
Retina: An open-source tool for flexible analysis of RTC traffic
Gianluca Perna, Dena Markudova, Martino Trevisan ∗, Paolo Garza, Michela Meo,
Maurizio M. Munafò
Politecnico di Torino, Italy

A R T I C L E I N F O

Keywords:
Network traffic monitoring
Real-time communications

A B S T R A C T

Retina is an open-source command-line tool that produces rich and complex statistics from real-time communi-
cation (RTC) traffic. Starting from raw packet captures, it creates summaries of observed streams with flexible
statistics and tracks the evolution of the stream over time. Retina is modular and highly configurable, providing
the ability to configure output statistics, temporal resolution as well as many other parameters. Furthermore,
if the packet captures are accompanied by application logs, it can reconcile the data and enrich its output
with application and QoE-related statistics.
Retina helps troubleshoot RTC applications and enables the use of Machine Learning models for traffic
classification and Quality of Experience assessment. We believe Retina can be extremely useful for researchers
studying RTC traffic and network professionals interested in effective traffic analysis.
1. Context and motivation

In recent years, the proliferation of broadband Internet access and
mobile networks has spurred the adoption of Real-Time Communica-
tion (RTC) applications that allow people to communicate via voice and
video. They are now essential for both leisure and business, helping
people to reach friends and relatives and enabling remote working.
The importance of RTC was particularly evident during the COVID-19
pandemic, when social distancing and lockdown measures adopted to
curb the outbreak forced millions of people to communicate exclusively
through RTC platforms. This led to a global increase of RTC traffic
by more than 200% [1,2]. It is therefore of utmost importance that
researchers and practitioners are supported with tools to analyze RTC
traffic and gain insights into the operation of RTC applications.

In this paper we present Retina, an easy-to-use command-line tool
that extracts advanced network statistics for RTC sessions found in
packet captures. It also generates graphical output with various charts
and visualizations of the statistics for easy analysis. Retina focuses on
the Real-Time Protocol (RTP) [3] protocol used in most RTC appli-
cations [4], with its encrypted version SRTP (which however leaves
the packet headers in clear). Retina goes deeper than general tools in
understanding RTC traffic. Starting from a capture, Retina searches for
RTC traffic, identifies streams and outputs more than 130 statistics
on packet characteristics, such as timing and size, and tracks the
evolution of the stream over time bins of a chosen duration. It is highly

∗ Corresponding author.
E-mail address: martino.trevisan@polito.it (M. Trevisan).

1 https://github.com/GianlucaPoliTo/Retina.
2 https://www.wireshark.org/.

configurable, and the user can customize the output statistics as well as
a number of other parameters. Retina can enrich its output by merging
the information available in the RTC application logs to provide the
ground truth required for many classification problems.

Retina is open-source and available to the research community and
network practitioners.1 We believe it can be useful for traffic monitor-
ing, and we have successfully used it for data processing and feature
extraction to feed Machine Learning (ML) algorithms in the context of
RTC-aware network management.

1.1. Literature review

Several tools already perform in-depth traffic analysis, and packet
dissectors such as Wireshark2 (and its command-line version Tshark)
are the first resources for network troubleshooting. Flow monitoring is
also commonly used to analyze traffic summaries [5], and NetFlow [6]
is the de facto standard for collecting and processing flow records.
Sophisticated network meters also expose application-level statistics
using Deep-Packet Inspection on Layer-7 protocols. Tstat [7], for exam-
ple, provides global statistics on RTP streams, while nProbe [8] offers
a VoIP plugin as a closed-source commercial product. In contrast to
these works, Retina provides comprehensive statistics both per time unit
and per flow. It specializes in RTC traffic and detects numerous RTC
applications, including some that modify the RTP protocol. It also offers
a wide range of parameters for personalized log creation.
Accepted 18 November 2021

1

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:martino.trevisan@polito.it
https://github.com/GianlucaPoliTo/Retina
https://www.wireshark.org/
https://doi.org/10.1016/j.comnet.2021.108637
https://doi.org/10.1016/j.comnet.2021.108637
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108637&domain=pdf


Computer Networks 202 (2022) 108637G. Perna et al.
Fig. 1. Retina architecture.

