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Abstract

Network slicing and mixed-numerology access schemes cover a central role to enable the flexible multi-service connectivity
that characterizes 5G radio access networks (RAN). However, the interference generated by the simultaneous multiplexing
of radio slices having heterogeneous subcarrier spacing can hinder the isolation of the different slices sharing the RAN
and their effectiveness in meeting the application requirements. To overcome these issues, we design a radio resource
allocation scheme that accounts for the inter-numerology interference and maximizes the aggregate network throughput.
To overcome the computationally complexity of the optimal formulation, we leverage deep reinforcement learning (DRL)
to design an agent capable of approximating the optimal solution exploiting a model-free environment formulation.
We propose a multi-branch agent architecture, based on Branching Dueling Q-networks (BDQ), which ensures the
agent scalability as the number of spectrum resources and network slices increases. In addition, we augment the agent
learning performance by including an action mapping procedure designed to enforce the selection of feasible actions.
We compare the agent performance to several benchmarks schemes. Results show that the proposed solution provides a
good approximation of the optimal allocation in most scenarios.
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1. Introduction

Network slicing makes it possible to overlay multiple
virtual networks on a common physical network infrastruc-
ture. Every network slice employs a pool of heterogeneous
network resources, ranging from core network resources to
Radio Access Network (RAN) resources, in order to effi-
ciently tailor to a specific user application needs, expressed
as a set of Service Level Agreement (SLA) requirements
[1]. In this context, the policy for partitioning resources
among coexisting network slices is responsible for provid-
ing isolation among slices so as to give the illusion that
they are logically independent one from the other. Inter-
slice isolation is particularly important on the radio inter-
face due to the fact that, unlike computational resources
(e.g. CPUs), radio resources are often affected by exter-
nal interference sources that negatively affect their service
provisioning capability. In addition, spectrum is a limited
and inherently dynamic resource that depends on the ra-
dio propagation environment as well as the user mobility
statistics. For this reason, an effective spectrum allocation
policy, on one hand, has to enforce inter-slice isolation by
limiting the inter-slice interference and, on the other hand,
has to ensure a suitable scheduling of the radio resources
to accommodate each network slice service request.
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To efficiently satisfy these requirements, it is important
to consider the impact of the allocation policy over the
common physical layer structure upon which the shared
spectrum resources are mapped. In this regard, mixed-nu-
merologies schemes are proposed as medium access schemes
in 5G networks to boost the system flexibility. Differ-
ently from the classical orthogonal division multiple access
(OFDMA), mixed-numerologies schemes allow to multi-
plex different subcarriers having a heterogeneous subcar-
rier spacing within the same OFDM symbol [2]. Specifi-
cally, every fixed frequency-time slot, also denoted as re-
source block (RB), can be assigned with a different nu-
merology that dictates the granularity level of the subcar-
rier spacing. The advantage of this technique makes it
easier to overcome different radio propagation characteris-
tics as the channel frequency selectivity can be effectively
counteracted by a suitable subcarrier spacing. However,
the loss of orthogonality between contiguous RBs, that
are simultaneously multiplexed on the common RB grid,
produces inter-numerology interference (INI) that can sub-
stantially hinder the transmission performance [3].

However, the majority of the current research activ-
ity has investigated the RAN slicing resource allocation
and the INI minimization topics separately. For these
reason, we jointly consider the aforementioned problems
and we design a suitable allocation scheme that maximizes
the aggregated throughput of each network slices and, at
the same time, mitigates the INI. To better illustrate the
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Figure 1: Inter-numerology interference relationship with physical
layer parameters when two spectrum slices of different numerologies
are contiguously allocated.

considered problem, in Fig. 1 we provide a scheme that
qualitatively shows the INI dynamic between two differ-
ent numerologies, but it can be easily generalized if more
numerologies are considered.

The INI power depends on several factor like the sub-
carrier spacing difference between contiguous numerolgo-
ies, the bandwidth allocated to each numerology and the
power difference between the subcarriers. Specifically, the
higher are the aforementioned quantities, the higher is the
INI power that is mutually generated across the different
numerologies. Consequently, other than employing spe-
cific interference cancellations techniques at the physical
layer, a suitable spectrum allocation can effectively reduce
the INI impact by prioritizing an allocation that reduces
the subcarrer power offset difference as well as their nu-
merology gap.

We tackle the discussed problem using deep reinforce-
ment learning (DRL). This framework has recently been
applied in different wireless problems with promising re-
sults [4] [5]. In detail, we design a DRL agent that infers
the relationship between the INI power and the wireless
channel fading dynamic to maximize the aggregated net-
work slice throughput. Note that, differently from our
previous work in [6], we propose an agent based on BDQ
networks that efficiently scales with the number of spec-
trum resources and network slices. More precisely, the
main contribution of this work are:

• We formulate a integer non-convex optimization prob-
lem that allocates the available spectrum resources
to multiple network slices having different numerolo-
gies in order to maximize the cumulative throughput.
The designed objective function directly embeds the
analytical expression of the INI, which allows to re-
liably compute the optimal allocation according to
the wireless channel status of users.

• We address the computational complexity of the op-
timal formulation by designing a DRL agent based
on a multi-branch network architecture. Specifically,
each network branch is in charge of the allocation of
a subset of spectrum resources. The coordination be-

tween the different branches is ensured by a shared
module that provides a common representation of
the environment status.

• We design an action mapping scheme that ensures
the feasibility of every action selected by the agent.
As a matter of fact, it is not possible to naturally
enforce the constraints that characterize the optimal
formulation, thus we propose this approach in order
to boost the agent convergence performance to the
optimal policy.

• We assess the agent performance in terms of scalabil-
ity performance and optimal solution approximation.
Results show that the agent successfully converges
under different combinations of network configura-
tions and it provides a good approximation of the
optimal solution in most scenarios. In addition, it
provides better gains than the single-branch agent
counterpart when the most complex system scenar-
ios are assessed [6].

The remainder of the paper is organized as follows. We
present the related work in Section 2. We describe the sys-
tem model in Section 3. We discuss the optimal problem
formulation as well as the agent environment definition in
Section 4. We present the multi-branch agent architecture
and the related training process in Section 5. We show the
simulation results in Section 6. Finally, the conclusion is
drawn in Section 7.

2. Related work

In the context of 5G radio resource allocation, deep
reinforcement learning has been recently proposed as res-
olution scheme to overcome the complexity derived from
classical model-based approaches [7]. However, many of
the proposed solutions consider specific wireless applica-
tions such as vehicular networks [8]. DRL agents in this
field are designed to be employed by each vehicular user in
order to mitigate the interference raised by an uncoordi-
nated dynamic spectrum access [9]. For this reason, their
effectiveness is limited when they are used for spectrum al-
location performed on generic cellular networks composed
by multiple users requiring different services. Supported
by this observation, we consider the application of DRL
for a multi-user scenario in a mixed-numerology 5G RAN
shared by different network slices. Due to the combi-
natorial nature of the considered allocation problem, we
leverage a multi-branch agent architecture that ensures
the agent scalability as the number of resources and/or
network slices increases.

A general overview of the basic concepts of RAN slic-
ing and mixed-numerology access schemes as well as their
main challenges can be found in [10] [11]. We can classify
the recent work on these topics in three main categories:
INI-agnostic RAN slicing schemes, that provide spectrum
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allocation policies without accounting for the INI between
different slices, INI-aware RAN slicing schemes, that con-
sider the INI impact on the resource allocation process,
and finally INI cancellation schemes that mitigate the INI
effect by means of signal processing techniques performed
at the physical layer.

