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Abstract

As we witness the fast growth of the Unmanned Aerial Vehicles (UAVs) field,
new applications and services emerge at a rapid pace. Above all, the interest in
groups of UAVs working together (swarms) is gaining momentum. This interest
emerges since swarms are able to undertake more sophisticated tasks. Further-
more, they can also increase task performance and/or robustness. However,
organizing a multi-UAV flight is not easy, involving challenges in terms of (i)
swarm formation definition, (ii) takeoff procedure, (iii) in-flight coordination,
(iv) communication between the swarm elements, (v) swarm layout reconfigu-
ration, (vi) handling the loss of swarms elements, and (vii) controlled landing.
These and other issues still hold back the mainstream adoption of swarms in
sectors such as agriculture, border surveillance, and parcel delivery.

In this work we provide solutions for two of the main critical challenges:
(a) swarm layout reconfiguration, and (b) handling the loss of swarm elements.
A wide set of experiments were made using our own realistic UAV emulation
tool (ArduSim) in order to validate our proposals. The experiments show that
the chances of facing collisions during the reconfiguration are greatly reduced
even in error-prone scenarios, and that, in many cases, the loss of a UAV is
handled seamlessly; otherwise (in the worst-case scenarios) a delay of just a few
seconds is introduced. Additionally, this work addresses cases where, due to the
lack of proper communication between the swarm elements, a swarm splits up.
Experiments show that with our swarm resilience mechanisms those cases are
inherently solved by creating autonomous sub-swarms which will then complete
their part of the mission independently.
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1. Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, are being increas-
ingly used by the general public for different applications such as aerial pho-
tography and video, topography, entertainment, etc [1]. In addition, UAVs are
being adopted for specialized, business-oriented applications such as precision
agriculture, border surveillance, parcel delivery, thermal inspections, and even
for people monitoring under the COVID-19 pandemic [2, 3]. Although, new use-
ful applications are still created, working with only one UAV presents certain
limitations. For instance, a single UAV cannot carry a high load, cannot cover
a large area before the batteries are depleted, etc. Therefore, current research
endeavors are moving their focus towards the use of groups of UAVs, also called
swarms. The spectrum of possibilities arising by having UAVs working collab-
oratively in a swarm are countless. Not only can a swarm perform the previous
applications in parallel, more efficiently, or with more redundancy, but they also
give rise to brand-new applications [4, 5]. However, coordinating a swarm is not
an easy task, and many new issues arise such as: (i) swarm formation defini-
tion, (ii) takeoff procedure [6], (iii) in-flight coordination, (iv) communication
between the swarm elements [7], (v) swarm layout reconfiguration, (vi) handling
the loss of swarms elements, and (vii) controlled landing.

This document focuses on handling two main issues related to a swarm
flight: the loss of UAVs in the swarm, and the reconfiguration of the swarm
layout. Handling the loss of a swarm element is of uttermost importance. When
using multiple UAVs the probability that one of them will fail during flight
increases significantly. If proper countermeasures are not foreseen, the swarm
cannot continue performing the specified task, defeating all the earlier mentioned
benefits of using a swarm. With proper mechanisms, we are able to detect
when a UAV leaves a swarm (e.g. due to a failure), and update the current
behaviour such that the other UAVs can continue their task. However, once one
(or more) UAVs are no longer in their position in the formation, the necessity
for reconfiguring the swarm emerges. This is, however, not the only reason why
a reconfiguration might be useful. Consider for instance a search and rescue
mission. Typically, at the beginning, the location of the target is unknown, and
thus a large area should be covered, meaning that a more disperse formation is
optimal. However, upon discovering the item of interest (by one of the UAVs),
the swarm should flock together in order to provide a more specific service.

Taking the aforementioned issues into consideration, the first main contri-
bution of this work is enhancing a swarm-based protocol called MUSCOP, that
was first presented in [8, 9]. In that version, swarm reconfiguration was not
considered at all, and only basic resilience was provided for the swarm leader.
Although the swarm leader is the most important UAV in many applications,
it is also important to provide resilience for the other UAVs. This is especially
true in the case of MUSCOP, as the swarm leader will wait for arrival confirma-
tion of all UAVs at certain checkpoints during the mission. As the experiments
prove, the version that we present in this work is able to handle the loss of any
swarm element, including cases where multiple UAVs fail at the same time. We



achieve this goal by adding additional logic to the MUSCOP protocol. Due to
this extension, this proposal is also able to handle swarm split-up cases. Swarm
split-ups occur when a group of UAVs is unable to communicate with another
group of UAVs. In this work, the two groups will both form their own au-
tonomous (sub)swarm. Lastly, we complete this work by adding the capability
of reconfiguring a swarm mid-flight and in a safe manner, so as to minimize the
chances of collision.

We tested our protocol extensively considering both robustness and scalabil-
ity issues, and relying on our own realistic multi-UAV emulator called ArduSim
[10]. The results show that the loss of a swarm element is handled seamlessly in
nearly all cases, with only a small delay of a few seconds in worst-case scenarios.
Other experiments show that our protocol is scalable since the overhead (which
only occurs in worst-case scenarios) is independent of the number of UAVs. Fur-
thermore, although a totally collision-free reconfiguration is not guaranteed, we
also show that our algorithm greatly reduces the chances of collision.

The rest of this work is organized as follows: in Section 2 we provide an
overview of related works on this topic. In Section 3 we offer a description
of our own realistic simulator/emulator, used to develop and test the current
work. Later, in Section 4, we describe the already developed protocol called
MUSCOP, which forms the basis of this work. This is followed in Section 5 by
our new approach, later referred to as RR-MUSCOP (Resilient Reconfigurable
MUSCOP), which makes the MUSCOP protocol resilient to the loss of swarm
elements. Our solution is then validated by a set of experiments which are
described and evaluated in Section 6. Section 7 concludes this work, including
some constructive criticism, and ideas for future works.

