarios. Finally,
asynchronous RL can improve the decision speed of RL-based
CC algorithms.

Based on this analysis, we further explore the challenges
and trends for future works in the area of learning-based
CC. Current challenges of learning-based CC algorithms are
mainly focused on engineering related issues such as param-
eter selection, high computational complexity, high memory
consumption, low training efficiency, hard convergence and
incompatibility. In the future, learning-based CC needs to
receive more attention both from academia and industry. Based
on the understanding and analysis of the current learning-based
CC solutions, we identify trends in learning-based CC. First,
because of their capability for dealing with network congestion
with dynamic and sophisticated state spaces, RL-based CC will
be a significant research trend moving forward. Second, given
the excessive time and cost of learning decisions, lightweight

learning-based CC will be a key research direction. Third, an
open network test platform that provides massively differenti-
ated dynamic network scenarios to support the exploration and
verification of learning-based CC mechanism, requires further
contributions in the study of learning-based CC algorithms.

The rest of the paper is structured as follows. In Section II,
we present related background knowledge. In Section III, IV
and V, we consider supervised learning-based CC algorithms,
unsupervised learning-based CC algorithms and RL-based CC
algorithms respectively as representatives of three main groups
of learning-based CC algorithms. In Section VI, we provide
an overview of the setup of simulations. In Section VII, we
conduct simulations and compare performances between RL-
based CC algorithms and traditional CC algorithms. In Section
VIII, we outline challenges and trends of learning-based TCP.
Finally in Section IX, we conclude the paper.

II. BACKGROUND
A. CC mechanisms

CC mechanisms typically involve four key issues: slow start,
congestion avoidance, re-transmission and fast recovery [43]].
To illustrate the procedure of CC, we adopt the window-based
CC. The sliding CWND determines the next packet to be sent.

Slow Start. At the initial stage of transmission, due to the
unknown network transmission capability, CWND starts with
a low value to prevent congestion caused by a large amount
of data being injected to the network in a short period of
time. This process is called slow start. In the classic slow start
process, if an ACK is not delayed, each time a good ACK is
received, it means that the sender can send twice the numbers
of packets last sent, which will cause the sender’s window
to grow exponentially over time. Normally, a link buffer is
under-loaded because the in-flight data is limited. Therefore,
slow start can improve the link utilization due to the increasing
speed.

Congestion Avoidance. In the slow start phase, CWND
can grow rapidly, to a given threshold. Once the threshold
is reached, it means that there may be more available trans-
mission resources. If all resources are occupied immediately,
severe packet loss and re-transmissions will occur on other
connections sharing the queue of the router, resulting in
unstable network performance. In order to get more trans-
mission resources without affecting the transmission of other
connections, TCP implements a congestion avoidance strategy.
Once the slow start threshold is established, TCP will enter the
congestion avoidance phase, and increase the value of CWND
each time based approximately on the size of the successfully
transmitted data segment. The increasing speed is much slower
than the slow-start exponential growth. More precisely, CWND
will update as follows for each new ACK:

CWND¢1y =CWNDy+SMSS « SMSS/CWND; (1)

SMSS is the maximum segment packet size of the sender.
With the arrival of each ACK, CWND will have a small



increase, and the overall growth rate will be slightly sub-
linear. This growth process has been termed additive increase.
Through this process, if congestion is detected, CWND will
be reduced by half.

Re-transmission. Re-transmission includes timeout re-
transmission and fast re-transmission. Timeout re-transmission
starts a timer after sending a given packet. If no acknowledged
packet of the datagram is sent within a certain period of time,
the data is re-transmitted until the transmission is successful.
A key parameter that affects the efficiency of the timeout re-
transmission protocol is the re-transmission timeout (RTO).
Setting the value of RTO too large or too small will adversely
affect the protocol. Fast re-transmission requires the receiver to
send a duplicate ACK immediately after receiving an out-of-
sequence segment so that the sender knows as soon as possible
that there is a segment that has not reached the designated
server, rather than waiting to send data confirmation itself.
The re-transmission mechanism in CC ensures that data can
be transmitted from the sender to the receiver.

Fast recovery. Fast recovery means that when the sender
receives three duplicate ACKs in succession, it executes a
multiplication reduction algorithm and halves the slow start
threshold to prevent network congestion. The CWND increases
slowly and linearly. The CWND then increases in an accu-
mulative manner, causing the CWND to increase slowly and
linearly. The fast recovery algorithm can avoid congestion and
gradually reduce the window to affect the link utilization.