2. System overview

In this section, we describe Retina’s operation. As input, Retina

2.2. System core
2

takes one or more packet captures as well as optional configuration
We show the overall architecture of Retina in Fig. 1, with the middle

rectangle indicating the building blocks at its core. At the bottom, in

parameters. It processes the traffic and outputs the desired output in
various forms. We depict its overall architecture in Fig. 1. Retina is
written in Python and depends on Tshark and a number of modules
that can be installed via the package manager pip. We also provide a
dockerized version to allow the use as a standalone container.3

2.1. Inputs and configuration

Retina requires the user to specify one or more captures in PCAP
format, the most common format used in many traffic capture softwares
(Wireshark, TCPdump, etc.). Retina can also process an entire directory
by searching for all captures in it. If it finds more than one, Retina
uses multiprocessing to process multiple files at once. The number of
processes is a configurable parameter.

For some RTC applications, the user can provide application log files
that Retina uses to calculate additional statistics and enrich the output.
The application logs typically contain details about the media sessions,
including the Source Identifiers of the RTP streams, the type of media
(audio, video, or screen sharing), the video resolution, the number
of frames per second, etc. When available, Retina uses this additional
information to provide finer-grained per-second statistics – e.g., me-
dia type, video resolution or concealment events at the codec level.
Currently, Retina supports log files of: (i) Cisco Webex,4 which logs
second-by-second details for each RTP stream, and (ii) Google Chrome
when collecting WebRTC debugging logs with WebRTC5 browser-based
RTC services.6

In Retina, the user can customize a variety of parameters. All are
optional, with carefully set default values. Retina has personalized
features for many RTC applications, which can be enabled by specifying
the name of the RTC application whose traffic is included in the capture
as an input parameter. While it supports all applications that use RTP
at their core, we have tested it extensively for Webex, Jitsi, Zoom,
and Microsoft Teams. Retina accepts threshold parameters, such as the
minimum number of packets or the minimum duration of a stream
for it to be considered valid. The user can also control the statistics
computed at each time bin (see Section 2.3) and can ask Retina to create
(interactive) graphs. The full list of parameters can be found in the
documentation, while in the rest of the paper we will only mention
the most important ones.

3 The dockerized version is available at: https://hub.docker.com/r/
gianlucapolito/retina.

4 https://www.webex.com/.
5 https://webrtc.org/.
6 These logs can be obtained by creating and downloading a dump at

chrome://webrtc-internals.
blue, there are the basic functionalities, while, on the top, in purple,
the optional modules. We also show a sample command line at the top
of Table 1.

The basic functionalities of Retina analyze the raw packets contained
in the input PCAP captures and gather statistics, organized in tables
per stream and per time-bin. For example, consider a PCAP capture
collected at a user side, containing RTP traffic from a two-party call
consisting of 4 RTP streams (outgoing and incoming audio and video).
Setting a time bin duration of 1 s, Retina maintains a table where,
for each of the 4 streams and for each second, it accumulates several
statistics. Given a packet characteristic, such as packet size or interar-
rival time, Retina calculates several statistical indicators, such as mean,
median, third and fourth moments, or percentiles. We report the list
of packet features and available statistics in Fig. 2, which summarizes
the whole process of statistics extraction. The user can configure the
duration of the time bin for this aggregation of packets, which is 1 s
by default. The duration of the time bin directly affects the number of
packets used to compute the statistics, and should therefore be varied
judiciously. For example, in 1 s of audio, 50 packets are sent, while, in
1 s of HD video, more than 200. Clearly, if the time window is 200 ms
for audio, no significant features can be computed, while this would be
fine for video.

To identify RTP streams in traffic, Retina relies internally on Tshark,
the command-line version ofWireshark. This step is not straightforward,
as RTP packets often appear in a UDP flow along with other protocols.
In fact, many applications use STUN [9] to establish the media session
and/or TURN [10] to relay the streams if no direct connection between
peers is possible. In addition, it is common to use DTLS [11] interleaved
among RTP packets to exchange control information such as encryption
keys. Retina supports two methods for identifying RTP streams: (i) with
a user-defined list of ports or (ii) by examining the STUN-initiated UDP
flows. Retina attempts to decode the UDP payload as RTP and verifies
that the protocol headers are compatible with RTP. We define an RTP
stream using the combination of IP addresses and ports (the classic
tuple) plus the RTP Synchronization Source Identifier (SSRC), which is
used to multiplex multiple streams within a single UDP flow. For some
RTC applications, we also use the RTP Payload Type (an RTP field that
specifies the media codec). Retina maintains internal data structures to
efficiently collect statistics for each RTP stream.

