
 

 

 
 

 
 

   
 

   

 
   

 

  
  

 
 

 

   
 

 

 
 

  
 

 
 

 
 

 
   

 
 

 

A Blockchain-based Decentralized 
Machine Learning Framework for 

Collaborative Intrusion Detection 

within UAVs 

Khan, A. A., Khan, M. M., Khan, K. M., Arshad, J. & Ahmad, F. 

Author post-print (accepted) deposited by Coventry University’s Repository 

Original citation & hyperlink: 

Khan, AA, Khan, MM, Khan, KM, Arshad, J & Ahmad, F 2021, 'A Blockchain-based 
Decentralized Machine Learning Framework for Collaborative Intrusion Detection 
within UAVs', Computer Networks, vol. 196, 108217. 
https://dx.doi.org/10.1016/j.comnet.2021.108217 

DOI 10.1016/j.comnet.2021.108217 
ISSN 1389-1286 

Publisher: Elsevier 

NOTICE: this is the author’s version of a work that was accepted for publication in 
Computer Networks. Changes resulting from the publishing process, such as peer 
review, editing, corrections, structural formatting, and other quality control 
mechanisms may not be reflected in this document. Changes may have been made 
to this work since it was submitted for publication. A definitive version was 
subsequently published in Computer Networks, 196, (2021) 
DOI: 10.1016/j.comnet.2021.108217 

© 2021, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders. 

This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it. 

https://dx.doi.org/10.1016/j.comnet.2021.108217
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Blockchain-based Decentralized Machine Learning Framework for Collaborative 
Intrusion Detection within UAVs 

Ammar Ahmed Khana, Muhammad Mubashir Khana, Kashif Mehboob Khanb, Junaid Arshadc, Farhan Ahmadd 

aDepartment of Computer Science & IT, NED University of Engineering & Technology Karachi, Pakistan 
bDepartment of Software Engineering, NED University of Engineering & Technology Karachi, Pakistan 

cSchool of Computing and Digital Technology, Birmingham City University, Birmingham, UK 
dSystems Security Group, Institute for Future Transport and Cities, Coventry University, Coventry, UK 

Abstract 

UAVs have numerous emerging applications in various domains of life. However, it is extremely challenging to gain 
the required level of public acceptance of UAVs without proving safety and security for human life. Conventional UAVs 
mostly depend upon the centralised server to perform data processing with complex machine learning algorithms. In fact, 
all the conventional cyber attacks are applicable on the transmission and storage of data in UAVs. While their impact 
is extremely serious because UAVs are highly dependent on smart systems that extensively utilise machine learning 
techniques in order to take decisions in human absence. In this regard, we propose to enhance the performance of UAVs 
with a decentralised machine learning framework based on blockchain. The proposed framework has the potential to 
significantly enhance the integrity and storage of data for intelligent decision making among multiple UAVs. We present 
the use of blockchain to achieve decentralized predictive analytics and present a framework that can successfully apply 
and share machine learning models in a decentralised manner. We evaluate our system using collaborative intrusion 
detection as a case-study in order to highlight the feasibility and effectiveness of using blockchain based decentralised 
machine learning approach in UAVs and other similar applications. 

Keywords: Unmanned Aerial Vehicles, UAV, Blockchain, Machine Learning, Decentralized Machine Learning, 
Collaborative Intrusion Detection 

1. Introduction 

Unmanned Aerial Vehicle (UAV) or drones is a type 
of aircraft which is operated by an autonomous 
computer-based pilot instead of a human on board. 
Initially, UAVs were primarily used by military for 
training soldiers or attacking the enemies while 
safeguarding the life of human pilots [1]. Over the time 
there have been immense innovations in the development 
and capabilities of UAVs that has created numerous 
interesting applications of drones other than military. 
Latest UAVs are either remotely controlled by human or 
by an intelligent computer based autopilot system which 
has induced many of their interesting applications in a 
variety of domains. These applications include disaster 
relief [2], road safety [3], transport and delivery of 
medicines [4], agriculture [5], recreation [6], archaeology 
[7] etc. These applications have attracted a lot of new 
requirements with many innovative ideas of utilising 
UAVs. Amazon Prime Air is the latest example delivery 
drones in selected areas of United States [8]. Similarly, 
the Federal Aviation Administration (FAA) of United 
States has authorised several drone delivery companies to 
operate in remote areas for delivering life saving 
medicines and blood especially during the COVID-19 
pandemic [9]. 

Majority of the UAVs applications can threaten 
public safety, airspace security and national defence 
systems. Consequently, UAVs require better control, 
management, communication, data storage, and 
intelligent decision making without any delays [10]. 
These requirements become more critical when a 
coordinated operation of large number of UAVs is 
desirable with collaborative and intelligent decision 
making in a decentralised and distributed manner [11]. 
UAV systems mostly depend upon the centralised server 
or a cloud based platform to perform processing of data 
with complex Machine Learning (ML) algorithms. In 
fact, all the conventional cyber attacks are also applicable 
for the UAVs while their impact would be more serious 
because UAVs are highly dependent on smart systems 
that extensively utilise artificial intelligence and machine 
learning techniques in order to take decisions in human 
absence. Machine learning holds great promise as a 
solution to a variety of challenges caused by vast amount 
of data generated by UAVs and other cutting-edge 
technological systems [12], real-time astronomical data 
[13], Internet of Things (IoT) [14] and Cyber-Physical 
Systems (CPS)[15]. ML techniques enable intelligent 
processing of large volumes of complex datasets to 
identify patterns with minimal human intervention which 
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is extremely important for the operation of UAVs and 
other autonomous systems where complex decision 
making and coordination is required. Such techniques are 
indeed well-established and have been used extensively to 
address variety of other problems including customer 
churn analysis [16], self-driving vehicles [17], intrusion 
detection [18], speech recognition [19], data loss 
prevention [20], healthcare [21] and consumer behaviour 
prediction [22]. Due to extremely complex nature of 
many such problems where an algorithmic solution 
becomes infeasible, it is important to explore machine 
learning-based decision making solutions achieved 
through intelligent analysis of large datasets. 

However, the effectiveness of machine learning 
techniques to achieve high accuracy of predictive 
analytics typically requires large volume of training 
dataset [23]. In addition, with the emerging 
advancements in UAVs with new application domains 
requiring huge datasets are often spatially-distributed 
while being supplied by numerous parties that can be 
mutually untrustworthy [24]. For instance, UAVs having 
IoT devices continuously sense the environment and may 
contribute their data so that a unified global model can 
be constructed. However, such UAVs with IoT devices 
can typically be large in number with concerns such as 
privacy associated with sharing of data in its original 
form. In such scenarios, sharing of knowledge (through 
machine learning models) has been promoted to achieve 
high accuracy without compromising privacy of data. 

Contemporary ML is usually centralized i.e. data 
from different devices scattered across the network is 
uploaded to a central server for model training and 
development. Once the model is trained, it is shared with 
all the devices to be used independently. This approach 
has its problems with data scalability owing to rising 
process impediment created by the learning process.A 
centralized solution also raises security and privacy 
challenges [25] such as trustworthiness between the 
contributing parties and central endpoint so that the 
resulting model from the learning process can also be 
trusted. There are applications such as real-time weather 
or astronomical data [13] and other mission critical 
applications in which huge data volumes are scattered 
across a large distributed system. In such scenarios, it is 
not cost-effective and reliable to gather data in a central 
location. Therefore, the choice of machine learning 
algorithm becomes extremely important to ensure data 
distribution, resilience to failures and parallel 
computation. Ideally, such a decentralized context 
requires a decentralised and distributed system to 
facilitate the learning process [26]. 