2.1. INI-agnostic RAN slicing schemes

The works in [12] and [13] provide an application of
DRL in the context of resource allocation in RAN slic-
ing. The agents are designed to learn an allocation of
the radio resources among different network slices that
can accommodate heterogeneous QoS requirements. How-
ever, since authors does not consider a mixed-numerology
access scheme, the performance analysis remains uncov-
ered when a mixed-numerology resource grid is employed.
Differently, the authors of [14] design multiple schedul-
ing algorithms to accommodate low latency and multi-
broadband users at heterogeneous time granularity on a
common physical layer. Similarly, the work in [15] lever-
ages the transmission frame flexibility provided by mixed-
numerology schemes to design a self-adaptive transmission
time interval scheduling strategy for low latency and multi-
broadband services. However, although [14] and [15] con-
sider a mixed-numerology access scheme, the INI impact
on the algorithms performance is not included. The au-
thors of [16] propose a multi-agent DRL framework that
assigns radio resources according to the slice service re-
quirements without over-provisioning the available RAN
spectrum. Differently from this work, we assume that
the number of radio resources required by each network
slices is already provided and we instead address the prob-
lem of multiplexing mixed-numerology spectrum slices on
a shared physical layer by actively modeling the wireless
channel behavior as well as the INI within the agent for-
mulation.

2.2. INI-aware RAN slicing schemes

The authors of [17] and of [18] design an INI mitiga-
tion scheduling algorithm based on adaptive guard inter-
vals and on subband power offset reduction between dif-
ferent numerologies, respectively. However, the proposed
schemes do not ensure an optimal INI minimization as
they do not analytically consider the INI within the prob-
lem formulation. The authors of [19] design a max-min
Knapsack problem that allocates the available spectrum
slices in order to accommodate the users latency require-
ments. The proposed scheduling scheme also considers
the INI affecting each slice. However, the INI behavior is
approximated by neglecting the contribution of numerolo-
gies with a small subcarrier spacing. In addition, only
the large-scale fading is considered by the optimization
procedure. Differently from these works, we propose an
optimal INI-aware spectrum allocation scheme that lever-
ages an analytical INI estimation and that accounts for
the small-scale fading dynamic of the users. Finally,

our previous work [6] proposes a DRL agent that multi-
plexes spectrum slices of different numerologies employing
an optimal INI-aware reward function formulation. How-
ever, this approach is unpractical when the number of re-
sources and numerologies increases due to the fact that the
agent requires the enumeration of every feasible allocation
to approximate the optimal policy. We overcome this issue
by proposing an alternative agent architecture that does
not have such limitation and we design an action mapping
module to guarantee the action feasibility.

2.3. INI cancellation schemes

In [20], a novel transreceiver design is proposed to re-
duce the INI in mixed-numerology systems. The authors
design a low-complexity encoding and decoding procedure
that lowers the interference energy variance by uniformly
spreading the INI across different subcarriers. The authors
of [21] combine filter-OFDM together with index modula-
tion, that allows to activate only a subset of the avail-
able subcarriers, to mitigate the INI. The effectiveness of
the considered approach is quantified by a lower decoding
error probability. The authors of [22] improve the spec-
tral efficiency of mixed-numerology schemes by designing
a novel guard band insertion mechanism. The latter lever-
ages the specific INI pattern affecting the various subcar-
riers in order to reduce the guard band size between differ-
ent numerologies. The authors of [23] design a precoding
algorithm for INI mitigation that is applied at the trans-
mitter side. The proposed scheme ensures a lower inter-
ference level for edge subcarriers which in turn improves
the decoding performance capability at the receiver side.
The aforementioned works [20]-[23] provide different sig-
nal processing techniques to minimize the INI which also
accounts for the wireless channel fading. However, they
focus on the link level performance when subbands of two
different numerologies are considered. Differently, we pro-
vide an INI mitigation approach from a resource allocation
perspective where multiple numerologies are dynamically
allocated over a shared spectrum and the multi-user diver-
sity is exploited to boost the system throughput.

3. System Model

The system model is mainly composed by two parts,
the RAN slicing architecture that defines how different
network slices share the radio interface and the INI model
that allows to quantitatively measure the impact of a het-
erogeneous resource grid on users belonging to different
network slices.

3.1. RAN slicing architecture

We consider a RAN whose physical infrastructure is ad-
ministrated by the network owner (NO). The latter man-
ages the assignment of the spectrum resources between
M mobile virtual network operators (MVNO) sharing the
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radio interface in order to guarantee the provisioning fea-
sibility of the different network services. We assume that
each MVNO manages a logically independent network slice
that schedules the assigned radio resources to its own users
based on the SLA requirements dictated by the applica-
tion. Let Um be the users of the mth MVNO. Conse-
quently, the system can be viewed as a two-layer radio
resource scheduler. The upper layer is managed by the
individual schedulers of the various MVNOs, whereas the
lower layer is identified by the spectrum assignment pol-
icy of the NO, which accommodates the RAN spectrum
among the MVNOs. In other words, the NO can be consid-
ered as a “network slice scheduler”. In Fig. 2, we schemat-
ically depict the considered RAN slicing architecture.

A mixed-numerology OFDMA scheme is employed at
the physical layer, where we split the frequency-selective
channel in K independent flat-fading subchannels of band-
width W . Using 5G terminology, we can say that every
subchannel is the equivalent to a bandwidth part (BWP),
which is a subset of contiguous resource blocks (RB) hav-
ing the same numerology [24]. Each MVNO m employs a
different numerology type, µm, in order to effectively ac-
commodate the heterogeneous radio propagation behav-
iors of its users and to improve the transmission perfor-
mance. The numerology type defines the subcarrier spac-
ing within each RB composing the different subchannels.
Formally, a RB belonging to the MVNO m is character-
ized by a subcarrier spacing of ∆fm = 15 kHz · 2µm with
0 ≤ µm ≤ 4 as defined in the 3GPP NR specification
[25]. The NO has perfect channel state information (CSI)
of every user regardless from the MVNOs to which it be-
longs. Moreover, it periodically computes the number of
subchannels required by each MVNO in order to accom-
modate their own user service demand by following the
spectrum assignment policy Sm. The latter is formally
defined as

Sm =

{
`m,m ∈M :

∑
m∈M

`m = K

}
,

where `m indicates the number of subchannels that are
assigned to MVNO m. Note that we do not focus on
how Sm is computed since our goal is the multiplexing
of the subchannels assigned to the various MVNOs on the
shared RAN spectrum. For this reason, we consider that
Sm is provided as input parameter by the network and
it can be computed by relying on prediction techniques
that forecast the required spectrum usage of each slice
based on the related historical service provisioning. We
remark that the latter also indirectly accounts for the ex-
perienced INI level since it affects the overall data rate.
Consequently, it is reasonable to assume that Sm provides
a reliable INI-aware subchannel assignment policy that is
further enforced by the proposed INI-aware subchannel
multiplexing policy. Given a user u, an MVNO m, and
a subchannel k, we model the channel fading as composed
by a slow fading component, αum, and a fast fading com-

Figure 2: RAN slicing architecture. The NO multiplexes the active
MVNOs on the available subchannels composing the RAN spectrum.

ponent, hum(k). The former accounts for the path loss
and shadowing effects, whereas the latter accounts for the
multi-path effect. Analytically, the power gain of subchan-
nel k computed by user u belonging to MVNO m can be
expressed as gum(k) = αumh

u
m(k), where hum(k) is modeled

as an exponentially distributed random variable with unit
mean.

