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Abstract

Cryptographic protocols have been widely used to protect the user’s pri-
vacy and avoid exposing private information. QUIC (Quick UDP Internet
Connections), including the version originally designed by Google (GQUIC)
and the version standardized by IETF (IQUIC), as alternatives to the tradi-
tional HTTP, demonstrate their unique transmission characteristics: based
on UDP for encrypted resource transmitting, accelerating web page render-
ing. However, existing encrypted transmission schemes based on TCP are
vulnerable to website fingerprinting (WFP) attacks, allowing adversaries to
infer the users’ visited websites by eavesdropping on the transmission chan-
nel. Whether GQUIC and IQUIC can effectively resist such attacks is worth
investigating. In this paper, we study the vulnerabilities of GQUIC, IQUIC,
and HTTPS to WFP attacks from the perspective of traffic analysis. Ex-
tensive experiments show that, in the early traffic scenario, GQUIC is the
most vulnerable to WFP attacks among GQUIC, IQUIC, and HTTPS, while
IQUIC is more vulnerable than HTTPS, but the vulnerability of the three
protocols is similar in the normal full traffic scenario. Features transferring
analysis shows that most features are transferable between protocols when
on normal full traffic scenario, which enable the adversary to use features
proven effective on a special protocol efficiently attacking a new protocol.
However, combining with the qualitative analysis of latent feature represen-
tation, we find that the transferring is inefficient when on early traffic, as
GQUIC, IQUIC, and HTTPS show the significantly different magnitude of
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variation in the traffic distribution on early traffic. By upgrading the one-
time WFP attacks to multiple WFP Top-a attacks, we find that the attack
accuracy on GQUIC and IQUIC reach 95.4% and 95.5%, respectively, with
only 40 packets and just using simple features, whereas reach only 60.7%
when on HTTPS. Finally, by conducting the attacks on flawed networks, we
also demonstrate that the vulnerability of IQUIC is only slightly dependent
on the network environment.

Keywords: Website Fingerprinting, QUIC, Encrypted Traffic

1. Introduction

TCP (Transmission Control Protocol) and UDP (User Datagram Proto-
col) are two standard transport-layer protocols in the TCP/IP protocol suite.
TCP provides reliable transmission, and packets are transmitted without er-
ror, loss, and duplication. Therefore, applications that require reliable con-
nections, e.g., accessing web resources (with HTTP), are implemented base
on TCP. However, with the increase of the network environment complexity,
problems such as Head-of-line blocking (HOL blocking) and re-transmission
ambiguity significantly affect the transmission performance of TCP. QUIC
(Quick UDP Internet Connections) is a UDP-based cryptographic protocol
with built-in cipher suite and optimized multiplexing[1, 2, 3], flow control[4],
and congestion control mechanisms[5, 6], which solves TCP transmission per-
formance shortcomings. After years of development, QUIC, which originally
designed by Google (GQUIC), has been standardized by IEFT (IQUIC) and
been developed into the new generation of HTTP/3, which can achieves the
same or better transmission efficiency as HTTPS (equal to HTTP/2 + TLS
+ TCP) on most network conditions[7].

Meanwhile, confidentiality has become the dominant trend of the Inter-
net. As of May 2021, all of the top 100 non-Google websites support cryp-
tographic protocol, and 97 of them use cryptographic protocol by default[8].
Encrypted communication directly causing the traditional methods such as
deep packet inspection to fail in sniffing the payload of the packets and thus
protecting the content the user visited. GQUIC and IQUIC use different
schemes to encrypt data, where IQUIC uses the more secure TLS1.3[9] and
GQUIC uses the informal “QUIC crypto” encryption protocol [10]. Although
the “QUIC Crypto” used by GQUIC has been proven to be incapable of
resisting active attacks from adversaries while guaranteeing the connection
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speed of GQUIC [11], it is unknown if it can safely protect the privacy of
users under passive attacks.

Existing cryptographic protocols, including GQUIC, IQUIC, and HTTPS,
do not change the working models of the application layer while implement-
ing encrypted communication. Instead, a function suite that can perform
encryption is added on the existing transport layer, resulting in that the en-
crypted traffic still highly correlated with the original website. Specifically,
encryption does not significantly change the size of web resources, and the
request-response traffic triggered by browser rendering of web pages depends
on the structure of the website. It makes Website Fingerprinting (WFP) at-
tacks possible, which try to infer the websites that a user is visiting by learn-
ing the correspondence between websites and website fingerprints. Website
fingerprint refers to a set of features (e.g., number of packets, packets inter-
arrival time) extracted from the traffic between client and server when the
user is accessing a website. It should be noted that if the website fingerprint
used for WFP attack is from incomplete traffic (e.g., the first 10% packets
of complete traffic), the attack will upgrade to early WFP attack. The early
WFP attack will bring higher security risks than a normal WFP attack since
it does not need to analyze the entire traffic, and the computation is cheaper,
which saving up the time for further operations (e.g., connection blocking).

Furthermore, the rendering paradigm of modern browsers may expands
the potential security threats of these cryptographic protocols. When access-
ing web pages with GQUIC, IQUIC, and HTTPS, the interactions between
client and server remains the same, which is always a request-response model,
resulting in that the transporting sequence of resources roughly remains the
same as transmitted via different protocols and may introduce associations
between the traffic of different protocols. Moreover, these undesired asso-
ciations may extend the vulnerabilities present in one protocol to another,
e.g., features proven to be effective in WFP attacks on one protocol can be
directly used to attack other protocols efficiently, which we defined as the
features transferability.

In this paper, we study the vulnerability of GQUIC, IQUIC, and HTTPS
to WFP attack from the perspective of traffic analysis. We construct a
comprehensive testbed to collect traffic data without distribution bias and
study the WFP attack effectiveness in both the early traffic and normal full
traffic scenarios. We also explore the feature importance changes and the
feature transferability between the traffic of GQUIC, IQUIC, and HTTPS.
Two sets of features are designed, and five machine learning algorithms are
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selected to comprehensively evaluate the vulnerability of GQUIC, IQUIC,
and HTTPS.

Our experiments show that GQUIC and IQUIC, especially GQUIC, are
more vulnerable to WFP attacks than HTTPS in the early traffic scenario but
are similar in the normal traffic scenario. Meanwhile, features are transfer-
able between protocols, and the feature importance is almost inherited on the
normal traffic, while the transferring is inefficient when on early traffic due
to the different magnitude of variation in the traffic distribution of GQUIC,
IQUIC, and HTTPS. Finally, we conduct the attacks under different network
conditions, showing that various imperfections in the natural network envi-
ronment are only slightly affect the vulnerability of protocols under WFP
attacks, and the conclusions we obtained about the vulnerability of GQUIC,
IQUIC, and HTTPS can be generalized to the natural network environment.

The main contributions of this paper are as follows:

• We implement WFP attacks on GQUIC, IQUIC, and HTTPS, demon-
strating that GQUIC and IQUIC are more vulnerable to WFP attacks
than HTTPS in the early traffic scenario but are similar in the nor-
mal full traffic scenario. Even computationally cheap and simple fea-
tures are highly effective when attacking GQUIC and IQUIC, especially
GQUIC.

• We perform transfer studies among GQUIC, IQUIC, and HTTPS, show-
ing that, when on normal traffic, most features are transferable between
protocols, and the feature importance is almost inherited; however, the
transferring is inefficient when on early traffic due to the different mag-
nitude of variation in the traffic distribution.