Current research and practice within machine 
learning is progressing towards performing ML by 
transferring model parameters rather than data to a 
central coordinator to construct a refined/reinforced 
model. In this respect, one approach is to use centralized 
blockchain-based collaborative mechanism for defending 

against cyber-attacks. Although such approach uses 
collaboration among participating nodes, it does not 
benefit from blockchain’s inherent properties i.e. 
decentralization and is therefore susceptible to single 
point of failure. For instance, a centralized system in this 
scenario would have a different approach to consensus 
whereby machine learning models learned by the 
individual nodes could be ranked by an arbitrary central 
authority. An alternate methodology is the federated 
learning system in which more than one parties jointly 
learn the ML system such as, the deep neural network, 
with localised private and confidential data. Shokri and 
Shmatikov [27] and McMahan et al. [28] presented the 
proof of concept of such a system by applying differential 
privacy. However, it was later shown by Hitaj et al. [29] 
that employing such a record-level differential privacy 
becomes unsuccessful in a federated learning systems as 
addition of noise may distort results in differential 
privacy scheme. 

To address the aforementioned challenges, we explore 
the use of blockchain technology to facilitate a method of 
achieving decentralized, distributed analytics whilst 
protecting the privacy of data and ensuring the 
trustworthiness of the process. Blockchain has received 
significant attention in recent years primarily due to its 
benefits such as immutability of data, decentralisation, 
distributed design, transparency, and trustless consensus 
[30]. Consequently, blockchain has been adopted by range 
of applications including UAVs [31][32], supply chain [33], 
digital asset management [34], e-government[35], 
intrusion detection [36] and many more. The immutable 
nature of blockchain lends itself to diverse application 
domains requiring robustness and better audit trails [37]. 

Our research is inspired by the concept of federated 
machine learning [38] where data sharing takes place by 
ensuring user privacy as part of the process. Privacy in 
data sharing can be factored in a technique that can 
ensure anonymity in the data by changing it all together 
without affecting the overall learning process [39]. We 
developed a blockchain-based decentralized machine 
learning scheme for collaborative intrusion detection, 
where we create a blockchain network of multiple nodes 
that perform independent intelligent analytics using 
custom choice of machine learning algorithm. We assume 
a distributed scenario where data is generated and 
collected in the form of distributed data streams such as 
UAVs. In such scenarios, collating data at a centralized 
server can incur performance overhead as well as posing 
risks to data privacy. Therefore, instead of sharing data 
across participating nodes, machine learning models are 
shared across them so as to use this knowledge to 
improve accuracy of intelligent analytics across 
participating nodes. 

In order to assess the effectiveness of our proposed 
scheme, we use the challenge of intrusion detection in a 
system like UAVs a use-case. In particular, we used 
KDD99 attack dataset, splitting 10,000 rows across 
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participating nodes of the blockchain network providing 
coverage of different attack types. We measure accuracy, 
false positive rate, true positive rate, recall, precision, 
and F1 score at each node both before and after sharing 
the models. 

The major contributions of this paper are summarised 
as follows: 

1. Design and development of a generic blockchain 
system to aid decentralized, peer-to-peer machine 
learning-based analytics. The proof of concept 
presented in the paper enables sharing of machine 
learning models without the need to share data 
used to develop this model thereby achieving 
collaboration among nodes without compromising 
privacy of the participating nodes. 

2. Evaluation of the proposed system within a 
collaborative intrusion detection scenario. 
Experimentation with the proof of concept has 
been conducted with the KDD99 attack dataset to 
evaluate its ability to support collaboration among 
distributed nodes to achieve effective intrusion 
detection. In this regard, collaborative knowledge 
sharing is achieved across participating nodes by 
using stacking to reinforce machine learning models 
developed at individual nodes. 

Rest of this paper is organised as follows. Section 2 
presents the fundamental background knowledge about 
blockchain technology highlight its primary concepts 
followed by Section 3 which presents an account of the 
existing work in this domain. Section 4 presents the 
design and implementation of our proposed system to 
achieve decentralized machine learning. Evaluation of the 
proposed system within intrusion detection use-case is 
presented in Section 5 which highlights the performance 
of the proposed system with respect to its effectiveness 
for intrusion detection. Section 6 concludes this paper. 

2. Blockchain Technology 

Blockchain technology has attracted significant 
attention primarily due to its success as the technology 
underpinning Bitcoin. The fundamental concept at the 
core of blockchain is that of a distributed, decentralized 
ledger whereby a blockchain network is run by the peers 
or participating nodes without any centralized authority 
[40]. Further, the participation of nodes (number and 
type) is driven by the type of application. After the 
remarkable success of blockchain as the driving 
technology of famous cryptocurrencies including the 
Bitcoin and Ethereum a large number of other 
applications of blockchain have been realised in the past 
few years. These non-cryptocurrency applications of 
blockchain include several interesting UAV applications 
such as blockchain-based smart vehicular networks [37], 
secure UAV data sharing [30], privacy preservation in 5G 

Figure 1: Tamper resistant blockchain 

enabled UAVs [41], secure routing of swarm UAV 
networking [42] and UAV path planning for healthcare 
[43]. 

With respect to the ledger, a transaction represents 
the most important concept within blockchain. A 
transaction in blockchain is a piece of information which 
moves something of value (a digital token which may 
represent a unit of currency, a vote etc.) from one public 
address (belonging to the sender) to the receiver’s 
address. Therefore, a transaction saves and tracks the 
state of the blockchain over the period of time. These 
transactions become the part of blockchain forever 
through blocks which move them into chain. A block is 
primarily a collection of transactions which are 
integrated and organized in such a way that each block 
computes and keeps its own blockhash (using the 
individual hashes of all the transactions as its source) in 
the block along with the blockhash of its preceding block. 
In this way, a chain of blocks is generated which increases 
with time. Since these blocks are connected through their 
hashes (computed through the transactions within that 
particular block), this data structure makes the records 
of blockchain immutable where a slight change in a single 
transaction would produce an entirely new hash resulting 
in a mismatch of this hash with the neighbouring block. 
This prevents any suspicious block to be accepted by the 
blockchain network and therefore mitigates against 
illegitimate tampering of blockchain state. Figure 1 
demonstrates this linkage between different blocks to 
achieve a tamper-resistant ledger. 

All the nodes of a typical blockchain network store an 
identical copy of blockchain locally which is frequently 
synchronized with the main blockchain (also known as 
consensus blockchain). Each new block of a blockchain is 
accepted and added by its peers through a process known 
as mining. The process of mining is essential in 
developing consensus among participating nodes and can 
take up different forms depending upon the type of 
application. 

2.1. Consensus in Blockchain 

Due to the decentralized nature of the blockchain 
network, the mechanism to achieve consensus is critical 
in achieving a trustworthy, tamper-proof ledger. Due to 
the variety of applications using blockchain, there are 
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various approaches in use for maintaining consensus in 
blockchain which can be broadly divided into two 
categories i.e. consensus achieved through an evidence, 
and voting based consensus (Byzantine Fault Tolerance 
and Crash Fault Tolerance based consensus). The 
evidence based consensus is one of the most popular 
approaches due to the use of Proof of Work (PoW) by 
Bitcoin however other variants such as Proof of Stake 
have also emerged. 

Proof of work is the most common consensus based 
algorithm in the blockchain applications [44]. This 
scheme relies heavily on the computational capabilities of 
the mining hardware to solve a non-trivial mathematical 
problem. Although all participating nodes can attempt 
to solve this mathematical challenge, the hashing power 
of the miner acts as a decisive factor to solve the 
challenge in a timely manner. The mathematical problem 
to be solved usually involves searching for a number 
(known as nonce value) which when hashed (after 
appended to the given data) should produce a value less 
than a specific value that is the current target of the 
blockchain network. In recent years, PoW in particular 
and proof based consensus algorithms in general have 
been extended to address their constraints with respect 
to security (such as the likeliness of carrying out double 
spend attack [45]) and performance efficiency [46]. 