Among traditional CC algorithms, the above four mecha-
nisms make up the basic approaches while learning-based CC
algorithms do not adopt strict rules to control congestion. To
guarantee flexibility for different scenarios, learning-based CC
algorithms can however learn different strategies to adjust the
CWND instead of following fixed rules.

B. Rate Adjustment Mechanisms of Congestion Control algo-
rithms

To control the sending rate of input data, there are three
rate adjustment mechanisms in CC algorithms: window-based
techniques, rate-based techniques and pacing.

Window-based strategies adjust CWND directly. CWND
reflects the transmission capacity of the network. The actual
window of the sender is the smaller of the CWND and
the window of the receiver. Considering the convenience of
window-based strategies, there are multiple traditional CC
algorithms such as the classic algorithm DCTCP [35]]. Though
window-based techniques are efficient, burstiness is a big
issue especially in networks with high bandwidth. When a
bunch of ACKs arrive, CWND will increase dramatically.
Thus window-based strategies can result in variations, low
throughput and high delay.

Rate-based strategies control the actual sending rate directly,
so they are able to fully make use of the bandwidth without
burstiness. There are many rate-based strategies. In [44], an
early version of a rate-based strategy was presented to control
congestion in asynchronous transfer mode (ATM) services.
[45] combined control theory with rate-based strategies to

deal with flow control in continuous-time networks. However,
because rate-based strategies rely on pre-designed rules that
can adjust in each interval, the responsiveness is relatively
lower compared with window-based strategies. Moreover, the
complex rate-based strategies are often resource-consuming.

Therefore, a hybrid strategy was presented based on packet
pacing in [46]. Packet pacing is acknowledgement-driven,
which is similar to window-based strategies. As a result,
responsiveness is guaranteed. In addition, based on packet
pacing strategies, senders can allocate transmission tasks in
given time intervals and hence burstiness can be avoided.
In [47], packet pacing strategies were shown to avoid the
burstiness caused by bunches of arriving ACKs. However,
packet pacing performs worse in throughput and fairness in
some network scenarios including the initial period of the TCP
communication [48]].

As shown above, different adjustment strategies can satisfy
diversified network scenarios. Among traditional CC algo-
rithms, most algorithms are window-based. With the devel-
opment of CC algorithms, more and more rate-based CC
algorithms and pacing techniques are designed. Based on the
literature, most learning-based CC algorithms adopt window-
based CC algorithms.

C. Performance Metrics of Congestion Control algorithms

CC algorithms are expected to achieve various goals and
objectives as shown in Table 1.

Throughput represents the amount of data that passes
through a network (or channel, interface) in a given time
interval. High throughput means high link utilization. Max-
imizing throughput is crucial. Given the link bandwidth, high
throughput indicates high efficiency in transferring data.

RTT measures the time including the transmission time, the
propagation time, the queue time and the processing time.
Flow completion time (FCT) indicates the time required to
transfer the flows. RTT and FCT are expected to be small.
For users, RTT and FCT show the delays that they may have
to tolerate. However, it may be the case that maximizing
throughput and minimizing RTT or FCT can be orthogonal.
High throughput means making use of the link bandwidth as
much as possible, which can give rise to an increased queue
length that may cause delays.

The packet loss rate indicates the efficiency of the data
transmission. For CC, minimizing the packet loss rate is
important as it shows the control capability and stability of
the network.

Fairness is a measure of equality of the resource allocation
of the network. Increased fairness requires CC algorithms to
fairly allocate resources between flows to user’s satisfaction
and in turn improve the Quality of Service (QoS).

Responsiveness reflects the speed of the CC to deal with
real-time flows. A high responsiveness level means that the
algorithms can detect the congestion quickly and rapidly adjust
the CWND to an optimal value.

These objectives are important for all CC algorithms, but
they are hard to achieve. To get good performance for some



TABLE I
OBJECTIVES OF LEARNING-BASED CC ALGORITHMS

Objective

Description

Maximizing throughput

which may cause long delays.

To maximize throughput, bandwidth utilization is supposed to be high. High throughput contradicts low

RTT or flow completion time since high throughput means the environment tolerates high queue lengths,

Minimizing RTT or flow completion time

Minimizing RTT or flow completion time is a basic requirement expected to be met. For each task, the flow

completion time reflects the delay, which is supposed to be as small as possible.