• We quantitatively analyze the latent feature representation space of the
traffic of GQUIC, IQUIC, and HTTPS, finding that features can repre-
sent inter-class and intra-class samples more efficiently on GQUIC and
IQUIC than on HTTPS, intuitively showing why GQUIC and IQUIC
are more vulnerable than HTTPS.

• We implement upgraded multiple WFP Top-a attacks on GQUIC,
IQUIC, and HTTPS, exposing the high insecurity of GQUIC and IQUIC:
with only 40 packets, attack accuracy reaches 95.4% when on GQUIC,
reaches 95.5% when on IQUIC, whereas only 60.7% when on HTTPS.
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• We implement WFP attacks on IQUIC under different network condi-
tions, showing that bandwidth and delay hardly affect the efficiency of
WFP attacks, but a higher loss rate will lead to less effective attacks.
However, informative features can resist the uncertainty of network
imperfection and the trend of attack effectiveness is always consistent,
indicating that the vulnerability of IQUIC is only slightly dependent
on the network condition.

The rest of this paper is organized as follows. In Section 2, we discuss
related work. We introduce QUIC, website fingerprint, and WFP attacks in
Section 3. In Section 4, we detail our testbed and how we collect data. We
detail our designed features in Section 5. In Section 6, we provide the exper-
iment results and related discussion. In Section 7, We discuss the limitations
of the experiment and future work. In Section 8, we conclude this paper.

2. Related Works

In this section, we provide an overview of related work on WFP attacks,
which is divided into WFP on unencrypted traffic and WFP on encrypted
traffic based on the protocol studied. Besides, some critical works on QUIC
was discussed.

Website fingerprinting on unencrypted traffic. Karagiannis et
al.[12] proposed the BLINC algorithm that analyzed host behavior and suc-
cessfully identified eDonkey, MSN, IRC, NNTP, and SSH traffic. Bar-Yanai
et al.[13] identified the traffic of Skype, eDonkey, and BitTorrent through
a hybrid algorithm of k-means and KNN, which analyzed the flow-based
features of different applications and achieved approximately 99.1% accu-
racy. Lakhina et al.[14] adopted an entropy-based method and clustering
method to distinguish regular traffic from abnormal traffic. Gu et al.[15]
divided packets into 2348 categories according to functions and destination
port numbers and then performed maximum entropy analysis on the packet
classes distribution. Furthermore, a behavior-based model to detect traffic
anomalies was established, reaching F1 above 0.93.

Website fingerprinting on encrypted traffic. As early as 1996,
Cheng et al.[16] have researched encrypted traffic analysis attacks. They
used the HTML file size and requested traffic size to identify websites. Lib-
eratore and Levine[17] used NaiveBayes and Jaccard’s coefficient to attack
SSH on a dataset containing 2,000 web pages with a total of 480000 sam-
ples. Bernaille et al.[18] adopted a method based on GMM clustering, using
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the packet size to identify SSL connection. Khakpour et al.[19] used en-
tropy vector estimation, Decision Tree, Support Vector Machine to identify
encrypted traffic. Zhang et al.[20] used an improved k-means algorithm to
distinguish between SSH, SSL, and non-encrypted applications. Panchenko
et al.[21] proposed the CUMUL method, which utilized 104 features to con-
duct WFP attacks on the Tor and has achieved more than 91% accuracy on
several datasets, including ALEXA100. Dusi et al.[22] used GMM and SVM
to identify applications under SSH based on packet size and direction. Tong
et al.[23] used Random Forest and Convolutional Neural Networks to iden-
tify applications under QUIC, considering Netflow-based and Packet-based
features, including the size and direction of packets. Five types of Google
app services were distinguished with 99.24% accuracy. Hayes and Danezis[24]
proposed a Random Forset based WFP model called k-fingerprinting. They
used features such as the number of packets statistics, incoming and out-
going packet ratios, and packet ordering statistics to identify 30 monitored
services on 100,000 web pages, achieved 85% true positive rate and 0.02%
false positive rate.

QUIC. Biswal and Gnawali[25] showed that QUIC performs better than
HTTP/2 in weak network environments if the website does not contain many
small-sized objects. Megyesi et al.[7] compared the performance of HTTP,
SPDY, and QUIC in different network situations, finding that QUIC has bet-
ter performance under the network with slight packet loss and large Round-
Trip Time (RTT). They concluded a Decision Tree to reach the best perform
protocol in different network conditions. Cook et al.[26] found that QUIC
outperforms HTTP/S in unstable networks (e.g., wireless mobile networks)
but perform similarly in stable and reliable networks. These studies demon-
strate the importance of QUIC in improving transmission efficiency.

3. Preliminaries

3.1. QUIC Protocol

There are two versions of QUIC, including the one designed by Google
(GQUIC) and released the first version in August 2013, and a new ver-
sion of QUIC that standardized by IETF (IQUIC) in May 2021 based on
GQUIC. GQUIC has made huge changes in design concept[1], packet loss
recovery and congestion control mechanisms[5], encryption details[27], and
flow control mechanisms[4] to address the performance bottlenecks of TCP.
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GQUIC only requires userspace support, making it possible to deployed eas-
ily without changing the Internet middleware[1]. About 5.5% of websites
support GQUIC, including Youtube and Google Translate[28]. GQUIC is a
protocol that uses UDP to send HTTP/2 frames, while IQUIC is a general
transport protocol, i.e., protocols other than HTTP can also be transported
over IQUIC. Specifically, the HTTP mapping over IQUIC is called HTTP/3,
which is supported by 19.8% of websites. In addition to further optimizing
the performance[3, 6, 2] of IQUIC compared to GQUIC, IQUIC also uses
TLS1.3[9] to completely replace the informal “QUIC Crypto” encryption
scheme[10] used in GQUIC, making it more secure.

3.2. Website fingerprinting

A website is a specified webpageW which can be viewed as a Web resource
set R = {ri}. To render this page, a user agent, in general a browser,
will fetch those resources and generate web traffic T , T = Traffic(R) =
{(tj, dj)}, where tj is the j-th packet and dj is the direction of client-to-
server (positive) or server-to-client (negative). A feature F is an m-dimension
vector, (f1, f2, ..., fm), that characterizes the traffic T , and is denoted by
F = Feature(T ). Ideally, the traffic fingerprinting of website W can be
represented by F in a singe visit since the visit traffic T coming from W .
However, dynamic network communications and parallel resource downloads
make the same website generate different traffic in different visits and the
feature from a single visit cannot characterize the webpage traffic features.
It needs an algorithm to extract a more general feature from traffic in n
different visits. When no ambiguity is possible, we reuse the notation F and
have F = Feature(T1, T2, ..., Tn), which is called the fingerprinting of website
W .

Define Early(T, k) as a function that fetch the first k packets from T , i.e.,
Early(T, k) = ∪kj=1{(tj, dj)}. It is obvious that Early(T, k) is in fact the early
traffic of website W . Following the notation in previous paragraph, we have
a feature Early(F, k) which is also an m-dimension vector that characterizes
the early traffic Early(T, k) and also an early fingerprinting of website W ,
Early(F, k), comes from the early traffic in n different visits.