2. Related work

The specific topic of handling the loss of a swarm element has only been
addressed by a reduced number of authors. However, the research into generic
swarms is much more common. Intel was a pioneer in this area by being the
first to create a UAV-based light show. This light show was held in 2015 in
Germany, and 100 drones were used!. Just a year later they increased this
number to 500 UAVs. A similar show was held by the Chinese company EHANG
in December 20172, this time with 1.180 UAVs. Later, in July 2018, Intel showed
the world a UAV-based light show with an astonishing amount of 2.018 UAVs,
and with that they broke the Guinness world record®. While those light shows
are highly entertaining, they are managed centrally, and very strict deployment
conditions were enforced to guarantee success. This causes them to not be
flexible enough to adapt to any number of UAVs, under any conditions, and for

Thttps://www.intel.com/content /www /us/en /technology-innovation/article/coachella-
drone-light-show.html

2https://www.popsci.com/china-drone-swarms/

Shttps://newsroom.intel.com /news/intel-breaks-guinness-world-records-title-drone-light-
shows-celebration-50th-anniversary/



any swarm layout, while keeping computational overhead to a minimum. They
are, however, not without value, as they showed the world (and not only the
scientific community) what UAV swarms are capable of.

Focusing more on scientific research, we can take a look at the work by Pes-
tana et al. [11]. They presented a modular multi-robot swarm architecture,
where each swarm agent consists of an AR Drone 2.0 quadrotor connected to
a laptop which runs the software architecture. Their approach relies on the
Robot Operating System (ROS) software framework. This makes their work
available for a great audience, since ROS makes code sharing and module reuse
easy; also, the AR Drone 2.0 is readily available on the market. In their ap-
proach, the only information shared among swarm agents is the position of each
robot, and they rely on a visual-based solution for localization based on ArUco
markers, which are used to sense and map obstacles. In addition, they rely on
an Extended Kalman Filter localization and mapping method. However, their
approach heavily depends on the Wi-Fi links between the UAV and the laptop,
which caused some problems according to the authors.

Mulgaonkar et al. [12] tested the performance of micro quadcopter swarms in
tight/dense formations. The drones also demonstrated to be robust to collisions
at velocities of 4 m/s. While we acknowledge the advantages of micro UAVs, we
also believe that, due to their low mass, they are usually unable to withstand the
natural elements in an outdoor environment. This makes the small, inexpensive
and agile micro UAVs only useful for indoor applications, whereas we tend to
focus on outdoor applications.

The work by Dano et al. [13] specifically addresses swarm resilience. They
provide resilience from a systems engineering point of view. Their work focuses
on a higher abstraction layer than ours, and addresses resilience as a whole,
whereas we provide a specific solution for the loss of swarm elements. They
implemented contract-based design invariant contracts in a Matlab-based flight
simulator to quantify the defined location resilience metrics of their system.

Regarding the particular topic of flight configurations, it has been inves-
tigated by different authors. The work by V.T. Hoang et al. [14] presents
an algorithm to reconfigure a UAV swarm based on the angle-encoded Particle
Swarm Optimization (PSO), and a visual inspection of the infrastructure. They
begin with a 3D representation of the surface to be inspected, and a set of inter-
mediate waypoints, based on the assumption that an optimal path is produced
by using the 6-PSO path planning algorithm; new constraints are proposed to
decrease the chances of collision, and to increase task performance. Their work
differs from ours as they solely rely on a limited number of reconfigurations.
In particular, they only focus on alignment, rotation and shrinkage, while our
proposal is able to change the entire topology of the formation.

Recently, Chen et al. published a paper [15] that is focused on effectively re-
organizing the surviving UAVs in a severely damaged UAV swarm. They start
by analysing the damage-resilience problem of unified UAV Swarm Networks
(USNETSs). The goal of their work was to design a damage-resilient mecha-
nism, which is usually divided into multiple disjoint subnets of isolated nodes.
Three challenges are investigated: first, the network will be divided into several



disjoint subnets or isolated nodes; secondly, they work on restoring the net-
work connectivity; finally, they explain how to reduce the computational and
communication overhead.

Furthermore, it is important to keep the usability of our research in mind.
Tahir et al. [16] wrote a survey, and a substantial part was dedicated to re-
view the public awareness of drone technology. To that end they performed a
questionnaire; their results show that there is only a moderate knowledge about
drones, even though the participants were exclusively academics. The results
also showed that the participants were still hesitant to use drone technology in
their activities/business due to security concerns. However, many participants
also acknowledged the possible benefits UAVs can offer.

Traditionally, UAVs are controlled with a remote joystick controller. This
is, however, not very intuitive and pilots need some training before they can
confidently use the UAV. The complexity also rises when a swarm is used.
Therefore, new interfaces are currently being studied. Tezza et al. [17] presented
a survey on the state-of-the-art human-drone interaction. They state that,
depending on the application and its level of autonomy, humans play different
roles when interacting with drone systems. Those roles can be: active controller
(e.g. drome racing), recipient (e.g. package delivery), social companions (e.g.
Joggobot [18]), or supervisors (e.g. monitoring an autonomous inspection).
They proceed by reviewing natural user interfaces such as: gesture, speech,
gaze, touch, and even brain-computer interfaces. A similar survey, but studying
different works, is provided by [19].