Minimizing packet loss rate

Minimizing the packet loss rate is a basic goal of CC algorithms. Low packet loss rate means that there. is

a stable network environment and low delay.

Fairness is important for multiple users. Resource allocation should be as fair as possible between users

Fairness
and consider diverse applications.
Updating the frequency and adjustment policy of CWND can influence the responsiveness of algorithms. High
Responsiveness responsiveness is expected, which implies high resource-consumption as well. Therefore,

responsiveness needs to be balanced based on different scenarios.

targets, can mean that others have to be sacrificed. In different
scenarios, the targets may also have different priorities and
hence trade-offs are necessary. Based on the previous liter-
ature, different CC research focus on different performance
aspects including: throughput, RTT and the packet loss rate. In
our simulations, we measure these three parameters in detail.

III. SUPERVISED LEARNING-BASED CONGESTION
CONTROL ALGORITHMS

In this section, we introduce supervised learning-based CC
algorithms. Supervised learning techniques train given samples
to obtain an optimal model, and then use this model to map
all inputs to corresponding outputs. By performing judgments
on the outputs and their ability to achieve classification,
supervised learning techniques have the ability to perform data
classification. Classic supervised learning methods include
decision trees, random forests, Bayes, regression and neural
networks.

In the networking domain, supervised learning methods are
used to predict congestion signals for end-to-end networks
and manage queue length for network-assisted networks. Con-
gestion signal prediction consists of loss classification and
delay prediction. As mentioned before, congestion is detected
implicitly based on packet loss or delay when congestion
occurs in traditional CC algorithms. In supervised learning-
based CC algorithms, congestion is estimated in advance based
on current and previous network states such as the queue
length and the network delay. The key basis for this approach
is that network states form a continuous time series, where
the future state can be predicted by past states. Through
this, supervised learning-based CC algorithms can be more
intelligent compared with traditional CC algorithms.

A. Congestion Detection in End-to-end Networks

1) Loss Classification: Loss is a crucial but indirect signal
used to detect congestion. It gives nodes feedback in networks
only when congestion has already happened. In addition, basic

loss-based CC algorithms cannot distinguish the cause of
packet loss. Therefore, the classification of loss is essential
to understand CC.

Wireless networks provide many classic scenarios required
to distinguish the wireless loss and congestion loss. In wireless
networks, loss may be caused by erroneous wireless links, user
mobility, channel conditions and interference. There has been
a body of research related to loss classifications in wireless
networks based on traditional CC algorithms. In [49], the
proposed algorithm (Biaz) use the packet inter-arrival time to
classify wireless loss and congestion loss. If the packet inter-
arrival time is confined to a range, the missing packets are
lost due to wireless loss. Otherwise, the loss is considered
congestion loss. In [50], a new designed loss classifier for
relative one-way trip time (ROTT) was used (Spike) to differ-
entiate loss types. If the connection of ROTT was relatively
higher, the loss was supposed to be caused by congestion.
In other cases, the loss was assumed to be wireless loss. In
[51]], the amount of losses and ROTT were used to distinguish
the types of loss. The presented algorithm, provided a hybrid
algorithm (ZigZag) that was more efficient than the above two
algorithms.

These loss classifiers are effective in some specific scenarios
but have their limitations. Biaz [49] is suitable for wireless
last hop topology instead of the wireless bottleneck links with
competitive flows while Spike [50] shows better performance
in wireless backbone topology with multiple flows. ZigZag
[51] is relatively more general, and hence is able to satisfy
different topology scenarios however it is sensitive to the
sending rate.

Considering the limitations of traditional loss classifiers for
wireless networks, supervised learning techniques offer several
advantages. To fully understand the loss information, multiple
parameters can be taken into consideration. In [22], the one-
way delay and inter-packet times were used as states to predict
loss categories. In [23]], the queuing delay, the inter-arrival time
and lists of packets were used as inputs. In addition, diverse



supervised learning techniques were applied. In [52], deci-
sion trees, decision tree ensembles, bagging, random forests,
extra-trees, boosting and multi-layer perceptrons were used
to classify the types of loss. Simulations show that these
intelligent loss classifiers achieve high accuracy in different
network scenarios.