Retina has a number of optional modules that target RTC applica-
tions, for which we have implemented special support. First, the traffic
of some popular RTC applications (Zoom and Microsoft Teams) needs
to be preprocessed to become standard RTP traffic. This is because
they use the RTP protocol in a non-standard form. Microsoft Teams
encapsulates RTP in a proprietary version of TURN called MTURN,

https://hub.docker.com/r/gianlucapolito/retina
https://hub.docker.com/r/gianlucapolito/retina
https://www.webex.com/
https://webrtc.org/
chrome://webrtc-internals


Computer Networks 202 (2022) 108637G. Perna et al.

Table 1
Example command line and Retina log for an RTC stream. The last three columns are derived from the application logs.
Command line: ./Retina.py -d capture.pcap -so webex -log webex.log.
Timestamp Packet size Packet size Bitrate Interarrival Packets/s Frame Frame Frames/s
(mean) (std dev) (kbit/s) (max) width height

2021-06-08 14:32:11 1041.84 66.74 1163.93 0.043 143 480 270 30
2021-06-08 14:32:12 1080.72 100.75 1578.86 0.045 187 640 360 30
2021-06-08 14:32:13 1023.49 72.21 1023.49 0.045 128 640 360 30
2021-06-08 14:32:14 1076.80 52.91 1362.82 0.043 162 640 360 30
2021-06-08 14:32:15 1055.50 52.41 1410.08 0.044 171 640 360 30
2021-06-08 14:32:16 1074.62 62.71 1989.73 0.089 237 640 360 30
2021-06-08 14:32:17 1055.22 40.09 2588.59 0.033 314 640 360 30
2021-06-08 14:32:18 1057.73 51.67 1479.17 0.040 179 640 360 30
3

Fig. 2. Aggregation process and some of the statistics computed by Retina.

while Zoom adds its own undocumented header. To make Retina work
for these RTC applications, we have created specific modules that can
also be used as standalone command line tools. They can be found in
a separate folder in the code repository.

Second, Retina can read and process the application log of (i) Webex
and (ii) Google Chrome, as mentioned in Section 2.1. Retina can parse
these logs and provide additional information about the RTP flows. If
the application logs are available, we enrich the output logs from Retina
with information such as the video resolution, employed codec, frames
per second, jitter, codec concealment events, etc. We also provide a
classification of media types into 7 classes, such as audio, FEC streams,
3 different qualities of video and screen sharing, for easier recognition.
Note that the information in the application logs is particularly useful
for training ML models, as it contains the necessary ground truth for
many problems and Retina can match it with the network traffic.

Lastly, Retina includes a plotting engine based on the Matplotlib
and Plotly libraries,7 to create both static and responsive graphs of
all RTP streams. It draws the time-series of stream characteristics,
such as bitrate or interarrival time, so that the user can easily get
an overview of the traffic or debug an RTC application. It also draws
several histograms for each stream to show the stream-wise distribution
of packet characteristics (e.g. packet size). For an example graph, see
Fig. 3. Here we show the bitrate of 4 RTP streams present in a portion
of a Webex call. The plotting engine also labels the time-series with
their media type (audio, video, FEC etc.), if the information is provided
(e.g. through an application log file).

2.3. Outputs

Retina produces a CSV file for each RTP stream found in the input
capture, reporting the selected statistical features for each time bin.

7 https://matplotlib.org/, https://plotly.com/.
Fig. 3. Example plot of the stream bitrate in a call.

