Edge Security for SIP-enabled IoT Devices with P4

Aldo Febro
Dept. of Computer Science
University of Hertfordshire
Hatfield, UK AL10 9AB
aldo.febro @iotseclab.com

Hannan Xiao
Dept. of Informatics
King’s College London
London, WC2B 4BG
hannan.xiao @kcl.ac.uk

Abstract—The exponential growth of IoT devices poses security
concerns, in part because they provide a fertile breeding ground
for botnets. For example, the Mirai botnet infected almost 65,000
devices in its first 20 hours. With the prevalence of Session
Initiation Protocol (SIP) phones and devices on the networks
today, the attacker could easily target and recruit these IoT
devices as bots. Conventional network security measures do not
provide adequate attack prevention, detection, and mitigation
for these widely distributed IoT devices. This paper presents
microVNF, a Virtualized Network Function (VNF) that lever-
ages the programmable data plane feature on the edge switch.
Based on knowledge gained from the Mirai botnet incident
and following the defense-in-depth principle, microVNF protects
IoT devices against SIP DDoS attacks in two stages: before
and after infection. Prior to infection, it protects against SIP
scanning, enumeration, and dictionary attacks. After infection,
microVNF blocks botnet registration attempts to the command-
and-control (CNC) server, thereby preventing the botnet from
receiving commands sent from the CNC server, and detects and
mitigates botnet SIP DDoS attacks. We conducted six experiments
that involved using popular attack tools against microVNF, and
it successfully performed deep-packet inspection of unencrypted
SIP packets so as to track anomalies from a typical SIP state-
machine. In this use case, besides providing physical connectivity
to the IoT devices, the edge switch containing microVNF also
provides the first line of defense in stopping malicious packets
from propagating upstream to the core network. In addition to
securing SIP, the microVNF approach can be adapted to other
text-based, application-layer protocols such as HTTP and SMTP.
MicroVNF leverages the native capability of programmable
data planes without depending on external devices, thereby
making this approach practical for securing edge-computing
environments against application-layer attacks.

Index Terms—SIP, DDoS, Dictionary attack, IoT, P4, VNF,
SIPVicious, Edge Computing

I. INTRODUCTION

Although the Internet of Things (IoT) brings benefits, it
also poses serious challenges in securing IoT devices. It is
undeniable that IoT devices are capable of producing data
that brings a new level of situational awareness, which can
be critical for making decisions and taking actions. However,
the deployment of these devices presents a new challenge: it
is relatively easy for them to be exploited by an attacker, due
to a lack of resources for IoT devices to perform rigorous
security controls. This vulnerability threatens the privacy and
integrity of the data produced by these devices, and threatens
the security of the Internet as a whole.

Bruce Christianson
Dept. of Computer Science
University of Hertfordshire

Hatfield, UK AL10 9AB
b.christianson @herts.ac.uk

Joseph Spring
Dept. of Computer Science
University of Hertfordshire

Hatfield, UK AL10 9AB
j-spring @herts.ac.uk

IoT devices, for example, have the unintended side effect
of providing an ecosystem for malware to multiply and form
botnets [1]. When activated, a botnet can launch attacks such
as Distributed Denial of Service (DDoS). To get a sense of
the magnitude, Antonakakis, et al. documented the spread of
the Mirai botnet where it infected nearly 65,000 IoT devices
within the first 20 hours and reached a stable population
size of 200,000 - 300,000 devices [2]. At its peak, Mirai
consisted of 600,000 infected devices, including IP cameras,
IP phones, IP video recorders, etc. [2] [3] [4]. As a botnet
of this magnitude, Mirai was used to launch multiple DDoS
attacks of various types (e.g., application-layer, volumetric,
and TCP state exhaustion) with some high-profile targets such
as Dyn [5], Krebs on Security [6] and a large telecom operator
in Liberia [7].

Securing IoT devices against botnets is challenging for the
conventional approach, due to its distributed nature. The Mirai
botnet can propagate itself by scanning for IoT nodes with
open administrator ports and weak passwords. For traditional
firewalls or intrusion-detection systems to be aware of such
activities, they need to have visibility of these activities on
potential targets. Unfortunately, IoT devices are installed at
the network’s edges and fall outside of conventional security
devices’ visibility. In zero-day attack scenarios, even when
firewalls or intrusion-detection systems are present, they are
not effective in detecting malicious botnet activities due to
the absence of signatures for attacks that are unknown [8].
Kamaldeep, et al. [9], Zarpelo et al. [10], and Wazzan et al.
[11] made similar observations that a signature-based approach
is not effective against zero-day attacks.

Securing IoT devices against botnets is also challenging due
to resource constraints. IoT devices are mass produced for a
specific purpose. With economy of scale in mind, the cost of
these devices is optimized, by using just enough components
to perform the purpose. This approach results in devices with
weak security posture and vulnerable to attacks. Survey papers
[11] [12] on IoT security note where these devices are most
resource constrained and therefore vulnerable. Wazzan et al.
[11] suggest exploring edge-based detection, which is the next
layer of defense with IoT devices being vulnerable.

Researchers often use variations of the three-layer IoT ar-
chitecture (cloud, fog, and edge) to describe the characteristics
that are present at each layer [13], [14], [15]. The cloud layer
has the most resources (e.g., computing, storage, connectivity,

reliability, etc.), typically found in data centers. The fog layer
acts as an intermediary layer to fill in the gap by providing
some computing resources to process the data generated
by the edge devices. The edge layer contains millions of
IoT devices that generate the data. Typically, firewalls and
intrusion-detection systems are absent at the edge layer due
to practical and financial concerns. In the Mirai attack case,
the miscreants successfully exploited two IoT vulnerabilities:
inadequate authentication and insufficient access control, to
take over the device. These vulnerabilities are among nine IoT
vulnerabilities, described in the survey paper by Neshenko, et
al. [16]. Therefore, it is arguable that the edge layer needs
additional security features to defend against similar attacks
at this layer. The edge switch, with its programmable data
plane, could be positioned in the fog layer to provide a layer of
security for the edge devices as depicted in Fig. 1. Considering
that the edge switch has more resources than IoT devices, it
could off-load high computational tasks from edge devices.
For example, cryptographic algorithms, packet inspection, and
data analysis.

Edge networks that are implemented using the Software-
Defined Networking (SDN) approach suffer from scalability
and performance issues. Despite the advantages of using
the SDN architecture that separates control from the data
plane, it introduces latency that stems from control-data plane
communication. In an architecture where a centralized SDN
controller controls multiple edge switches, the edge switches
depend on the controller for instructions. Scalability and
performance issues in OpenFlow-enabled switches for stateful
packet processing are discussed in [17].

°
FOG LAYER T
[EDGE SWITCH }
with Programmable Data Plane

EDGELAYER | | |

N

3K <4 |

Light Audio IP Camera Temp

Sensor Sensor Sensor

Fig. 1. Edge switch providing protection to IoT devices

This paper addresses a research gap that is found between
the weak security posture of IoT devices [16] and the latency
that exists in SDN’s control-data plane communication [17].

The present paper proposes a new defense model, in
which the edge switch is empowered for application-layer
attack detection and mitigation. This model addresses the
scalability and performance issues of SDN architecture as
described in review paper [17]. The key enabler of our model

is a new paradigm in networking, where the data plane is
now sufficiently programmable to perform custom parsing,
match-action pipelining, and queuing. With these capabilities,
the data plane off-loads the task from a centralized SDN
controller for tracking stateful packet inspection. These new
capabilities are available on the new generation of switches,
network interface cards, and network processors that support
the Programming Protocol-Independent Packet Processors (P4)
programming language [18]. Besides the powerful features
already mentioned, the data plane can also perform match-
action at the application-layer for protocols like SIP. For
example, it could perform match-action for SIP command-
and-response to track for anomalous session behavior. Instead
of following a traditional approach, using a middle-box to
detect and mitigate SIP attacks, we introduce microVNF, a
VNF written in the P4 programming language and running on
a programmable data plane.