3.3. Website Fingerprinting Attacks

Suppose an adversary wants to infer a specified website visiting by users.
The adversary can reside in intermediate nodes such as the routers or the
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switches to eavesdrop on the network traffic. Since the web page is trans-
ported in encrypted over GQUIC, IQUIC, or HTTPS, the adversary cannot
identify what content is hidden in traffic because of the limited decryption
ability. If an adversary wants to identify the web page a user is visiting
from encrypted traffic, the most common way is to find the unencrypted
packets (e.g, Handshake packets) in the encrypted traffic and correspond the
IP addresses or Server Name Indications (SNI) contained to the real servers.
However, the widely used tunnels, proxies, secure gateways, Domain fronting
techniques, and Content Delivery Network (CDN) make the IP address and
SNI in packets not associated with the actual server, making this traditional
identification method fail. Thus, it seems that the privacy of users’ visiting
behaviors could be well-preserved when visiting over cryptographic protocols.

However, GQUIC, IQUIC, and HTTPS, the primary application secure
protocols for website visiting, are all based on the request-response model,
which implies that it is possible to distinguish traffic from different web re-
sources due to the relatively fixed browser rendering sequence. Furthermore,
the encryption of web resources is on block cipher, making the sizes of en-
crypted resources not changed significantly compared to the plain resources.
And thus, WFP attacks could be launched.

Suppose there are N websites the user may visit, the adversary needs to
continuously maintain a fingerprint series S = ∪Ni=1{Fi} or S = ∪Ni=1{Early(Fi, k)}
depended on normal or early traffic scenario on the eavesdropping process.
The purpose of the adversary is to learn the parameters θ of the attack model
M from S. Then a normal WFP attack and a WFP attack on early traffic
can each be represented as:

M(F, θ) −→ W (1)

M(Early(F, k), θ) −→ W (2)

According to the definition we have given, the specific WFP attack pro-
cess is divided into two stages(Figure 1):

1. Training. Adversary passively eavesdrops on the user’s exit-side net-
work traffic, from which website fingerprints are generated and utilized
to optimize the attack model (Figure 1(a)).

2. Attacking. Adversary generates website fingerprint from specific traf-
fic and predicts the related website by asking the well-trained attack
model(Figure 1(b)).
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Website 1
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Website N

Internet
Encrypted Traffic

Adversary

Sniffing
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Unknown Website

Internet
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Adversary

Sniffing
User

Model

(a) Training

(b) Attacking

Website 3

Website fingerprints

Website fingerprint

Figure 1: Processes of website fingerprinting attack

Even if the plain content that can help identifying the website cannot
be sniffed directly from the traffic, the attack model and website fingerprint
will still expose the website, causing the privacy benefited from encryption
damaged.

3.4. Website Fingerprinting Attack on Early Traffic

The browser engine determines the display of web page, and the same
page may be displayed differently on different browsers. However, although
modern browsers may use different kernels (e.g., Google Chrome: Blink;
Mozilla Firefox: Gecko; Safari: WebKit; Internet Explorer: Trident), they
all follow a similar paradigm to fetch web resources when rendering a certain
web page, as the following steps:

1. Requiring basic HTML file. As the user starts visiting a web page,
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the browser synchronously sends a request to the server, and fetches
the basic HTML file.

2. Requiring web resource files. As the browser starts rendering the
basic HTML file, a sequence of web resources embed in the HTML file
may be needed from servers. These resources may include but are not
limited to the CSS files, external JavaScript files, image files, etc. So a
sequence of web resources requests are sent and the web page visiting
traffic is generated.

It should be noted that different HTML files will cause different web
traffic because of different sequences of web resource requests, and the more
web resource requests, the more differences will be in traffic. A regular WFP
attack uses all traffic packets to build the website fingerprint (from start to
end of entire traffic), but an attack on early traffic, instead, use packets from
the incomplete early traffic that in the front of the entire traffic (from first
to k-th packet of traffic).

The effect of WFP attacks on early traffic is getting closer to normal WFP
attacks as the parameter k increases. Intuitively, an attack on early traffic
can be performed more quickly than a normal attack since it does not need to
wait for the total traffic to be transfer, and computation is cheaper as fewer
packets are considered. The WFP attacks on early traffic should complete
when the website visited by the user is just finished initializing, enabling the
secure gateway or adversary to perform further operations, e.g., implement
the RST attacks for TCP connections or blocking the client IP for continue
visiting, making the connection between client and server blocked without
the user’s awareness when the targeted website is visited. Therefore, a WFP
attack on early traffic is more threatening than a normal WFP attack.

3.5. Assumptions

We refine the assumptions made in the previous section, which ensure a
fair comparison of GQUIC, IQUIC, and HTTPS and guarantee that extra-
neous factors do not confound our conclusions on vulnerability and feature
transferability.

• Closed-world: The page a user may visit is limited to N pages. This
assumption reduces the size of S that the adversary needs to maintain,
ensuring that every T generated by the user can be collected to update
the maintained S, with no additional filtering required by the adversary.
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Conversely, users can access pages other than the N target pages in the
open-world scenario.

• Traffic parsing ability: An adversary can eavesdrop on the user to
collect traffic on the user’s exit-side and detect the start position and
end position of traffic. However, the end position of traffic is not needed
to identify on early traffic scenario but the k-th packet position.

• Normal computing power: An adversary can complete the con-
struction of the website fingerprint within an acceptable time delay,
and cannot decrypt or modify the packet.

• Same-origin resource limit: All target pages only contain same-
origin resources, including CSS scripts, JavaScript scripts, images and
video resources, etc.

4. Data Collection

To explore the vulnerability of GQUIC, IQUIC, and HTTPS under the
WFP attacks and the transferability of features, we require a dataset consist-
ing of encrypted traffic that can eliminates the impact of data distribution
differences and simulates the condition that a real user is visiting web servers.
The dataset must (i) be large enough to indicate the pattern in real world (dy-
namic network communications and parallel resource downloads happens),
(ii) contains aligned encrypted traffic of GQUIC, IQUIC, and HTTPS, which
originated from the same group of resources, and (iii) be collected like what
an actual adversary would attempt. In this section, we present the details of
our testbed and the processes we collect data.

4.1. Testbed Setup

To collect qualified traffic data, we establish a comprehensive testbed.
The overall architecture of the testbed is shown in Figure 2.

The entire testbed is established under a controlled environment, and we
do not sniff traffic data from the Internet directly. Instead, we sniff from a
controlled network for (i) it can prevents individual functional packets (e.g.,
RST packets in TCP) from disturbing the regular traffic, and ultimately
ensuring the reliability of experiment results and (ii) only a few websites
support both GQUIC, IQUIC, and HTTPS, and the complete details of these
sites are difficult to obtain. We expect to collect aligned GQUIC, IQUIC,
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Secure Gateway

Servers

Local Server

Hosting

Figure 2: Architecture of established testbed

and HTTPS traffic originating from the same group of resources, avoiding
the distribution differences of the traffic of three protocols.

We select the official landing pages of the top 100 schools in the 2019
TIMES World University Rankings [29] as our closed-world. We first utilize
HTTrack Website Copier1 to clone the same-origin resources of the target
website (e.g., A.com/figure.jpg is the same-origin resource of A.com, while
img.A.com/figure.jpg is not.) that hosting on the remote servers with pa-
rameter depth set as 2 (i.e., traverse all the files in the first and second
levels directory of the root directory) to the local Server, a machine with
Ubuntu 18.04 installed. Cloned website resources include HTML files, CSS
files, JavaScript files, pictures, and other media files involved in the entire
process of rendering the landing page.