Finally, for any kind of UAV swarm applications, the UAVs have to be able
to communicate with each other. This can be particularly difficult because
UAVs can move in a 3D space and with a high velocity. For that reason,
traditional routing protocols are not always suitable. Networks constrained by
those characteristics (3D mobility, high velocity, uncertain connectivity, etc.)
are called Flying Ad-hoc Networks (FANETSs). Bujari et al. [20] published a
work were they go in depth of what FANETS are, how they differ from Mobile
Ad-Hoc Networks, and what sort of routing problems exists in FANETSs. They
then proceed by describing and comparing various state-of-the-art 3D routing
algorithms. In an earlier work of Bujari et al. [21] they presented numerous
application scenarios, and investigated how the mobility of the nodes impacts
the performance of routing algorithms. As stated earlier, nodes in FANETS
move in 3D space with a high velocity. However, this movement pattern is
seldom random. In their work they state that, although random mobility is
easy to simulate, it represents unrealistic flying movements. Therefore, they
introduce other, more realistic, mobility patterns. For each pattern they go
over the advantages, disadvantages and for what type of application it would fit
the best.

Our work differs from the former ones as we specifically focus on the loss
of any number of swarm elements, no matter what their role, and on the re-
configuration of a swarm into any new desired formation. We provide actual
implementations (that run both in our simulated UAVs using ArduSim, and
also in real UAVs being deployed), and discuss several swarm split-up scenarios,



a topic which is not addressed by the aforementioned research works.

3. ArduSim simulator: an overview

The presented protocol is developed and tested with the use of our own multi-
UAV flight simulator/emulator called ArduSim [22]. It is available online [10]
under the Apache License 2.0. The simulator has many features, being these
and its inner workings explained in [22]. In this work we will briefly highlight
its key characteristics, and provide a quick overview of its user interface.

ArduSim’s key characteristics are:

Protocol deployment: During the development of ArduSim, special atten-
tion was paid in order to ensure a fast and reliable deployment on real
UAVs. To accomplish this, ArduSim (as a simulator) uses the same pro-
tocols and standards as real UAVs would use. Almost all the UAVs avail-
able on the market use the MAVLink communications protocol [23]. This
lightweight protocol uses a modern hybrid publish-subscribe and point-
to-point design pattern in order to facilitate communication. ArduSim
also uses this protocol, and by merely adding a Raspberry Pi (a single
board computer) to the UAV, and connecting it to the telemetry port of
the flight controller, communication can be established. In order to make
the deployment straightforward, all this is abstracted inside the core of
ArduSim.

Scalability: ArduSim was designed to be a multi-UAV flight simulator.
Therefore, we put a lot of effort into making it scalable to a large number
of UAVs. Resulting in a simulator that is able to run up to 100 UAVs in
near real time, and up to 256 UAVs in soft real time on a high-end PC
(Intel Core i7-7700, 32 GB RAM); higher number of UAVs can easily be
supported through a cluster of machines.

UAV-to-UAV communication: ArduSim uses the 802.11a standard to com-
municate, both between UAVs themselves, and between UAVs and the
ground station. When ArduSim is used as a simulator, communication
is accomplished with virtual links. Whenever protocols are thoroughly
tested, they can be deployed on real UAVs. In this case, ArduSim will
send messages via User Datagram Protocol (UDP) broadcasts.

API: Many different protocols need to use similar basic behaviour like:
taking off, landing, communicating between UAVs, etc. Ardusim gives
access to this behaviour through an Application Programming Interface
(API) in order to facilitate a faster protocol development.

Data logging: ArduSim extensively logs data in various formats after a
flight, to make it development and debug friendly.

The main interface of ArduSim is shown in Figure 1. It consists of three
major parts. There is an area (1) where the movement and the mission of the



UAVs (if applicable) are shown. In this same area there are some controls to
move around the map. Starting and stopping the experiment is done in area
(2). Here the user is also able to ask for more information about the state of the
UAVs (with button “Show progress”). Finally, there is a region (3) displaying
the messages generated by the protocol under development.

:00:13 UAV 1: Reached wayp|> |

:00:23 UAV 0: Reached wayp Show progress | | setup | | starttest || | 2
:00:23 UAV 1: Reached wayp|
:00:25 UAV 2: Reached wayp|

Background & Micr

Figure 1: ArduSim user interface.

4. The MUSCOP protocol

Since this work is an extension of the MUSCOP protocol, we will first pro-
vide an overview of this protocol. However, a more in depth explanation can
be found in [8]. The objective of the MUSCOP protocol is to maintain a sta-
ble flight formation when a swarm of UAVs follows a preplanned mission. The
protocol uses a master-slave model to synchronize the swarm at each waypoint.
Only when all the UAVs arrive at a waypoint does the master issue the com-
mand to go to the next waypoint. In between the waypoints, all the UAVs are
following their own mission. This mission is calculated before taking off, and
it is a modification of the original mission defined by the user. The modifi-
cation takes the relative position in the swarm into account. Throughout the
flight, messages are broadcasted periodically by both master and slaves. In
order to simultaneously send and receive messages, two threads are used: the



Talker Thread and the Listener Thread. The Talker Thread sends the messages
periodically, and there are a few different types of messages:

e Hello: This message is sent from slave to master in the setup phase so
that the total number of UAVs can be determined.

e Data: This message is sent from the master to the slaves. It contains the
original mission, as well as information such as position in the formation,
for the slaves to calculate their own mission.

e DataAck: Acknowledgement messages are used so that the master knows
the slave received a certain packet.

e ReadyToFly: Once all the slaves have received their data message and
acknowledged it, the master will start sending ReadyToFly messages.
These messages will prepare the slaves to take off.

e ReadyToFlyAck: The previous message is acknowledged by this mes-
sage.

e ReachWaypointAck: Once all the UAVs have taken off and have reached
the first waypoint, the slaves will start sending this message. The message
contains the number of the last waypoint that has been reached.

e MoveToWaypoint: The master listens and waits until all the UAVs have
reached the next waypoint. When this happens, the master will start
sending messages of the MoveToWaypoint type. When a slave receives
these messages, it will start flying to the next waypoint.

e Land: Once the last waypoint has been reached, the master will send
land messages. These messages include a location such that the slaves are
able to calculate their own landing location. During the landing phase,
the slaves will move towards the master so that they all land in a compact
manner.