Recent developments that we have made, extending our
earlier work in [19] and [20] include the addition of new tech-
niques to detect and mitigate different kinds of SIP attacks. In
its current state, SIP scanning, SIP account enumeration, and
SIP account brute-force attack can be detected and mitigated.
Using the state-based attack detection method, SIP flash traffic
and low-rate attack scenarios can be detected as well. With this
method, SIP-state compliance is enforced regardless of how
fast or slow a session is established. In a flash traffic scenario,
each port on the switch is receiving compliant SIP packets
from the end-point within a short period of time. Since these
packets are still compliant and below the threshold, they are
still allowed. In a low-rate attack scenario, each SIP session is
established over a much longer time span. However, each port
is still subjected to a limited number of SIP sessions allowed,
regardless of how long it takes to establish each session.

A. Motivation

The motivations for this paper are threefold. The first is
to perform feasibility experiments that deploy a micro VNF
(application-layer firewall and intrusion-detection) on an edge
switch’s data plane. Our placement of this defense mechanism
contrasts with that of conventional methods, which typically
place defense in the data center. The aim is to scale detection
and mitigation functions, so that network operators can address
attacks as close to their source as possible. This method is
beneficial because it minimizes collateral damage and protects
the core network.

In this use case, the placement of micro VNF on a hardware-
based switch rather than on a server (i.e., software-based
VNF) has the potential to increase cost-effectiveness. Network
administrators would typically use a per user (or per port)
pricing when preparing a budget on new features or hardware
upgrades. Each access-layer switch typically has 24 to 48
physical ports whereas the commercial off-the-shelf server
would typically have fewer. From the hardware upgrade per-
spective, the old switch could be swapped with a P4-enabled
switch (that has the same physical footprint) without requiring
more space on the rack, rewiring, or power. With P4 being

an open-source project, competition among P4-enabled switch
manufacturers will drive down the cost over time and make
it competitive against proprietary switches. Another advantage
of using a hardware-based switch is to draw the security right
to the network edge. In contrast, when using a software-
based VNF server in a data center, the server would need
to control remote switches, which introduces the potential of
delay and failure. Taking these factors into consideration and
from the cost-per-port(user) perspective, placing the VNF on a
switch would allow the network administrator to provide new
functions for less as compared to the server-based VNF.

The second motivation is to experiment with a solution
that can defend against attacks occurring both before and
after botnet infection. This approach aligns with the operation
of modern botnets, which perform different sets of activities
depending on the stage of infection. Prior to infection, their
focus is finding and recruiting vulnerable IoT devices whereas,
in contrast, after infection they connect to the CNC server and
execute attacks as instructed by it. The approach adopted by
our proposed method also better aligns with advanced, per-
sistent threat types in which attacks are strategically launched
and timed.

The third motivation is to investigate protection of SIP
endpoints, due to their prevalence in 5G environments and
services. Recent studies have provided empirical data con-
cerning IoT device vulnerability and its growth rate [21]
[22], some of which is attributable to poor configuration
[23]. Another study reports an exploit on mobile phones to
form a botnet to launch a DDoS attack [24]. These data
suggest that the vulnerabilities of these devices to attack
are likely to continue into the foreseeable future. With IoT
deployment expected to enter an accelerated growth phase,
the IoT security models need to be reevaluated to reduce the
risks and exposure.

B. Contribution

The contribution of this paper is microVNF, a VNF that
performs detection, prevention, and mitigation for SIP-based
scanning, enumeration, brute force, and DDoS attacks. Our
microVNF runs on the same switch that the IoT devices are
connected to, and is able to function without extra hardware
or software components. The concepts and methods described
in this paper could potentially be implemented on a hardware-
based target architecture to improve performance.

To the best of our knowledge, this is the first VNF that
is designed and targeted at securing the network edge for
the purpose of defending against SIP-based attacks. The
same principle however, is applicable and relevant for other
application-layer protocols that are similar to SIP, which is
text-based and uses state machines as part of its operation,
e.g., HTTP and SMTP.

Our microVNF implementation on the behavioral model
architecture is intended as a proof-of-concept, and is intended
to motivate further validation on hardware-based architectures.
With a programmable data plane, network operators are now
empowered to innovate, and quickly build proof-of-concept

models with software-based architectures such as the behav-
ioral model. With this approach, microVNF can serve as a
concrete prototype for discussion with switch manufacturers
or merchant silicon providers. Considering that hardware-
specific implementations are still being actively researched,
collaboration with these providers would validate the initial
assumptions, unveil hardware limitations, and identify the best
performing method available for a given hardware architecture.
A list of hardware that supports the P4 programming language
is given in [25].

In the remainder of this paper, related works will be
discussed in section II, the proposed solution (microVNF) will
be described in section III, followed by six experiments in
section IV, then a discussion in section V. The conclusion of
this paper is set out in section VI.

II. RELATED WORKS
A. P4 and security

Sivaraman et al., [26] presented heavy hitter identification
in the data plane, which is a similar concept and application
that makes use of P4 functionalities for DoS detection. While
similar in some aspects, our proposed solution is designed for
the SIP protocol, which is at the application-layer.

B. Edge security

Y. Xiao et al., [27] published a survey on edge computing
security that captures prior work in this open research area. It
highlights four major attacks that are found in an edge com-
puting environment: DDoS, side-channel, malware injection,
and authentication attacks. In this paper, we propose a novel
approach to two of the four attacks mentioned, namely DDoS
and authentication attack.

Yan, Qiao, et al., [28] proposed a multi-level DDoS mitiga-
tion framework (MLDMF) that consists of defense at the edge,
fog, and cloud computing levels. Security at the perception
layer is mainly managed by an SDN-based IoT gateway,
which performs security controls over the IoT devices. The
experiment performed was ping of death and TCP SYN flood.
In comparison, our paper experiments with application-layer
(SIP) DDoS instead of the network layer.

Alharbi et al in [29] designed a framework that uses
Network Function Virtualization (NFV) and edge computing
for DDoS mitigation. The VNF is deployed as a virtual ma-
chine on a shared hardware appliance. The DDoS mitigation
framework consists of a screener stage and service stage. The
instantiation and orchestration for the NFVs is provided by a
management and orchestration (MANO) element. In contrast,
our paper implements the VNF on the edge switch.

In [30], Bahman and Fung propose a collaborative network
called CoFence that allows several enterprises or ISPs to
defend jointly against DDoS attacks, by using an NFV-enabled
domain that consists of a virtual gateway and virtual IPS.
In this paper, the coordination for attack mitigation is done
within a single network, so prior arrangements with other
organizations are not required.

C. IoT security

In [31], the authors propose antibloTic 2.0, which relies on
fog computing to secure IoT devices in a legal and controlled
manner. AntibloTic bot is installed on IoT devices to sanitize,
secure, and report information to the Fog node. In comparison,
the approach proposed by this paper does not require a bot or
an agent to be installed on each IoT device.

In [32], Rafique, et al. propose CFADefense, which uses
link selection, attack detection, and malicious flow interception
modules to mitigate IoT devices from launching a Crossfire
Attack (CFA). It is deployed at the application plane of the
Floodlight SDN controller. In contrast, the VNF proposed in
our paper is able to operate independently without the use of
a centralized SDN controller.

In [33], Khosroshahi and Ozdemir propose DoS detection
from an Android device, with an entropy-based detection
frame-work using a Support Vector Machine (SVM) classi-
fication algorithm. Their work requires a VPN client to be
installed on the Android and connected to a VPN server, which
then enables data collection and attack detection. In compari-
son, the proposal in our paper does not require installation of
any client on the end-device, as we leverage the edge switch
itself for attack detection and mitigation.

In our earlier works [19] and [20], the same approach was
presented but the scope was limited to DDoS attacks. In [19],
an external SDN controller is required to verify the thresholds.
In [20], the data plane is able to operate independently and
no longer relies upon an external SDN controller. Without
this external dependency, the speed is much improved. In our
present paper, we include SIP scan, dictionary attacks, as well
as blocking the CNC sessions which often accompany Botnet
attacks.

III. THE PROPOSED SOLUTION: MICROVNF

The microVNF is a VNF that is designed to run on the
programmable data plane of a P4-enabled switch deployed at
the IoT network edge (Fig. 2). It provides a lightweight firewall
and intrusion detection for the SIP protocol at the edge of the
IoT network to protect SIP-enabled devices.