We utilize three machines, with two Intel(R) Xeon(R) CPU E5-2680 v4

1https://www.httrack.com/
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@ 2.40GHz, 128GB RAM, and system Ubuntu 18.04, as web hosting servers.
On each server, we utilize Docker to further isolate CPU, memory, and disk
resources in containers so that the websites deployed on one machine would
not affect each other. All websites are deployed split between three servers,
with one machine deploying 30 websites and the other two deploying 31
websites each (N = 92, detailed in section 4.2). We run different versions
of Caddy Server2 in Docker to ensure that GQUIC, IQUIC, and HTTPS
are properly supported. For collecting GQUIC and HTTPS traffic, we use
a Caddy Server in version v1.03, and use a Caddy Server in version v2.4.1
when collecting IQUIC traffic. The GQUIC is in version Q043, the IQUIC
is in version h3-29, and the HTTPS is on HTTP/2. Specifically, we set up a
Secure Gateway on the edge of the Local Server part as a reverse proxy server
to forward all client-server connections to ensure that adversaries cannot get
information about the real server from the packets. The Secure Gateway
is a machine with a fixed IP address running Ubuntu 18.04, implementing
reverse proxy with Caddy. In addition, this Secure Gateway can also quickly
update the local forwarding policy based on the results of WFP attacks to
block access from a client to a specific website. Another host in the same
local area network is taken as the client, on which we utilize Selenium3 to
drive Chrome automatically to imitate actual user behavior when visiting a
website. To visit the website with GQUIC and HTTPS, we use Chrome in
version 71, and Chrome in version 91 when visiting the website with IQUIC.
Expressly, Chrome is set to disable cache mode to prevent interference from
previous access, and enable QUIC mode is set when website transfer via
GQUIC and IQUIC. Specifically, a complete visit process has the following
steps:

1. Selenium starts a new Chrome process;

2. Chrome accesses the target landing page and request all associated
resources;

3. Chrome waits for the landing page to render completely and return the
success state to Selenium;

4. Selenium waits extra 5 seconds after rendering complete, and then close
the current Chrome process;

2https://caddyserver.com/
3https://chromedriver.chromium.org/
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Although it is not required that the traffic is complete when performing
an early WFP attack, we still take measures (e.g., wait for additional time,
stop when the web page rendering is complete) to ensure that the traffic
is complete, thus better simulating the behavior of the user. We define
100 consecutive visits as a sniffing cycle, and visit each website via GQUIC,
IQUIC, and HTTPS, respectively, for 100 times, and utilizing tshark4 to sniff
the traffic on the exit-side of the client’s network interface card to simulate
the behavior of the adversary(Figure 1). Collected traffic data is in pcap
format, and each file contains all traffic obtained in a sniffing cycle.

4.2. Collected Data and Traffic

A total of 7.07GB website are cloned, with 92 websites are available after
deleting invalid and error pages; therefore, N in our experiments is 92. Ta-
ble 1 shows basic information about the three smallest and largest websites,
where AVG represent the arithmetic average, Q1 and Q3 indicate the first and
third quartiles. It should be noted that the files cloned to the local servers
are a superset of the files involved when accessing the landing page, which
ensures that the files requested by the client are complete, thus ensuring a
better representation of the actual websites.

Table 1: Statistics of collected websites

URL Size # of files File size (AVG) File size (Q1) File size (Q3)

www.usc.edu 1.9 MB 88 37.6 KB 4.2 KB 39.7 KB
www.wisc.edu 2.1 MB 62 54.3 KB 7.6 KB 62.9 KB

www.unimelb.edu.au 2.5 MB 97 44.2 KB 6.9 KB 66.1 KB
· · · · · · · · · · · · · · · · · ·

www.tum.de 458.2 MB 2502 320.7 KB 51.9 KB 159.5 KB
www.monash.edu 1592.1 MB 1661 1161.5 KB 1078.6 KB 1105.9 KB

www.skku.edu 2536.2 MB 9977 251.4 KB 23.4 KB 101.6 KB

The traffic of each website obtained in a sniffing cycle ranges from 4.5
MB to 1.86 GB (i.e., 45 KB to 18.6 MB for a single visit), and the final
traffic data size is 66.41 GB, of which 22.36 GB is from GQUIC, 21.56 GB
is from IQUIC, and 22.49 GB is from HTTPS. To explore the vulnerability
of protocols at different degrees of early, we define 40 different parameters k,
and finally, 1,104,000 traffic are extracted in total for three protocols.

4https://www.wireshark.org/
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4.3. Traffic Tailoring

Chrome in “disable cache” mode drove by Selenium, will start a new pro-
cess on each visit, making the client and server always establish a connection
as the first-time connection. However, the handshake process is different for
GQUIC, IQUIC, and HTTPS during the initial connection establishment,
where GQUIC and IQUIC require 1-RTT to complete the handshake, while
HTTPS requires 3-RTT. For GQUIC, the client will first generate the hand-
shake parameters with a new Connection ID (CID) and send them to the
server in a Client Hello packet, which represents the beginning of a GQUIC
Handshake. At the end of the GQUIC handshake, the client sends the sec-
ond Client Hello packet. For IQUIC, the complete connection establishment
process includes Initial, Retry, and Handshake processes. Multiple Desti-
nation Connection ID (DCID) and Source Connection ID (SCID) are used
throughout the process to identify the connection, with the client using one
(C1) and the server using three (S1, S2, S3). The first-time handshake pro-
cess of HTTPS is divided into TCP Handshake and TLS Handshake, and
a Change Cipher Spec packet from the client indicates the end of the TLS
handshake and the complete HTTPS handshake.To avoid influence caused
by the different handshake processes, we tailor traffic from the first packet
after the handshake to the last packet of the current conversation (Figure 3),
i.e., traffic used to generate website fingerprint is limited to the Encrypted
Data Traffic. We utilize Source Port to extract different sessions, and further
sorting and tailoring the traffic in the sniffing cycle more precisely according
to the characteristics of different protocols: in GQUIC, CID indicates differ-
ent conversations; in IQUIC, a group of DCID and SCID indicate different
conversations; in HTTPS, the RST packet close the current conversation.

5. Feature Extraction

The effectiveness of the WFP attacks is directly related to the extracted
features, and it is significant to discover informative and straightforward
features, which help improving attack efficiency and effectiveness. A common
way to discover effective features on a new protocol is to try to use the
features that have been proven effective on a previous protocol. Due to
the relatively fixed browser rendering processes and the unchanged request-
response conversation model, the knowledge represents by the features may
share between protocols, which we defined as feature transferability. However,
the differences between protocols still introduce uncertainty in the features
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Figure 3: Illustration of traffic tailoring

transferring, and the knowledge discovered on HTTPS may be incapable of
improving the attacks on GQUIC and IQUIC. To explore the vulnerability of
GQUIC, IQUIC, and HTTPS and the transferability of features under both
early and normal traffic scenario, we design two groups of features, including
the simple and computationally cheap Simple features and Transfer features
that are selected from previous works and are effective in the attack on
HTTPS. In this section, we detail the designed features.