3.2. INI analytical model

The simultaneous allocation of subchannels composed
by RBs of heterogeneous numerologies generates INI. The
orthogonality condition across subcarriers is only guaran-
teed when the adopted numerology is homogeneous. To
quantitatively model the INI power dynamic, we rely on
the analytical formulation proposed by authors in [3], which
we adapted to fit the logical subchannel division of the
RAN spectrum. In details our formulation characterizes
the INI power over the fixed number of subcarriers that is
defined by the subchannel numerology. Given two sub-
channels, k and k′, user u is on subchannel k using a
numerology with subcarrier spacing ∆fm, while another
user is on subchannel k′ using a numerology with subcar-
rier spacing ∆fm′ , then the INI power affecting user u can
be computed as, if ∆fm < ∆fm′ ,

Ium(k, k′) ≈PT (k′)

Nk′

Nk∑
z=1

Nk′∑
v=1

gum(k′)

Nk′Nk

[∣∣∣∣∣ sin[ πNk
w(z, v)ξN

(T )
k′ ]

sin( π
Nk
w(z, v))

∣∣∣∣∣
2

+ ξ

∣∣∣∣∣ sin[ πNk
w(z, v)N

(T )
k′ ]

sin[ πNk
w(z, v)]

∣∣∣∣∣
2]
, (1)
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otherwise, if ∆fm > ∆fm′ , as

Ium(k, k′) ≈ PT (k′)

Nk′

Nk∑
z=1

Nk′∑
v=1

gum(k′)

Nk′Nk

∣∣∣∣∣ sin[ π
Nk′

w(z, v)Nk]

sin[ π
Nk′

w(z, v)]

∣∣∣∣∣
2

(2)
where Nk = W/∆fm corresponds to the number of sub-
carriers in subchannel k, PT (k) is the power allocated on

subchannel k, N
(T )
k = Nk+NCP

k denotes the total number
of subcarriers in subchannel k with NCP

k defining the num-
ber of subcarriers employed as cyclic-prefix, ξ = bNk/NT

k′c
is the number of overlapping OFMD symbols within the
same transmission frame, and w(z, v) is the spectral dis-
tance between subcarriers of different numerolgies and it
is calculated as the total number of subcarriers separating
subcarrier z from subcarrier v.

From (1) and (2), we observe that INI power mainly de-
pends on the spectral distance between subcarriers of dif-
ferent numerologies and the power allocated to each sub-
carrier. More specifically, the interference suffered from
each subcarrier increases as the numerology gap with re-
spect to subcarriers using a wider subcarrier spacing in-
creases. Similarly, the higher is the power allocated to
each subcarrier, the higher is the interference generated
on neighbor subcarriers.

We quantify the subchannel quality measured by each
user u belonging to MVNO m and associated to each
subchannel k as the signal-to-interference-plus-noise ratio
(SINR)

γum(k) =
PT (k)gum(k)

σ2
w +

∑
m′ 6=m

∑
k′ 6=k

xm′,k′Ium(k, k′)
, (3)

where xm,k is the binary subchannel allocation indicator
that has value xm,k = 1 if subchannel k is allocated to
MVNO m and xm,k = 0 otherwise, and σ2

w is the white
Gaussian noise power over each subchannel.

From (3), we note that the INI power on subchannel
k is related to the subchannel gains of the remaining sub-
channels having different numerologies. Specifically, the
higher is the power on adjacent subchannels of different
numerologies, the higher is the INI power generated on
subchannel k. Intuitively, exploiting the fading indepen-
dence over the frequency domain across the different sub-
channels, each user can reduce the INI by accessing sub-
channels with high gains that are surrounded by subchan-
nels having a much lower gain. In other words, an INI-
aware subchannel allocation that leverages the multiplex-
ing gains provided by the wireless channel can mitigate
the INI impact affecting the various users. We formalize
this observation as an optimization problem in the next
section.

4. Problem formulation

In this section, we formulate the problem for the opti-
mal spectrum allocation and we formalize the system en-

vironment that is used by the DRL agent to compute an
allocation policy approximating the optimal solution.

4.1. Optimal resource allocation

Based on the RAN slicing architecture described be-
forehand, the ideal subchannel allocation that maps the
various subchannel over the common RAN spectrum ac-
cording to Sm should maximize the aggregated MVNO
throughput performance, which means that each MVNO
should have access to the subset of subchannels that en-
sures the highest data rate to its users.

Stemming from this requirement, we formalize the re-
source allocation problem as

max
x

M∑
m=1

K∑
k=1

1

Um

Um∑
u=1

xm,k ·W log2 (1 + γum(k)) (4)

subject to

K∑
k=1

xm,k = `m ∀m ∈M (5)

M∑
m=1

xm,k ≤ 1 ∀k ∈ K (6)

xm,k ∈ {0, 1} ∀m ∈M, ∀k ∈ K. (7)

Problem constraints ensure the feasibility of resource
allocation according to the proposed system model. In
detail, (5) guarantees that the number of subchannels al-
located to each MVNO follows the spectrum assignment
policy Sm. Equation (6) makes sure that each subchannel
is allocated to a single MVNO only. Finally, (7) enforces
the integer nature of the problem through the binary op-
timization variable xm,k.

The integrity condition (7) on the optimization vari-
able makes the solution computation challenging. More-
over, the object function is generally non-convex due to the
fact that it can be seen as a difference of convex functions.
This makes the proposed problem formulation NP-hard
[26], hence (4) is unpractical for real systems that perform
the allocation of the radio resources within a very strict
amount of time at the physical layer level. We leverage the
DRL theory to train an agent that can quickly compute a
suitable allocation policy approximating the optimal solu-
tion.

4.2. Environment formulation

DRL provides an iterative method to compute an opti-
mal policy for solving a Markov Decision Process (MPD),
where the transition probabilities from each state towards
other states are unknown [27]. Formally, an MDP can
be formulated as the 5-tuple (S,A, p(s′|s, a), R(s, a), γ),
where S and A denotes, respectively, the state space and
action space, p(s′|s, a) denotes the transition probability
from state s at time t toward state s′ at time t + 1 and
depends on the current state s and the action a, R(s, a)
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is the immediate reward that is obtained by performing
action a under state s, that is discounted over time by
a factor γ, with 0 ≤ γ < 1. The goal of the learning
is to find the optimal policy that allows to maximize the
expected discounted reward from any initial state s, i.e.∑∞
i=0 γ

iRt+1+i. We present an MDP formulation of the
original system model by means of a set states S, which
can be explored according to the action space A in order
to maximize the designed reward function R.

State space. The environment is characterized by the sub-
channel gains gum(k) and the INI power measured before
the attenuation introduced by the multi-path fading chan-
nel. In other words, this is the INI power generated at
the base station according to the selected subchannel al-
location and is analytically computed by setting gum(k) =
1,∀u ∈ Um, i.e. without considering the fading gain, in
(1) and (2) . The motivation behind this design choice
is to emphasize within the state space representation the
difference between the subchannel fading, that is purely
stochastic, and the INI power that is strictly related to the
selected subchannel allocation. Such representation allows
the agent to better discriminate the impact of the per-
formed action on the environment due to the highlighted
deterministic component. At each time slot t, the agent
samples the environment and observes the state st that
belongs to the state space S,

S = {G[k], I[k]}k∈K (8)

where

G[k] = {gum(k)}m∈M,u∈Um
, (9)

I[k] =
{ ∑
m′ 6=m

∑
k′ 6=k

xm′,k′Im(k, k′)
}
m∈M

. (10)

Note that the term Im(k, k′) in (10) is the same as the
term Ium(k, k′) in (1) and (2). We dropped the index u since
(10) provides the same value for the users belonging to the
same MVNO. According to this environment representa-
tion, the state space dimension has size K · (

∑
m Um + 1),

hence it scales linearly with the total number of users and
subchannels.