The logs contain different columns according to user preferences and
additional stream information if the RTC application log is provided.
We show an example output log in Table 1, along with the command
line used to create it. Optionally, Retina creates a summary log file
in which it reports stream-wise statistics. The file contains the most
important information for each stream – i.e., the source and destination
IP addresses and ports as well as general statistics such as the num-
ber of packets, duration, etc. Having per-stream information is useful
for many applications that rely the analysis of flow/stream records
for e.g., traffic accounting. Additionally, Retina provides traffic plots,
which we described in Section 2.2.

Finally, Retina also provides a dashboard for analyzing RTC traffic
through an interactive interface.8 The dashboard requires an input
.pickle file, which can be produced by passing one or more packet
captures to Retina and specifying an argument for the plot. Here the
user can see interactive plots of stream statistics and compare streams
of interest.

3. System design assets

We have designed Retina following principles of scalability and
modularity, so that it can be easily extended. It adopts a multiprocess-
ing architecture, so when there are multiple PCAP files to process, it
uses an independent process for each of them and stores separate output
log files. These files can then be merged at the end of the processing.
This also increases the robustness of the tool.

Retina is highly modular, with separate functions organized into
logical modules for all the different operations. This also allows for
extensibility, as a user can write new functionalities with minimal
effort. For example, it is easy to support the application log of a new

8 An online demonstrator of the dashboard is available at: https://share.
streamlit.io/gianlucapolito/retina-dashboard/main/dashboard.py.

https://matplotlib.org/
https://plotly.com/
https://share.streamlit.io/gianlucapolito/retina-dashboard/main/dashboard.py
https://share.streamlit.io/gianlucapolito/retina-dashboard/main/dashboard.py


Computer Networks 202 (2022) 108637

4

G. Perna et al.

RTC application (e.g. Microsoft Teams), as it is only necessary to add
a parser function and call it with an argument.

Retina can be used to analyze any kind of RTP traffic, and it is

Acknowledgment

This work has been supported by the SmartData@PoliTO center for
BigData and Data Science and Cisco Systems Inc.
not limited to video conference applications. For example, we have

successfully used Retina to gain insights into the operation of cloud
gaming applications running over the browser [12]. Similarly, our
parser for the Chrome WebRTC log works seamlessly for any type of
browser-based application.

Finally, Retina, as described in Section 2.1, is highly configurable.
The user can limit the statistics to be computed (potentially speeding
up the computation), the desired time aggregation, and several internal
parameters - e.g., the minimum length of an RTP stream for it to be
considered — which are detailed in the README file.

4. Publications enabled by the software

Retina was first developed at the end of 2019, and within 2 years
of its existence, it has already been a valuable asset for 4 scientific
publications that target RTC traffic. Retina sits at the core of [13],
where we used it to engineer features and extract the ground truth for
an ML classifier that distinguishes media types. Using these features, we
developed a Decision Tree classifier that performed with 97% accuracy.
We further built on it in [14], to do data preprocessing and identify
RTC streams in traffic. It also served for data characterization in [4],
where we compare 13 different RTC applications. We also successfully
employed it to study cloud gaming traffic, and it allowed us to under-
stand the networking operation behind Google Stadia, GeForce NOW
and PSNow in [12].

5. Limitations and future work

While Retina supports most RTC applications, it still does not sup-
port those that do not use RTP (or a modified version of it), like
GoToMeeting or Telegram. Moreover, it relies on the RTP headers, so
if in a future protocol version these are encrypted, the tool will need
major revisions.

As future work we aim to make Retina work in real-time and be
able to support traffic at high speeds (e.g. 40 Gb/s links). We also
want to introduce better support for gaming traffic, cover different
cloud gaming platforms, and output more gaming-specific ML features.
We also plan to support Retina in the long run and follow the future
developments of the underlying protocols such as RTP, STUN, and
TURN, as well as tackle new protocols from novel providers.

6. Conclusion

This article presented Retina, a flexible command-line tool for ex-
tracting advanced statistics from network traffic of RTC applications.
We provided a schematic description of all its features: the inputs, the
system core and the outputs with examples. We also highlighted the de-
sign strengths of Retina, its modularity, scalability and configurability.
We believe Retina can help both the scientific community in studying
RTC applications and network administrators in troubleshooting RTC
traffic. Our final goal is to make in-network devices regain visibility
of RTC traffic and promote network management policies that favor
this type of traffic. In particular, we designed it to be used directly for
feature engineering of ML algorithms, since it can provide the ground
truth for classification problems by processing the application log files.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
References

[1] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel, D. Wagner,
M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez, O. Hohlfeld, G. Smaragdakis,
The lockdown effect: Implications of the COVID-19 pandemic on internet
traffic, in: Proceedings of the ACM Internet Measurement Conference, in: IMC,
vol. 20, Association for Computing Machinery, New York, NY, USA, ISBN:
9781450381383, 2020, pp. 1–18.