5.1. Simple Features

The WFP attacks on early traffic can infer the website that the user is
visiting much faster than regular WFP attacks. However, the efficiency of
WFP attacks, especially in the early traffic scenario, will decrease if the fea-
tures are complicated and computationally expensive. To efficiently perform
attacks on the high speed steam, and better demonstrate the vulnerability
of protocols, we design a group of simple but informative features, which are
only related to the packet’s direction and size, defined as Simple features.

First, we divide packets into two categories based on their direction d:

• Positive: packets from the client to the server.

• Negative: packets from the server to the client.

Second, we divide the packets into four categories based on their size:
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• Tiny: packets size less than 79 bytes.

• Small: packets size range from 80 – 159 bytes.

• Medium: packets size range from 160 – 1279 bytes.

• Large: packets size over 1280 bytes.

We divide all packets into eight categories, considering their direction and
size: Positive Tiny, Negative Tiny, Positive Small, Negative Small, Positive
Medium, Negative Medium, Positive Large, and Negative Large, and the num-
ber of packets in each category constitute the Simple features. Specifically, T
can be characterized with F = Feature(T ) = (npt, nnt, nps, nns, npm, nnm, npl, nnl),
where n represents the number of different kind of packets in the eight cate-
gories.

When a packet is collected, it can be classified into the proper category
immediately by just reading the packet header’s information, and the com-
putation all is focus on packet counting, which meets our expected low-cost
computing characteristics. In our experiments, we also found that although
this set of features is simple, it contains a wealth of information in the WFP
attacks. This set of features is also a set of controls relative to the intri-
cate features presented subsequently to illustrate that the vulnerability of
the protocol is not caused by the defects of specific features.

5.2. Transfer Features

In previous studies, many features have been proven effective in traf-
fic identification and WFP attacks on TCP-based protocols, such as unique
packet size[17], packet size count[30], and packet order[31]. Features used
on HTTPS can be divided into five levels: Packet-level, Burst-level, TCP-
level, Port-level, and IP-level[32]. Some effective features are selected among
Packet-level and Burst-level, since TCP-level, Port-level, and IP-level fea-
tures are excluded for GQUIC, IQUIC and HTTPS respectively based on
UDP and TCP, and our experiment focuses on a single connection between
two hosts each time. Selected proven effective features construct the Transfer
features, which are specifically defined as:

• unique packet size: this feature statistics whether the packet t of
length l is in the traffic T . Specifically, define Length(t) as a function
that calculates the length of packet t, if l ∈ {Length(ti)|ti ∈ T}, l-th
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dimension of this feature is set to 1, otherwise, is set to 0. This feature
is a 1460-dimension vector (packet length range from 54 to 1514).

• packet size count: this feature statistics the number of packet t of
length l in the traffic T . Specifically, if l ∈ {Length(ti)|ti ∈ T}, l-th
dimension of this feature is set to Card({ti|ti ∈ T,Length(ti) = l}).
This feature is a 1460-dimension vector.

• packet order: this features records the packets length in order of
packet position. Specifically, the i-th dimension of this feature is set
to Length(ti), where ti is the i-th packet in traffic T . This feature is a
k-dimension vector.

• inter-arrival time: this feature statistics arrival interval of adjacent
packets in order of packet position. Specifically, define Time(t) as a
function that fetch the arrival time of a packet, let t0 be the 2-nd
Client Hello packet for GQUIC, the last Handshake packet for IQUIC,
and the Change Cipher Spec packet for HTTPS, then l-th dimension of
this feature is set to (Time(ti) − Time(ti−1)), where ti, ti−1 ∈ T . This
feature is a k-dimension vector.

• negative packets: this feature statistics the number of packet t in
negative direction in traffic T . This 1-dimension feature is set to
Card({(tj, dj)|dj = negative}).

• cumulative size: this feature statistics the cumulative size of pack-
ets in traffic T . This 1-dimension feature is set to

∑
{Tp, Tn}, where

Tp = {Length((ti, di))|ti ∈ T, di = positive}, Tn = {Length((ti, di))|ti ∈
T, di = negative}.

• cumulative size with direction: this feature statistics the cumula-
tive size of packets in traffic T , but the impact of packet direction d is
considered. This 1-dimension feature is set to

∑
{Tp, Tn}, where Tp =

{Length((ti, di))|ti ∈ T, di = positive}, Tn = {−Length((ti, di))|ti ∈
T, di = negative}.

• bursts numbers/maximal length/mean length: burst is define
as the consecutive packets between two packets sent in the opposite
direction[33]. Bursts numbers, bursts maximal length, and bursts mean
length is the statistical features based on burst in the traffic T .
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• total transmission time: this feature statistics the total transmission
time of traffic T . This 1-dimension feature is set to

∑
{Time(ti) −

Time(ti−1)|ti ∈ T, i > 1}.

This group of features is defined as Transfer features, proven originally
effective in the attack on HTTPS. Transfer features are not conducive to han-
dling high-speed network steam but can adequately expose the vulnerability
of protocols, as they are informative but also computationally expensive.

6. Evaluation

In this section, we first introduce the metric and the basic settings used in
the experiment. Then, we conduct fair comparisons between GQUIC, IQUIC,
and HTTPS and study the vulnerability of protocols to WFP attacks under
different scenarios. Furthermore, we analyze the feature importance, feature
transferability, and the latent feature representation on different protocol.
We also illustrate the high risk of GQUIC and IQUIC by performing upgraded
WFP top-a attacks. Finally, we implement WFP attacks on IQUIC under
different network conditions, showing that the vulnerability of protocol is
only slightly dependent on the network environment.

6.1. Evaluation Setup

Metric. The purpose of the WFP attacks is to infer the website that the
user is visiting, which can be seen as a multi-class classification task. In our
balanced dataset, accuracy (i.e., attack success rate) is the most intuitive
measurement. Higher accuracy means a better attack performance and a
more vulnerable protocol.

Model. In this paper, we do not focus on the improvement of attack
algorithms, and five standard machine learning algorithms are utilized as
the baseline attack models: Random Forest (RF), Extra Trees (ET), K-
Nearest Neighbors (KNN), Naive Bayes (NB) and Support Vector Machine
(SVM). The algorithms are implemented with scikit-learn5, using the default
parameters. The given experiment results are obtained through 10-fold cross-
validation.

Scenario. We took 40 different parameters k from 5 to 200 in steps of 5 to
simulate different levels of attack scenario (early→ normal). We specifically

5https://scikit-learn.org
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define early traffic scenario as conditions that k ≤ 40, and normal traffic
scenario when k > 40.

6.2. Protocols Vulnerability

Information that can be represented by the features is not saturated in
early traffic scenario, and the main factor affecting the attack effectiveness
becomes the information richness of the features as k increasing. The attack
accuracy increases with parameter k when Simple features are used in the
attack (Figure 4(a)-(c)), as a larger k capture more significant differences
between websites. When k becomes large enough, the attack accuracy will
not continue to increase but will fluctuate steadily over a range, which is also
the performance upper bound of a normal WFP attack.