Action space. The action space is composed by all the pos-
sible subchannel allocations that can be computed accord-
ing to the number of active MVNOs. We represent each
action as a K-dimensional vector at:

at = (a1, ..., aK) (11)

where the generic coordinate ak, with 1 ≤ ak ≤ M in-
dicates that subchannel k is allocated to MVNO m. Ac-
cording to this action space formulation, the total number
of actions composing the action space A is equal to MK .
There are two issues with this representation. First, the
exponential increase of the available actions can severely
affect the agent learning performance due the large action

space dimensionality that hinders the environment explo-
ration. Second, a subset of actions is not feasible due to
the fact that constraint (5) is not naturally enforced within
the action space. In the next section, we address these
drawbacks by designing an agent that can efficiently man-
ages the large action space while simultaneously ensuring
action feasibility.

Reward function. We directly employ the objective func-
tion (4) to model the reward obtained by the agent at each
time step. Consequently, the agent is going to maximize
the obtainable reward over time, thus approaching an ex-
pected reward value close to the optimal one. At every
time step, the agent evaluates the effectiveness of the se-
lected action by observing the reward Rt computed as (4)
relying on the state formulation (8). As a matter of fact,
the subchannel gains of each user are used to compute the
data rate according to the selected subchannel allocation
which also provides the information to calculate the INI
generated by the corresponding MVNO multiplexing.

5. Multi-branch resource allocation agent

We now present the DRL agent, referred as multi-
branch resource allocation (MBRA) agent, to compute a
suitable approximation of the optimal subchannel alloca-
tion. Since the agent architecture can be considered as
an extension of deep Q-learning to multi-dimensional ac-
tion spaces, we first provide a brief overview of its core
elements, then we present the enhancement required to
support the scalability in large action spaces.

5.1. Deep Q-learning general structure

Q-learning is an off-policy reinforcement learning scheme
that allows to compute the optimal policy under a model-
free environment formulation [28]. The optimal policy
π∗ is computed by taking the maximum value of the Q-
function at every time step. The latter is defined as the
average discounted reward obtainable starting from state
s, taking action a and following the policy π. Formally,
we can write the optimal policy as

Qπ∗(s, a) = max
a∈A

Qπ(s, a) (12)

where

Qπ(s, a) = Eπ[

∞∑
i=0

γiRt+1+i|St = s,At = a]. (13)

Since the Q-function is unknown at the beginning of
the training phase, the agent iteratively approximates its
value by means of subsequent Temporal-Difference (TD)
updates that consist of a weighted average between the
old Q-function value obtained at time step t and the new
Q-function value obtained in the next time step t+ 1. An-
alytically, at every time step, Q(s, a) is updated as
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Q(st, at)← (1− α)Q(st, at)+

α[R(st, at) + γmax
a∈A

Q(st+1, a)], (14)

where α ∈ [0, 1] is the learning rate.
Classical Q-learning employs tables as data structure

to individually store the Q-function values associated to
each action-state pair. However, when the number of states
and/or actions grows large, the agent convergence perfor-
mance is hindered as many state-action pairs are rarely
visited, thus resulting in a sporadic update of the related
Q-function values. To overcome this issues, Q-learning
evolved into deep Q-network (DQN) by introducing deep
neural networks (DNN) to boost the learning process. This
technique allows to approximate the Q-function by means
of a suitable DNN with weights {θ}.

The DNN weights {θ} are updated in order to minimize
the loss, L(θ), between the Q-function values computed on
subsequent time steps. Formally, they are updated as

θ ← θ − α∇θL(θ), (15)

where L(θ) is defined as

L(θ) =
∑
B

[R(st, at) + γmax
a∈A

Q(st+1, a;θ′)

−Q(st, at;θ)]2. (16)

In (16), {θ′} corresponds to the weights of a second DNN
that is used to stabilize the Q-function computation con-
vergence and it is updated as {θ′ = θ} every few time
steps. Parameter B is the size of the mini-batch that is
randomly sampled from the experience-replay buffer. The
latter collects and stores the most recent N experience tu-
ples (st, at, st+1, rt+1) observed by the agent during the
training phase. This sampling procedure improves the
agent learning performance by providing uncorrelated ex-
perience tuples between subsequent weights updates [29].

5.2. Multi-branch Agent Architecture Overview

In order to mitigate the scalability issues stemming
from the growth of the action space, we adopt a Divide-
and-Conquer strategy. Suppose that each subchannel is
managed by an agent, with each agent selecting, for each
time slot, the MVNO whose users achieve the highest SNR.
The aggregated action, which consists of the union of the
allocations performed by each agent, corresponds to the
multi-dimensional vector at originally defined in (11).

If there is no INI, it is trivial to see that the above
strategy finds the optimal solution. When INI is consid-
ered and no agent coordination is enforced, this strategy
leads to poor results since every agent would act inde-
pendently during the learning process, thus making the
convergence process not stationary.

To overcome these challenges, we employ a DRL scheme
denoted as Branching Dueling Q-network (BDQ) [30]. This

Shared
hidden
layers

{θ}

G[k]

I[k]

Allocation of the K 
subchannels

argmax
Advantages 
dimension 1

A1(s,a1)

Shared state 
value V(s)

Advantages 
dimension 2

A2(s,a2)

Advantages 
dimension K

AK(s,aK)
+

+

+
Q-values

dimension 1
Q1(s,a1)

Q-values
dimension 2

Q2(s,a2)

Q-values
dimension K

QK(s,aK)

argmax

argmax

Figure 3: Multi-branch DNN architecture. Every network branch
provides the Q-function value Qk(s, ak) that is computed by aggre-
gating the shared state value module with the advantage function of
each sub-action ak ∈ {1, ...,M}. The subchannel allocation is com-
puted by taking the maximum Q-function value from each network
branch.

agent leverages the Dueling Network architecture proposed
by authors in [31] to distribute the representation of the
state-action values across independent DNN branches, each
one expressing the advantage function related to every
sub-action (i.e. each coordinate of the multi-dimensional
action at). The advantage function quantifies how much
better is the chosen sub-action with respect to the current
state value estimation.

The coordination among different network branches is
ensured by a shared decision module that computes a com-
mon state value estimation of every observed state. The Q-
function value of each sub-action is individually computed
by means of an aggregation layer that combines the shared
representation module with each single advantage func-
tion. In Fig. 3 we report a scheme of the discussed multi-
branch architecture. Intuitively, every network branch can
be considered as an independent agent that is in charge of
the optimal policy computation according to the action
space defined by the values of the k-th coordinate in at.

Thanks to this scheme, we can observe a linear increase
of the number of output neurons as the number of subchan-
nels and/or MVNOs increases rather than the exponential
increase that would occur if each subchannel allocation
was treated as a scalar value. Quantitatively, the total
number of output neurons required by the multi-branch
architecture is M · K + 1 which is lower than the action
space dimensionality MK . We now cover more in detail
the main elements of the considered agent architecture.

Shared state-value estimator. This module represents a
separated branch in the DNN representation and provides
the estimate of the reward given the current state. In
general, the state value function is directly related to the
Q-function value and it can be retrieved by weighting its
value with respect to the policy π(a|s) that provides the

7



probability of taking the action a given the state s, i.e.,

Vπ(s) =
∑
a∈A

π(a|s)Q(s, a), (17)

As mentioned earlier, the estimated value is used by the
various network branches to coherently correlate their ac-
tion choice according to the predicted achievable through-
put in the next time slot.