2.2. Cryptography in Blockchain 

Blockchain makes use of asymmetric cryptography to 
ensure the privacy in the exchange of messages between a 
sender and a receiver [47]. This public-key cryptography 
technique also allows every participant to verify the 
transaction. Since the public key is available to everyone, 
the sender uses this key to send a message (for asset 
transference) to the intended receiver which can only be 
decrypted through the receiver’s private key. Consider 3 
blocks as shown in Figure 2 such that Block 1 has the 
information of P1 with the hash value of Q1, Block 2 has 
the information of P2 with the hash value of Q2 while 
Block 3 has the information of P3 with the hash value of 
Q3. Q3 is created from the combination of Q2 and P3 
and so on while P1 comes from the default value P0. 
Now if someone changes the hash values like P2 to P21 
and Q2 to Q21 and other blocks are kept same as earlier, 
in this case it represents an unstable blockchain. 
Therefore to make the blockchain stable, the values of Q3 
will have to be changed to Q31 along with P2 to P21. 

2.3. Public vs. private blockchain 

From the perspective of participation of nodes, a 
blockchain can be divided into two broad categories; 
public and private blockchains. Public blockchain [48], 
as the name suggests, adopt a public model for 
participation and therefore may be joined by any node 
without any restriction. Such networks of blockchain do 
not require any permission for a user to join or 

participate in the network. As mentioned earlier, it is a 
permissionless open-ended blockchain and that is why 
the network size is usually bigger than the permissioned 
blockchain. Private blockchain also called 
permissioned blockchain, on the other hand, is a more 
controlled form of blockchain which is not publicly 
accessible. In a private blockchain [49], nodes must seek 
permission to join the network. Such networks usually 
require an authenticated node to perform according to a 
predefined role in the system. 

3. Related Works 

The widespread use of machine learning techniques 
and algorithms in diversified applications has highlighted 
many challenges in terms of limited processing and 
storage capacity against large training datasets. For 
example, in the case of artificial neural networks, the 
storage and processing requirement may significantly 
increase when there are larger sets of input parameters to 
train the model. UAVs are an ideal use-case of such 
problem domains where individual devices are 
constrained with respect to resources available and 
therefore unable to host traditional, resource-hungry 
machine learning mechanisms. 

With respect to federated learning, Bonawitz et al. 
[50] describe the federation concept in machine learning 
through a practical use case. They generate machine 
learning models on mobile devices where the data 
actually resides and the individual data from the model 
is combined in the cloud for the global model where a 
deep neural network is trained by using TensorFlow [51]. 
the authors have identified and addressed specific 
implementation concerns such as localization (time-zone), 
training of machine learning models based on device 
availability and constrained compute resources of the 
devices. The devices are in communication with the 
server that is responsible for storing the updated model. 
The latest model is pushed down to the device that 
updates it after performing model training and sends it 
back to the server. The communication frequency, device 
participation and device selection for a Federated 
learning task is based on a protocol that is planned for 
robustness in non-reliable conditions. It uses an analytics 
process to gain insights into bottlenecks and other other 
constraints occuring at the device end and proves to be 
helpful as the server doesnt need to have access to the 
device’s data. 

Konečný et al. [52] performed machine learning 
optimization using various algorithms. Interestingly, the 
optimization was carried out on different mobile devices 
having a portion of the data representing the users’ own 
patterns. Their work primarily focuses on optimization 
and uses federation learning to improve the machine 
learning model. Specifically, authors focus on the 
challenges in achieving optimal performance with existing 
algorithms within a distributed learning environment. 
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Figure 2: An in-depth view of a conventional blockchain

The two distributed machine learning algorithms that are
discussed here include the Stochastic Variance Reduced
Gradient (SVRG) [53] and the Distributed Approximate
Newton (DANE) [54] which are used for the purpose of
achieving optimization in a distributed environment.The
authors have demonstrated that in this setting,
traditional machine leanring models dont perform well
due to their inherently sequential nature. The traditional
algorithms incorporate fast iteration rounds whereas
here, a communication round has been inserted in the
learning process as the nodes exchange the learned
parameters with the server responsible for updating the
model. They further show with data achieved through
experimentation that given the constraints of network
bandwidth and challenges like slow convergence , it is
possible to design an algorithm that works well in this
setting.

M. Li et al. [55] presented one of the major
contributions towards the distributed machine learning.
The main issues addressed in their contribution are the
technique of distributing training data and the workload
over numerous worker nodes. Furthermore, the proposed
framework is able to enable the server nodes for
maintaining the globally shared model parameters in
terms of sparse vectors.The data scale in consideration
here is of the order of trillions of samples and possibly
very high feature lengths. Servers that maintain a copy
of the latest updated parameters are termed as
parameter servers and worker nodes have a portion of the
whole data on which they train. The machine learning
models used by the authors are Sparse Logistic
Regression and Latent Dirichlet Allocation. The system
performed well due to decrease in communication cost
due to bulk communication server and message

compression on the transmission of parameter key,value.
T. Kraska et al. [56] presented an effort focused on

collecting dataset from distributed nodes with each node
performing its individual training algorithm. The focus
in this system is to facilitate data pre-processing tasks
including feature selection, engineering and optimization
based on factors such as which model to use, what
features to select and what time is expected to be taken
by the given configuration. The proposed framework in
this paper is also inspired with this model. However, in
our proposed framework, we provide this functionality for
the purpose of emulating the human behaviour of
pre-processing the data, model training and creating a
deployment-ready machine learning model. Furthermore,
we use blockchains to enable trusted sharing of models
and their performance indicators to enable privacy-aware
federated learning in a trust-less environment.

Recently, there have been several interesting
contributions which exploit the power of blockchain to
achieve maximum benefit from machine learning
algorithms. Kurtulmus et al. [57] demonstrate the use of
smart contracts to evaluate and validate machine
learning models which is performed by the smart
contract. Once a user submits a dataset to the
blockchain, they can then set a reward amount on that in
ethereum tokens since the blockchain employed is
ethereum-based. The various blockchain nodes
participate in performing machine learning and once the
machine learning task is completely by a human driven
agent, the machine learning model is submitted to the
smart contract that validates the solution. Once all the
participants have successfully submitted their solutions,
the best model wins the amount. In our scenario, we
have emulated this behavior on the nodes through
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automating the machine learning steps of pre-proicessing 
and model-fitting. The authors have created a prototype 
or a basis for a future market place where companies can 
get the best available machine learning expertise by 
submitting the dataset on the blockchain and rewarding 
the best model submission based on results. The authors 
have also implemented trust and fairness controls 
through smart-contracts in addition to model validation 
and reward. Furthermore, the authors have identified the 
risks related to cheating by the model submitters and the 
organizer and have controlled them by enforcing policies 
through smart contracts. Also, the machine learning 
process in this work has also been implemented in the 
solidity programming language. The language has many 
constraints and hence the authors performed several 
performance and memory-saving techniques. C. Xu et al. 
[58] present the intelligent datacenter’s energy and 
resource management through blockchain. Specifically, 
smart contract performs machine learning to achieve the 
goal of further minimizing the energy cost of the 
datacenter. The output of the machine learning model is 
then used by the smart contract that performs tasks to 
control datacenter resources. 

With respect to use of blockchains and machine 
learning within cyber security, a number of efforts have 
been made. For instance, Outchakoucht et al. [59], focus 
on the challenge of access control within Internet of 
Things (IoT) and leverage blockchains and machine 
learning to achieve a trustworthy, self-adjusting solution 
which can be continuously updated through the use of 
reinforcement learning. Dey et al. [60] proposed a 
methodology where machine learning is employed in a 
blockchain network to detect anomalies such as collusion 
that may lead to majority attack. Supervised machine 
learning and algorithmic game theory is used to take 
early action to counter the attack. X. Chen et al. [61] 
utilize Ethereum smart contracts to share locally learned 
gradients. In order to achieve privacy-aware data 
processing, authors use differential privacy whilst 
segregating data storage from data processing nodes. 