(a) Simple features on GQUIC

(e) Transfer features on GQUIC

(c) Simple features on HTTPS

(g) Transfer features on HTTPS

(d) Simple features comparison (RF)(b) Simple features on IQUIC

(f) Transfer features on IQUIC (h) Transfer features comparison (RF)

Figure 4: Attack accuracy utilizing different features on different scenarios and protocols

Tree-based models like RF and ET outperformed the five selected at-
tack algorithms on both GQUIC, IQUIC, and HTTPS. When utilizing Sim-
ple features, RF and ET respectively reach an average accuracy of 77.3%
and 76.8% (Figure 4(a)) when on GQUIC, reach 68.5% and 68.4% when on
IQUIC (Figure 4(b)) , and reach 65.0% and 64.7% (Figure 4(c)) when on
HTTPS. When using Transfer features, tree-based models also show signifi-
cant advantages, and their accuracy increases with k as the accuracy of other
algorithms slightly decreases when attacking GQUIC and IQUIC. Especially
for the attacks on GQUIC, the accuracy of tree-based models is maintained
at extremely high level (RF: 99.49%; ET: 99.78%, average, Figure 4(e)).
RF and ET reach an average accuracy of 94.1% and 93.2% when attacking
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on IQUIC (Figure 4(f)), and reach 91.60% and 91.30% (Figure 4(g)) when
attacking on HTTPS.

In the early traffic scenario, GQUIC is the most vulnerable to WFP attack
among the three protocols, while IQUIC is more vulnerable than HTTPS,
but the vulnerability of the three protocols is similar in the normal traffic
scenario, when utilizing both Simple features and Transfer features. We find
that the accuracy of the attack on three protocols is similar when k is large
(e.g., k = 200, RF, Simple/Transfer, 87.9%/99.4% on GQUIC, 85.4%/99.4%
on IQUIC, 85.1%/100% on HTTPS, Figure 4(d)(h)). However, the attack
performance shows a large difference when the k is small (e.g., k = 35, Simple
/ Transfer, 70.5%/99.6% on GQUIC, 53.4%/98.9% on IQUIC, 29.4%/86.2%
on HTTPS, Figure 4(d)(h)). The small k indicates an early traffic scenario,
and the gap demonstrates the high security risks of GQUIC and IQUIC when
even only a few packets are available. By comparing the result on both simple
and complex features, we show that the vulnerability in early traffic scenarios
is not caused by the defects of features but the attributes of the protocol
itself. Focus on the performance of the attack on GQUIC and IQUIC, and we
find that attack can still achieve good performance when only a few packets
are considered, even if the features are sample and computationally cheap
(Simple feature, k ≤ 40, GQUIC, accuracy ≤ 72.9%; IQUIC, accuracy ≤
61.9%; HTTPS, accuracy ≤ 39.7%).

6.3. Feature Importance and Transferability

In this section, we further explore the feature importance and feature
transferability, and expect a new perspective to explain the vulnerability
of GQUIC, IQUIC, and HTTPS. All comparisons in our experiments are
conducted under the same website distribution, ensuring that the feature
importance indicating the effectiveness of the feature on different protocols
accurately, which can be evidenced by (i) the upper bound of the attack
accuracy and (ii) the number of packets that are needed to achieve high
accuracy. We defined feature transferability as the effect that a feature is
proven effective in the attack on one protocol directly used to attack other
protocols, and attribute the transferability to the relatively fixed browser
rendering sequence and the similar request-response conversation model.

Feature importance on IQUIC and HTTPS fluctuate dramatically when
k is small, indicating that they will show more different vulnerability when
the number of packets considered (k) increases, demonstrating that the fea-
tures considered by the attack algorithm change significantly, and thus indi-
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(a) Simple features on GQUIC (c) Simple features on HTTPS

(d) Transfer features on GQUIC (f) Transfer features on HTTPS

(b) Simple features on IQUIC

(e) Transfer features on IQUIC

Figure 5: Feature importance of Simple features and Transfer features on different scenar-
ios and protocols

cates that the traffic distribution of the protocol changes significantly, which
directly leads to the difficulty of attacking the protocol. However, the dras-
tic change region of features importance on IQUIC is more concentrated
(k < 20), while is more diffuse on HTTPS (k < 50), indicating that traffic
distribution of IQUIC will reach a steady-state earlier, thus exposing vulner-
ability to WFP attacks earlier, resulting in that fewer packets are needed to
achieve the same attack efficiency as when attacking HTTPS (e.g., Trans-
fer features, k = 30: IQUIC, 97.4%; HTTPS, 83.0%), as high attack effi-
ciency is associated with slight feature importance fluctuation. The feature
importance is always more stable when the attack implements on GQUIC
than on HTTPS (Simple features: GQUIC, σ2 = 1.275E − 04; HTTPS,
σ2 = 1.736E − 03. Transfer feature: GQUIC, σ2 = 9.940E − 05; HTTPS,
σ2 = 1.081E − 03), indicating that the traffic distribution of GQUIC is not
associated with the number of packets considered, and even few packets can
expose the website information hidden behind (e.g., early traffic, average,
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GQUIC: 55.34%; IQUIC: 27.18%; HTTPS: 13.98%).

(a) Simple Features

(b) Transfer Features

Figure 6: Inheritance of feature importance on different scenarios and protocols

To illustrate the inheritance of feature across GQUIC, IQUIC, and HTTPS,
we rank the features on GQUIC by feature importance at k = 200 and Fig-
ure 6 shows the feature importance on GQUIC, IQUIC, and HTTPS in the
fixed order under different k. We find that the feature importance changes
proportionally over the three protocols when k ≥ 30, except that the Posi-
tive Small in the Simple features is always inefficiency when attack IQUIC, as
client few to send small packets to server in the normal traffic when k < 200.
However, the inheritance is ineffective in the early traffic scenario, as the dis-
tribution of IQUIC and HTTPS traffic are much more variable than GQUIC,
and the drastic change region of features importance on IQUIC is more con-
centrated, while is more diffuse on HTTPS, resulting in that the difference in
features importance on the three protocols is more extensive when the value
of k is small. Specifically, when on normal traffic scenario, Positive Medium
and Negative Large in Simple features are effective in the attack on both
GQUIC, IQUIC, and HTTPS, and Positive Large always contribute a little
(Figure 5(a)-(c)). Similarly, packets size count, unique packets size, inter-
arrival time, and packet order are significant in both attacks, ranking top 4
among Transfer features while the importance of other features are close to
zero (Figure 5(d)-(f)).
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6.4. Qualitative Analysis of Latent Representation

In this section, we qualitatively analyze the vulnerability differences in
terms of the features latent representation on the traffic of GQUIC, IQUIC,
and HTTPS. The qualitative analysis, combined with the quantitative anal-
ysis in the previous section, will provide a more comprehensive description
of the nature of the protocol vulnerability. To better display the distribution
pattern in latent space, we randomly select 10 out of the 92 websites and
analyze only the sampled data. We also select five k values with unequal
differences to better represent the process of variation as the degree of latent
representation variation of the feature over the three protocols will be more
considerable when k is small and will gradually stabilize as k increases. We
utilize the Transfer features as the original representation as it exposes the
vulnerable characteristic of protocol more completely. T-distributed Stochas-
tic Neighbor Embedding (T-SNE) is used to extract latent representation of
the protocol on the sampled data at fixed k values (Figure 7).