Edge Switch
[microVNF (P4)]

SIP-enabled IoT devices
Fig. 2. microVNF running on the data plane of edge switch

Learning from the Mirai botnet incident, we now understand
how it propagates and launches DDoS attacks. Armed with this
knowledge, the microVNF provides SIP-based attack detection
and mitigation in two distinct phases: before and after a botnet
infection (Fig. 3). This approach is essential because botnet

activities are different in each phase, and the defense needs to
be able to adapt and respond appropriately.

Infection
Time Point
Scan = :
Enumerate>

Brute Force =i = (8
A :
i CNC Server Victim
Vv H A A

MICroVNF protectfon
A FTER infection
A

AV4
microVNF protection
BEFORE infection

d

: Boet
i Connect to CNC = DDosS attacks

Fig. 3. microVNF provides protection for before AND after the infection

A. Workflow

microVNF uses a simple workflow that executes the fol-
lowing phases to process each packet: parse, inspect, verify,
and count. Figure 4 depicts the workflow for microVNF
processing.

1) Parse: In the parse phase, microVNF extracts and
parses the packet headers based on the header definition. For
example, 6 bytes for source and destination MAC address, 2
bytes for ethertype, 20 bytes for IPv4 headers, 8 bytes for
UDP port, and 6 bytes for SIP request. When microVNF has
extracted the information from these locations, microVNF has
enough information to proceed and is ready to move on to the
next phase, i.e., inspection.

2) Inspect: Once microVNF has parsed these fields, the
packet goes through the inspect phase, where microVNF
performs deep packet inspection. There are two main tasks
for this phase: the first is to identify whether the packet is
part of a known attack, and the second, to determine whether
this is part of a SIP attack. microVNF accomplishes the first
task by comparing the following key pieces of information and
dropping those packets that match previously known records
for attacks:

o The source IP address and port against the known attacker

records

o The destination IP address and port against the known

victim records

o The destination IP address and port against the known

command-and-control records

For the second task, microVNF inspects the first 6 bytes of
the SIP payload to categorize the type of SIP packet. If the
packet affects the SIP state machine and is therefore important
to track, microVNF will progress to the next phase. Some
examples where the SIP request/response will affect the SIP
session state are:

o the OPTION packet (it is used to verify that the server

offers a SIP service)

e the REGISTER and 401 pair (they are used for authen-

tication sessions)

PARSE INSPECT VERIFY COUNT

Gt |-

L= 1 COUNT

COUNT

| RESET |

I

COUNT

RESET

Fig. 4. microVNF workflow

e the INVITE and the BYE pair (they are used for call
initiation and termination)

3) Verify: After learning about the intent of the packet, by
examining the payload and how it affects the session state,
microVNF performs verification in the verify phase. In this
phase, microVNF validates whether or not the packet has
exceeded the threshold that was previously set for the session.
If it has, microVNF will drop the packet at the end of the
process. If not, microVNF will move it to the next phase.
For example, a normal SIP client-server session starts with an
INVITE packet and ends with a BYE packet. When there are
hundreds of INVITE packets without the corresponding BYE
packet, this indicates a DDoS attack, and microVNF needs to
drop those packets. With microVNF, if the threshold for open
INVITE sessions is three, this means that every client can
only initiate three concurrent SIP calls at any given time.

While the counter for each sender is still below the thresh-
old, microVNF will simply count this packet against the
sender. At the end of a normal session (and when the expected
BYE packet is encountered), the counter for that particular
sender is reset to zero.

The threshold value is a variable which for this study was set
at 3. This value was selected as a trade-off between ‘recogniz-
ing attack profile’ versus ‘performance’. The threshold could
be set to a higher value, which would consume more CPU
and memory resources to keep track of an increase in session
states. For example, in a typical network-edge scenario, there
are 24 IoT devices sharing a switch. In the case where each
device generates 3 active SIP sessions, the switch would need

to keep track of 72 active SIP sessions in the memory. Higher
threshold values will add more strain to the access-layer switch
which has limited computing resources. Furthermore, a higher
threshold will pass more malicious packets to the next switch
upstream, which may create unintentional collateral damage.

Alternatively the threshold could realistically be set to two,
which would reduce resource load. While a SIP server may
have many active concurrent sessions, it is extremely rare,
in our experience for an edge device to have more than two
active sessions simultaneously. In order to obtain a realistic,
but conservative, benchmark in this proof-of-concept paper, we
have set the threshold value to a compromise value of three.

Our approach on using fixed value thresholds is similar to
that applied in [34] [35]. Profiling attacks is an active research
field, but it is beyond the scope of this paper [36] [37] [38].
We have orthogonalized this issue by designing the trigger to
be fully configurable. As profiling techniques evolve, adaptive
and even non-deterministic thresholds could be incorporated
into our trigger conditions.

4) Count: In the count phase, even when the packet has not
exceeded the threshold, microVNF will count the number of
packets associated with each session. The counter is increased
and decreased as necessary, depending on whether or not
it follows the expected operation as per the SIP protocol.
For example, when a SIP-client initiates a call using the
SIP INVITE packet, microVNF sets the counter for the first
INVITE packet for this session to one. When the call ends,
and the SIP-client receives a SIP BYE packet, microVNF will
reset this counter to zero. In this instance, the SIP session
followed proper call establishment protocol, and therefore the
value of this counter will be zero. This counter is the one
that gets verified in the previous phase. Considering that the
edge Ethernet switch has a limited amount of memory, it is
necessary to use a data structure that is efficient for tracking
each session that is generated by the IoT devices. For this
operation, bloom filter [39] provides a space-efficient data
structure which will be described in detail next.

B. Data Structure

MicroVNF uses Bloom filters to keep track of packets and
how they affect its session state. Keeping track of a session
requires inspecting the packets that are associated with that
particular session, and this operation could potentially take up
much space in memory. With a limited amount of memory
available in the edge switch, it is important to select a data
structure that is appropriate for this context.

MicroVNF selected the Bloom filter due to its space-
efficient property for the insert and lookup operations, and
this array is implemented as P4 registers, which are stateful
memories that can be read and written by a P4 program [40].
Since Bloom filters are implemented as P4 registers, they
can leverage low-latency components that are available on
the data plane of hardware-based P4 switches. The Bloom
filter does not store any actual information about the object
itself, but rather, it stores whether or not it has seen this object
previously. Since it does not store the details about each packet

pvs k

Fig. 5. Probability of false positives (p) versus the number hash functions
(k) in the filter. [41].

and session, it is efficient in using memory space. Bloom
Filters were originally used to check whether or not an element
was a member of a given set of elements. In this context, a
Bloom Filter is adapted as a Counting Bloom Filter (CBF)
so that it can count the frequency of the packets that we are
tracking. When the frequency exceeds a threshold, the packet
is considered part of a malicious session, and it is dropped.
In order to uniquely identify and track each session while
preserving memory space, microVNF uses a hash function.

The hash function takes in four elements to generate a
hash value that represents a particular packet. To strike a
balance between being granular enough and not blocking
legitimate sessions, we selected the following four pieces of
information to describe a packet: the destination’s IP address,
the destination’s UDP port, the physical port number where
the packet arrived, and the first 6 bytes of the SIP header.
This information is fed to a hash function to produce a hash
value (10 binary digits, value range of 0 to 1023) and this is
used as the index number to access the array. For example, a
packet arrives with the following characteristics as shown in
Fig. 6:

o Destination IP address: 49.21.4.2

 Destination Port: 5060

e Source Port: random

o Physical port on the edge switch: 12

o SIP header: INVITE

Our use of two hash functions follows the approach taken by
the original Bloom Filter paper [39], and represents a trade-off
between the false-positive rate and the load imposed on the
switch’s limited computing resources, particularly CPU and
memory. While the use of more hash functions will reduce
the chance of false-positives, the concern is that the additional
load imposed might negatively impact the switch’s normal
operation. With this consideration, the number of hash function
is kept at two to minimize the chance of adverse impact.

With a 1024 bit filter (m), 2 hash functions (k), and 72 eval-
vated items (n), this bloom filter will have 0.017 probability
(p) of false positives (1 in 58) [41] as depicted in Fig. 5,which
we deem acceptable for this proof of concept use case.