With the increase in use of autonomous vehicles and 
UAVs, use of machine learning and blockchains to aid 
novel solutions within this domain is attracting 
significant attention. However, significant efforts within 
this domain relate to the use of machine learning to aid 
efficient and effective detection of UAVs. In this respect, 
[62], [63], [64] and [65] represent recent efforts to employ 
machine learning for effective UAV detection and 
classification. With respect to the use of blockchains 
within UAVs, [66], [67], [68] and [69] represent recent 
efforts which utilize blockchains to facilitate trustworthy 
applications within UAVs. 

This paper is focused at exploring the use of 
blockchains to facilitate trustworthy distributed machine 
learning solutions within UAVs. In particular, the 
proposed framework adopts a federated machine learning 
strategy to leverage the distributed architecture of a 

typical UAV-based system whilst reducing the 
performance overheads incurred due to traditional 
centralised machine learning approaches. Further, the 
proposed framework uses blockchain technology to enable 
trustworthy sharing of machine learning models and 
associated metrics to enable an ensemble learning 
approach. We assess the effectiveness of the proposed 
system by implementing an intrusion detection scenario 
to identify potential advantages of the proposed approach 
as well as open challenges which require further work. 

4. A Blockchain-based Decentralized Machine 
Learning Framework for UAVs 

In this section, we present the architectural details of 
the proposed system followed by its implementation with 
blockchain technology. 

4.1. System architecture: 

The proposed system is designed to simulate a 
scenario where multiple distributed nodes are engaged in 
intelligent processing of data independently before 
collaborating to enhance accuracy of predictive analytics. 
For instance, intrusion detection within a CPS/IoT 
system is inherently distributed as the task of detecting 
misuse patterns is devolved to individual sensor nodes 
followed by collation of knowledge shared by individual 
nodes to achieve effective detection. A generic blockchain 
system was designed and implemented designed and 
implemented to provide a testbed for rapid deployment 
of scenarios involving blockchain and machine learning. 
As explained in Section 4.1 (system architecture), the 
blockchain and machine learning processes were loosely 
coupled and the machine learning component was 
embedded in the blockchain daemon by use of APIs 
whose design was inspired by the Python scikit machine 
learning library. Due to this API flexibility, stacking and 
non-stacking scenarios could be deployed quickly. The 
use of smart contracts to execute functionality was very 
important in our design. Smart contracts were written in 
such a way so as to aid the diverse use of machine 
learning API as well as data distribution. They also serve 
an additional purpose of data logistics, such as metadata 
input handling and node to node data transfer. 

A high-level architectural diagram of the system is 
presented in Figure 3. Overall, the system architecture 
consists of a monitor node, multiple miner nodes, global 
address space, and the machine learning engine (further 
details of these are presented below). Both the monitor 
and miner nodes take part in the mining and machine 
learning process and are connected to each other to 
achieve inter-node communication. 

4.2. Monitor node: 

As with any other collaborative environment, the 
monitor node acts as the coordinator which is tasked 
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Figure 3: A blockchain-based decentralized machine learning system 

with communicating with other nodes to facilitate 
achieving the desired outcome. It has its own global 
memory space and exposes this data through 
micro-services calls.These micro-service calls refer to the 
different functions of the blockchain daemon broken up 
into RESTful style lightweight services. the input to 
these services requires very little overhead and their main 
purpose is for internal communication, protocol and 
polling between the nodes. e.g. the command to initiate 
the machine learning process on all the nodes is one such 
micro-service call.. The IP of this system is static and is 
used by all other nodes to connect to the network much 
like Bitcoin miners that connect to the Bitcoin network 
through getinfo [70]call service. Within the context of a 
blockchain setting, monitor node performs the role of a 
seed node. Being the coordinator, there are number of 
tasks which a seed node performs in a blockchain 
network. These include admitting new miners to the 
network and Domain Name Service (DNS) for the mining 
nodes. Within our system, the monitor node performs 
these functions to adopt the working of Bitcoin network 
[71]. The monitor node is responsible for these functions 
within the proposed system 

In order to aid experimentation with decentralized 
machine learning, an important phase is distributing 
data to be processed across all participating nodes. In a 
real-life scenario, we expect participating nodes to gather 
data using independent streams however in our 
proof-of-concept, the monitor node performs this 
function. Therefore, the monitor nodes distributes 
chunks of data to each mining node along with 
accompanying metadata which is envisaged to help the 

machine learning engine. However, the monitor node is 
not only the coordinator and also participates in the 
machine learning and blockchain mining processes similar 
to other (miner) nodes of the network. This is 
highlighted in Figure 3 by assigning both monitor and 
miner node roles to the coordinating/seed node. 

4.3. Miner nodes: 

Miner nodes use machine learning algorithms to 
generate independent analytical models by intelligent 
processing of dataset available to them. As highlighted in 
Figure 3, the analytics.py performs operations required 
for specific ML algorithms. These miners in a traditional 
blockchain network choose transactions, mine them into a 
block and add them to the blockchain using proof of 
work or other consensus algorithms. In our scenario, the 
miners are utilizing their computing resources to achieve 
accuracy in their machine learning model against a 
dataset. 

4.4. Global address space: 

Similar to a Distributed Hash Table (DHT), our 
prototype features a list of nodes that are actively 
connected to the network. This global addresses memory 
space stores the network and node addresses in the 
following format. 

<IP> : <port> 

The nodes list is persisted in a global memory space 
that is easily accessible by other nodes simply through 
micro services calls. Miners can carry out their mutual 
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coordination through this global address space. They can 
also choose to have a copy of this global address space that 
is updated every time a new node is added to the network. 
In our implementation, we have decided to allocate each 
node a copy of this address space that gets updated on 
each node as the network grows. The same is done in 
Multichain [72], except here, each node pings the monitor 
node and gets the others added. In Multichain, the first 
node returns an IP and port and this network address is 
provided to new nodes as they subscribe to the blockchain 
network. 

4.5. Machine learning engine: 

In order to achieve decentralized machine learning 
setup, each miner node has an embedded ML engine 
which interfaces with the blockchain component of the 
node. These components exchange information 
throughout the life-cycle of machine learning analytics 
process using the available dataset. The current design 
envisages that each node has the liberty to choose its 
own machine learning model. Therefore, each node is 
expected to receive the dataset, pre-process it and submit 
the score as well the deployment-ready model to the 
blockchain interface. 

The different ML techniques employed by various 
nodes allow for modelling diverse use-cases such as : 

1. Each UAV should have the flexibility to deploy an 
ML technique that is best suited for its purposes. 
Some UAVs would require an algorithm that would 
converge faster in a high probability cyber-attack 
environment. The UAV can also switch to a 
different algorithm as and when needed. 

2. Different ML algorithms also allow for performing 
analytics and comparison within the ML techniques 
to gain insights on how well does the algorithm 
perform on certain data. The reason for deploying 
analytics.py node in the network is to generate the 
tables shown in Figure 9-14 . 

4.6. Process flow: 

The process starts with blockchain network 
initialization similar to Ethereum where a network ID is 
used however we use the network address of the monitor 
node as the network ID. We start the monitor node 
through a command line utility batch file similar to a 
Linux shell script. The monitor node looks for the 
address.json file where its address is maintained. This 
address is used by the rest of the blockchain network 
nodes to subscribe to the blockchain. In order to 
facilitate inter-node communication and off-chain sharing 
of machine learning models, we have used HTTP relying 
on the public internet for connectivity. Consequently, the 
participating nodes are implemented as web servers. 
Since our implementation is based on JSON-RPC micro 
services architecture, each miner has the endpoints that 

can be requested for data and data can also be posted to 
them as well through GET and POST calls. To start the 
miner node, we run a command line utility batch file 
similar to the monitor node that searches for the 
address.json file that’s present in the same directory as 
the miner node’s code. This address.json file has two 
addresses; the address for the miner and the monitor 
node. Upon initialization, the miner node first sets own 
IP and port and then subscribes to the blockchain by 
performing the relevant JSON-RPC calls to the monitor 
node. After this step the miner runs its initialization 
procedures. It first submits its own address to the 
monitor node for it to be added in the network directory 
or global address space. Then it downloads the current 
up-to-date list of nodes that are part of the blockchain 
which ensures uniformity. 