Beyond wireless loss, contention loss is common in Optical
Burst Switching (OBS) networks. OBS provide an advanced
network, which saves the sources due to wavelength reser-
vation. However, because of the lack of buffers in OBS,
contention loss is generated when there is a burst at the core
nodes. There are some supervised learning-based CC algo-
rithms designed to tackle this. In [53]], some classic contention
resolutions are discussed and measured including wavelength
conversion, deflection routing selection and buffering with
shared feedback fiber delay line. To measure the efficiency
of these strategies, burst loss probability and burst probability
were considered. These strategies show good performances
related to OBS contention issues. While in [54], a Hidden
Markov Model was used to classify contention loss, congestion
loss and control congestion separately. Simulations showed the
effectiveness of loss classifiers in different network scenarios.

Reordering loss cannot be ignored in networks with multi-
channel paths. In networks, when packets are reordered,
reordering loss occurs. Supervised learning-based CC algo-
rithms are able to deal with the associated classification
issues. In [55]], out-of-order delivery causes variations of RTT.
Therefore, RTT related with reordering and RTT related with
congestion show different distributions. In [24], a Bayesian
algorithm was used to represent the distributions of RTT for
two types of losses. The proposed algorithm showed high
prediction accuracy.

In conclusion, wireless loss, contention loss and reordering
loss impact the detection of congestion loss. Supervised learn-
ing techniques show advantages in classifying types of losses
in different network scenarios. The mechanism is shown in
Figure 1 and Table II summarizes the studies related with loss
classifiers based on supervised learning methods. However,
there are some issues related with these supervised learning-
based CC algorithms.

Mis-classification is one issue. In wireless networks, pre-
defined parameters determine the errors in classifying con-
gestion loss and wireless loss. If the congestion loss is
more easily classified than wireless loss, the classifier shows
bad performances in wireless networks since the network is
supposed to react when loss is detected. However, due to the
mis-classification, the network considers congestion loss as
wireless loss and does not control the sending rate quickly.
Therefore, congestion can not be reduced. Otherwise, if the
wireless loss is more easily classified as congestion loss, the
algorithm is ineffective in wireless scenarios because there
exists considerable wireless losses. As a result, the wireless
network may overreact to loss signals. Therefore, parameters
in the algorithms need to be considered carefully to balance
performance in different network scenarios.

The balance between computational complexity and predic-

tion accuracy is another issue. As shown in [52f], compared
with decision trees, boosting algorithms achieve higher accu-
racy but consume much more network resources. Therefore,
considering the limited improvements in accuracy of boosting,
decision trees show more advantages, although there is always
a trade-off.
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Fig. 1. Loss Classification Based on Supervised Learning Algorithms

2) Delay Prediction: As a congestion signal, the delay
of transmissions reflects the amount of in-flight data, which
shows the overall load on the network. There are some classic
delay-based CC algorithms such as Vegas that measures delay
accurately [4]. However, in dynamic networks, traditional
delay-based CC algorithms are not flexible enough. As Fig-
ure 2 shows and Table III concludes, supervised learning
techniques have high learning capabilities and are efficient
in predicting future delays and reacting quickly to avoid
congestion.

RTT prediction is a major topic in delay prediction. Based
on the measured RTT, other parameters can be calculated
such as RTO. There has been a body of research exploring
the prediction of RTO based on RTT. In [56], estimation of
RTT was dynamically changed to estimate RTO in wireless
network. In [57], RTT was used to predict RTO and bandwidth
utilization. In [58]], a fixed-share expert was used to compute
the RTO in mobile and wired scenarios relying on RTT
estimations. In addition, in [59] and [60], the fixed-share
leveraged exponentially weighted moving average technique
demonstrates a more accurate algorithm.

Moreover, there has been various research measuring RTT
based on other parameters in the network. In [61]], linear
regression was used to establish the relationship between RTT
and the sending rate. In [62]], a Bayesian technique was used
to simulate the distribution between delay and the sending rate
and then to predict delay based on the sending rate. This is
needed in real-time video applications and wireless networks.