[2] T. Favale, F. Soro, M. Trevisan, I. Drago, M. Mellia, Campus traffic and e-learning
during COVID-19 pandemic, Comput. Netw. 176 (2020) 107290.

[3] R. Frederick, S.L. Casner, V. Jacobson, H. Schulzrinne, RTP: A Transport protocol
for real-time applications, in: Request for Comments, (1889) RFC Editor, 1996,
http://dx.doi.org/10.17487/RFC1889, RFC 1889, URL https://rfc-editor.org/rfc/
rfc1889.txt.

[4] A. Nistico, D. Markudova, M. Trevisan, M. Meo, G. Carofiglio, A compara-
tive study of RTC applications, in: 2020 IEEE International Symposium on
Multimedia, ISM, IEEE, 2020, pp. 1–8.

[5] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, A. Pras,
Flow monitoring explained: From packet capture to data analysis with netflow
and ipfix, IEEE Commun. Surv. Tutor. 16 (4) (2014) 2037–2064.

[6] B. Claise, Cisco systems NetFlow services export version 9, in: Request for
Comments, (3954) RFC Editor, 2004, http://dx.doi.org/10.17487/RFC3954, RFC
3954, URL https://rfc-editor.org/rfc/rfc3954.txt.

[7] M. Trevisan, A. Finamore, M. Mellia, M. Munafò, D. Rossi, Traffic analysis with
off-the-shelf hardware: Challenges and lessons learned, IEEE Commun. Mag. 55
(3) (2017) 163–169.

[8] L. Deri, N. SpA, nProbe: an open source netflow probe for gigabit networks, in:
TERENA Networking Conference, 2003, pp. 1–4.

[9] J. Rosenberg, C. Huitema, R. Mahy, J. Weinberger, STUN - Simple traversal of
user datagram protocol (UDP) through network address translators NATs, in:
Request for Comments, (3489) RFC Editor, 2003, http://dx.doi.org/10.17487/
RFC3489, RFC 3489, URL https://rfc-editor.org/rfc/rfc3489.txt.

[10] P. Matthews, J. Rosenberg, R. Mahy, Traversal using relays around NAT (TURN):
Relay extensions to session traversal utilities for NAT (STUN), in: Request for
Comments, (5766) RFC Editor, 2010, http://dx.doi.org/10.17487/RFC5766, RFC
5766, URL https://rfc-editor.org/rfc/rfc5766.txt.

[11] E. Rescorla, N. Modadugu, Datagram transport layer security, in: Request for
Comments, (4347) RFC Editor, 2006, http://dx.doi.org/10.17487/RFC4347, RFC
4347, URL https://rfc-editor.org/rfc/rfc4347.txt.

[12] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, D. Giordano, A network
analysis on cloud gaming: Stadia, GeForce Now and PSNow, Network (ISSN:
2673-8732) 1 (3) (2021) 247–260, http://dx.doi.org/10.3390/network1030015.

[13] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M.M. Munafò, G.
Carofiglio, Online classification of RTC traffic, in: 2021 IEEE 18th Annual
Consumer Communications Networking Conference, CCNC, 2021, pp. 1–6, http:
//dx.doi.org/10.1109/CCNC49032.2021.9369470.

[14] D. Markudova, M. Trevisan, P. Garza, M. Meo, M.M. Munafo, G. Carofiglio,
What’s my app?: ML-based classification of RTC applications, ACM SIGMETRICS
Perform. Eval. Rev. 48 (4) (2021) 41–44.

Gianluca Perna is a Ph.D. student at Politecnico di Torino
and member of SmartData@Polito research center for Big
Data technologies. He obtained a Bachelor’s degree in
Telecommunication engineering and a Master’s degree in
ICT For Smart Societies with an excellent grade, both from
the same University. He is also pursuing a patent in the
field of Building Design and participating in an international
project with the leading IT company Cisco Systems.