The verification of global address update can be done 
by fetching the address directory endpoint of any miner 
node. The same process is conducted for each node 
added to the network. The machine learning process is 
performed by first submitting the dataset to the 
blockchain network by uploading it to the monitor node 
which distributes the dataset to the participating nodes. 
After successful distribution of the dataset and its 
metadata to the nodes, the nodes commence the machine 
learning process. The conceptual model for the machine 
learning process is shown in Figure 4. 

The machine learning process consists of the following 
3 steps: 

a. Data pre-processing: Each node submits the 
data and its associated metadata to the ML engine which 
performs the pre-processing on the data. In our 
implementation, this step comprises of reading the 
dataset and converting the dataset to 
machine-learning-ready format. The categorical columns 
are converted to numerical one-hot encoded columns and 
the numerical columns are normalized. Then training 
test split is applied to the data and model fitting is 
carried out. Specific steps to achieve pre-processing are 
highlighted below. 

1. Columns are processed as per their types such as 
categorical or numerical. This is taken input on the 
blockchain node where the dataset is uploaded. 
The input form comprises of radio buttons on the 
target blockchain node’s webpage that can be 
accessed by its IP. Once each column type is 
known, the next step is initiated which is one-hot 
encoding and normalization. 

2. One-hot encoding is done for categorical columns 
which is the process of converting one column 
having more than two unique values into multiple 
columns having values of only 1 or 0. 
Normalization is done for numerical columns i.e. 
converting the values of different columns to a 
uniform range of values (0 to 1). 
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Figure 4: The conceptual model for the machine learning process 

b. Model fitting and transaction formation: 
The model fitting is performed by using a suitable 
classifier algorithm. In our case, we have designated a set 
of classifiers that can be chosen at random by the ML 
engine and it is envisaged that different nodes running 
the machine learning engine will select a different 
algorithm thereby obtaining a different score. The 
different scores reported by each node will simulate a 
human-like crowd sourced machine learning process that 
will aid in prototyping a ranking/bench-marking policy 
enforced by the consensus algorithm governing the 
blockchain. When the machine learning classifier has 
completed its processing, the blockchain daemon converts 
this data to transaction and stores the transaction 
locally. It also broadcasts the same data to other miners 
to initiate the consensus process. 

c. Consensus-based model sharing and block 
mining: After the individual nodes have completed the 
model fitting, each node has a copy of the ML model 
parameters of all the other nodes. In order to add the 
individual node data to blockchain a consensus algorithm 
is required such as Proof of Work adopted by Bitcoin. 
However, due to the nature of the application, we have 
adopted the ranking algorithm to achieve consensus for 
our setup. Therefore, a node is picked at random to add 
the block to the blockchain that contains reward for the 
winning nodes. This node first unifies the results from all 
nodes to ensure a fair selection of rewarded nodes and 
after a final consolidated ranking procedure is run, the 
block is mined by this node. The transaction contains 
the nodes and the rewards in case of multiple nodes 
achieving high scores. 

4.7. System implementation: 

In order to simulate successful transaction 
malleability attack, we have used scikit-learn Python 
libraries [73] following the major mathematical processes 
necessary for simulating basic characteristics of a typical 
blockchain network. These characteristics include 

Figure 5: The webpage for the miner node 

creation of genesis transaction, genesis block hash, honest 
and mutated transaction and their cryptographic 
schemes. Our implementation is comprised of a monitor 
node and three miner nodes all of which participate in 
the machine learning process. Table 1 presents the 
hardware specifications of the nodes used in our setup. 
The choice of the experimentation setup was motivated 
through availability of resources as well as their 
suitability for the experiments involved. For instance, as 
the nodes are required to store and share ML models on 
local storage, the storage capacity of the nodes was 
important which has been addressed by allocating 500GB 
for each node. Further, the RAM and CPU are 
comparable to similar experiments in existing literature 
however these machines were used solely for these 
experiments and no other software was running on them. 
In anticipation of the requirement to share machine 
learning models across participating nodes, the 
(off-chain) storage of blockchain and the network 
communication occurring between the nodes is achieved 
through python’s flask web library. 

As the miners are added to the blockchain network, 
they discover the rest of the nodes through the DNS 
mechanism outlined in 4.1. Each node runs a Apache 
Flask server and therefore has a webpage which can be 
used to view the transactions and the current state of the 
blockchain. A sample such output for a miner node is 
presented in Figure 5. 
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Node CPU model Clock speed Memory Storage ML technique 
Node 1 Intel Core i5 3.3 GHz 16 GB 500 GB Onevsrest 
Node 2 Intel Core i5 3.0 GHz 16 GB 500 GB Logreg 
Node 3 Intel Core i5 3.3 GHz 16 GB 500 GB KNN 
Node 4 Intel Core i5 3.3 GHz 16 GB 500 GB Naive Bayes 
Node 5 Intel Core i5 3.0 GHz 16 GB 500 GB SGD 

Table 1: Hardware specification for monitor and miner nodes 

We initiated our blockchain with four nodes all of 
which participate in mining and machine learning 
process. In real-life scenario, each node is envisaged to 
receive data for analytics from an independent stream, 
however, for these experiments, we used the 
monitor/seed node to distribute data to other 
participating nodes. Upon receiving this data, each node 
performs initial anlaytics using its default machine 
learning algorithm. The outcome of this anlaytics 
(accuracy, TPR, FPR) is stored in the blockchain as a 
transaction whereas the resulting machine learning model 
is stored in the local storage of the node to facilitate 
off-chain storage and sharing. A sample transaction is 
presented in Figure6 whereas Figure 7 presents a sample 

mine block request called block

----------------------------------------

{'index': 2, 'timestamp': '2020-04-15_22:01:18.211597', 'previous_hash': 'af1791

f0244e9b5d634ffe4eb74c5f82ecclebf8bf55c09a26dbea76a4d4d189', 'transactions': {'f

ilename': 'kd99_with_cols_shortened.csv', 'node_scores': [ 'score': 0.9983818770

226537, 'node': 127.0.0.1:5004', 'reward': 10), ('score': 0.9870550161812298,

node': '127.0.0.1:5010', 'reward': 9), {'score': 9.9838187702265372, 'node': '12

7.0.0.1:5003', 'reward': 8}, {'score': 0.9627831715210357, 'node': '127.0.0.1:50

05', 'reward' 7], 'other_transaction_ids': [{'node': '127.0.0.1:5003', 'transa

ction_id': 
'9670e66a92427b04a413eb62c813ee4e2bf844f9867646b2f34f7d2e4440133b'},

{'node': '127.0.0.1:5005', 'transaction_id': '075d4c9eab163ac5d65b4eac2a95793f16 
d05b53dbab0996c68ea3e160657d66'}, {'node': '127.0.0.1:5010', 'transaction_id':'

94034f010c7aab9c9b1b9b954baaa7fe15fb7763b5aaf54c63c467358f89aecc'}]}}

127.0.0.1 - - [15/Apr/2020 22:01:18] "<-[37mGET mine_block HTTP/1.1 <-[0m" 200 -

mine block request returned!

block from our blockchain. 
Figure 7: Sample block from the blockchain 

transaction 
-------------------------------------
{'datasetid': 'kd99_with_cols_shortened.csv', 'params': "KNeighbors Classifier(al 
gorithm=’auto’, leaf_size=30, metric='minkowski',\n                      metric_p
arams =None, n_jobs =None, n_neighbors =5, p=2,\n                   weights='unif
orm')", 'node': '1dc32874e3bc4b46bf624ad6553ee2b6', 'node_ip': ‘127.0.0.1:5004’,