When these headers shown in Fig. 6 are fed to hashl and
hash?2, it produced the values 231 and 489, respectively. Since

Destlp: 49.21.4.2
DestPort: 5060
SrcPort: random

Physical Port: 12
SIP header: INVITE

N\ N\
(Hash function1) (Hash function2)
N\ N\
Index Index
231 489

v N
HEEAEENAEEN

Counting Bloom Filter

Fig. 6. Using counting bloom filter (CBF) data structure to keep track of the
number of SIP packets. This packet is hashed to index 231 & 489. Since this
is the first time the CBF encountered this packet, the value for index 231 &
489 is set to 1.

this is the first packet that microVNF sees, microVNF sets the
value of element numbers 231 and 489 to 1. The next time
microVNF sees the same packet and the same hash, microVNF
will set the values to 2. In essence, microVNF uses each array
element as a packet counter. In order to put them into a proper
context, the packets need to be tracked together as a session.

MicroVNF tracks the session state by correlating the SIP
packets’ payload which indicates whether this is a SIP request
or response. When inspecting a SIP payload, microVNF is
checking for a SIP request and response in order to deduce
the state of a SIP transaction. When a SIP client initiates a
connection to the server, it goes through the following states:
Calling, Proceeding, Completed, and Terminated as described
in RFC3261 [42].

A SIP session starts when the client enters a calling state
(i.e., the client sends an INVITE request), and is terminated
when either side sends a BYE request. State tracking works
by a simple algorithm: increase the counter when the IoT-
device sends an INVITE request to the server, and decrease the
counter when the IoT-device sends or receives a BYE request
(which indicates completion of a SIP session). With a typical
SIP session, the counter should be close to zero. In essence,
the counter shows the number of SIP sessions that are in an
open state. When a counter is increasing, it shows that the
client keeps opening new SIP sessions, which is considered an
anomaly from the SIP state machine perspective, and indicates
an attack is taking place.

C. A walkthrough of packet and session tracking

In order to describe how these components work together,
let us consider a walkthrough that demonstrates how packet
counter and session tracking work together to detect and mit-
igate SIP DDoS attacks. In Fig. 7, an IP camera is connected
to physical port number 3 on the edge switch. It sends a
SIP INVITE packet to a remote SIP server, and the packet is
received by the switch that has microVNF enabled. microVNF
parses the headers and performs an inspection. From the
inspection process, microVNF realises that this packet contains
a SIP INVITE request. microVNF needs to track this packet

due to the potential for a DDoS attack associated with it. The
two hash functions generate two index numbers (3) and (7) for
this particular packet based on four parameters: destination
IP address, destination UDP port, 3 (the port number on
the edge switch), and INVITE (the payload of SIP header).
microVNF then sets the values of index 3 and index 7 locations
to 1 to indicate that this is the first packet of this session.
If the IP camera sends another packet that shares the same
details (destination IP address, destination UDP port, port 3,
and INVITE), the counters will be increased by one. Any
variance on the four input elements will generate different
index numbers. For example, a different destination IP address
will generate different index numbers even though the packet
is using the same destination UDP port. This process describes
the ’northbound’ process (from an IP camera to the SIP
server). In the next section, we will look at the ’southbound’
process (from the SIP server to the IP camera).

Server
[e) 2007

Counting Bloom Filter

HENAEEEAEEE
A ~
(index1) (index2)
Hash1 Hash2
N A
(Hash functionT)(Hash function2)
N N
dstlP, dstPort, Port#(3), SIP(INVITE)
N J

EDGE SWITCH |
Port3

Fig. 7. Northbound: From camera to server: Counting Bloom Filter sets the
number of active SIP session to 1. A botnet infection and DoS attack is
suspected when this number keeps increasing.

srclP, srcPort, Port#(3), SIP(INVITE)
N N2

(Hash function1) (Hash function2)

N\ \%
(index1) (index2)
Hash1 Hash2
N\ \/
Lt dofl J JJo] I 11

Counting Bloom Filter
EDGE SWITCH .

ort3

Fig. 8. Southbound: From server To camera: Counting Bloom Filter resets
the number of active SIP session to 0.

When the SIP server sends a session termination request
by sending a BYE packet to the IP camera, it will reset the
counter at index 3 and 7 location, back to zero (Fig. 8). When

the server sends a response to the original request, microVNF
will use the same hash algorithms to generate the same index
numbers. In order to generate the same index numbers as the
original request, microVNF has to modify the input for the
hash function so that it matches with the original request.
In this process, microVNF substitutes the source IP address
with the destination IP address. microVNF also substitutes the
destination UDP port with the source UDP port. This step is
important because we need to ensure that the hash generates
the same index so that it can reset the correct counters in the
CBF array.

microVNF compares these counters during the validation
phase against a predetermined threshold for a pass or drop
decision. As part of the validation phase, microVNF retrieves
the counter from CBF to compare it against a threshold
value that has been set by the administrator. For example,
the administrator could have set a rule to prevent a DDoS
attack, which states that for every switch port, microVNF will
only allow up to 3 concurrent SIP sessions at any given time.
With this rule in place, microVNF will allow the client to
initiate 3 SIP sessions. When it tries to open the fourth session,
microVINF detects that it has exceeded the threshold and drops
the INVITE packet.

Besides tracking the SIP state for a DDoS attack as de-
scribed in the previous example, the same concept applies for
detecting other types of attacks such as a scanning attack,
enumeration attack, and dictionary attack (also known as a
brute-force attack).

D. Implementation

This section describes the way that the experiments were
implemented in the Amazon Web Services (AWS) environ-
ment. The experiments used the EC2 t2.micro, which launches
Mininet software to create a virtual network environment
that consists of a virtual switch and virtual hosts. Mininet
created several virtual hosts that were connected to a virtual
switch. This level of programmability allows for a flexible
and powerful way to create different networking environments
for different experiments. For example, to emulate an attacker
with ten potential targets, we could write a Python script that
instantiates 11 virtual hosts, 1 for the attacker, and 10 for the
potential target hosts, as depicted in Fig. 9.

The virtual switch instance created by mininet could either
use the default soft switch (Open vSwitch), or a soft switch
that supports programmable data plane (bmv?2). This level of
flexibility is important because we need to be able to easily
swap the two switches depending on the experiment that we
would like to perform. The programmable data plane is critical
because it allows us to experiment with VNF. In this case, we
are building a VNF to secure the edge of [oT networks against
botnet attacks. In this environment, the botnets and the victims
are simulated by the virtual hosts.

For the experiments that follow, microVNF is implemented
purely in the P4 programming language, while the envi-
ronment is launched by a Python script. Chronologically, a
Python script launches a mininet environment, which consists

Virtual Network (Mininet)

NAT

Virtual Switch

et J e
X1 |oT loT
1-10

Amazon EC2
instance

Fig. 9. A virtual network environment running on an AWS EC2 instance that
consists of a virtual switch and 11 virtual hosts (1 for attacker and 10 for IoT
devices).

of virtual switches and virtual hosts (some are designated as
the attackers while some are designated as the victims). Next,
the Python script sends instructions to the attacker hosts to
initiate a specific attack against the victims. On the other hand,
the P4 language is used to implement microVNF, which is
loaded when the P4 switch is initially launched.

IV. EXPERIMENTS

All of the experiments in this section followed the same
sequence as depicted in the flow diagram (Fig. 10). A mininet
script orchestrated the experiment by launching a virtual
switch, the servers, and the attackers, it then sent the instruc-
tion to the attackers to start the attack, and then retrieved the
results from the attacker’s perspective. The only variable that
differed was the independent variable, which in this case is the
type of switch being used, i.e., Test#1: Legacy switch (ovs) vs.
Test#2: bmv2+P4 (microVNF). The ovs is used to represent
a non-P4 switch that does not support a programmable data
plane. This experiment is designed to provide a comparison
and a contrast between the performance of a non-P4 legacy
switch vs. a P4 switch with microVNF. Comparing the results
from the two tests provides quantitative data for evaluating the
effectiveness of our proposed approach.

The experiments that follow are organized around preventive
(before infection) and reactive measures (after infection).
These experiments are designed to follow the way a botnet
attack progresses, from discovering vulnerable devices to
hijacking the device and using the device to launch DDoS
attacks. Table I lists the experiments for each phase.