The listed messages are received by the Listener Thread of all the other
UAVs within range. This information, along with the location of the UAV, is
used in order to determine what the UAV should do next: move to the next
waypoint, wait at a waypoint, or land.

5. Proposed resilience mechanisms

As stated before, we extend our MUSCOP protocol with two new resilience
mechanisms. The MUSCOP protocol, as presented in Section 4, was rudimental
and imposes a constant flight formation during the mission. Besides that, the
loss of any UAV in the swarm will halt the entire swarm mission. This occurs
because, if the master fails, the message MoveToWaypoint will never be sent,
causing slaves to wait indefinitely. Hence, it assumes perfect operations at all
times. Since the master is the most important UAV in a swarm, we first started



working on its resilience. A preliminary attempt was made in our previous work
[9]. Although this improved the robustness of the MUSCOP protocol, there was
still no way to recover from a failing slave. Therefore, in this work we start by
extending MUSCOP again, this time providing resilience for any (and multiple)
failing swarm elements. At the same time, this new extension allows for a swarm
split-up. Afterwards, we disburden MUSCOP from the constant flight formation
by providing a computationally efficient reconfiguration scheme. And thus, the
new version of MUSCOP, referred to as RR-MUSCOP provides Resilience and
Reconfiguration to the swarm.

5.1. Resilience for failing UAVs

We use the expression a UAV fails in order to describe all the situations
where a UAV is no longer able to communicate with the rest of the swarm
members. Keep in mind that this does not necessarily mean that the UAV is
no longer able to fly, although this situation may also occur. In the case of this
work, we use it to state that a UAV is not able to receive and/or send protocol
messages mentioned in Section 4. A UAV can fail for many reasons: the batteries
could be depleted, the wireless antenna could be broken or disconnected due
to mobility, a bug in the code could impede the sending and/or receiving of
messages, or it could simply be too far away from the other UAVs (outside their
radio range). In particular, the latter issue could cause the swarm to split up
when radio range limitations cause UAVs to form independent clusters, an issue
that will be addressed in section 5.1.3.

Our novel solution consists of two parts: before taking off it is decided who
will be the master, and who will be the backup masters. During flight, we work
with timeouts to check if a UAV is still alive. If a UAV fails during the flight,
that UAV will be excluded from the list of masters. If that UAV was the current
master, the following UAV in the list of masters will become the new master.
This will be done at every waypoint, and by each UAV individually.

5.1.1. List of masters

Before taking off, an ordered list of masters is created that encompasses all
UAVs. We include every UAV of the swarm in that list since, theoretically, all
the UAVs could potentially become a master in extreme conditions, although in
practice it is very rare that the entire swarm would fail during a mission. The
list of masters simply consists of the IDs of the UAVs in a specific order. This
order could be random, or in order of ID (high to low). However, we decided
that there is an optimal ordering, as we now detail. Since in the RR-MUSCOP
protocol it is necessary that the slaves can communicate with the master, and
vice versa, it is in our best interest to choose the master so that it is located at
a strategic position in terms of radio range, i.e. in the center of the formation.
Fortunately, when developing a protocol to let UAVs take off safely, we needed
the opposite: a list starting with the UAVs furthest away from the center [6].
Since RR-MUSCOP uses the safe takeoff feature while taking off, we can reuse
this list so that no extra calculation, apart from reversing the list, needs to be
done.



Algorithm 1 is the proposed approach to generate this list. Basically, it
consists of the following four steps:

1. Find a central location with respect to the UAVs deployed on the ground
(before takeoff).

2. Calculate the euclidean distances from that central location to the posi-
tions in the flight formation.

3. Sort this list in descending order.

4. Assign each location in the flight formation to the closest UAV on the
ground, in descending order, given that evaluated distance.

This algorithm has a computational cost that grows with O(n?) (where n
equals the number of UAVSs). Nevertheless, it is feasible to run it on embedded
devices with a low computing power (e.g. a Raspberry Pi). When a failure
occurs, we consider that such additional delay and resource consumption during
the flight should be avoided whenever possible, especially when there are many
UAVs in the swarm. Hence, we decided to use the outcome of this algorithm,
that is run at takeoff time, to simultaneously create the ordered list of masters,
instead of running it separately at a later time.

Algorithm 1 SafeTakeOff(numUAVs, groundLocations, flightFormation)

Require: groundLocations.size = numUAVs A
flightFormation.size = numUAVs
centerLocation = mean(groundLocations)
airLocations = f(centerLocation, flight Formation)
airList = (0,0)
for loc in airLocations do
airList < (loc, loc.distance(centerLocation))
end for
sort airList in descending distance order
fit =(0.0,0)
totalError = MAX _VALUE
for aLocation in airList do
bestError = MAX _VALUE
for gLocation in groundLocations do
error = gLocation.distance(aLocation)®
if error < bestError then
bestError = error
bestID = gLocation.ID
end if
end for
totalError += bestError
fit + (id, groundLocations|bestID], aLocation)
groundLocations.remove(bestID)
: end for
: return fit
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5.1.2. Updating the swarm

Now that we have established who will be the next master in case the current
one fails, we need to determine when a UAV is considered to have failed, and
how to solve that critical issue.

In order to know when a UAV fails we propose using timeouts. As shown
in Algorithm 2, every UAV has a list consisting of the ids of the other UAVs,
along with a timestamp. That timestamp is updated periodically whenever
a message is received from that UAV. At each waypoint that list is checked
and, if the time elapsed since the last timestamp exceeds a certain threshold
(assigned empirically in later experiments), we assume that the UAV has failed.
Therefore, that UAV will be excluded from the list of masters, and if the UAV
that failed was the current master, the next one in the list will become the new
master. All the actions usually performed by the MUSCOP protocol are, of
course, also executed.