Delay prediction is also significant for delay-sensitive net-
works that require networks with increased responsiveness.
Several intelligent algorithms for the prediction of RTT using
limited parameters and simple techniques to guarantee the low
computational complexity and high responsiveness have been
proposed. Further research is needed to push the boundary and



TABLE 11
SUPERVISED LEARNING: LOSS CLASSIFICATION IN END-TO-END CC ALGORITHMS

Algorithms Scenarios

Input Output

Decision Tree Boosting [22] Wireless networks

One-way delay, inter-packet times

Link loss or Congestion loss

Bayesian [24] Networks with Reordered events

RTT of lost packets

Reordering loss or Congestion loss

Hidden Markov Model [54] Optica Burst Switching

The number of bursts successfully received

at an egress between any two bursts

Contention loss or congestion loss

DT, Bagging, Boosting,
Neural Networks [23]]

Wireless networks

Queuing delay, inter-arrival times, lists of packets

Wireless loss or Congestion loss

Decision Trees,
Decision Tree Ensembles,
Bagging,

Random Forests, X
Wireless networks
Extra-trees,
Boosting, Multilayer
Perceptrons,

K-Nearest neighbors [52]]

The standard deviation, the minimum, and the
maximum of the one-way delay, inter-packet time

for the packets

Wireless loss or Congestion loss
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Fig. 2. Delay Prediction Based on Supervised Learning Algorithms
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Algorithms

B. Queue Length Management in Network-assisted Networks

Queue length management is a key focus for network-
assisted CC algorithms. There has been a body of research
related with the AQM family of ECN techniques. However,
the original AQM algorithms detect the current queue length
and react to the environment. Some research has shown that
the future queue length can be predicted. The prediction
process is shown in Figure 3. Moreover, Table IV summa-
rizes some related research. [63] and [[64] showed the long-
range dependence between previous traffic patterns and future
queueing behavior. Multiple supervised learning techniques
have been applied including linear minimum mean square
error estimation [65]], normalized least mean square algorithm
[66]], neural networks [[67]] [68]], deep belief networks [69] and
neural-fuzzy [70].

These algorithms share similar features in that they employ
the time series of previous traffic as input without considering
diverse parameters in the network. As a result, these algorithms
leave space for further exploration of dependencies between
related parameters and the queue length.

IV. UNSUPERVISED LEARNING-BASED CONGESTION
CONTROL ALGORITHMS

In this section, another category of learning-based CC
algorithms is presented: unsupervised learning-based CC al-
gorithms. Unsupervised learning techniques are used when
the category of data is unknown, and the sample set needs
to be clustered according to the similarity between samples
in an attempt to minimize the intra-class gap and maximize
the inter-class gap. Classic unsupervised learning algorithms
include K-means and Expectation Maximization. Compared
to supervised learning-based CC algorithms, unsupervised
learning-based CC algorithms are not widely used. They are
mainly used to cluster loss and delay characteristics.



TABLE III
SUPERVISED LEARNING: DELAY MEASUREMENT IN END-TO-END CC ALGORITHMS

Algorithms Scenarios

Details of the algorithms

Fixed-share experts [58] Delay-sensitive networks

Employ the experts framework to predict the RTT and then

adjust the network environment to improve the goodput

Fixed-share with exponentially
weighted moving average
without increasing computational

complexity [59]

Networks with fluctuating time scales

Propose a technique to estimate the RTT in scenarios with
diversified RTT.

. Real-time video applications
Bayesian theorem [62]

and wireless networks

Adapt the sending rate based on the estimated delay

Linear Regression [61]] Interactive video applications

Build a statistical function between the sending rate and RTT
and adjust the sending rate based on the linear regression given

the estimated RTT

TABLE IV
SUPERVISED LEARNING: QUEUE MANAGEMENT IN NETWORK-SUPPORTED CC ALGORITHMS

Algorithms Scenarios

Details of the algorithms

Neural networks [68]], [67] ATM networks

Predict the future value of the traffic based on the past traffic flows

Neural-fuzzy [70] ATM networks

Use the estimated average queue length to calculate loss and then control the

sending rate

Linear minimum mean square error .
Networks supporting AQM
estimation [65]

Establish a relationship between long-range traffic flows to estimate the future

traffic based on past traffic flows

Normalized least mean square [66] | Networks supporting AQM

Employ adaptive techniques to estimate the instantaneous queue length

Deep belief networks [[69] NDN

Calculate the average queue length based on the prediction of pending interest

table entries

A. Congestion Detection in End-to-end Congestion Control
Algorithms

1) Loss Clustering: In networking, unsupervised learning
techniques are used to cluster loss into several groups and
allocate resources for each group to achieve CC as shown in
Figure 4. A detailed summary is shown in Table V.