‘pickle model':  '127.0.0.1-5004-kd99_with cols shortened.csv.sav','score':9.9 
983818770226537, 'transaction_id': '6f9e4ecdb6e74d9a7163750b1c9b499c9931d6918e7e 
c249 a 4815fabaf664850', 'other transaction_ids': [{'node': '127.0.0.1:5003', 'tra
nsaction_id': '9670e66a92427b04a413eb62c813ee4e2bf844f9867646b2f34f7d2e4440133b' 
> {'node': '127.0.0.1:5005', 'transaction_id': '075d4c9eab163ac5d65b4eac2a95793
f16d05b53dbab0996c68ea3e160657d66'}, {'node': '127.0.0.1:5010', 'transaction_id' : : 
:   ‘94034f010c7aab9c9b1b9b954baaa7fe15fb7763b5aaf54c63c467358f89aecc'}], 'sensiti
vity': 99.83818770226537, 'time': '0.46802687644958496', 'accuracy': 99.78308026
030369, 'precision': 99.83818770226537, 'fl': 99.83818770226537, 'ML_algo': 'knn
‘ ,  ‘stacking’: None}
127.0.0.1 - - [15/Apr/2020 22:01:12] "<-[37mPOST /get_model HTTP/1.1 <-[0m" 200 -
mine block request called

Figure 6: Sample blockchain transaction 

After a block is successfully added to the blockchain, 
each node node shares its machine learning with the 
other participants of the network so that this knowledge 
can be used to enhance their respective analytics. This is 
achieved by sharing models through off-chain storage and 
collaborative reinforcement is achieved by using these 
models via stacking technique. Similar to the first phase, 
the outcomes of this machine learning phase (accuracy, 
TPR, FPR) are added to the blockchain as a separate 
transaction. 

5. Intrusion Detection Through Blockchain-based 
Decentralized ML 

In order to evaluate the performance of the proposed 
blockchain-based decentralized machine learning system, 

we conducted experimentation using intrusion detection 
as a problem scenario. The motivation to choose intrusion 
detection is due to the significance of machine learning 
and artificial intelligence within this domain as highlighted 
by[74]. 

Our experimentation setup is based on four nodes all 
of which participate in machine learning and mining 
processes. Using KDD99 network-based attack dataset 
[75], we conduct analytics in two phases; first round is 
conducted independently at each node using data 
available at the node followed by the second round in 
which stacking is used to learn from the ML model 
created by other nodes of the blockchain network. A 
graphical representation of this process is presented in 
Figure 8. 

5.1. KDD99 dataset 

KDD99 is one of the most commonly used attack 
datasets to evaluate performance of intrusion detection 
systems [75]. The dataset consists of numerical and 
categorical features that describe the observations and 
states of a network connection. They are labelled from a 
set of 24 attack types which can be organized into four 
main categories of attacks. Furthermore, the dataset 
consists of 40 features which relate to basic attributes of 
TCP connection, traffic features and connection-oriented 
features. In table 2, we tabulate the details of some of 
the main features of the dataset belonging to each class. 

• DOS: denial-of-service, e.g. sending a flood of SYN 
packets to the server so as to slow down the server’s 
response to valid requests. 
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Figure 8: Overall framework for stacked ML 

• R2L: unauthorized access from a remote machine, 
e.g. guessing password 

• U2R: unauthorized access to local superuser (root) 
privileges, e.g., various ”buffer overflow” attacks; 

• probing: surveillance and other probing, e.g., port 
scanning. 

5.2. Experimentation and Analysis 

For our experimentation, a subset of the KDD99 
dataset was used where each node was assigned 10,000 
rows of data which was used for training and testing 
phases. The subset of data used contained 5 (most 
frequently occurring: ipsweep, neptune, normal, 
portsweep, and smurf ) of the overall target classes in the 
main dataset. The class imbalance was chosen such that 
there is sufficient training data against each target class. 
The five target classes were: 

As presented in Figure 8, the experiments were 
conducted in two phases. The first phase involved using 
machine learning independently at each node followed by 
refining the ML model by stacking models shared by 
other participating nodes of the blockchain network. The 
results of first phase (without stacking) are presented in 
table 3 whereas the outcome from the second phase of 
experiments (with stacking) are presented in table 4. 

Overall, the experiments involved evaluating the 
system for the following metrics: 

5.2.1. Accuracy 
is defined as the percentage of correct predictions 

compared with total samples number of predictions is 
termed as accuracy in machine learning. Therefore, 
accuracy can be obtained by dividing the true positives 
by the total number of predictions that the classifier ran. 
Mathematically, 

TP + TN 
Accuracy = 

TP + TN + FP + FN 

In our experiment, the classifier was tasked with 
predicting the correct attack type by labelling the test 
data with one of the 5 possible attack types used in our 

setup explained above. We then analyzed accuracy 
against each machine learning algorithm running on the 
nodes. Figure 9.A shows the scenario without stacking 
and Figure 9.B shows the scenario with stacking. 
Furthermore, Figure 9.C. presents a comparative analysis 
of performance of individual nodes (with respect to 
accuracy) with and without stacking to highlight the 
impact collaborative ML model sharing can achieve in 
such setting. 

From the analysis of these graphics, we can observe a 
positive impact of ML stacking on the accuracy of 
classifiers i.e. the accuracy for most of the classifiers has 
increased by a range of 2 to 3 percent. The highest 
positive impact is observed for Naive Bayes algorithm 
when stacking is used whereas the smallest change is seen 
with KNN algorithm. An interesting observation here, is 
that the impact of stacked ML on accuracy can be 
limited because the base classifiers already reported a 
high prediction accuracy which, therefore, limits the 
potential for improvement. When we compare accuracy 
for other classifiers as shown in Figure 9.C, it is evident 
that nearly all classifiers saturate to a 99% accuracy after 
stacking is performed and all classifiers appear to be 
equal. The only factor that stands out differently when 
stacking is considered is the time to train with Näıve 
Bayes registering the least time to train in both 
non-stacking and stacking training runs. 

5.2.2. Precision 
Precision is a measure of finding out the extent of 

correctness of true positives. Precision is calculated by : 

T rue P ositives 
P recision = 

T rue P ositives + F alse P ositives 

We plotted precision against each machine learning 
algorithm running on the nodes. Figure 11.A shows the 
scenario without stacking and Figure 11.B shows the 
scenario with stacking. 

We also compared the two numbers for precision in 
both scenarios in a bar chart shown in Figure 11.C. 

We can see that precision has experienced a 1 to 2 
percent increase for most of the classifiers. The greatest 
improvement is again seen with Naive Bayes algorithm. 
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No. Feature class Feature name Feature Description Feature type 
1 TCP connection attribute duration length (number of seconds) of 

the connection 
continuous 

2 TCP connection attribute protocol type type of the protocol, e.g. tcp, 
udp, etc. 

discrete 

3 TCP connection attribute service network service on the 
destination, e.g., http, telnet, 
etc. 

discrete 

4 Connection domain 
specific attribute 

num failed logins number of failed login attempts continuous 

5 Connection domain 
specific attribute 

num root number of ”root” accesses continuous 

6 Connection domain 
specific attribute 

is guest login 1 if the login is a ”guest” login; 
0 otherwise 

discrete 

7 Traffic specific attribute count no. of connections to the same 
host as the current connection 
in the past two seconds 

continuous 

8 Traffic specific attribute serror rate % of connections that have 
”SYN” errors 

continuous 

9 Traffic specific attribute same srv rate % of connections to the same 
service 

continuous 

Table 2: Sample features of the KDD99 dataset 

(a) Accuracy vs. Models (b) Accuracy vs. Nodes (c) Comparison of accuracy with and 
without stacking 

Figure 9: Accuracy of predictive analysis in different scenarios 

The smallest change is seen with KNN algorithm same as 
accuracy. This is following the same pattern as that of 
accuracy. When we compare this metric with results 
obtained in the research work [76], the Näıve Bayes 
algorithm performs 85% whereas in our case, it shows a 
good 96%. This is further improved to 99% as we carry 
out stacking. As was seen in accuracy, the before and 
after stacking precision score for KNN hasn’t changed 
much. 