Dueling Network Architecture. This network architecture
makes it possible to efficiently estimate the Q-function
without the need of individually inspecting the Q-function
value related to each state-action pair. As a matter of
fact, it is possible to accelerate the agent convergence per-
formance by expressing the Q-function in terms of state
value function V (s) and advantage function A(s, a) and
aggregating the two modules as

Q(s, a) = V (s) +
[
A(s, a)− 1

n

∑
a′∈A

A(s, a′)
]

(18)

where n is the number of available actions. This alter-
native Q-function value computation allows the agent to
generalizing more rapidly among actions that provide sim-
ilar rewards [31]. In our scenario, this feature is particular
useful since many subchannels allocations are likely to pro-
vide comparable throughput values given different INI lev-
els, hence a generalization of their relationship can assist
the agent convergence.

5.3. Agent training

We split the training procedure in two steps, the action
selection phase and the action mapping phase. The first
step computes the weights of the DNN associated to the
MBRA agent, whereas the second step changes unfeasible
actions selected by the agent during the exploration pro-
cess into feasible actions. The overall training procedure
is reported in Algorithm 1.

Action selection phase. To ensure the agent flexibility in
adapting to multiple radio scenarios, the training proce-
dure is composed by episodes having a different user dis-
tribution that is randomly generated at the beginning of
every new episode, where the time step granularity of each
episode is dictated by the CSI update performed by the
users (lines 3-11). The agent aims at maximizing the Q-
function value related to the sub-actions that are available
in each network branch. To achieve this goal, the agent
needs to explore the environment in order to learn new
action-state pair combinations that can improve the ob-
tainable reward as well as to exploit its knowledge about
the environment in order to achieve the highest possible
reward. This exploration/exploitation procedure is imple-
mented by means of a ε-greedy policy. Specifically, with
probability ε the agent computes a subchannel allocation
by randomly selecting a sub-action ak from each network

Algorithm 1: MBRA training procedure

Input: K, M , Um, Sm, γ, α
Output: Allocation of K subchannels to M

MVNOs according to the spectrum
assignment policy Sm

1 Initialize the wireless environment;
2 Initialize the agent DNN with K network branches

having M output neurons each;
3 foreach episode do
4 foreach MVNO m ∈M do
5 Randomly place Um active users over the

BS coverage area;

6 end
7 foreach time step do
8 foreach subchannel k ∈ K do
9 Simulate INI power in every subchannel

using (10);
10 Generate CSI reporting of every user

u ∈ Um;

11 end
12 Observe the environment state st;
13 Select action at with probability 1-ε

according to (19) or with probability ε by
randomly choosing ak in each branch;

14 if at is unfeasible then
15 Compute the aggregate action using

(27) where each network branch is
selected according to Alghorithm 2;

16 end
17 Store the experience tuple (st,at, rt+1, st+1)

in the experience-replay buffer;
18 Sample a mini-batch of size B following the

probability distribution (23);
19 Update θ in order to minimize L(θ) in (22)

using the sampled mini-batch, where each
TD error is weighted based on (25);

20 end

21 end
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branch. Differently, with probability 1-ε the agent com-
putes a subchannel allocation that is built by selecting
from each network branch the sub-action ak providing the
highest Q-function value (line 13). Note that the com-
puted spectrum allocation is applied to every TTI occur-
ring between two subsequent CSI reporting. Therefore,
the training effectiveness is not affected by a possible CSI
reporting periodicity reconfiguration, since the agent deci-
sion making is only triggered at each new CSI update. The
naive way to calculate the aggregated action composed by
the sub-action values chosen in each branch is:

a = (argmax
a1∈M

Q1(s, a1), ..., argmax
aK∈M

QK(s, aK)) (19)

Using (19) to directly calculate the aggregated action
can result in unfeasible actions, i.e. actions that do not
satisfy the constraints (5)–(7). If this is the case, a new,
feasible, action is recomputed by relying on the action
mapping procedure that is going to be described in the
next paragraph (line 15).

The Q-function values Qk(s, ak) associated to each net-
work branch are computed by extending the aggregation
procedure proposed for Dueling Networks. In detail, the
same computation reported in (18) is repeated for every
branch such that each Q-function value is expressed in
terms of the common state-value estimator and the cor-
responding sub-action advantage. Analytically, the indi-
vidual Q-function value Qk(s, ak) resulting from choosing
sub-action ak in state s is calculated as

Qk(s, ak) = V (s) +
[
Ak(s, ak)− 1

M

M∑
a′k=1

Ak(s, a′k)
]
, (20)

After each time step, the Q-function values in each
branch are updated by means of TD updates with respect
to the target value that aggregates the expected future
rewards obtainable by each sub-action as

y = R(st,at) +
γ

K

∑
k∈K

Q′k(st+1, argmax
ak∈M

Qk(st+1, ak)),

(21)
where Q′k(s, ak) represents a second DNN initialized with
weights {θ′ = θ}. Note that the choice of the next sub-
action ak for the time slot t + 1 is performed using the
current estimated Qk(s, ak) but it is then evaluated using
the target Q′k(s, ak). This procedure, denoted as Double
DQN (DDQN), allows to reduce the overestimation prob-
lem of the Q-function values that usually affects DQN [32].

The DNN weights θ of the Q-function are updated
in order to approximate the target Q-function values as
computed in (21). The total loss is quantified as the
expectation of the average TD value across the network
branches related to the experience tuples within the mini-
batch (lines 17-19), hence it is defined as

L(θ) = Ei∈B

[
1

K

K∑
k=1

(yi −Qk(s, ak))2

]
, (22)

where yi indicates the target Q-function values obtained by
the i−th experience tuple. However, differently from the
classical experience replay where samples are uniformly
drawn from the buffer, we employ the prioritized sampling
approach proposed by [33]. The advantage of this proce-
dure is to increase the sampling efficiency by selecting with
high probability the experience tuples that are more infor-
mative. Practically, experience tuples that provide very
different values between the predicted reward and the tar-
get reward are the ones the should be sampled more often
in order to allow the agent to improve its Q-function es-
timation. Following this observation, the probability of
sampling the ith tuple in the experience buffer is:

p(i) =
(|δ(i)|+ ξ)α0∑
j(|δ(j)|+ ξ)α0

, (23)

where ξ is a small positive number that ensures the prob-
ability feasibility, α0 tunes the priority of the considered
tuple (i.e. the higher α0, the more frequently the tuple
is likely to be sampled), and δ(i) is the cumulative dif-
ference between the expected reward y and the predicted
Q-function value in each network branch, i.e.

δ(i) =
∑
k∈K

|yi −Qk(s, ak)|. (24)

Finally, since the Q-function computation could suffer
from overfitting due to a bias introduced by the sampling
probability (23), we weight differently the various losses
computed with (22) in order to reduce the magnitude of
the gradient updates for the tuples that are sampled more
often. In details, each weight w(i) is defined as

w(i) = (B · p(i))−β0 (25)

where β0 adjusts the weights importance.

Action mapping phase. The proposed agent is not able
to determinate whether the select action is feasible. For
this reasons, we constrain the action selection procedure
during the training phase according to Sm so that the gra-
dient updates are performed only with respect to feasible
actions. Whenever the action selected by means of (19)
does not satisfy the feasibility constraints, we perform the
aggregation of the different branches by solving the fol-
lowing optimization problem, which computes the feasible
action maximizing the expected Q-function value in each
branch.