In [71], the packet delay variations reflect the available
bandwidth and loss types. Therefore, loss-delay pairs are used
to cluster the loss in networks. In [30] and [72], loss-delay
information is utilized. When a packet is lost, it will be marked
and tagged with the RTT value. Based on the RTT distribution,
these losses can be clustered into two groups: wireless losses
and congestion losses. The simulation shows that congestion
losses have a higher mean value of RTT while wireless losses
have a lower mean and higher variation for RTT. In [54],
the expectation maximization clustering technique is used to
cluster losses into contention losses and congestion losses in
OBS.

Unsupervised learning techniques are useful for training
but on their own, they cannot meet the demands of com-
plex networks. Compared with supervised learning techniques,
unsupervised learning methods are relatively basic, and are
mostly used to represent state spaces [73]] and deal with data

aggregation [74]. Therefore, research based on this approach
is limited.

2) Delay Prediction: There are only a limited number of
unsupervised learning-based CC algorithms suitable for delay
prediction because of the high processing demands for delay
calculation. Typical algorithms such as k-means [75] and the
associated mechanisms are presented in Figure 5 and Table VI.
Data such as the message size, validity of messages, distance
between vehicles and RUSs and the type of message is divided
into different groups and the lowest delay in each group is
selected as the communication parameter for each cluster.
Based on the communication parameter, a specific sending
rate will be assigned to each cluster. Therefore, based on the
measurement of delay, CC can be achieved.

Based on delay features of the network states, clustering
is achievable, however, given dynamic and diverse network
environments, unsupervised learning techniques are not so
well suited compared to supervised learning algorithms.

V. RL-BASED CONGESTION CONTROL ALGORITHMS

RL algorithms typically include a value function and a
policy function. The value function is responsible for mea-
suring the value of specific actions given the network state, to
determine if a given action can be chosen. The policy function



TABLE V
UNSUPERVISED LEARNING: LOSS CLUSTERING IN END-TO-END CC ALGORITHMS

Algorithms Scenarios

Details of the algorithms

Hidden Markov Models [30], [72] Wired/wireless networks

Uses delay-loss pairs to cluster data into several groups and assign

the specific sending rate for each group

Expectation Maximization Clustering [54]

Optical burst switching networks

Cluster loss into contention loss and congestion loss and adjust the

environment separately

TABLE VI
UNSUPERVISED LEARNING: DELAY CLUSTERING IN END-TO-END CC ALGORITHMS

Algorithms Scenarios Details of the algorithms
Cluster the data into groups based on message size, validity of messages, distance
K-means [75] | Vehicular ad hoc networks | between vehicles and RSUs, types of message and direction of message sender and assign a sending

rate for each cluster
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Fig. 4. Loss Clustering based on Unsupervised Learning Algorithms
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Fig. 5. Delay Clustering based on Unsupervised Learning Algorithms

is used to choose the action based on a given set of rules. In
a given iteration, the system chooses an action based on the
policy and the system provides feedback. The value function
then calculates the value of the action and updates it ac-
cordingly. Based on different mechanisms, RL algorithms are
divided into value-based schemes and policy-based schemes.
Typical value-based schemes include Q Learning and DQL.
Typical policy-based schemes include Policy-Gradient, Actor-
Critic (AC), Advantage Actor-Critic (A2C) and Asynchronous
Advantage Actor-Critic (A3C). The difference between value-

based schemes and policy-based schemes is that policy-based
schemes estimate the policy for actions and whether they
can satisfy scenarios with different actions, while value-based
schemes predict the value of actions directly. As a consequence
they are only suitable for the small set of actions. RL al-
gorithms can be applied in specific networks to improve the
efficiency of CC.

