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ABSTRACT

This Editorial summarizes the Special Issue entitled Challenges and Solutions for hybrid SDN (Chal.
sol. HSDN) published in Elsevier’s Computer Networks during 2021. We first provide the motivation
and context for such a Special Issue, followed by a short explanation and classification of the articles
accepted for publication, and concluded with some envisioned future research directions.

1. Introduction
During the last decade, the Software-Defined Network-

ing (SDN) paradigm has thrived and fostered a whole new
ecosystem [14], in which all users (from network providers
to end users) profit from enriched network applications and
use cases. Though the concept of programmable networks
appeared for the very first time almost half a century ago [2],
the emergence of OpenFlow [19], later on followed by the
coining of the SDN term, finally fractured the network ven-
dor lock-in, opening a wide range of new possibilities.

Nevertheless, following a pure SDNarchitecture, inwhich
the control and data planes are clearly separated, is hard to
achieve in practice. For instance, most popular SDN frame-
works are hardly disengaged from the physical resources they
control, hence being unable to provide agnostic Application
Programming Interfaces (APIs), probably because manufac-
turers still find it hard to produce completely white network
devices [25]. Furthermore, applying SDN in practical imple-
mentations might not be completely feasible or beneficial in
some scenarios. In these situations, the architectural model
follows what is usually entitled as a hybrid approach [1].

According to the SDN architecture, and based on a very
simple classification, hybrid SDN encompasses two main
types of hybridization, viz. horizontal and vertical. To bet-
ter understand this idea, let us focus on a simple definition
of non-SDN and SDN devices, as depicted in Fig. 1. Based
on this idea, non-SDN devices have no clear separation of
control and data planes (they are both merged by the manu-
facturer, both in hardware and software), and hence all con-
trol and data traffic is exchanged horizontally, in a distributed
manner. On the other hand, SDNdevices separate both planes,
which indirectly causes that data traffic is still conveyed hor-
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Figure 1: Types of devices based on the SDN definition: non-
SDN (left) and SDN (right).

izontally, but control plane is mainly exchanged vertically.
Consequently, horizontal hybridization usually implies the
coexistence of different architectural approaches (non-SDN-
and SDN-based) in the horizontal axis of the architecture,
i.e., affecting the exchange of data traffic. While, vertical
hybridization usually affects the vertical axis, that is, the ex-
change of control traffic.

Fig. 2 summarizes some types of common hybrid SDN
approaches. For instance, Figs. 2.a) and 2.b) exemplify two
types of horizontal hybridization; the first one simply illus-
trates a network of three devices communicating (one SDN
and two non-SDN), while the second is similar as we still
have three network devices, but the one in the middle acts
both as an SDN and non-SDN. These types of hybrid net-
works are often observed in deployments that are being mi-
grated from a legacy-based to an SDN-based network, as di-
rectly applying the SDN architecture to a complete work-
ing network might be costly and risky. On the other hand,
Figs. 2.c) and 2.d) depict a couple of examples of vertical hy-
bridization; the former represents an SDN whose data plane
is not completely dummy as it has not delegated all con-
trol to the control plane (above), while the latter shows a
legacy device that has install a shim layer for compatibil-
ity with SDN-based control. More specifically, Fig. 2.c) is
designed to lessen the control load of the SDN controller,
as some part of the control is kept at the data plane to re-
duce the amount of exchanged control traffic; while an ex-
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Figure 2: Some examples of horizontal and vertical hybridization (yellow = control plane; blue = data plane; green = merged
control+data plane).

ample of Fig. 2.d) is Open Networking Foundation (ONF)’s
Stratum [22]. Finally, Fig. 2.e) is another type of vertical
hybridization, though it could be considered a mixed type,
in which a non-SDN device (on the right) implements the
data plane, but only partially (maybe due to computational
constraints), and delegates the rest of the control to fully-
fledged neighbor SDN devices. An example of it might be
found in Low-Power and Lossy Networks (LLNs), in which
network devices partially implement the SDN architecture
due to memory and power limitations.