Let Qk(s, a
(m)
k ) be the Q-function value that is esti-

mated by the agent when subchannel k is allocated to
MVNO m and zm,k be a binary selection indicator func-
tion, which takes value 1 when the m-th output neuron
of the k-th network branch is selected or 0 otherwise. We
need to find z∗m,k, which maximizes the following

max
z

∑
k∈K

∑
m∈M

zm,k ·Qk(s, a
(m)
k ) (26)
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subject to constraints (5)–(7). According to the solution
found with (26), the aggregated feasible action at time t
is built as

at = (argmax
a1∈M

Q̃1(s, a1), ..., argmax
aK∈M

Q̃K(s, aK)), (27)

where
Q̃k(s, ak) =

∑
m∈M

z∗m,kQk(s, a
(m)
k ). (28)

This mechanism allows the agent to exclusively learn
feasible subchannel allocations, thus improving its conver-
gence speed.

The computation of the optimal solution in (26), can
be computationally expensive. This may not be an issue
during the training phase, which is performed offline, but
makes the algorithm not suitable for the online phase. For
this reason, we also propose Algorithm 2, which is a sim-
ple low-complexity heuristic algorithm to solve (26) and is
suitable for an online execution. The algorithm is based on
a greedy scheme that iteratively selects the output neuron
providing the highest Q-function value according to Sm.
Following this procedure, each subchannel is allocated to
the MVNO that achieves the highest throughput only if
the allocation complies with Sm.

Algorithm 2: Greedy action mapping procedure

Input: Qk(s, a
(m)
k ), Sm

Output: Feasible selection indicator function z∗m,k
1 Initialize z∗m,k = 0 ∀m ∈M,k ∈ K;

2 Initialize subchannel allocation flag
nk = 0 ∀k ∈ K;

3 Sort Qk(s, a
(m)
k ) in decreasing order;

4 foreach Qk(s, a
(m)
k ) do

5 if Sm > 0 and nk = 0 then
6 z∗m,k = 1;

7 nk = 1;
8 Sm = Sm − 1;

9 end

10 end

With reference to Algorithm 2, in line 2 we sort in
decreasing order all the single M · K Q-function values

Qk(s, a
(m)
k ). For each Qk(s, a

(m)
k ), in line 3 we check if the

assignment policy Sm permits the allocation of subchan-
nels to MVNO m and if subchannel k has not been already
allocated. When such condition is met, subchannel k is al-
located to MVNO M in line 6 and the related assignment
policy and subchannel allocator flag are updated accord-
ingly in line 7 and line 8, respectively. The computation
complexity of the described scheme can be computed as
follows. The sorting procedure in line 2 has complexity
O(MK logMK). The loop in line 4 iterates all the Q-
values, thus the complexity is O(MK). Consequently, the
overall asymptotic complexity is O(MK logMK). Note

that, in principle, the discussed greedy scheme could be
used to heuristically solve the optimal problem formulation
(4) due to the similarity with (26) by using the terms of
the summation instead of the Q-function values. However,
this is going to provide poor results since the INI depends
on the MVNO multiplexing order, that is indeed neglected
by the considered scheme. Differently, the proposed DRL
approach automatically learns the INI behavior with re-
spect to the subchannel allocation order by means of a
trial and error procedure.

5.4. Agent deployment in practical scenarios

The functionality provided by the described agent is
performed by the NO, which manages the RAN slicing
among the various MVNOs. From a practical perspective,
we can fit the agent architecture within the RAN slicing
view supported by the well-known Open RAN (ORAN)
Alliance. In the context of intelligent RAN virtualization,
we can identify the proposed agent as the RAN intelligent
controller (RIC) module which is in charge of enhancing
the radio resource management [34]. Similarly to the ac-
tivity performed by our scheme, the RIC leverages artifi-
cial intelligence techniques to boost the network capability
performance for the sake of a better service provisioning.

6. Performance evaluation

We evaluated the performance of the proposed DRL
approach by means of simulations. First we provide an
overview of the simulation setup, then we discuss the agent
scalability performance for different system configurations
as well as the effectiveness of the computed allocation pol-
icy.

6.1. Simulation setup

We implemented our custom simulator using MATLAB
for both the radio network environment and the agent. In
order to reliably assess the agent performance, we consid-
ered different network scenarios composed by a different
number of subchannels and MVNOs. Specifically, we con-
sidered multiple RAN bandwidth configurations ranging
from 10 MHz to 20 MHz, shared by up to 3 MVNOs of nu-
merologies having subcarrier spacing 15 kHz, 30 kHz, and
60 kHz as dictated by 3GPP specification [25]. Similarly,
leveraging the concept of BWP previously introduced, we
consider each subchannel having bandwidth W = 1.5 MHz
that is a value comparable with the RB group granular-
ity size employed in NR physical layer [24]. Since we are
interested in quantify the multiplexing gains of different
subchannel allocations on the same spectrum, we assume
that the BS transmission power is equally allocated across
the MVNOs sharing the RAN and that it is scaled accord-
ing to the number of subchannels. Analogously, we con-
sider that a fixed number of active users, each one located
at a random distance d from the BS, is scheduled by the
various MVNOs in order to provide the required network
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Table 1: Radio parameters

Maximum transmission power 46 dBm
Maximum RAN spectrum 20 MHz
Coverage radius 400 m
Carrier frequency 2.5 GHz
Available numerologies {15, 30, 60} kHz
Subchannel bandwidth 1.5 MHz
Number of active users 12
Small-scale fading statistic Rayleigh
Doppler shift 35 Hz
Fading update 1 ms
Path loss model [35] 36.7 log10 d+ 33.05 (dB)
Shadowing standard deviation 4 dB
Noise PSD -174 dBm/Hz

service. The CSI reporting is performed by the users every
1 ms, which also dictates the time step granularity of the
episodes during the agent training phase. Moreover, we
assume an assignment policy Sm that equally distributes
the available subchannels among the MVNOs. When the
number of subchannels cannot be equally divided between
MVNOs, we sequentially assign the exceeding subchannels
starting with the MVNO having the lowest numerology.
All the RAN parameters are reported in Table 1.

We selected the agent parameters by experimentally
assessing the quality of the obtained results. Specifically,
we tuned the DNN number of neurons in each layer as
well as the number of hidden layers by incrementally in-
creasing their number in different environment simulations
and selecting the combination of values providing the high-
est agent reward. According to such procedure, the agent
DNN has 2 fully connected hidden layers of 1024 and 512
neurons each, which are used to represent the shared net-
work part composed by the common state value estima-
tor module and the sub-actions network branches. Each
branch is composed by 1 fully connected hidden layer of
256 neurons. We employ the Rectifier Linear Unit (ReLU)
function, f(x) = max(0, x), as hidden neuron activator.
Note that the same hidden layer size is used for all the
considered network scenarios, whereas the input and out-
put layers dimension is modified according to the different
subchannels and MVNOs configurations. In detail, the in-
put layer, which represents the environment observation,
has K(1 +

∑
m Um) neurons, whereas the aggregated out-

put layer is composed by K branches each one having M
neurons. We use stochastic gradient descent to solve (22)
and to update the DNN weights θ. Specifically, we trained
the agent with mini-batches of 32 samples using the Adam
optimizer [36] with learning rate α = 10−4 and parameters
β1 = 0.9, β2 = 0.999. The experience tuples are sampled
according to the probability distribution generated with
prioritization level α0 = 1, whereas the related losses are
weighted using a variable β0 that is linearly increased from
β0 = 0.4 to β0 = 1 during the first 50 training episodes. Fi-
nally, the agent discounts future rewards using a discount

Table 2: Agent parameters

Learning rate 10−4

Discount factor 0.3
Exploration decay rate 0.99
Prioritized sampling α0 = 1, β0 = 0.4
Experience-replay buffer size 105

Mini-batch size 32
Episode duration 100 ms
Number of episodes 500

rate γ = 0.3 and it initially explores the environment with
probability ε = 1 which is then decremented every time
step following the update rule ε ← max{0.1, 0.99ε}. In
Table 2 we report the overall employed agent parameters.