5.2.3. True Positive Rate 
True positive rate (TPR) also known as detection 

accuracy represents the percentage of successful detection 
of malicious instances. TPR is calculated as: 

T rue P ositives 
TPR = 

T rue P ositives + False Negatives 

Analyzing the outcomes of experiments with respect 
to TPR, interestingly, the results of the first phase 
(without stacking) are very similar to those of precision 
however a noticeable improvement in the TPR is 
identified in the phase (with stacking). The TPR for all 
the nodes witnessed improvement with node 4 achieving 
the highest detection accuracy of 99.6% demonstrating 
the effectiveness of the approach. 

5.2.4. Time to Train 
Time to train, is a metric we have decided to measure 

the performance in terms of speed of training. As the name 
implies, it is the time taken by the model to completely 
train on the data. 

We plotted time to train against each machine 
learning algorithm running on the nodes. Figure 12.A 
shows the scenario without stacking and Figure 12.B 
shows the scenario with stacking. We also compared the 
two numbers for time to train in both scenarios in a bar 
chart shown in Figure 12.C. 

Stacking requires machine learning done by several 
algorithms hence it is more time-consuming as is evident 
from Figure 12.C showing around 20 times increase for 
most of the classifiers. The shortest time to train is seen 
in Näıve Bayes algorithm. The longest time to train is 
seen with KNN algorithm. It is interesting to note that 
Näıve Bayes saturates to the same performance as KNN 
algorithm in case of stacking but with a quicker time to 
train. 

5.2.5. Recall 
is a measure that shows to what extent in the test set 

were the target classes accurately identified. If there are 
100 positive classes in the test set and the classifier 
identifies 80 correctly and the rest 20 incorrectly than the 
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(a) Precision vs. Models (b) Precision vs. Nodes (c) Comparison of precision with and 
without stacking 

Figure 10: Precision of predictive analysis in different scenarios 

(a) TPR for different models (b) TPR vs. nodes (c) Comparison of TPR with and 
without stacking 

Figure 11: TPR of predictive analysis in different scenarios 

classifier accurately could recognize 80% of the true 
samples in the data correctly. Mathematically, 

True Negative 
Recall = 

True Negative + F alse P ositive 

We plotted recall against each machine learning 
algorithm running on the nodes. Figure 13.A shows the 
scenario without stacking and Figure 13.B shows the 
scenario with stacking. 

We also compared the two numbers for recall in both 
scenarios in a bar chart shown in Figure 13.C. 

Similar to precision, we can see that recall has 
experienced a 1 to 2 percent increase for most of the 
classifiers. Both Precision and Recall have been found to 
follow the same pattern for our case as is shown in Figure 
13.C. 

5.2.6. F1 score 
is used to measure the balance between precision and 

recall for a machine learning classifier. It is calculated as, 

P recision ∗ Recall 
F 1 score = 2 ∗ 

P recision + Recall 

We plotted F1 score against each machine learning 
algorithm running on the nodes. Figure 14.A shows the 
scenario without stacking and Figure 14.B shows the 
scenario with stacking. 

We also compared the two numbers for accuracy in 
both scenarios in a bar chart shown in Figure 14.C. 

F1 score has also experienced an average 1 to 2 % 
increase for most of the classifiers. The greatest 
improvement is seen with Naive Bayes algorithm. The 
smallest change is seen with KNN algorithm. Much like 
the other metrics, F1 score has been found to be 
saturated around 99% when stacking is done. 

It is seen that all algorithms saturate to 99% score 
whether in accuracy or precision and that is important to 
note because, in the case of stacking, one node is able to 
stack together all models from the other nodes as the 
models are actively exchanged among the nodes. 
However it can depend upon the criticality of the 
application where this is deployed because while giving 
an overall score boost, stacking decreases the time to 
train as well. These constraints should be taken into 
design time consideration taking their overall impact in 
question. 

6. Conclusions and Future Outlook 

UAVs or drones are being increasingly used in diverse 
application domains to facilitate improved operational 
efficiency and real-time decision making which require 
capability for intelligent processing of monitored data. 
Due to performance overheads, resource requirements of 
centralised machine learning techniques as well as the 
need for high quality predictive analytics in an efficient 
manner, decentralized machine learning methods are 
being explored. UAVs can especially benefit from these 
due to their inherent distributed architecture and 
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(a) Time to train vs. Models (b) Time to train vs. Nodes (c) Comparison of time to train with and 
without stacking 

Figure 12: Time to train for predictive analysis in different scenarios 

(a) Recall vs. Models (b) Recall vs. Nodes (c) Comparison of recall with and 
without stacking 

Figure 13: Recall for predictive analysis in different scenarios 

No. Algorithm Accuracy True Positive 
Rate 

Precision Recall Sensitivity Time to Train 

1 Onevsrest 96.815 97.40 97.399 97.399 97.399 1.221 
2 Logreg 97.057 97.60 97.600 97.600 97.600 1.154 
3 KNN 98.928 99.133 99.133 99.133 99.133 3.928 
4 NB 95.148 96 96 96 96 0.547 
5 SGD 97.382 97.866 97.866 97.866 97.866 0.886 

Table 3: Algorithms and measured machine learning metrics without stacking 

Node Base 
Algorithm 

Accuracy True Positive 
Rate 

Precision Recall Sensitivity Time to Train 

1 Onevsrest 99.215 99.366 99.366 99.366 99.366 21.943 
2 Logreg 99.215 99.366 99.366 99.366 99.366 21.049 
3 KNN 99.503 99.60 99.600 99.600 99.600 26.191 
4 NB 99.421 99.533 99.533 99.533 99.533 14.090 
5 SGD 99.462 99.566 99.566 99.566 99.566 15.868 

Table 4: Algorithms and measured machine learning metrics with stacking 

constrained resource profile. Blockchain is a promising 
solution to shift traditional centralized approaches 
towards decentralisation with its immutable data 
structure, traceability and transparency of records, and 
fairness of use. Our proposed framework facilitate 
decentralized processing of machine learning based 
predictive analytics within a typical multi-UAV 
environment. Our proof of concept utilized stacking to 
achieve collaborative reinforcement of individual machine 
learning models to investigate its impact on efficiency of 
predictive analytics. We used intrusion detection as a 
case-study to evaluate the proposed system and have 
witnessed positive outcomes in terms of detection 
accuracy, TPR, FPR, F1 score and precision. The 
proposed framework has less performance overhead as 

compared to the centralised approach because instead of 
sharing data across participating nodes, machine learning 
models are shared across them so as to use this 
knowledge to improve accuracy of intelligent analytics 
across participating nodes. In addition, we achieve better 
privacy and security of data by removing the requirement 
of data sharing among the nodes. 

In future we aim to explore the scalability of the 
proposed framework in the event of larger and disparate 
datasets, and greater number of participating nodes. 
Furthermore, it would be interesting to explore the 
robustness of the proposed framework in real world 
application specific scenarios of UAVs against variety of 
known attacks such as jamming or spoofing the 
navigational data, malicious code injection, Sybil attack 
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(a) F1 score vs. Models (b) F1 score vs. Nodes (c) Comparison of F1 score with and 
without stacking 

Figure 14: F1 score of predictive analysis in different scenarios 

and distributed denial of service attack. 
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methods for distributed machine learning. Progress in Artificial 
Intelligence, 2(1):1–11, 2013. 

15 



[27] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep 
learning. In Proceedings of the 22nd ACM SIGSAC conference 
on computer and communications security, pages 1310–1321, 
2015. 

[28] H Brendan McMahan, Eider Moore, Daniel Ramage, and 
Blaise Aguera y Arcas. Federated learning of deep networks 
using model averaging. 2016. 