2. Overview of the Special Issue
This Special Issue has received a total of 38 submission,

from which only 13 were finally accepted for publication.
The average number of review rounds was two, and each
manuscript was at least reviewed by four researchers to ac-
complish a high-quality standard.

From the whole set of accepted manuscripts, one of them
is a comprehensive survey on hybrid SDN by Khorsandroo
et al. [13], which revisits and analyzes more than 300 works.
The survey presents architectural concepts, security and pri-
vacy aspects, networkmanagment and traffic engineering as-
pects in hybrid SDN, while explaining the context of these
technologies in currently emerging novel network scenarios
and applications.

In the next sections, we summarize the published works
based on the different use cases they cover, which we clas-
sified into the following five types: (1) network security, (2)
intelligence-fostered networks based on Machine Learning
(ML)/Artificial Intelligence (AI), (3) advanced data plane
programmability, (4) wireless and heterogeneous networks,
and (5) mobile and service provider networks.

2.1. Network security
Network security can benefit from hybrid SDN because,

for example, it allows enhancing current network deploy-
ments, without modifying the whole architectural design,
and it also provides a centralized view to monitor the net-
work.

Yazdinejadna et al. [30] propose a kangaroo-based In-
trusion Detection System (IDS) named KIDS for detecting
security attacks and malicious behaviors for data planes in
SDN. To achieve this goal, the proposed solution monitors
packet parser and flow tables of an SDN switch to perform
both flow-based and packet based intrusion detection. The
proposed IDS is called a kangaroo-based approach because it
uses consecutive jumps like a kangaroo after detecting each
attach to announce the detected attacks efficiently to the SDN
controller and other IDSs. To improve scalability, KIDS
uses a zone based approach for detecting attacks in which
each zone consists of several SDN switches. In this approach,
a KIDS instance in each zone of the network performs intru-
sion detection activities without depending to other IDSs.
The authors evaluate performance of the proposed solution
by running six week data of 1998 DARPA intrusion detec-
tion evaluation and NSL-KDD datasets on KIDS architec-
ture.

Dayal et al. [6] propose a trigger-based traceback mech-
anism called SD-WAN Flood Tracer to facilitate tracing at-
tack sources in Software-DefinedWideAreaNetwork (SD-WAN).
The proposed solution can be used to monitor internal traces
in the vicinity of a single controller and external traces in
the vicinity of another controller. To reduce the unnecessary
computation overhead, the internal traceback is used in the
case of Distributed Denial of Service (DDoS) attacks and the
tracer utilizes the available statistics at the controller. The
proposed solution is designed for SDN networks, but it can
be extended to facilitate tracebacking in non-SDN networks
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as well.

2.2. Machine learning and artificial intelligence
AI and, particularly, ML have drawn considerable inter-

est in recent years thanks to their potential to take smart de-
cisions and large-scale data processing. These benefits al-
low the current implement impasse between network main-
tenance and management to be resolved through an efficient
tool [5]. For example, many researchers are trying to in-
corporate intelligent algorithms such as supervised learn-
ing, unsupervised learning, and deep learning, into SDN-
based routing systems to escape the downsides of conven-
tional routing approaches. Unfortunately, designing a rout-
ing mechanism that uses ML to achieve real-time and cus-
tomizable optimization is a major challenge. In this regard,
hybrid SDN facilitates this evolution towards intelligent net-
works.

Ibrar et al. [12] present PrePass-Flow, a ML-based tech-
nique to minimize Access Control List (ACL) policy viola-
tion due to links failure in hybrid SDN. In hybrid SDN, an
SDN controller can directly poll the status of the SDN links
via the OpenFlow protocol. However, the legacy links’ sta-
tus passes through SDN switches and reaches the controller,
causing a delay. Due to this delay, the controller does not
have the up-to-date status information of legacy links and
ACL policies violation. To minimize the impact of a link
failure in hybrid SDN, PrePass-Flow predicts link failures,
recomputes ACL policies’ locations, and installs the ACL
policies (if applicable). The proposed model minimizes the
ACL policy violation in case of link failures using ML algo-
rithms. For simulation, PrePass-Flow has used the Mininet
network emulator with a POX controller and it provides ef-
ficient communication in outages.