6.2. Scalability performance

We discuss the agent convergence performance to as-
sess its exploration capabilities for different action space
dimensions. In Fig. 4 we plot the normalized reward
achieved by the MBRA agent during the training phase
for two network configurations composed by 6 and 12 sub-
channels. For every scenario we considered 2 MVNOs of
numerologies 15 kHz and 30 kHz and 3 MVNOs of nu-
merologies 15 kHz, 30 kHz, and 60 kHz are multiplexed
on the shared spectrum. The figure show that, regard-
less of the considered configuration, the agent converges
to a stationary reward value, which indicates a success-
ful policy computation. Specifically, we observe that the
agent requires more episodes to converge when the num-
ber of numerologies and subchannels increases. Such addi-
tional training overhead is more visible when the number
of subchannels is increased from 6 to 12 rather than an in-
crease of the multiplexed numerologies. Since we assumed
independent subchannel fading gains, the agent requires
more episodes to infer the relationship between the INI
and small-scale fading as the number of subchannel in-
creases. Differently, when we increase the number of nu-
merologies, the correlation between the INI values across
contiguous subchannels makes it easier for the agent to
exploit its knowledge about the INI dynamic acquired in
previous episodes.

In Fig. 5, we show the convergence performance achieved
by the agent without the support of the action mapping
procedure using the same combination of subchannels and
MVNOs previously employed. We plot only the first 250
episodes for the sake of graph visibility. Note that, in this
case, we modified the original reward function in order to
account for unfeasible subchannel allocations. In this re-
gard, we assigned a null reward to unfeasible actions in
order to discourage their choice. We can observe that the
agent converges more quickly to a stationary policy that
provides a lower expected reward when compared to the
agent implementation relying on the action mapping. In-
tuitively, this behavior is due to the fact that the agent
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Figure 4: Average reward. Scenarios with 2 MVNOs of numerologies
15 kHz and 30 kHz and 3 MVNOs of numerologies 15 kHz, 30 kHz,
and 60 kHz. The number of subchannels is K = 6 or K = 12.
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Figure 5: Average reward without the action mapping phase. Sce-
narios with 2 MVNOs of numerologies 15 kHz and 30 kHz and 3
MVNOs of numerologies 15 kHz, 30 kHz, and 60 kHz. The number
of subchannels is K = 6 or K = 12.
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Figure 6: Percentage of unfeasible actions. Scenarios with 2 MVNOs
of numerologies 15 kHz and 30 kHz and 3 MVNOs of numerologies
15 kHz, 30 kHz, 60 kHz. The number of subchannels is K = 6 or
K = 12.

learning performance is hindered by the sparsity of the re-
ward function that provides the same low reward value for
every unfeasible action. Consequently, as we experimen-
tally observed, the agent learns to how avoid unfeasible
actions, which in turn provides an increase of the expected
reward, rather than to how select a feasible subchannel al-
location providing the highest reward. The effect of this
strategy makes the agent converge faster to a poor pol-
icy since it is mostly discarding unfeasible actions without
actually learning a suitable subchannel allocation.

Fig. 6, shows the agent’s capability to gradually learn
the feasible action space. Specifically, we plot the percent-
age of unfeasible actions selected by the agent as a function
of the number of episodes. In the figure, the percentage of
unfeasible actions decreases with the number of episodes.
This behavior is consistent with our observation that the
action mapping scheme allows the agent to autonomously
select feasible actions as its knowledge about the environ-
ment grows. In fact, the agent requires more episodes to
discriminate a feasible action space when the number of
numerologies and/or subchannel increases. Moreover, the
learning procedure is less efficient when 12 subchannels are
considered. This is due to the fact that the agent learns
the feasible action space according to its own estimate of
the expected reward, which is iteratively computed during
the learning process. Therefore, estimation errors can af-
fect the action mapping phase. This trend is more evident
in complex scenarios that consist of a larger action space.
Nonetheless, this analysis highlights the benefits derived
from the action mapping phase in term of higher expected
reward gains.

6.3. Allocation policy performance

We now assess the performance of the subchannel allo-
cation policy implemented by the trained agent. In addi-
tion to the system configuration employed in the previous
subsection, we also consider the spectrum allocation for
8 and 10 subchannels in order to provide a more insight-
ful understanding of the policy performance as the system
complexity is gradually increased. The results are aver-

aged across 10 independent episodes composed by a dif-
ferent distribution of the users over the BS coverage area.
We compare the results obtained by the MBRA agent to
the results obtained the the following allocation schemes.

• Optimal allocation: the subchannel allocation is com-
puted by performing an exhaustive search of all feasi-
ble solutions and selecting the one maximizing (4) at
every CSI update. We remark that this subchannel
allocation provides the highest aggregated through-
put performance so it is used as an upper bound to
assess the solution quality of the others schemes.

• Single branch allocation: the subchannel allocation
is computed using the DRL agent proposed in our
previous work [6], which is based on DQN. We will
refer to this agent as “single branch resource allo-
cation (SBRA) agent”. Differently from the MBRA
agent architecture, the SBRA agent employs a single-
branch DNN whose output neurons encode every fea-
sible subchannel allocations with a unique index used
as identifier. In other words, the action space is a
scalar value ranging the number of feasible alloca-
tion. Note that, except for the action space struc-
ture, such agent employs the same environment and
reward definitions as the multi-branch counterpart.

• INI-aware allocation: the subchannel allocation is
computed by approximating the INI contribution us-
ing a model-based approach that is based on the
work proposed in [19]. Since the original scheme is
used in a different context, we adapted the algorithm
to fit our system model in order to provide a fair per-
formance comparison. In detail, the authors defined
an INI upper bound, σmaxINI , which is the maximum
INI power generated between subbands of different
numerologies separated by a guard band of arbitrary
size. In the considered scenario, we selected a guard
band size depending on the employed numerology.
Specifically, the size is computed as 30 · 2µm kHz (in
other words, the 2 outermost subcarriers in each sub-
channel are used as guard band). By expressing the
subchannel SINR using σmaxINI , i.e.

γum(k) =
PT (k)gum(k)

σ2
w + gum(k)σmaxINI

, , (29)

we make (4) convex, hence it can be solved using
classical integer linear programming techniques. Note
that this alternative formulation underestimates the
obtainable data rate since it considers that a fixed
INI power is always generated. To assess the opti-
mality gap, we used the Matlab Optimization tool-
box to compute the subchannel allocation provided
by the simplified SINR expression (29) and then we
evaluated the data rate using the exact INI formula-
tion (4).

• Static allocation: a random subchannel allocation is
drawn among the ones available and it is kept fixed
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for the whole episode duration regardless of the CSI
and INI values.

We now discuss the per-slice throughput performance.
Note that since we are maximizing the cumulative through-
put the aggregate data rate of the optimal approach pro-
vides, of course, the highest data rate value. However,
this is behavior is not guaranteed at the per-slice perfor-
mance level, hence the various suboptimal schemes might
outperform the optimal allocation for a particular MVNO
in some scenarios.