5.1.3. Swarm split-up

Since the procedure described above is executed in all the UAVs, there is a
possibility that the outcome is not the same for all of them. Most commonly,
the UAVs in the swarm will fly close enough to each other so that they can
receive all the messages that are broadcasted. However, when flying further
apart, this may not be true in some cases, causing clusters to be formed. Still,
a swarm could perfectly complete the mission as long as swarm members can
communicate with some master, despite there are cases where swarm split up
causes clusters to operate separately from the splitting time onwards. To give
a better explanation of this scenario, an example of a flight formation is given
in Figure 2.

Radio Range

¥

-
+

& %

-
>

¥ 0.

N~ N o O g
UAvV O UAv1 UAV 2 UAV 3 UAY 4
Group A Master Group B

Figure 2: Flight formation example.

In this formation, UAV 2 will be the master, and all the UAVs can commu-
nicate with it, hence allowing the mission to be completed without any problem.
However, if for some reason the master UAV 2 fails during the flight, UAV 1
will be (in our example) the new master. Due to the large distance, UAVs 3 and
4 are unable to communicate with UAV 1. If the procedure to make a master
switch was executed centrally, this situation would cause a problem, resulting
in failure of the mission, or an extra time overhead. Therefore, in our solution,
all the UAVs take that decision individually. In this case, such an approach will
result in two independent swarms to be created, groups A and B, and both of
them will continue the mission without interacting with the other.
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Algorithm 2 UpdateSwarm(numUAVs, listOfMasters)

Require: listOfMasters.size = numUAVs

1:

10:
11:
12:
13:
14:
15:
16:
17:

TimeToLive = 5s

Setup phase:

Let LastTimeUAV be a hashmap of size(numUAVs)
for Id in numUAVs do

if Id != selfld then
LastTimeUAV.put(Id, currentTime)
end if

end for

Fly phase:
while waypoint not reached do

if Message received then
Id = readMessage()
LastTimeUAV.put(Id, currentTime)
Perform actions related to message
end if

end while
while waypoint reached do

for UAV in LastTimeUAV do
UAVTime = LastTimeUAV.get(UAV)
if currentTime - UAVTime > TimeToLive then
LastTimeUAV.pop(UAV)
ListOfMasters.pop(UAV)
end if
end for
if selfld == ListOfMasters.getFirst() then
TamMaster = True

end if
if TamMaster == True then
Perform actions related to master
else
Perform actions related to slave
end if

31: end while
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5.2. Reconfiguration scheme

The reconfiguration of the swarm will start after a triggering event. This
could be a user input, or some predefined event in the ground control station.
It will take place in two stages: an analysis stage where the calculations are
done, and a mobility stage where the UAVs move to their target locations in
a intelligent manner to avoid collisions. Both stages and their sub-steps are
presented in Figure 3, and detailed in the following paragraphs.

Reconfiguration J
Stage 1:
Analysis Allocate

UAVS

Allocate
altitudes

Send
target
location

Stage 2:
Mobility

Altitude reached

Position reached

Move z
Initial

VOO

Figure 3: Flowchart of the reconfiguration scheme

5.2.1. Stage 1: Analysis

In the analysis stage the master will first calculate the new locations of the
slaves. The idea is that the overall flight distance is minimised by choosing the
UAV that is already closest to a new flight position. In order to do so we reuse
Algorithm 1, where we substitute the groundlocation for the current location
of the UAVs, and the flightformation for the new (desired) flight formation. In
Stage 2 the UAVs will move from the current position to their new position.
In order to reduce the chances of collision, the UAVs are divided into sectors
based on their direction. Each sector will have a different altitude assigned
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to it. In that way, UAVs who were likely to collide will now fly at different
altitudes, and thus the risk will be decreased. Implementation details can be
seen in Algorithm 3. Once those calculations are done; the master will send the
result (i.e. the targetlocation(x,y,Az)) to the slaves, who in turn will reply with
an acknowledge message. Once the master receives the acknowledge message
from each slave, the swarm will transition to the mobility stage.

Algorithm 3 Section select procedure.

Require: numberO fSections > 0

1: for UAV in UAVs do

2: Ax + UAV.targetLoc.x — U AV.startLoc.x
3: Ay < UAV.targetLoc.y — UAV.startLoc.y
4: a < atan2(Ay, Ax)

5: if @ <0 then

6 a=a+2xmT

7 end if

8 sectorWidth = Wf’;ecm

9: sector < 0

10: for i in range(0, numberOfSections) do
11: man < @ X sectorWidth

12: max < (i + 1) X sectorWidth

13: if min < a < max then

14: Sector =1

15: end if

16: end for

17: end for

5.2.2. Stage 2: mobility

The mobility stage is further divided into three steps: first the UAVs will
ascend to their new altitude (i: Move_Z), depending on the sector they were
assigned, as previously explained. Once the new altitude is reached, they will
fly in a straight line towards their target location (ii: Move XY); finally they
will return to their initial altitude (iii: Move_Z Initial). In each step the master
will send messages to the slaves. When a slave receives the message it will per-
form the movement, and reply with an acknowledgement once the movement is
finished. The master receives the acknowledgements and, when all the slaves
have sent an acknowledge message (and the master has reached its position),
the master will transition to the next state. At that moment, the master will
start sending messages advertising its new state; slaves will receive those mes-
sages, and transition too. The messages sent by the master only contain an id
which represents the current state. They do not have to contain any location
information because it was already sent in phase 1.
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6. Experimental results

We have performed an extensive amount of experiments, which are divided
into two sections. First, experiments were made to validate the resilience scheme
of RR-MUSCOP. After those experiments we continued by testing different
reconfigurations.