TABLE I
EXPERIMENTS FOR BEFORE AND AFTER INFECTION

Preventive Measures

(Before recruited by a botnet)
1. SIP scanning attack

Reactive Measures
(After became a botnet)
4. CNC registration attempts

2. SIP enumeration attack

5. SIP DoS attack

3. SIP brute force attack

6. SIP DDoS attack

Switch Attackers

Test#1: Legacy switch

Test#2: bmv2+P4 (microVNF) (e
=

o éLaunch switch

Mininet Servers

Script

9 iLaunch servers

egLaunch attackers ; : N

>
:
®

o ‘Retrieve results

Fig. 10. Sequence and flow diagram of the experiments

A. Experiment 1: SIP scanning attack

The first experiment focuses on the question: how can an
adversary be detected and mitigated from discovering SIP
servers as their potential victims? If microVNF is working
as designed, then the adversaries will only find relatively few
potential victims.

1) Description: The first experiment performed two tests:
with a legacy switch and with microVNF running on a switch
with a programmable data plane as shown in Fig. 11.

Test#l

3 attackers
o O O

v L

Scanning servers

Test#2
3 attackers
VA JAN JA)
b 4l

Scanning servers

Legacy
Switch Vs.
Ll
1 10 1 10

Fig. 11. Experiment 1: Attackers scanning for SIP servers (Test1 with legacy
switch vs. Test2 with microVNF)

Both tests were conducted in a mininet virtual network
environment with 13 hosts connected to a switch. As depicted
in Fig. 10, the mininet script performed the following tasks in
this sequence: launched a switch (1), launched SIP service on
10 servers (2), launched three attackers (3), sent a command
to the attacker to initiate attack against the servers (4). The
attacks were carried out in sequence, i.e., Attackerl first,
followed by Attacker2, and lastly, Attacker3. The mininet
script then collected the results from each attacker (5).

The mininet script started the process by launching a virtual
network environment which consisted of a virtual switch with
10 SIP servers and 3 attackers that were connected to the same
switch. It assigned a random IP address to each host where
all 13 hosts were on the same LAN. This method achieved a
double-blind effect, where the IP addresses and the role (victim
or attacker) for each IP address were not initially known. This
is to ensure that the proposed solution is repeatable, accurate,
and reliable for any IP addresses. Next, the script used the
net.pingAll () function to confirm that all hosts were
reachable via IP address. The script then moved on to the
next task of launching the experiment.

The script started the next phase by launching a SIP-server
process on all 10 servers (hl - h10). The script did this by
issuing a command “sipp -sn uas” [43] to launch sipp
services in User Agent Server (uas) mode. At this stage, all
10 servers were ready to accept incoming SIP requests from
clients.

Next, the script initiated an attack from each attacker host
(h11, h12, then h13) to ensure that the results show a con-
sistent pattern. The script triggered the attacker to start a SIP
scanning attack by scanning 10.1.1.1 - 10.1.1.250 to find SIP
servers that were available within this range. The attacker used
“sipvicious_svmap 10.1.1.1-10.1.1.250” com-
mand [44] which sent a SIP OPTION packet to the servers.
As per RFC3261, a SIP Server is supposed to send a response
when it received this packet. In this experiment, all 10 SIP
servers sent a response to the attacker. From these responses,
the attackers found out that there were 10 SIP servers available
on the network. To validate this result, the same process was
repeated three times.

The only difference between Test#1 and Test#2 in this
experiment was the switch type being used. Test#1 used
the default switch that comes with mininet (OVS), whereas
for Test#2, it launched a bmv2 switch and loaded the mi-
croVNF.p4 program. microVNF imposed a limit to the number
of unacknowledged SIP OPTIONS packets that each port
could send, set to three (a variable threshold that can be
adjusted), as legitimate SIP clients do not typically scan a
range of IP addresses with this packet. When there are three
or more unacknowledged packets, microVNF recognized these
packets as malicious and automatically dropped the rest of the
OPTIONS packets coming from the same port.

TABLE II
EXPERIMENT 1: RESULT: MICROVNF BLOCKS SIP SCANNING ATTACK
(3 DISCOVERED VS. 10)

Experiment 1: Legacy Switch microVNF

SIP Scanning No. of No. of No. of No. of
Attack servers servers servers servers
available | discovered | available | discovered
Attacker #1 10 10 10 3
Attacker #2 10 10 10 3
Attacker #3 10 10 10 3

2) Result: The three attacks performed by three different
attackers (h11, h12, and h13) found the same number of

servers for each test. During the test, each attacker operated
independently without awareness of other attackers being
present. The results are consistent that these attackers found
the same servers. Table II shows the result from Attackerl’s
perspective for Test#1 with the legacy switch and Test#2 with
microVNF (bmv2+P4). For Test#1, all attackers discovered 10
SIP servers, whereas for Test#2, they only discovered 3 SIP
servers (Table II). Below is a screenshot of CPU Utilization
from legacy switch (Fig. 12) and microVNF (Fig. 13) during
the experiment.

legacy switch CPU Utilization

PERCENT
@
&8

0 10 20 30 40
SECONDS

. Experiment 1: Testl: CPU utilisation of legacy switch.

shieldVNF CPU Utilization

PERCENT
P
&8 &

0 10 20 30 40 50 60
SECONDS

Fig. 13. Experiment 1: Test2: CPU utilisation of microVNFE.

3) Discussion: With a legacy switch, the attackers were
able to launch a SIP scan attack by sending SIP OPTION
request to each IP address that they could find. Tablell shows
that the attackers were able to discover all ten SIP servers.
With all the targets discovered, the attackers would be able to
proceed with further attacks.

With microVNF, on the other hand, there was a rule imposed
on each port where it limited the number of SIP OPTION
packets to three. As a result, each attacker could only discover
the first three SIP servers, as shown in Table II. This outcome
presents evidence that microVNF was able to detect and
mitigate the SIP scanning attack.

From CPU utilization perspective, microVNF consumed
more CPU (Fig. 12) than the legacy switch (Fig. 13). During
the attack, microVNF showed a sustained level of high CPU
consumption. This is expected due to detection (deep packet
inspection) and mitigation functions that were performed by
microVNF on these malicious packets. In contrast, the legacy
switch was not aware that these were malicious packets and

processed each one as usual by forwarding it from the source
port to the destination port. As such, it did not show significant
CPU consumption.

B. Experiment 2: SIP enumeration attack

The second experiment focused on the question: how can an
adversary be detected and mitigated from enumerating valid
SIP accounts on a SIP server? If microVNF is working as
designed, then the adversaries will only find some of the valid
SIP accounts.

1) Description: Similar to the first experiment, the se-
quence follows the same steps as depicted in Fig. 10 but with
a different attack scenario, i.e., a SIP enumeration attack. The
objective of this test is for the attacker to discover valid SIP
accounts that exist on the SIP server. The attacker achieves
this by enumerating possible SIP accounts and looking for
responses from a valid account, as depicted in Fig. 14.

Test#1l
3 attackers
&
b v J

Enumerating accounts

Test#2
3 attackers
N N

Enumerating accounts

Legacy
Switch

Vs.

ia

e
—
(_

i

© Extension. 101 © Extension. 101

© Extension. 110 © Extension. 110

Fig. 14. Experiment 2: Attackers scanning for valid accounts/extension on
a SIP Proxy server (Testl with legacy switch vs. Test2 with microVNF)

The mininet script started the process by launching a virtual
network environment which consists of a virtual switch with 1
Asterisk SIP server (with valid extensions ranging from 100 -
110) and 3 attackers that were connected to the same switch.
The script assigned a random IP address to each host where
all 4 hosts were on the same LAN. Next, the script started an
Asterisk server process using the (/usr/sbin/asterisk)
command. At this stage, the SIP server was ready to accept
incoming SIP requests from clients.

The next stage is when the script instructed the
attackers to start a SIP enumeration attack by probing
the SIP servers for valid extensions. The attacker used
the “sipvicious_svwar -m INVITE -e100-999
<SIP server IP address>” command [44] which
sent SIP INVITE packets to the server’s IP address, probing
from extension 100 to 999. Since the server’s IP address
is randomly generated, we had to manually verify the
server’s IP address prior to using this command. According
to RFC3261, when a SIP server receives a SIP INVITE
request for an extension that does not exist, the SIP server

is supposed to respond with a "404 Not Found" packet.
On the other hand, when the client sends the invite to a valid
extension, the server is supposed to respond with a "401
Unauthorized" packet. Each attacker sends invite packets
to a range of extensions, e.g., 101, 102, 103, and takes note
of the response (404 vs. 401). From these responses, the
attackers established that there were 11 valid extensions
available on this particular SIP server. To verify this result,
the same process was repeated three times.