Amongst the different learning-based CC algorithms, RL
has gained the most attention. Different to supervised learning
methods, RL algorithms monitor the status of environment
continuously and react to the environment to optimize a utility
function, which leverages the information from the environ-
ment. Therefore, RL algorithms are more suitable to variable
and unstable network environments. Two main trends are
related with this kind of network. First, ubiquitous applications
in data centers and cloud computing require efficient CC
algorithms to deal with complicated network topologies [76].
In this context, reliability can be extremely important given the
variances that can appear in the system. RL algorithms adapt
to the errors in a timely manner based on learning from the
environment. Second, mobile devices such as smart phones,
often connect to wireless networks including WIFI and 4G
cellular in an ad hoc fashion. As such, more flexible network
topologies and diversified flows are a major challenge [77].
Traditional ML approaches are not dynamic enough to cope
with diverse network environments based on trained models,
unlike RL algorithms. These two trends are driving RL-based
CC algorithms. In RL-based CC algorithms, RL are used
to update CWND based on different scenarios in end-to-end
networks and to manage the queue length in network-assisted
environments.

A. Window Updating in End-to-End Networks

Compared to supervised learning and unsupervised learn-
ing techniques, RL algorithms are more responsive to envi-
ronment changes. Instead of predicting congestion loss and
delay as with supervised and unsupervised learning-based
CC algorithms, RL-based CC algorithms learn the CC rules



directly based on different environment information. Since RL
algorithms can incorporate real-time network conditions and
define actions accordingly, real-time control is possible in RL
algorithms.

Various explorations have focused on RL-based CC algo-
rithms that use RL to update CWND for specific scenarios.
The mechanism of RL-based CC algorithms are shown in
Figure 6 and the summary is shown in Table VII.

ATM is a typical network suitable for RL-based CC algo-
rithms. ATM networks are classic networks that support multi-
media applications. For different multimedia traffic, ATM
offers different QoS such as cell loss rate and delay. However
in ATM, highly time-varying traffic patterns can increase
the uncertainty of network traffic. Moreover, the small cell
transmission time and low buffer sizes in ATM networks
require more adaptive and high responsive CC algorithms. In
[78], an AC algorithm is applied to deal with these problems.
In the proposed CC algorithm, AC focuses on the performance
function based on the cell loss rate and voice quality. In
each step, the algorithm measures the action according to
the performance. In this way, different traffic patterns are
connected with corresponding actions. Simulation results show
that the cell loss rate is low and voice quality is maintained.

Software Defined Networks (SDNs) provide a new archi-
tecture for future networks that separate the forwarding and
control planes. The control plane has the ability to manage
the overall network centrally. Efficient CC algorithms are
essential for SDNs. In [76], Q learning is used to tackle such
advanced networks. The trained algorithm show that higher
link utilization can be achieved.

Named Data Networking (NDN) is an emerging future
network architecture as well. The main characteristic of NDN
is connectionless, providing content perceptibility and in-
network caching. Typical applications of NDN are mobile
and real-time communications. Therefore, CC algorithms are
expected to cope with diverse and dynamic content. In [39], the
deep RL algorithm considers the diversity of different content
and adds a prefix when requesting content into the network.
Therefore, the variety of content is considered when a given
action is taken.

Satellite communication networks are dynamic and have
time-varying flows. High bandwidth and high elasticity are key
features. Video streaming is one representative application. In
satellite communication networks, frequent satellite handover
can be a severe problem, which may result in routing failures,
packet blocking and channel quality impacts. To deal with
these problems, [41] employs DDPG to design a multi-path
TCP. By measuring the re-transmission rate of each sub-flow,
the RTT and ACK number are considered and the algorithm
degrades the possibility of handover.

Internet of Things (IoT) is a product of rapidly evolving
wireless technology. Some core features of IoT are local com-
putation, high variability of use and potential computational
demands. In [79], Q learning was used to satisfy diverse
IoT networks with reduced computational needs with strong
learning capabilities. The proposed algorithm showed that the

adjustment action was suitable for real-time processors and
memory demands of IoT environments.

Wired networks are not typical scenarios in learning-based
CC field. Wired networks are relatively stable compared
to wireless networks. Of course, some research covers this
scenario as well e.g. [80]]. In [80], high bandwidth and under-
buffered bottleneck links were taken into consideration, as
typical features of wired networks. The states of the algorithm
included multiple parameters such as packet inter-sending time
and inter-arrival time of input ACK reflecting the information
of the current available buffer information. Therefore, the
algorithm achieved a better balance between throughput and
delay.