(a) GQUIC

(c) HTTPS
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Figure 7: Latent representation of Transfer features on different scenarios and protocols

When k = 10, i.e., in the extremely early traffic scenario, the latent fea-
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tures representation of both GQUIC, IQUIC and HTTPS have many samples
collapse together, which indicates that different classes of samples are diffi-
cult to be represented clearly, thus illustrating the difficulty of conducting
WFP attacks on early traffic. However, even in this case, the representation
space of GQUIC is more of aggregations of the same class samples, while the
representation of IQUIC and HTTPS is more of aggregations of the different
class samples. This indicates that GQUIC, in the extremely early scenario,
although the intra-class gap cannot be fully learned yet, the adequate rep-
resentation of inter-class gap has laid the groundwork for the high attack
success rate. When k = 30, as the increased number of considered pack-
ets, the Transfer features can better express the inter-class disparity. There
is a clear tendency of dispersion in the feature representation on GQUIC
and IQUIC, especially GQUIC, and all samples are more spreading, which
indicates that the latent representation space of GQUIC and IQUIC can
distinguish the inter-class data better, making the protocol more vulnera-
ble to attacks. The representation on HTTPS also shows the same trend,
but the magnitude of change is relatively small, and most of the samples
are still too aggregated to be represented, which illustrates the defensive of
HTTPS against WFP attacks. When k = 50, the representation space of
GQUIC and IQUIC have almost convergence, and when k continues to in-
crease, the relative positions between points in the space are very similar,
which mirrors the results obtained when the Transfer feature and RF are
used to attack GQUIC and IQUIC when k > 50. It should be noted that
there is still a large mixture of samples of different classes in the HTTPS
representation space. When k > 100, the representation space of GQUIC,
IQUIC and HTTPS show similar characteristics, and the similarities and
differences between intra-class samples and inter-class samples are well rep-
resented, indicating that the vulnerabilities of GQUIC, IQUIC and HTTPS
are similar under the normal traffic scenario, which is consistent with the
previous results of the quantitative analysis.

6.5. Protocols vulnerability under Top-a Attack

In this section, we expect to illustrate the high risk of GQUIC and IQUIC
when they suffer from multiple WFP Top-a attacks, which means the adver-
sary will predict a websites with the highest probability as the target website.
As recall is more concerned by the adversary than precision, the adversary
will perform further attacks if the first attack fails to infer the target website.
Specifically, Top-a attack is defined as:
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M(F, θ) −→ A (3)

M(Early(F, k), θ) −→ A (4)

Where, A = ∪ai=1{{Wi|i ∈ {1, 2, ..., N}, P (W1) > P (W2) > ... > P (WN)}},
P (Wi) is the vising probability of website Wi given by the model. A Top-a
attack is counted as success when the website accessing by the user belongs
to the prediction set, i.e., W ∈ A. It should be noted that upgrading from
a WFP attack to a Top-a attack does not require additional calculations,
ensuring the efficiency does not drop, even dealing with a high-speed stream.

The adversary (or the secure gateway) should prefer to use computation-
ally cheap features during the attack to reduce the latency of the attack,
thus saving more time to prepare for further attacks. Moreover, since the
attack’s accuracy on GQUIC fail to indicate the difference between protocols
under Top-a attack when using Transfer features and RF (accuracy are high
enough due to the complexity of features, i.e., always close to 100% when on
GQUIC), we conduct the comparisons utilizing simple and effective Simple
features while using the most effective RF as the attack model.

When the attack upgrade to a Top-a attack, the weaknesses of GQUIC
and IQUIC are further exposed in two ways (Table 2). First, Top-a attacks
benefit more when implemented on GQUIC and IQUIC than on HTTPS. As
the parameter a increases (1 → 5), and the attack accuracy improves more
on GQUIC and IQUIC (average, GQUIC: 27.0%; IQUIC: 26.1%; HTTPS:
14.7%). At the most significantly improve scenario, the improvement on
GQUIC and IQUIC is almost two times as the improvement on HTTPS
(GQUIC: 41.2%; IQUIC: 40.8%; HTTPS: 22.9%). This attack effective-
ness improvement is independent of the attack accuracy of baseline, i.e.,
accuracy when a = 1, but is determined by the characteristic of GQUIC
and IQUIC. Even attacks has similar accuracy on both GQUIC, IQUIC and
HTTPS when a = 1, the Top-a attack on GQUIC and IQUIC always achieves
a higher accuracy improvement (e.g., GQUIC: k=10, accuracy=38.7%, im-
prove: 41.2%; IQUIC: k = 30, accuracy=42.8%, improve:40.8%; HTTPS:
k=40, accuracy=39.7%, improve: 21.0%). This vulnerability of GQUIC and
IQUIC makes them especially insecure that an adversary can always achieve
a significant accuracy improvement within an acceptable tolerance even when
the attack accuracy is originally low. Second, Top-a attacks can achieve high
accuracy on GQUIC and IQUIC, especially GQUIC, with a tiny number of
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Table 2: Accuracy of Top-a attacks with Random Forest on different scenarios and proto-
cols

a improve

Protocol k 1 2 3 4 5 (1→ 5)

GQUIC

5 7.9 14.0 18.3 22.0 26.0 18.1
10 38.7 58.3 68.2 75.7 79.9 41.2
15 54.2 70.2 78.6 83.9 87.2 33.0
20 64.5 78.8 85.2 88.7 91.1 26.6
25 66.6 81.0 87.5 91.2 93.0 26.4
30 68.2 80.6 87.1 90.6 92.7 24.5
35 70.5 83.8 88.8 92.5 94.1 23.6
40 72.9 85.2 91.0 94.3 95.4 22.5

IQUIC

5 1.1 2.3 3.5 4.6 5.7 4.6
10 2.4 4.6 6.1 7.3 8.3 5.9
15 6.1 11.5 15.3 18.3 20.5 14.4
20 16.8 26.5 35.1 42.3 49.1 32.3
25 30.1 45.6 55.2 63.1 69.8 39.7
30 42.8 60.0 71.4 78.7 83.6 40.8
35 56.3 73.1 83.6 91.1 93.4 37.1
40 61.9 81.4 89.1 93.2 95.5 33.6

HTTPS

5 1.3 2.4 3.9 5.3 6.8 5.5
10 1.5 3.1 4.3 5.8 7.2 5.7
15 3.8 7.4 9.6 12.1 14.5 10.7
20 7.7 11.2 14.9 18.2 21.9 14.2
25 12.6 18.6 22.4 25.9 28.9 16.3
30 15.8 22.9 29.6 34.2 38.7 22.9
35 29.4 37.5 43.4 47.7 50.7 21.3
40 39.7 50.1 55.8 58.1 60.7 21.0
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packets. The accuracy gap on GQUIC reaches the largest when using only
10 packets, and the Top-5 attack can identify the website currently being
transmitted over GQUIC with an accuracy of 79.9%, while the accuracy of
the attack on HTTPS is only 7.2% under the same conditions. The most sig-
nificant improvement on IQUIC happens when k = 30, and the accuracy of
Top-5 attack on IQUIC achieves 83.6%, while only 38.7% when on HTTPS.
Moreover, when the attack reaches the best performance, using only 40 pack-
ets, attack accuracy could reach 95.4% when on GQUIC, reach 95.5% when
on IQUIC, whereas only 60.7% when on HTTPS.