MicroVNF imposed a limit on the number of unacknowl-
edged SIP INVITE packets that each port could send, to
three (a variable threshold that can be adjusted). A legitimate
SIP client already has an extension assigned so it does
not typically probe the server for a range of extensions.
Anomalous behavior such as probing for valid extensions
is considered malicious and microVNF dropped the rest of
the INVITE packets coming from the same port. In this
instance, microVNF is taking a similar response as described
in RFC3261, where the server may drop the request instead of
responding with a 503 Service Unavailable” response code.

TABLE III
EXPERIMENT 2: RESULT: MICROVNF BLOCKS SIP ENUMERATION
ATTACK (3 DISCOVERED VS. 11)

Experiment 2: Legacy Switch microVNF

SIP Enumeration No. of No. of No. of No. of
Attack accounts accounts accounts accounts
available | discovered | available | discovered
Attacker #1 11 11 11 3
Attacker #2 11 11 11 3
Attacker #3 11 11 11 3

2) Result: Table III shows the number of valid extensions
discovered. With Test#1 (legacy switch) each attacker found
10 valid extensions while with Test#2, each attacker found 3
valid extensions. Below is a screenshot from the perspective of
the attacker. Figure 15 shows the outcome with legacy switch
in Test#1, while Fig. 16 shows the outcome with microVNF
in Test#2. For CPU utilization during the experiment, below
is a screenshot during Test#1 with legacy switch (Fig. 17) and
Test#2 with microVNF (Fig. 18).

3) Discussion: With a legacy switch, the attackers were
able to find extensions 100-110 that were on the SIP Proxy
server (Fig. 15), whereas the attacker only found three exten-
sions (100-102) with microVNF (Fig. 16). In this instance, mi-
croVNF detected that INVITE packets were received repeat-
edly from the same port. Even though the server has responded
with either a 401 or 404, microVNF was specifically looking
for a 200 response from the server, which indicates that the
request has succeeded according to RFC3261 [42]. In absence
of this specific response, the attacker hit a threshold limit of
three INVITE packets, and therefore, microVNF dropped the
remaining packets. As a result, the attackers only found the
first three accounts when they started the probe at extension
100.

The CPU consumption between the two tests provides
evidence of this activity. With the legacy switch, the attacker

Attackerl found the following accounts:

Frmmmm—————— $rmmmmm—————————— +

Extension | Authentication |

Fig. 15. Experiment 2: Testl Result: SIP Enumeration attack with legacy
switch. Screenshot was taken from Attackerl. Attacker2 and Attacker3 also
found 11 SIP accounts.

Fig. 16. Experiment 2: Test 2 Result: SIP Enumeration attack with
microVNF. The screenshot was taken from Attackerl. Attacker2 and Attacker3
also found 3 SIP accounts.

legacy switch CPU Utilization

PERCENT
8
L1

SN VN T T

0 10 20 30 40 50
SECONDS

Fig. 17. Experiment 2: Testl: CPU utilisation of legacy switch.

was able to send more malicious packets towards the target.
This activity was represented as activity that lasted for about
7 seconds for each attack (Fig. 17). In contrast, microVNF
recognized malicious activities with the first few packets and
dropped the rest. This is represented on the CPU utilization
diagram (Fig. 18) as a slimmer peak (as compared to the peak
with legacy switch), or a shorter period of activity (for about
3 seconds).

With fewer extensions discovered, microVNF reduced the

shieldVNF CPU Utilization

PERCENT
S

BN

SECONDS

Fig. 18. Experiment 2: Test2: CPU utilisation of microVNFE.

attack surface and the potential for an attack. In a real-
world implementation, a SIP Proxy server would typically host
hundreds of extensions. Reducing the number of discoverable
extensions down to three would minimise the chance of other
extensions of being susceptible to a brute force attack. This
outcome presents evidence that microVNF was able to detect
and mitigate the SIP enumeration attack.

C. Experiment 3: SIP brute force attack

The third experiment focuses on the question: how can
an adversary be detected and mitigated from brute-forcing
the passwords of SIP accounts? If microVNF is working as
designed, then the adversaries should not be able to crack any
passwords.

1) Description: The same sequence is followed for this
experiment as depicted in Fig. 10 and the attack scenario used
in this experiment is a SIP brute force attack. Since valid
accounts were discovered in the previous experiment, the next
step is to brute force the accounts to gain entry. Similar to
the previous experiment, this experiment performed two tests:
the first with a legacy switch and the second with microVNF.
The objective of this test is to use brute force to discover the
password for an account. The attacker achieved this by using
the SIPVicious_svcrack tool with a dictionary file that
contains a list of popular passwords, as depicted in Fig. 19.

The mininet script started the same environment as in the
previous experiment, which consists of an Asterisk SIP server
and 3 attackers connected to the same switch. Next, the script
instructed the attackers to start a SIP brute force attack by
repeatedly sending REGISTER packets with the extension
and password. For incorrect passwords, the SIP Proxy server
responds by sending a 401 Unauthorized packet. The
attacker would repeat this process by trying to register again
with a new password from the dictionary file until the file is
exhausted. If the password is correct, the SIP Proxy server
responds by sending a 200 OK packet.

As per instruction from the mininet script, the at-
tacker was using the "sipvicious_svcrack -u x -d
dictionary.txt y.y.y.y" command [44] to launch
the attack, where x was the extension (101-110) and
y.y.y.y was the IP address of the SIP server. When at-
tacker#1 had completed this process, attacker#2 started the
brute force process. Finally, attacker#3 performed the same

TABLE IV
EXPERIMENT 3: RESULT: MICROVNF BLOCKS SIP BRUTE FORCE
ATTACK (0 CRACKED VS. 10)

microVNF

Exp 3: Legacy Switch

SIP Brute # of # of # of # of
Force accts with | password | accts with | password
Attack password cracked password cracked

Attacker # 10 10 10 0

Attacker # | 10 10 10 0

Attacker # 10 10 10 0

attack against the Asterisk SIP server. The dictionary file used
in this experiment is one that is commonly used by attackers,
including a real password cracker tool called John the Ripper
(JtR) [45], which contains 3107 commonly used passwords.

Test#1l
3 attackers
/AN JAN

A2 2

Brute-forcing passwords

Test#2

3 attackers
JAN /AN JAN
N

Brute-forcing passwords

Legacy
Switch

Vs.

i

&~
—
—

i

@ Extension. 101 Password @ Extension. 101 Password

@© Extension. 110 Password | @ Extension. 110 §8 Password

Fig. 19. Experiment 3: Attackers brute forcing the extensions on a SIP server
for valid password (Testl with legacy switch vs. Test2 with microVNF)

2) Result: Table IV shows the number of extensions that
were cracked during the experiment. These passwords were
manually assigned to these extensions to simulate a scenario
where users tend to use weak passwords. Below is a screenshot
from the result of the two tests. Figure 20 shows the outcome
with the legacy switch, while Fig. 21 shows the outcome with
microVNF. Figure 22 shows CPU utilization of the legacy
switch during the experiment, while Fig. 23 shows CPU
utilization for microVNFE.

3) Discussion: With a legacy switch, the attackers were
able to crack passwords for extensions 101-110 on the SIP
proxy server. Figure 20 shows the 10 SIP accounts (extensions)
that exist on the server, along with their current password.
In contrast, when the same attack was performed using mi-
croVNF, the attacker did not crack any password (as shown in
Fig. 23). This is due to microVNF recognizing the repeated
registration attempts, coming from the same port, as malicious.

MicroVNF restricts multiple SIP registration attempts to
three. When this threshold is exceeded, microVNF recognizes
this pattern as malicious and drops the subsequent packets.
Since the attacker was not successful in their first three
attempts in guessing the password, they did not find anything.
This outcome presents evidence that microVNF was able to
detect and mitigate SIP brute force attacks.