6.1. Resilience for failing UAVs

We started by testing how often a UAV receives messages from another
UAV in the swarm based on channel parameters obtained from actual real-
life tests [24] (see Section 6.1.1). This experiment allowed us to set the variable
TimeToLive (see Algorithm 2) to a realistic value. We continued our research by
performing multiple experiments where we tested the loss of master(s), slave(s),
and different combinations of UAVs lost(see Section 6.1.2). We also performed
tests (in Section 6.1.3) with a high number of UAVs that are failing at the same
time, and also experimented with swarm split-ups. For all the tests, we measured
the time overhead introduced by our protocol. Each experiment, together with
the obtained results, is discussed in more detail below.

6.1.1. Message frequency

The talkerThread running on all UAVs sends a message every 200 ms, as
explained in Section 4. So, in an ideal environment, a UAV would receive
messages with that same frequency. However, since we are using UDP, it is
possible that messages are lost. Inside ArduSim we have a realistic model (based
on real experiments) for a transmitter based on IEEE 802.11a technology, and
using a 5dBi antenna. This model is used to simulate the broadcasting behaviour
as accurately as possible. Since our approach heavily depends on the messages
received, we wanted to investigate how the message revival rate changes when
the distance between the UAVs is increased.

For this experiment we simulated two UAVs flying at different distances from
each other. We started at a distance of 2 meters and increased it by 50 meters
until communication was no longer possible. After the experiment we calculated
how many messages were received per second, and normalized those values. We
omitted the messages exchanged during the setup phase, since they are not used
to check if a UAV is still alive, and therefore are not relevant for our analysis.

The result is shown in Figure 4, where we can see that the UAVs can com-
municate in a range between zero and 1400 meters. As expected, the percentage
of messages received drops w.r.t. the distance between UAVs. At a distance of
850 meters, almost half of the messages are lost on average. For that reason, it
is important that we keep the parameter TimeToLive large enough. We want
to avoid that a UAV is assumed to have failed when it was actually a mere
false-negative event. The only reason why we would like a low value for the
TimeToLive parameter is that, in the worst-case scenario, a UAV could fail just
when arriving to a waypoint. This would mean that the whole swarm would
have to wait for the entire timeout period to elapse prior to continuing with the
mission, hence causing an unwanted delay. Since, at this moment, there is no
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Figure 4: Message received percentage w.r.t. distance between UAVs.

possibility for a UAV to reenter the swarm, we tune our scheme so as to prior-
itize reducing any false-negative events. So, we decided to set the TimeToLive
parameter to 5 seconds, and thereby we virtually remove all false-negative cases,
as only UAVs flying at distances above 1250 meters from the master could face
such a problem. Furthermore, we believe that, in the unlikely event of a UAV
failing exactly at a waypoint, introducing a delay of 5 seconds is a small price
to pay when considering the mission as a whole.

6.1.2. Handling UAV loss

To test if our protocol works in a wide range of cases, we have considered
multiple experiments. In each experiment we have measured how long a UAV
stays at a waypoint. Then, we compared this scenario to a flight scenario where
no UAV fails. The time difference between both provides us the extra time in
the experiment associated to handling UAV failures. In all experiments, four
UAVs are flying by following a linear formation (at 10 m/s), with a distance
of 50 meters between consecutive UAVs; the TimeToLive timer was set to 5
seconds. The target mission (see Figure 5) has four waypoints, where waypoint
0 is right above the takeoff position, and waypoint 3 is at the landing place.

In our experiments, we classify the location where a UAV can fail into three
groups: (i) at a waypoint, (ii) just before a waypoint, and (iii) in-between
waypoints. We differentiate among these types of events because the exact
location where a UAV fails has a direct impact on the overall time overhead.
This is because the UAVs only detect if another UAV has failed after a certain
timeout has expired. At each waypoint, the swarm has to wait until all the
UAVs arrive before they are able to continue their flight. For that reason, if
a UAV fails just before reaching a waypoint, the swarm will have to wait for
the timeout to expire, causing a longer delay than if that same UAV had failed
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Figure 5: Example of RR-MUSCOP providing resilience, so that the swarm can continue its
mission even when a UAV fails.

at another point during the mission. Therefore, we conclude that failing just
when arriving to a waypoint is a worst-case scenario. With the same reasoning,
failing far away from the waypoint is a best-case situation. In this case, the
UAVs will arrive at the waypoint and, since the timer has already expired, the
time overhead will be significantly lower than in the former case. For each group
we tested the following five different scenarios.

A: a single slave failing at waypoint 1.

B: a single master failing at waypoint 1.

C: two slaves failing at waypoint 1.

D: a master and its backup failing at waypoint 1.

E: a backup master failing at waypoint 1, and the master failing at waypoint
2.

Overall, this results in 15 different experiments, plus one control experiment
where no UAV fails.

Table 1 describes the first experiments, where UAVs fail at 200 m from
a waypoint. We can observe that there is no extra delay introduced by our
protocol, and this is because, during those experiments, the UAVs had enough
time to recognize that another UAV had failed. Upon arriving at the waypoint
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they can act accordingly, without any extra delay. We can also see that some
values are negative; this simply means that, in that case, it was a bit faster than
the control case itself, where no UAV failed. Overall the values remain small,
and they are caused by ArduSim, and not by our protocol.

Table 1: Time overhead for the different scenarios at 200 m from the next waypoint.

Section | A ms] B [ms] C[ms] D [ms] E[ms]

0 150 122 - 32 140 112
1 - 50 - 33 -1 300 -150
2 -148 -184 -104 - 51 99
3 448 -185 197 200 -206

Table 2 describes the same experiments, but this time the UAVs fail at 15
meters from the waypoint. The delay ranges between 0 and 5 seconds, because
the UAVs fail near to the waypoint. We can also observe that the delay is
unrelated to which UAV fails (the master or the slave), and that it is also
unrelated to how many UAVs fail. Hence, the delay is only related to when (or
where) a UAV fails.

Table 2: Time overhead for the different scenarios at 15 m from the next waypoint.