[29] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 
Deep models under the gan: information leakage from 
collaborative deep learning. In Proceedings of the 2017 
ACM SIGSAC Conference on Computer and Communications 
Security, pages 603–618, 2017. 

[30] Rupa Ch, Gautam Srivastava, Thippa Reddy Gadekallu, 
Praveen Kumar Reddy Maddikunta, and Sweta Bhattacharya. 
Security and privacy of uav data using blockchain technology. 
Journal of Information Security and Applications, 55:102670, 
2020. 

[31] Tejasvi Alladi, Vinay Chamola, Nishad Sahu, and Mohsen 
Guizani. Applications of blockchain in unmanned aerial 
vehicles: A review. Vehicular Communications, 23:100249, 
2020. 

[32] Parimal Mehta, Rajesh Gupta, and Sudeep Tanwar. Blockchain 
envisioned uav networks: Challenges, solutions, and 
comparisons. Computer Communications, 151:518–538, 
2020. 

[33] Ilhaam Omar, Mazin Debe, Raja Jayaraman, Khaled Salah, 
Mohammed Omar, and Junaid Arshad. Blockchain-based 
supply chain traceability for covid-19 ppe. 2020. 

[34] Dinesh Verma, Nirmit Desai, Alun Preece, and Ian Taylor. 
A block chain based architecture for asset management in 
coalition operations. In Tien Pham and Michael A. Kolodny, 
editors, Ground/Air Multisensor Interoperability, Integration, 
and Networking for Persistent ISR VIII, volume 10190, pages 
223 – 231. International Society for Optics and Photonics, SPIE, 
2017. 

[35] Renming Qi, Chen Feng, Zheng Liu, and Nezih Mrad. 
Blockchain-powered internet of things, e-governance and e-
democracy. In E-Democracy for Smart Cities, pages 509–520. 
Springer, 2017. 

[36] Weizhi Meng, Elmar Wolfgang Tischhauser, Qingju Wang, 
Yu Wang, and Jinguang Han. When intrusion detection meets 
blockchain technology: a review. Ieee Access, 6:10179–10188, 
2018. 

[37] Muhammad Asaad Cheema, Muhammad Karam Shehzad, 
Hassaan Khaliq Qureshi, Syed Ali Hassan, and Haejoon Jung. 
A drone-aided blockchain-based smart vehicular network. IEEE 
Transactions on Intelligent Transportation Systems, 2020. 

[38] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin 
Tong. Federated machine learning: Concept and 
applications. ACM Transactions on Intelligent 
Systems and Technology (TIST), 10(2):1–19, 2019. 
[https://dl.acm.org/doi/abs/10.1145/3298981]. 

[39] Benjamin CM Fung, Ke Wang, and S Yu Philip. Anonymizing 
classification data for privacy preservation. IEEE transactions 
on knowledge and data engineering, 19(5):711–725, 2007. 
[https://ieeexplore.ieee.org/abstract/document/4138206/]. 

[40] Steve Mansfield-Devine. Beyond bitcoin: using blockchain 
technology to provide assurance in the commercial world. 
Computer Fraud & Security, 2017(5):14–18, 2017. 

[41] Yulei Wu, Hong-Ning Dai, Hao Wang, and Kim-
Kwang Raymond Choo. Blockchain-based privacy preservation 
for 5g-enabled drone communications. IEEE Network, 
35(1):50–56, 2021. 

[42] Jian Wang, Yongxin Liu, Shuteng Niu, and Houbing Song. 
Lightweight blockchain assisted secure routing of swarm uas 
networking. Computer Communications, 165:131–140, 2021. 

[43] Shubhani Aggarwal, Neeraj Kumar, Musaed Alhussein, and 
Ghulam Muhammad. Blockchain-based uav path planning for 
healthcare 4.0: Current challenges and the way ahead. IEEE 
Network, 35(1):20–29, 2021. 

[44] F. Ahmad, Z. Ahmad, C. A. Kerrache, F. Kurugollu, 

A. Adnane, and E. Barka. Blockchain in internet-of-
things: Architecture, applications and research directions. In 
2019 International Conference on Computer and Information 
Sciences (ICCIS), pages 1–6, 2019. 

[45] Kashif Mehboob Khan, Junaid Arshad, and 
Muhammad Mubashir Khan. Simulation of transaction 
malleability attack for blockchain-based e-voting. Computers 
Electrical Engineering, 83:106583, 2020. 

[46] Kashif Mehboob Khan, Junaid Arshad, and 
Muhammad Mubashir Khan. Investigating performance 
constraints for blockchain based secure e-voting system. Future 
Generation Computer Systems, 105:13 – 26, 2020. 

[47] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and 
Charalampos Papamanthou. Hawk: The blockchain model of 
cryptography and privacy-preserving smart contracts. In 2016 
IEEE symposium on security and privacy (SP), pages 839–858. 
IEEE, 2016. 

[48] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, 
and Huaimin Wang. An overview of blockchain technology: 
Architecture, consensus, and future trends. In 2017 IEEE 
international congress on big data (BigData congress), pages 
557–564. IEEE, 2017. 

[49] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and 
Suttipong Thajchayapong. Performance analysis of private 
blockchain platforms in varying workloads. In 2017 26th 
International Conference on Computer Communication and 
Networks (ICCCN), pages 1–6. IEEE, 2017. 

[50] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, 
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe 
Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan 
McMahan, et al. Towards federated learning at scale: 
System design. arXiv preprint arXiv:1902.01046, 2019. 
[https://arxiv.org/abs/1902.01046]. 

[51] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, 
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, 
Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for 
large-scale machine learning. In 12th {USENIX} Symposium on 
Operating Systems Design and Implementation ({OSDI} 16), 
pages 265–283, 2016. 
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Suárez-Albela, and Paula Fraga-Lamas. A uav and blockchain-
based system for industry 4.0 inventory and traceability 
applications. In Multidisciplinary Digital Publishing Institute 
Proceedings, volume 4, page 26, 2018. 

[69] Vishal Sharma, Ilsun You, Dushantha Nalin K Jayakody, 
Daniel Gutierrez Reina, and Kim-Kwang Raymond Choo. 
Neural-blockchain-based ultrareliable caching for edge-enabled 
uav networks. IEEE Transactions on Industrial Informatics, 
15(10):5723–5736, 2019. 

[70] . Retrieved from https://en.bitcoin.it/wiki/BitcoinC ore0.11(ch3) :I 
nitializationandS tartup. []. 

[71] BitCoin Community. Bitcoin Wiki. Retrieved from 
https://bitcoin.org/en/p2p-network-guidepeer-discovery. []. 

[72] MultiChain. MultiChain Wiki. Retrieved from 
https://www.multichain.com/developers/creating-connecting/. 
[]. 

[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, 
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, 
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, 
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: 
Machine learning in Python. Journal of Machine Learning 
Research, 12:2825–2830, 2011. 

[74] Anna L Buczak and Erhan Guven. A survey of data mining and 
machine learning methods for cyber security intrusion detection. 
IEEE Communications surveys & tutorials, 18(2):1153–1176, 
2015. 

¨ 

in intrusion detection and machine learning between 2010 and 
2015. PeerJ Preprints, 4:e1954v1, 2016. 

[75] Atilla Ozgür and Hamit Erdem. A review of kdd99 dataset usage 

[76] G. Meena and R. R. Choudhary. A review paper on ids 
classification using kdd 99 and nsl kdd dataset in weka. In 
2017 International Conference on Computer, Communications 
and Electronics (Comptelix), pages 553–558, 2017. 

17 

https://www.multichain.com/developers/creating-connecting
https://bitcoin.org/en/p2p-network-guidepeer-discovery
https://en.bitcoin.it/wiki/BitcoinC
http://repository.essex.ac.uk/24024
https://bit.ly/3eseN20

	Block cs
	Decentralized_ML_for_UAVs (1)