Attackerl cracked the following passwords

| 123456

===

|
-+
-+
|

sion

|
-+
-+
|

sion
|

D
-- -+
Extension |
|
——t
-+

Extension |

Fig. 20. Experiment 3: Testl Result: SIP brute force attack with legacy
switch. Screenshot was taken from Attackerl. Attacker2 and Attacker3 also
cracked 10 passwords.

Attackerl cracked the following passwords:
found nothing

Fig. 21. Experiment 3: Test2 Result: SIP brute force attack with mi-
croVNFE.Screenshot was taken from Attackerl. Attacker2 and Attacker3 also
cracked nothing.

legacy switch CPU Utilization

PERCENT

- - e o #
0 10 20 30 40 50 60 70 80 90 100110120130 140150 160 170 180 190 200 210 220 230
SECONDS

Fig. 22. Experiment 3: Testl: CPU utilisation of legacy switch.

The CPU utilization of microVNF in Fig. 23 shows that
it was busy during the initial detection and mitigation period.

shieldVNF CPU Utilization

PERCENT

0 10 20 30 a0 50
SECONDS

Fig. 23. Experiment 3: Test2: CPU utilisation of microVNE.

Afterwards, CPU utilization on microVNF did not show much
activity. In contrast, CPU utilization from the legacy switch
in Fig. 22 shows constant activities during the experiment as
the attacker was able to continue brute forcing the password
during the entire test period.

D. Experiment 4: CNC Channel Establishment

The fourth experiment considers: how can a botnet be
prevented from registering with its CNC server? If microVNF
is working as designed, then the botnet will not be able to
register with its CNC server.

1) Description: Similar to previous experiments, this exper-
iment performed two tests to contrast the different outcomes
when using a legacy switch vs. microVNFE. The objective
of this test is to block bot communication with its central
command and control (CNC) server, as depicted in Fig. 24.
This blocking step is important to prevent the botmaster from
being able to control the bot and, therefore, renders the bot
non-functional for the intended purpose of launching an attack.
If the bot is unable to connect to the CNC server and receive
commands, it is effectively neutralised and does not pose an
immediate threat.

Test#1l Test#2
CNC Server CNC Server
Oy Eo

Legacy
Switch Vs_

CNC Registration Attempt CNC Registration Attempt

TTT T

0 ~E 0 ~E
(omer) - - - (omer) .. - -
1 10 1 10

Fig. 24. Experiment 4: IoT-turned-to-botnet attempting to register to the
centralised Command and Control (CNC) server (Testl with legacy switch
vs. Test2 with microVNF)

In this experiment, we will be looking at the way the Mirai
botnet and its CNC operate so that we can test the hypothesis
that microVNF can detect and mitigate CNC channel estab-
lishment activities. When Mirai has successfully infected an

from the following bots:

7:23]---[CNC=18.1.1.125]

T#3 heart
T#3 heart

Fig. 25. Experiment 4: Testl Result: Bot registration attempt with legacy
switch. 10 Bots registered at the Command-and-Control (CNC) server.

(NC received report from the following b

Fig. 26. Experiment 4: Test2 Result: Bot registration attempt with mi-
croVNFE. 0 Bot registered at the Command-and-Control (CNC) server.

IoT device, the new bot will attempt to connect to the CNC
server using Telnet (TCP/23) with a specific payload. The first
packet will contain \x00000001 and the second packet will
contain \x00. At this stage, the bot has registered with the
CNC. From this point on, the bot and CNC will maintain a
regular heartbeat every 60 seconds with the payload content
of \x0000 [2].

A Python script launched a mininet environment that con-
sists of one host as the CNC server and ten hosts as the
Mirai botnet. Similar to previous experiments, IP addresses
and role assignments were generated at run time to remove
bias and ensure that the solution works for any IP addresses.

Instead of using a real Mirai botnet binary, CNC and Mirai
simulators (a script written in Python) were used to simulate
the communication between botnet and CNC. The simulation
is using the exact same payload and pattern as the real botnet
communication.

TABLE V
EXPERIMENT 4: RESULT: MICROVNF BLOCKS CNC ESTABLISHMENT
ATTEMPT (0 REGISTERED VS. 10)

Experiment 4: Legacy Switch | microVNE |

CNC Establishment Number of Number of
Attempt Bots Bots
registered registered
10 0
10 0
10 0

2) Result: Figures 25 and 26 show the result of the two
tests. Figure 25 shows the outcome with a legacy switch where
each bot was able to register with the CNC server and the CNC
server was able to receive the heartbeat packets from the bot.
In contrast, Fig. 26 shows the outcome with microVNF where
none of the bots were able to register with the CNC server.

The CPU utilization shows different patterns of activity.
With the legacy switch, each bot was able to run its complete
course of action, i.e., registration, followed by heartbeat. This
is shown in Fig. 27 with longer periods or “valleys” between
peaks. In contrast, microVNF recognized these malicious
activities from the first few packets, shown in Fig. 28 by
shorter gaps between peaks.

legacy switch CPU Utilization
60

PERCENT
= i~ w B @
1S3 S =3 =]

o

0 10 20 30 40 50 60 70
SECONDS

Fig. 27. Experiment 4: Testl: CPU utilisation of legacy switch.

3) Discussion: With a legacy switch, all bots were able to
connect to the CNC server, as well as maintain an ongoing
heartbeat. Fig. 25 shows the perspective from the CNC-side
that counts how many bots were successfully registered, and
the number of heartbeat packets received from each bot. With
microVNEF, the bots were unable to connect to the CNC,
and therefore, as shown in Fig. 26, none of the bots were
registered.

When the bot failed to register, the CNC would be unable
to send a command for the bots to launch a DoS attack. This
outcome presents evidence that microVNF was able to detect
and prevent bot registration to the central CNC server.

shieldVNF CPU Utilization

3 g 3

PERCENT
w
S

™
S

.
1S}

o

0 10 20 30 40 50
SECONDS

Fig. 28. Experiment 4: Test2: CPU utilisation of microVNE.

E. Experiment 5: SIP DoS attack

The fifth experiment considers: how can SIP DoS attacks
from IoT botnets be detected and mitigated? If microVNF is
working as designed, then a legitimate user is still able to
make SIP calls and malicious packets are dropped.

1) Description: This experiment modifies the sequence
slightly by adding client calls into the environment to measure
whether the proposed solution can withstand a DoS attack. It
is assumed that the attacker is able to get past the mitigation
from previous experiments. At this stage, the attacker has
successfully recruited the IoT device to be part of the botnet
and is ready to launch a SIP DoS attack. The hypothesis for
this experiment is that, microVNF can detect and mitigate a
SIP DoS attack from a single attacker, as shown in Fig. 29.

Test#1 . Test#2
SIP Server SIP Server
O O
. =)
E=lUpstream E=sbUpstream
Switch Switch

packets # packets
orp arded foP\/\{arded
upstream upstream

Legac
Switc
AN

of | ,---=" ‘----y|# attack
successful|: i |packets
SIP callsk Yreceived
¢ H
O ‘
m _BOTNET
DoS Attack J DoS Attack

Fig. 29. Experiment 5: SIP DoS attack from a single attacker (Testl with
legacy switch vs. Test2 with microVNF)

As depicted in Fig. 30, the experiments were set up with
SIP-clientl calling SIP-client2 (via the SIP Server) at one
call per second. In the absence of any distraction, SIP-clientl
would be able to complete 60 calls in a minute. To observe the
disruption that can result from a SIP DoS attack, an attacker
launched a SIP DoS attack against the same PBX that SIP-
clientl was using.

The test environment had four hosts: SIP-clientl, SIP-
client2, PBX, and the Bot (atacker in Fig. 30). SIP-clientl
represents a legitimate user that is calling SIP-client2 via the

Mininet Switch Client1 Servers Client2 Attacker
Script Test#1: Legacy switch
— Test#2: bmv2+P4 (shieldVNF) S
> |2 = | 1=
o Launch switch
e Launch client
e Launch server
o Launch attacker
e Instruction to call Client2
Client1 calls Clieng2
o Instruction to launch attack
ATTACK ‘:’
9 Retrieve results

Fig. 30. Sequence and flow diagram of SIP DoS & DDoS experiment

TABLE VI
EXPERIMENT 5: RESULT: MICROVNF BLOCKS SIP DOS ATTACK (60
SUCCESSFUL CALLS VS. 20)

Legacy Switch microVNF

of # of # of ot
attack pXs # of attack DXts # of
fwd fwd
pkts calls pkts calls
sent up rcvd up
stream stream
Caller 69 NA 20 184 NA 60
Attkrl 4,000,182 | 4,000,120 NA 4,000,073 228 NA

corporate phone system (PBX). A bot is on the same virtual-
switch as SIP-clientl. The process started with SIP-clientl
making calls at a rate of 1 call per second to SIP-client2.
At the 20th second after SIP-clientl started making calls, the
bot started a SIP DoS attack against the PBX.