Section | A [ms] B [ms] C[ms] D [ms] E[ms|

0 - 77 994 20 123 75
1 2554 2993 2555 2099 3006
2 57 102 -153 -153 2101
3 -1 301 147 147 -1

In the last set of experiments (see Table 3) the UAVs fail just when arriving
at the waypoint, before actually sending the message that confirms their arrival
to that waypoint. Therefore, in this case, the delay is the longest one, and it
is equal to the value of TimeToLive, which was set to 5 seconds. Also, in this
case, we can observe that the delay is unrelated to which UAV fails, or to how
many UAVs have failed.

Table 3: Time overhead for the different scenarios just when reaching the next waypoint (0
m).

Section | A [ms] B [ms] C[ms] D [ms] E[ms]

0 -198 383 234 -128 -135
1 4999 5601 5601 5383 5002
2 -3 -397 -397 -394 4802
3 0 203 4 0 0

From our experiments, we can conclude that the delay depends on the time
when a UAV fails, specifically on the pending time to reach the next waypoint
¢ in the mission, represented as t,,p,. As described in Equation 1, the delay will
always vary from 0 to T¥meToLive, which in our case was of 5 seconds.
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TimeToLive — tyyp,, if typ, < TimeToLive

0, otherwise

Delayl[s] = { (1)

6.1.3. Extreme communication conditions

This experiment will focus on scalability. We will compare experiments with
a high number of UAVs (100), a moderate number (25), and with a low number
of UAVs (4). In those experiments, some of the UAVs will fail 15 meters before
a waypoint. The mission that we used had 3 waypoints, the flight speed was set
to 10 m/s, and the TimeToLive value was set to 5 seconds. We measured the
time it takes for UAVs to fly from one waypoint to another (flight time), and
the time waiting at the waypoints (wait time). To this purpose, we designed
three scenarios:

a) A control flight where no UAV fails.

b) A flight where half the number of UAVs (and the master) fail at a partic-
ular waypoint.

c) A flight where 10% of the UAVs (and the master) fail at consecutive
waypoints (3 failures overall).

We believe that those three scenarios are enough to validate the scalability of
our approach sufficiently. Scenario b is designed to test what happens in the
very unlikely case of having many UAVs failing at once, whereas scenario c¢ is
more realistic, although the fail rate is still high.

The results are shown in Figures 6a and 6b. As shown, the impact of scaling-
up the swarm is quite low. The flight time is unrelated to the number of UAVS,
and of course it only depends on the travelled distanced and the flight speed. The
wait time increases slightly due to message buffering. The delay is the largest
in scenario c, since three UAV failures occur, and thus we have three times a
delay of about 3 seconds. Overall, the delay remains low compared to the total
flight time. In addition, the delay is independent of the flight time itself; that
is to say, the overall flight time is primarily dependent on the flight distance,
while the delay is primarily influenced by where the UAVs fail, and by message
buffering in the cases where a high number of UAVs is used. Furthermore,
ArduSim can at anytime introduce small and unpredictable delays, as shown in
earlier experiments. This figure also confirms some of our previous statements,
since one can clearly see that, in those cases where UAVs are failing, a delay
is introduced. As shown in the last case (10% of the UAVs failing at each
waypoint), the overall delay grows with the number of times UAVs fail during
the mission.
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Figure 6: Time overheads when varying the number of UAVs that fail.

6.1.4. Swarm split-up

As explained in Section 5.1.3, a swarm split-up can occur whenever UAVs
are too far away from each other, thus making direct communication impossible.
Our protocol has been developed in such a way that all the UAVs take individ-
ual decisions about whether or not another UAV is still alive. Therefore, the
protocol is inherently able to handle a swarm split-up correctly. In our experi-
ment 13 UAVs flew according to a specific flight formation to force partitioning
to occur, as exemplified in Figure 2, which makes a swarm split-up possible. We
will provide an overview of the events occurring during the mission:

1. The UAVs are placed close to each other, so that all the UAVs know about
the existence of the other UAVs.
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. The UAVs take off and fly to their place in the swarm formation.

. They reach their place in the swarm formation, and we can visually see
(Figure 7a) that different groups (or subswarms) are formed, being the
master UAV always in the middle. Notice that the groups are only formed
visually; logically, the UAVs still belong to a single swarm.

. The mission starts, and the UAVs go to the first waypoint.

. Upon reaching the first waypoint, the UAVs inside one group find they
are not able to communicate with the UAVs of other groups, and so they
consider that all other groups have failed. However, since they are still
in contact with their master, there is no need to switch between mas-
ters. Hence, they only remove the presumed failed UAVs from the list of
potential masters.

. In-between waypoint one and two, we let the master UAV fail.

. Upon reaching the second waypoint, the UAVs notice that the master UAV
has failed, an thus a new master will be chosen. This master is different
for each group.

. The mission continues without any problem, and the UAVs reach the last
waypoint.

. Upon reaching the last waypoint, the slave UAVs will move towards their
master and land. This means that, after the mission, two groups of UAVs
remain with a large distance between them, as shown in Figure 7b. This
happens because, in our protocol, we have chosen to land near the current
master, rather than picking the original landing position.
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(b) End of the mission.

Figure 7: Working example of a swarm split-up scenario in ArduSim.
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6.2. Swarm Reconfiguration

Following the swarm resilience experiments, we then focused on the proposed
reconfiguration scheme. Since our approach is a combination of an intelligent
UAV assignment (see Section 5.2.1) and a sectorization procedure (see Section
5.2.2), we started with an experiment which compares our approach against
simpler versions. Afterward, we focused on scalability, and devised a formula
to estimate the time overhead introduced by our reconfiguration protocol.

6.2.1. Safety analysis

As stated before, our approach is a combination of both an intelligent UAV
assignment (Section 5.2.1) and a sectorization procedure that groups UAVs
moving in similar directions (Section 5.2.2). We validated the effectiveness of
this combined approach, by comparing it to three other (simpler) variants where
such mechanisms are not used, or are only partially used. Therefore, we propose
to compare our solution (D) to approaches A, B and C:

A. Random position assignment, no altitude change.
B. Random position assignment, different altitudes.
C. Intelligent positioning, no altitude change.