Wireless networks are a research hot-spot for learning-based
CC algorithms especially Ad hoc Wireless Networks (AWNs).
AWNSs are a collection of mobile wireless nodes without
any fixed infrastructure. Therefore, AWNs have constrained
resources, limited processing and unpredictable mobility. They
are also highly dynamic. In [81], Finite Action-set Learn-
ing Automata, a learning automata whose unique feature is
learning the network state faster with reduced information
and negligible computational requirements, contains a finite
number of actions. The algorithm takes effect in learning
the dynamic wireless environment with limited consumed
resources. While in [82], Continuous Action-set Learning
Automata was applied in AWNs. The discretization of Fi-
nite Action-set Learning Automata may not be proper in
all situations, e.g. the discretization can be too coarse or
too fine-grained. Therefore, Continuous Action-set Learning
Automata was introduced to deal with an infinite number of
actions. It maintains an action probability distribution. The
advanced algorithm achieves better performance. Of course,
more computational and training resources are consumed.
Moreover, in [83]], Q learning combined with a grey model was
used to predict throughput and performance of CC algorithms
in AWNSs. Due to the real-time evaluation of throughput, the
algorithm adapts to the dynamic environments better.

The RL-based CC algorithms above focus on single sce-
narios, however there are some RL-based designed for more
complex (multiple) network scenarios. For instance, [84], [85],
[36] and [32] propose an AC algorithm to deal with congestion
problems in networks with time-varying flows. In [77]], the RL-
based CC algorithms are used in networks with sparse rewards
such as video games, while in [86], the scenario focuses on
continuous, large state-action spaces.

From the above, it can be seen that RL-based CC algorithms
can satisfy diverse network scenarios with high adaptability
and strong flexibility. However, there are some limitations. For
instance, convergence is very hard to guarantee for continuous
tasks and complex algorithms. In addition, state abstraction is
challenging. Current algorithms require significant storage to
store states and actions and demand considerable memory re-
sources. Moreover, their computational complexity is relatively
high. As a result, though RL algorithms show strong learning
capabilities, realistic applications require further exploration
due to the engineering issues identified.



TABLE VII

RL: WINDOW UPDATING IN END-TO-END CC ALGORITHMS

Algorithms

Scenarios

Details of the Algorithms

AC [78]

ATM networks

Employ the actor critic algorithm to minimize packet loss

rate and preserve video/voice quality

Train an off-policy method based Q learning and an

Q learning and Sarsa [[76] SDN online-policy method based on Sarsa to control congestion.
Both algorithms achieve good link utilization
Learn an optimal CC policy by taking the diversified contents
DQL [39] NDN
in NDN
. . Lo Present an intelligent algorithm to improve the performance
DDPG [41] MPTCP in satellites communications

of low earth orbit satellite communications

Fuzzy Kanerva-based Q Learning [79]

ToT

Reduce the amount of memory needed to store the algorithm

history to support larger state spaces and action spaces

Q learning [80]

Wired networks with under-buffered

bottleneck links

Input acknowledgement inter-arrival time, packet inter-sending
time, the ratio of the current RTT, minimum RTT, the slow start

threshold and CWND size to get adjustment information

Input the data including the inter-arrival times of ACKs and

Finite Action-set Learning Automata [81] AWNSs
duplicate packets and output the window size
Continuous action-set learning automata [82] AWNs Maintain an action probability distribution
. Take throughput and RTT into consideration when projecting
Q learning [83] AWNSs

the state spaces to action spaces

DQL [34]

Wireless networks

Input the states consisting of CWND, RTT and the

inter-arrival time and then output the sending rate

Continuous action-set learning automata [87]

Wireless networks: Multi-hop,
single-hop such as wireless LANS,

cellular, and satellites networks

Maintain an action probability distribution

Design a multi-agent congestion controller based on the

AC [84] Network with time-varying flows
actor-critic framework
AC algorithm is applied in LSTM-based representation networks,
AC [85] Network with time-varying flows which shows effectiveness and superiority compared with
well-known MPTCP CC algorithms such as wVegas
A3C [77] Task with sparse reward such as video | Propose a partial action learning method which supports delayed

games

and partial rewards

Q learning [86]

Continuous or large state-action space

Abstract the state space and action space based on Kanerva

coding

PPO [40]

Internet services such as live video,

virtual reality and internet-of-things

Detect network and data patterns such as latency to get the

necessary adjustment

Q learning [36]

Dynamic networking

Detect the average packet arrival interval, average ACK

interval and average RTT to adjust the CWND size

A3C [32]

Network with diversified flow size

Employ the RL algorithm to configure the initial window
and CC policy
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