Sun et al. [27] propose aQoS-guaranteed intelligent rout-
ing mechanism in SDN. By using a novel data flow clas-
sification system, this paper investigates the issue of smart
routing in SDN. The MACCA2-RF&RF data flow classifi-
cation approach is proposed to classify the data flow type and
achieve the QoS criteria by combining a number of ML al-
gorithms (e.g. CART, KNN, Random Forest, CART-Naive
Bayes- RandomForest voting classification algorithms). When
a link is congested, the local routing algorithm is then ad-
vised to modify the links just before and after the congested
link rather than the whole path. This paper finally proposes a
QoS-guaranteed intelligent routing system named QI-RM in
SDN to provide QoS guarantees for data flows. The results
of the simulation indicate that theMACCA2-RF&RF can ef-
fectively identify data flows by an accuracy rate of 99,73%,
and the QI-RM can guarantee QoS data flow specifications
before and after link congestion.

2.3. Advanced data plane programmability
Data plane programmability can be an enabler for var-

ious hybrid SDN scenarios, as the ones shown in Fig. 2.
Three papers of this Special Issue leverage programmable
data planes to support enhanced hybrid SDN solutions, in
which part of the needed functionalities is offloaded to the
programmable hardware or kernel technology.

Cao et al. proposeOVS-CAB [11], a novel solution aimed
at improving performance of software Open vSwitch (OVS)
[24] by offloadingmost of the OVS data plane functionalities
to hardware Smart Network Interface Cards (Smart-NICs).
OVS-CAB includes an enhanced rule-caching algorithm to
optimize memory usage in the Smart-NICs, and a hardware
prototype is built based on the P4 language [4]. Such a pro-
posal can be very beneficial in hybrid SDNs, where P4 pro-
grammable Smart-NICs can be adopted to enhance capabil-
ities of legacy software switches. The proposed hardware
prototype is evaluated against the original OVS software im-
plementation and is shown to achieve significantly less time
memory usage and higher data plane hit rate, while also re-
ducing the CPU usage of the host server.

Ĥ2 [18], proposed byMayer et al., designs, implements
and evaluates a programmable data plane solution for Linux
routers that support Segment Routing [9] with IPv6 (SRv6)
in hybrid IP/SDN networks. Additionally, the solution ex-
ploits extended Berkeley Packet Filter/eXtreme Data Path
(eBPF/XDP) technologies [29] to speed up the performance
of software-based SRv6 routers. H ̂2 is an important work
towards a scalable adoption of SRv6 in hybrid SDNs. A
proof-of-concept is implemented and evaluated in a perfor-
mance monitoring use case: the results show that the pro-
posed solution is around five times faster than conventional
approaches.

Ollora Zaballa et al. [20] propose an In-band Network
Telemetry (INT)-based [28] monitoring system that is able
towork in hybrid SDNs consisting of P4 programmable switches
and legacy devices that support Multiprotocol Label Switch-
ing (MPLS). The proposed system enables advanced traffic
engineering features if P4 programmable switches are prop-
erly placed in the hybrid network, and moves a significant
step towards the adoption of INT-like monitoring solutions
in hybrid SDN solutions, especially as the ones depicted in
Fig. 2.a). Different tests are performed in a mixed emulated-
real testbed, and it is shown that the proposed monitoring
system can be used to take traffic engineering decisions that
are able to improve end-to-end flow latency.

2.4. Wireless and heterogeneous networks
The SDN paradigm is usually hard to apply in wireless

and heterogeneous networks, and particularly in IoT-based
networks, as they are usually constrained inmemory or power,
and hence cannot fully deploy the SDN architecture. This
Special Issue encompasses three manuscripts in this area.