D. Intelligent positioning, different altitudes.

In the following experiments the swarm changes from a linear formation
(Figure 8a) towards a mesh formation (Figure 8b). In both formations the
minimal distance between the UAVs was set to 10 meters. Furthermore, we
used three sectors, and the altitude difference between each sector was set to 5
meters. We have chosen the above mentioned values since, in real experiments,
they would provide enough clearance to prevent UAVs from colliding due to
wind gusts or GPS errors. During the experiments we measured the minimum
distance between the UAVs and the number of potential collisions. We detect
a potential collision when the euclidean distance between two UAVs is smaller
than 5 meters (i.e. typical GPS error). Furthermore, we measured the time
that the UAVs spend in each step of the mobility stage (Section 5.2.2). The
results are shown in Table 4 and Table 5. As one might observe from Table 4,
changing the formation layout without any precautions is very dangerous and
will lead to (multiple) collisions. Simply changing altitude or implementing the
intelligent position assignment does decrease the chances of collision, although
not sufficiently. A safe distance between the UAVs could only be maintained
when both of the mechanisms were used. However, changing the altitude does
introduce an additional time overhead. Of course, that overhead depends on
the distance travelled, which in this case is the product of the number of sectors
and the altitude difference between consecutive sectors.
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Table 4: Collisions and minimum distance analysis.

Ex | Nr. collisions | Min. Distance between UAVs

A 4 0.44
B 2 0.33
C 2 3.58
D 0 6.15

Table 5: Time UAVs spend in each state.

Ex | Move z [ms] | Move XY [ms] | Move Z initial [ms]

A 404 13607 400
B 6802 13030 7980
C 380 12425 400
D 8600 12415 8600

6.2.2. Scalability

After obtaining the preliminary results of the previous experiment, we now
want to investigate how our reconfiguration scheme behaves for various different
formations, and for a higher number of UAVs. The four different swarm forma-
tions used in this experiment are shown in Figure 8. Since in every formation
the distance between the UAVs is rather small (< 10m), all reconfigurations are
prone to collisions. We started with 9 UAVs (as in the last experiment), and
increased it up to 25. The results are shown in Figure 9.

8| WM Linear to Matrix
B Linear to Mesh
B Linear to Circle

» w o ~

Nr. of sectors

w

9 UAVs 10 UAVs 15 UAVs 20 UAVs 25 UAVs

Figure 9: Minimum number of sectors required for a collision-free reconfiguration procedure.

As expected, the number of sectors needed for a collision free reconfiguration
increases with the number of UAVs. We can also observe that not all reconfig-
urations (with the same number of UAVSs) are equal. For instance moving from
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Figure 8: Four different swarm formations

a linear formation to a circle formation requires more sectors. This is because,
in certain reconfigurations, the flight path of several UAVs is similar, and thus
we need more sectors to safely separate them.

During all the experiments we also measured the time when the UAVs were
changing their altitude. We used those measurements to create a formula to es-
timate the time overhead introduced by our reconfiguration scheme. To achieve
this we start by finding the value of the one-way delay T for which:

/OT o(t)dt = D )

where
D = num.sectors x sectors_of fset

This one-way delay refers to both upward or downward movements. We can
approximate this one-way time overhead T as:

T= +e€ (3)

Dot
where 0g_,7 refers to the expected speed during the entire mobility from
time 0 to T, and € accounts for the additional time associated to acceleration
and deceleration processes. In our experiments ¥p_,r was set to 2 m/s, and
the distance between the sectors (sector_of fset) to 5 meters. Using the results

25



from the previous experiments, where the number of sectors ranged between 2
and 8, we calculated the value of €, obtaining a delay offset of 1.5s.

While the speed of the UAVs does influence the time overhead directly, it
does not alter the chances of a collision. This is because all the UAVs are flying
at the same speed, and thus the distance between them will not change.

7. Conclusions and future work

Research in the UAV field has matured over the last years, and as a result
the main interest is shifting more and more towards groups of UAVs working
together. These so-called swarms are able to extend the UAV-based applications
by allowing work to be done in parallel, with more redundancy, and the ability
to carry heavier loads.

Coordinating a swarm of UAVs is not an easy task, and so in this work we
first focused on providing resilience to swarm protocols. Our solution consists
of two parts: a setup phase before taking off, where a list of master and backup
masters is created. During the flight a monitoring system checks if all the UAVs
are still alive, and handles UAV failures accordingly. Based on the experiments
we have performed, we can conclude that our protocol is able to provide re-
silience against the loss of any swarm element. Hence, not only can the protocol
be used in many environments, it also does not matter how many UAVs fail, or
what role they had in the swarm. Also, we find that the delay is only dependent
on the actual place where the UAV failed. For most real world applications, the
delay is found to be negligible, and for worst-case scenarios, it is still bounded
to only a few seconds. Our approach is also able to handle swarm split-ups in
such a way that a smaller (subset) of the original swarm is still able to work
together whenever communication is lost with the rest of the swarm members.

Another focus of this work was the reconfiguration of a swarm mid-flight.
Our proposal is based on an intelligent position assignment system that reduces
the chances of flight paths crossing. The chances of collisions are further reduced
by distributing the UAVs over different altitude levels during the reconfiguration
period. Our proposal is computationally efficient, and it can be easily applied to
various environments. However, it does not guarantee a collision-free reconfig-
uration, and the time overhead becomes substantially larger when many UAVs
are involved.

Our future work will focus on more complex algorithms that combine path
prediction with machine learning approaches to avoid collisions in a more time-
efficient manner. Furthermore, we want to introduce the possibility for UAVs
to join a swarm during the flight.
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