In Fig. 7, we plot the throughput achieved by 2 MVNOs
sharing the RAN. In general, we observe that the MVNO
having 15 kHz numerology has lower data rata due to the
asymmetric INI power behavior previously discussed. The
MBRA agent provides a good approximation of the opti-
mal solution in all scenarios. In details, we note that the
optimality gap increases as more subchannels are multi-
plexed. This trend is related to the larger action space
that the agent has to explore in order to infer the opti-
mal policy. Nonetheless, the proposed agent achieves a
higher throughput gain with respect to the SBRA agent
that shows a more visible performance loss when 10 and
12 subchannels are available. The large dimensionality of
the action space hampers the SBRA agent, since it cannot
leverage the flexibility provided by the multi-branch archi-
tecture to efficiently explore all the possible subchannels
combinations. Moreover, the INI-aware algorithm is out-
performed by the DRL based schemes since its INI power
overestimation limits the subchannel multiplexing gain as
instead occurs when the exact INI power computation is
employed. Similarly, the static allocation provides the low-
est performance since it does not account neither for the
wireless channel condition nor for the INI power.

In Fig. 8, we repeat the analysis when 3 MVNOs are
active. Generally, we observe a degradation of the DRL
based schemes due to the increased action space complex-
ity that is characterized by subchannel allocations of three
different numerologies. In detail, when 6 and 8 subchan-
nels are available, the MBRA and SBRA agents achieve
comparable results. In this scenario, we observe that the
agents adopt different allocation strategies. Unlike the fair
allocation of the SRBA agent, the MBRA ensures a higher
throughput to the 30 kHz MVNO at the expense of the
15 kHz MVNO, which is served with a lower data rata.
This fact provides some intuitive insight about the prob-
lem complexity since it shows that multiple allocation may
provide similar performance. For the cases of 10 and 12
subchannels, the gap of the INI-aware approach from the
optimal scheme is smaller than the previous case since the
higher number of numerologies increases the INI power
and makes the INI power overestimation much more reli-
able. In particular, this effect is highlighted by 15 KHz
MVNO performance. As a matter of fact, by increasing
the number of subchannels assigned to the 30 kHz and 60
kHz MVNOs, the subcannel allocation combinations that
generate INI on the 15 kHz MVNO are also larger. Conse-
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Figure 7: Aggregated MVNO throughput. Scenario with 2 MVNOs
of numerologies 15 kHz and 30 kHz. The number of subchannels
ranges from K = 6 to K = 12.

15kHz 30kHz 60kHz
0

5

10

15

20

25

M
V

N
O

 d
a

ta
 r

a
te

 (
M

b
p

s
)

K = 6

Optimal

MBRA

SBRA

INI-aware

Static

15kHz 30kHz 60kHz
0

5

10

15

20

25

M
V

N
O

 d
a

ta
 r

a
te

 (
M

b
p

s
)

K = 8

15kHz 30kHz 60kHz
0

5

10

15

20

25

M
V

N
O

 d
a

ta
 r

a
te

 (
M

b
p

s
)

K = 10

15kHz 30kHz 60kHz
0

5

10

15

20

25

M
V

N
O

 d
a

ta
 r

a
te

 (
M

b
p

s
)

K = 12

Figure 8: Aggregated MVNO throughput. Scenario with 3 MVNOs
of numerologies 15 kHz, 30 kHz, and 60 kHz. The number of sub-
channels ranges from K = 6 to K = 12.

quently, it is more challenging for the DRL schemes to find
a solution that simultaneously ensures the same perfor-
mance of the 10 subchannel case for all three slices. Lastly,
the static allocation is outperformed by all the schemes.

In Fig. 9, we provide a deeper analysis of the agent
performance for different slicing assignment policy. We
consider the scenario of 2 MVNOs and 12 subchannels
and we plot the subchannel data rate as a function of the
number of subchannels assigned by Sm to each MVNO.
In general, we note that as more subchannels are assigned
to the same MVNO, the per-slice subchannel data rate
increases since less INI is generated by the other MVNO
that has access to a fewer number of spectrum resources.
This trend also impacts the optimality gap of all schemes
that gets smaller as the MVNO having the majority of the
resources approaches a subchannel allocation comparable
to a single numerology scenario which is INI free. The
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Figure 9: MVNO subchannel data rate for different subchannel as-
signment policies. Scenario with 2 MVNOs of numerologies 15 kHz
and 30 kHz. The number of subchannels is K = 12.

MBRA scheme provides the best performance followed by
the SBRA agent that has a wider gap from the optimal
allocation when the subchannels are equally distributed
between the two MVNO. This behavior derives from the
fact that this assignment policy configuration provides the
highest number of feasible subchannel allocations that hin-
ders the SBRA agent convergence performance.

Finally, in Fig. 10, we discuss the computational com-
plexity of the MBRA, SBRA and INI-aware schemes in cal-
culating the subchannel allocation at each CSI update as
the number of subchannel increases when 2 and 3 MVNOs
are active. We neglected the optimal and static allocations
since the former relies on an exhaustive search approach
that it is not meant to be used as a practical solution,
whereas the latter does not involve any actual subchannel
allocation as it is fixed at the beginning of each episode. In
general, we observe that the execution time is more sensi-
tive to the increase of the number of subchannel compared
to the number of slices. All schemes are comparable as
it shown by the similar execution times. Nonetheless, the
DRL based schemes provide the best performance with the
SBRA achieving the lowest computational time. This is an
expected behavior since the DNN size of the MBRA agent
is higher than the SBRA agent due to the fact that addi-
tional network branches are added to the neural network
architecture for each new subchannel. Consequently, the
DNN feed-forward procedure is computationally more ex-
pensive as more neurons are involved in the computation.
Moreover, we note the negligible impact of the action map-
ping procedure on the overall MBRA agent performance
as it is indicated by the overlapping curves showing the ex-
ecution times of the agent when the action mapping mod-
ule is employed due to the action unfeasibility and when it
is not employed. Despite the lower SBRA computational
complexity for all the considered network configurations, it
is important to highlight the considerable increases of the
execution time of this scheme when the number of sub-
channels is 12 and 3 MVNOs are active. In this scenario,
the high number of available actions makes the computa-
tion of the maximum value of the Q-function costly since
the agent has to assess the value of each output neuron.
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Figure 10: Execution time required for the subchannel allocation
computation. Scenario with 2 MVNOs of numerologies 15 kHz and
30 kHz and 3 MVNOs of numerologies 15 kHz, 30 kHz, and 60 kHz.
The number of subchannels ranges from K = 6 to K = 12.

Differently, the MBRA agent provides a more contained
computational time overhead that shows the benefit of the
proposed architecture in term of scalability. However, we
remark that SBRA agent is a valid option for system sce-
narios of limited complexity since it achieves results that
are comparable to the ones provided by the MBRA agent
exploiting a simpler and computationally lighter agent im-
plementation.

7. Conclusion

We study the problem of maximizing the aggregated
throughput performance of users belonging to different
MVNOs in presence the INI generated from the simultane-
ous multiplexing of spectrum slices having heterogeneous
numerologies. To avoid the computational complexity of
directly solving the optimization problem, we leverage the
DRL theory to train an agent capable of finding a sub-
optimal solution. Our proposed agent exploits the uncor-
related small-scale fading fluctuations to mitigate the INI
and, at the same, to increase the data rate of the users.
The scalability of the solution is obtained by means of a
multi-branch agent architecture that individually consid-
ers the allocation of every subchannel to one of the active
MVNOs. In addition, we enhance the convergence perfor-
mance by proposing an action mapping procedure to guar-
antee the action feasibility. We evaluate the performance
of the proposed agent versus several allocation schemes.
Results show that the multi-branch agent provides a spec-
trum allocation policy comparable with optimal solution
in most of the considered scenarios.
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