6.6. Vulnerability Under Flawed Network

Network imperfect factors can affect the interaction between client and
server, e.g., high loss can lead to more retransmission in traffic, which affects
the effectiveness of features on traffic representation and thus the efficiency
of WFP attack. In this section, to illustrate that the vulnerability of the
protocol is only slightly dependent on the network conditions, we implement
the WFP attacks on IQUIC in different network conditions. Specifically, we
control the bandwidth, delay, and loss of the network and collect the traffic
generated when user visit 50 randomly selected websites. We first conduct
the Top-a attacks utilizing Simple features to show that the adversary can
perform effective attacks even only utilize the computationally cheap sim-
ple feature under flawed networks. We also conduct WFP attacks utilizing
Transfer features to demonstrate that informative features can effectively
represent different traffic even under flawed networks.

The bandwidth and delay have no negative impact on the effectiveness
of the attack when both utilizing Simple features and Transfer features. A
slight decrease in bandwidth and increase in delay will make the features
more fully represent the traffic, thus improving the effectiveness of WFP
attacks (Figure 8(a)(b), Figure 9(a)(b)). When utilizing Simple features, the
effectiveness of WFP attacks in normal traffic scenario is improved at low
bandwidth and high delay (a = 1, k = 200, bandwidth, 1 Mbps: 96.9%, 10
Mbps: 93.4%, 100 Mbps: 90.9%; delay, 500 ms: 98.6%, 100 ms: 99.0%, 0
ms: 90.9%). But in the early traffic scenario, bandwidth and delay have
little impact on the effectiveness of the attack (k = 30, bandwidth, 1 Mbps:
67.4%, 10 Mbps: 64.9%, 100 Mpbs: 65.3%; k = 40, delay, 500 ms: 81.7%, 100
ms: 82.3%, 0 ms: 79.1%). When utilizing Transfer features, the effectiveness
of WFP attacks is almost the same under different bandwidth and delay
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a = 1 a = 2 a = 3 a = 4 a = 5

(a) bandwidth

(b) delay

(c) loss

Figure 8: Attack accuracy on IQUIC utilizing Simple features under different network
conditions and scenarios

condition (average, bandwidth, 1 Mbps: 94.2%, 10 Mbps: 94.8%, 100 Mbps:
94.3%; delay, 500 ms: 96.5%, 100 ms: 96.9%, 0 ms: 94.3%).

High loss make the WFP attacks more difficult (Figure 8(c), Figure 9(c)),
resulting in the accuracy decrease of the attack under both early traffic sce-
nario and normal traffic scenario, especially when utilizing Simple features
(Simple features, k = 40, loss 0%: 79.1%, loss 5%: 46.6%, loss 10%: 30.3%;
k = 200, loss 0%: 90.9%, loss 5%: 67.6%, loss 10%: 56.7%). Moreover,
when utilizing Simple features, the high loss also makes the inflection point
of the attack accuracy from rapidly increasing to steady appear earlier (loss
0%: k = 35; loss 5%: k = 30, loss 10%: k = 25), which further makes
the WFP attack in the early traffic scenario difficult. We believe that the
effectiveness of Simple features decreases in the high loss condition is due to
the large number of retransmission, which introduces uncertainty to the rela-
tively fixed sequence of packets originally caused by the resource structure of
the website and the resource access paradigm of browsers under the request-
response conversation model between client and server. The distribution of
samples is shifted in an uncertain direction, and the space of different classes
is crossed, making it difficult to represent the samples of different classes.
However, the negative impact of packets loss is significantly reduced when
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(a) bandwidth (b) delay (c) loss

Figure 9: Attack accuracy on IQUIC utilizing Transfer features under different network
conditions and scenarios

attacks utilizing Transfer features, and the attack accuracy gap under differ-
ent loss rates are much smaller than when utilizing Simple features (average,
loss, Transfer feature: 0%: 94.2%, 5%: 90.6%, 10%: 87.1%; Simple feature:
0%: 78.3%, 5%: 50.7%, 10%: 35.9%). This indicate that informative features
can better resist the negative impact of flawed network. It should be noted
that even under a poor network, as the loss reaches 5% or 10%, the trend of
the attack accuracy with the increase of parameter k remains similar, which
increases sharply in the early traffic scenario and then tends to be steady.
Therefore, we believe that the trend of the attack accuracy on GQUIC and
HTTPS will also remain similar to which under perfect network, indicat-
ing that the relative vulnerability of GQUIC, IQUIC, and HTTPS to WFP
attacks on early traffic is only slightly affected by the network conditions.

More importantly, as the parameter a increases, the drop of accuracy
caused by the network imperfection decreases, indicating that even in a poor
network condition, the adversary can still make the attack accuracy close
to the result in a perfect network by increasing the tolerance of the attack,
i.e., increasing the number of attacks (a = 5, k = 200, loss, 0%: 99.8%,
5%: 90.5%, 10%: 86.6%), which also shows that the effect of the network
condition is slight for the adversary, and the adversary can always find a
new balance between the attack efficiency and effectiveness by increasing the
complexity of the features.

7. Discussion

The superior transmission performance of GQUIC and IQUIC brings op-
portunities for speeding up the Internet, but protocols security risks also
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bring uncertainties. Previous researches [23, 34] explored the website finger-
printing of QUIC on a normal traffic scenario, while we focus more on the risk
of different versions of QUIC on early traffic. The vulnerability of GQUIC
and IQUIC on early traffic poses a significant challenge to the privacy and
confidentiality guaranteed.

One limitation of our work is that we do not conduct the experiments
under a real open world, where the network condition may be much more
complicated than the local area network. However, conducting experiments
in a controlled environment also allows us to have more precise control over
the network environment, and thus can explore the impact of different net-
work factors on protocol vulnerability, which is difficult to achieve precisely
in an open network. Moreover, our testbed provides a realistic simulation
of real situations, and our research focuses on the vulnerability of GQUIC,
IQUIC, and HTTPS under the same condition, rather than the attack per-
formance against a single protocol, we believe that the conclusions we have
achieved can generalize to a real open network. In the future, we plan to
explore how features are transferred and applied across different protocols,
which may help us to construct generalizable attack models.

8. Conclusion

Cryptographic protocol can protect the user’s privacy and avoid exposing
private information to the adversary. In this paper, we discuss the vulnera-
bility of GQUIC, IQUIC, and HTTPS to WFP attacks and the feasibility of
feature transferring between protocols on both early traffic and normal traf-
fic scenarios. We demonstrate that GQUIC and IQUIC, especially GQUIC,
are more vulnerable to WFP attacks than HTTPS in the early traffic sce-
nario but are similar in the normal traffic scenario. We also demonstrate
that, when on normal traffic, most features are transferable between pro-
tocols, and the feature importance is inherited. However, the transferring
is inefficient when on early traffic due to the different magnitude of varia-
tion in the traffic distribution of different protocols. Moreover, we quanti-
tatively analyze the latent feature representation space of GQUIC, IQUIC,
and HTTPS to intuitively show that features can represent inter-class and
intra-class samples more efficiently on GQUIC and IQUIC than on HTTPS,
causing GQUIC and IQUIC more vulnerable when on early traffic scenario.
We also show that an adversary can always achieve a significant attack ef-
ficiency improvement within an acceptable tolerance even when the attack
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accuracy is originally low on GQUIC and IQUIC. Finally, we conduct experi-
ments on different flawed networks to show that the vulnerability of GQUIC,
IQUIC, and HTTPS is slightly dependent on the network environment, and
our conclusion can generalize to a real open network.
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