Dena Markudova is a Ph.D. student in Electrical, Elec-
tronics and Communications Engineering at Politecnico di
Torino, Italy and member of the SmartData@Polito re-
search center. Her research focuses on Data science applied
to Computer Networking — traffic analysis and applica-
tion of Machine learning algorithms for better Network
management. She obtained her Bachelor degree in Telecom-
munications at ‘‘Ss. Cyril and Methodius’’ University in
Skopje, North Macedonia in 2016 and her Master’s degree
in ICT for Smart Societies at Politecnico di Torino in 2018.

http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb1
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb2
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb2
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb2
http://dx.doi.org/10.17487/RFC1889
https://rfc-editor.org/rfc/rfc1889.txt
https://rfc-editor.org/rfc/rfc1889.txt
https://rfc-editor.org/rfc/rfc1889.txt
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb4
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb4
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb4
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb4
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb4
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb5
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb5
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb5
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb5
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb5
http://dx.doi.org/10.17487/RFC3954
https://rfc-editor.org/rfc/rfc3954.txt
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb7
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb7
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb7
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb7
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb7
http://dx.doi.org/10.17487/RFC3489
http://dx.doi.org/10.17487/RFC3489
http://dx.doi.org/10.17487/RFC3489
https://rfc-editor.org/rfc/rfc3489.txt
http://dx.doi.org/10.17487/RFC5766
https://rfc-editor.org/rfc/rfc5766.txt
http://dx.doi.org/10.17487/RFC4347
https://rfc-editor.org/rfc/rfc4347.txt
http://dx.doi.org/10.3390/network1030015
http://dx.doi.org/10.1109/CCNC49032.2021.9369470
http://dx.doi.org/10.1109/CCNC49032.2021.9369470
http://dx.doi.org/10.1109/CCNC49032.2021.9369470
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb14
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb14
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb14
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb14
http://refhub.elsevier.com/S1389-1286(21)00523-5/sb14


Computer Networks 202 (2022) 108637

5

G. Perna et al.

Martino Trevisan received his Ph.D. in 2019 from Politec-
nico di Torino, Italy. He is currently an assistant professor
(RTD-A) at the Department of Electronics and Telecommuni-
cations in the same university. He has been collaborating in

Michela Meo is a Professor of Telecommunication Engi-
neering with the Politecnico di Torino. She coauthored
about 200 papers, 80 of which on international journals.
She edited a book Green Communications (Wiley) and
both Industry and European projects and spent six months
in Telecom ParisTech, France working on High-Speed Traffic
Monitoring during his M.Sc. He visited the Cisco labs in San
Jose twice, in the summers of 2016 and 2017, as well as
AT&T labs during fall 2018. He was also a Visiting Professor
at the Federal University of Minas Gerais in Brazil in 2019.

Paolo Garza received the master’s and Ph.D. degrees in
computer engineering from the Politecnico di Torino. He
has been an associate professor at the Dipartimento di Auto-
matica e Informatica, Politecnico di Torino, since December
2018. His current research interests are in the fields of
data mining, database systems, and big data analytics. He
has worked on classification, clustering, itemset mining and
scalable algorithms.
several special issues of international journals. Her research
interests include green networking, energy-efficient mobile
networks and data centers, Internet traffic classification, and
characterization.

Maurizio Matteo Munafò is Assistant Professor at the
Department of Electronics and Telecommunications of Po-
litecnico di Torino. He holds a Dr.Ing. degree in Electronic
Engineering since 1991 and a Ph.D. in Telecommunications
Engineering since 1994, both from Politecnico di Torino.
He has co-authored about 80 journal and conference papers
in the area of communication networks and systems. His
current research interests are in simulation and performance
analysis of communication systems and traffic modeling,
measurement, and classification.


	Retina: An open-source tool for flexible analysis of RTC traffic
	Context and motivation
	Literature review

	System overview
	Inputs and configuration
	System core
	Outputs

	System design assets
	Publications enabled by the software
	Limitations and future work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References