Liu et al. [16] present CluFlow, a cluster-based flow con-
trol in hybrid Software-Defined Wireless Sensor Networks
(SDWSNs). CluFlow aims to reduce the control overhead
by the definition of clusters. Their evaluation (rather com-
prehensive, including networks bigger than 100 nodes and
performed with Cooja [23]) prove this reduction without de-
grading packet delay nor delivery rate.

Martinez-Yelmo et al. [17] describe eHDDP, an enhanced
hybrid domain discovery protocol for network topologieswith
both wired/wireless and SDN/non-SDN devices. They eval-
uate eHDDP with ONOS [3] and Mininet-WiFi [10], using
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the BOFUSS switch [8] in networks comprising up to 80
nodes, with diverse percentage of SDN and non-SDN nodes.
Although routing is not directly considered, they envision to
use eHDDP as a way to generate in-band control channels as
future work.

Finally, Kumar et al. [15] present Opt-ACM, an opti-
mized load balancing based admission control mechanism
for IoT-based SDWSNs. The authors compare Opt-ACM
versus state-of-the-art and traditional protocols in diverse
network scenarios, implemented in Mininet-WiFi, that fol-
low common use cases. Their results in terms of packet de-
livery ratio, packet loss ratio, average delay and average jitter
show a moderate-to-high improvement to other approaches.
Opt-ACM needs to be configured accordingly for each net-
work scenario to reach best results.

2.5. Mobile and service provider networks
Two papers of this Special Issue cover the adoption of

hybrid SDN solutions in the landscape of mobile and ser-
vice provider networks, addressing different challenges in
the scenarios of federatedmulti-domain andmobile core net-
works.

Neto et al. [7] address the heterogeneity aspect of Man-
agement and Orchestration (MANO) in a federated multi-
domain scenario, specially with regards to the need to deal
with SDN controllers of multi-vendor characterized by the
lacking a standard Northbound API. This work proposes a
seamless and vendor-agnostic MANO abstraction running
on top of federated SDN multi-domains: WAN Infrastruc-
ture Manager Agnostic (WIMA). WIMA abstraction pro-
vides a common Northbound API for external triggering,
maintains a global-viewed topology of the federation as a
whole, and deals with each SDNController directly harness-
ing an ontology-based scheme.

Silva et al. [26] adopt a transition solution for Mobile
Core Networks from hybrid to fully-capable SDN networks.
The paper presents a Hybrid SDNMobile Core network (4G
and Non-Standalone 5G) which integrates support for Wi-Fi
access, traffic offloading capabilities and dynamic network
slices instantiation. The results of the introduction of SDN
and virtualization of the Mobile Core Network show non
significant impact in terms of latency, attachment time and
throughput in the hybrid mobile network when compared
with the traditional deployment.

3. Future research directions
While hybrid SDN could be initially thought as a tem-

porary solution to overcome current limitations of SDN or
to be applied in legacy networks for a smooth migration, the
truth is that hybrid SDN could be indeed seen as one of the
latest evolutions in the SDN paradigm. In fact, one of the lat-
est architectural references of SDN defined by the ONF [21]
already describes the SDN architecture in a generalized way,
in a client-server style, rather than control-data plane man-
ner.

In our opinion, the future research directions of hybrid
SDN are directly related with the five use cases in which

we classified the published manuscripts: mobile and service
provider networks are driving the network applications, and
the focus is on wireless and heterogeneous networks, while
advanced data plane programmability and AI/ML appear as
enablers, and network security remains as a transversal re-
quirement to meet at all times. In fact, 6G networks are al-
ready characterized by the growth in the amount of Internet
of Things (IoT) devices, and the need for AI/ML in network-
ing.

For example, one of the key missing points for a wide
and effective exploitation of data plane programmability in
hybrid SDN networks is the definition of a unified control
plane able to configure the hybrid network’s devices in a
way that multiple technologies, such as P4 and eBPF/XDP,
and applications, can coexist and provide the best end-to-end
connectivity to the users. This is certainly a future research
direction that needs to be further explored. Another research
direction is the need for distributed AI/ML algorithms in
constrained IoT environments, as currently most intelligent-
based network still rely on centralized approaches, which
might not be feasible in all cases.
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