The experiment performed two tests for the same use case,
one with a legacy switch, and the other with microVNFE.
The test script generated random IP addresses for the SIP-
clientl and the bot at run time. Inviteflood (an attack tool)
[46] generated a SIP DoS attack. This tool is popular and
widely accessible as part of the Kali Linux distribution. In
this experiment, at the 20th second, after SIP-clientl started
SIP calls, inviteflood [46] sent 4 million INVITE packets to
the same PBX (192.168.1.200), that SIP-client] was using.

2) Result: The comparison between legacy vs. microVNF
can be seen from three perspectives: SIP client, network
switch, and CPU utilization.

From the SIP client’s perspective on the legacy switch, Fig.
31 shows a total of 20 successful calls made to a SIP server.
At SIP-clientl, Fig. 33 shows a total of 60 successful calls
made while the SIP client was connected to microVNF.

From the switch’s perspective as shown in Fig. 32, the
attacker generated 4,000,120 packets and these were received
by the switch at port sl-eth2. The legacy switch forwarded
all these packets upstream via port natO-eth. The 62 packets
that were not generated by attackerl was attributed to switch-
to-switch traffic that is not the focus of this experiment.
However, Fig. 34 shows that while microVNF received about
the same number of malicious packets (4,000,073), in contrast,
microVNF dropped most of these packets and only forwarded

legitimate packets (228) upstream via port natO-eth.

From the CPU utilization perspective, microVNF had the
highest peak reaching 80% as shown in Fig. 36, whereas for
the legacy switch, the peak was at 30% (Fig. 31).

o &

—_— = ————t ——

Fig. 31. Experiment 5: Testl Result: SIP DoS attack to a SIP Server from
1 bot with legacy switch. Calls were disrupted when the attack started. 20
successful calls completed

nat@-eth
=1-rthl
s1-eth2
sl-eth3

1588 4608182
1508 (]
1588 4608128
1508 133692

@ BMRL
@ BMRL
@ BMRL
@ BMRL

Fig. 32. Experiment 5: Testl Result: SIP DoS attack to a SIP Server from
1 bot with legacy switch. Attack packets received from s1l-eth?2 interface
were forwarded upstream to nat O—eth interface.

| o8
[q] again to

Fig. 33. Experiment 5: Test2 Result: SIP DoS attack to a SIP Server from
1 bot with microVNF. All calls were successful. 60 successful call completed

3) Discussion: There are three important discussion points
to cover: the number of successful calls from SIP-client, the
number of packets that were forwarded upstream, and the CPU
utilization.

The first discussion is on the total number of successful
calls from SIP client to SIP server. With the legacy switch,
as depicted in Fig. 31, there were only 20 successful calls,
which means that SIP-client was able to make calls for the
first 20 seconds of the test. Once the attack started at the 20th

Thu Jum 18 15:53:11 FDT 2020
até-eth B 8 ae
ethl 1588 : g ae
ethz 1588 : @ ae
eth3 1588 16 5 aea
ttack-begin] Thu Jun 18 3

@ BMRU
@ BMRU
8 BMRU
@ BMRU
:31 PDT 2828
1 POT 2828
ae 9 @ a8 8 BMRU
aa ¥ a & @ BMRU
ae i @ a8 2 BMRU
aa 278 i & 8 BMRU

Fig. 34. Experiment 5: Test2 Result: SIP DoS attack to a SIP Server
from 1 bot with microVNF. Most of the attack packets were dropped and not
forwarded upstream.

legacy switch CPU Utilization
35

PERCENT

0 10 20 30 40 50 60 70 20 90 100 110 120
SECONDS

Fig. 35. Experiment 5: Testl: CPU utilisation of legacy switch.

shieldVNF CPU Utilization

PERCENT

20 30 40 50 60 70 80 90 100 110 120
SECONDS

Fig. 36. Experiment 5: Test2: CPU utilisation of microVNF.

second, the SIP-client was no longer able to make calls. In
contrast, with microVNF the SIP-client was able to make 60
calls (as shown in Fig. 33). This shows that the SIP DoS attack
that started at the 20th second did not disrupt the SIP service
because the attack was detected and mitigated by microVNFE.

The second discussion is on the number of packets that
were forwarded upstream. If the switch performs detection
and mitigation functions correctly, the switch should be able to
drop malicious packets and only forward the legitimate packets
upstream. The legacy switch did not recognize malicious
packets and forwarded 4,000,182 packets upstream via port
natO-eth as shown in Fig. 32. Out of 4,000,182 packets, the
legitimate user (SIP-clientl) generated 69 packets (sl-ethl)
while the majority of these packets (4,000,120) were generated
by the attacker that was connected to port sl-eth2 as shown

in Fig. 32. In contrast, with microVNF, the attacker sent
4,000,073 packets (sl-eth2 port), yet only 228 packets were
forwarded upstream (natO-eth port) as shown in Fig. 34. Out of
228 packets forwarded upstream by microVNF, the legitimate
user (SIP-clientl) generated 184 packets (sl-ethl) and the
remaining 44 forwarded packets were generated by the attacker
before the mitigation function on microVNF was activated. In
other words out of 4,000,073 packets generated by the attacker,
4,000,029 were dropped by microVNFE.

The third discussion point is on the difference in CPU
utilization on the switch. As expected, microVNF consumed
more CPU resources due to the detection and mitigation func-
tions it performed, reaching a peak of 80%. In comparison, the
legacy switch only performed normal forwarding functions and
therefore the peak was only at 30%.

These observations present evidence that microVNF was
able to keep legitimate calls up and running while successfully
detecting and mitigating the SIP DoS attack from a single
attacker.

E. Experiment 6: SIP Distributed DoS attack

The sixth experiment considered can SIP Distributed DoS
attacks from IoT botnets be detected and mitigated? If mi-
croVNF is working as designed, then a legitimate user is still
able to make SIP calls and malicious packets are dropped.

1) Description: This experiment presents a case where the
majority of the IoT devices were infected and recruited by a
botnet. The hypothesis for this experiment is that microVNF
can detect and mitigate a SIP DDoS attack from one hundred
attackers, as shown in Fig. 37.

Test#1 Test#2
SIP Server SIP Server
))
Lsre) SIP
E==bypstream -Upstrﬁam
T Switch Switc
packg
orwar
up eam
Eiﬁ‘é‘ir‘(
attack
packets
: received
v on
(BoTneT) xloo (=7) [BoTneT | X100
DDoS Attack DDoS Attack

Fig. 37. Experiment 6: SIP DDoS attack from 100 attackers (Testl with
legacy switch vs. Test2 with microVNF)

The scenario is identical to the previous experiment except
for the number of bots. In this case, 100 bots participated in
the attack (a SIP DDoS attack). SIP-clientl was calling SIP-
client2 via PBX at the rate of one call per second. At the 20th
second, 100 bots started to launch an attack against the same
PBX that the SIP-clientl was using.

The test environment consisted of 103 hosts: SIP-clientl,
SIP-client2, PBX, and 100 bots. This experiment performed
two tests, one with a legacy switch and the other with
microVNFE. The test script randomly generated the IP address

TABLE VII
EXPERIMENT 6: RESULT: MICROVNF BLOCKS SIP DISTRIBUTED DOS
ATTACK (59 SUCCESSFUL CALLS VS. 20)

Legacy Switch

h 1588
1588
1o
1508
1588
1508
1508
1568

@ BMRU
@ BMRU
8 BMRU
8 BMRU
8 BMRU
8 BMRU
@ BMRU
@ BMRU

Fig. 39. Experiment 6: Testl Result: SIP DoS attack to a SIP Server from
100 bots with legacy switch. Most attack packets from botnets were forwarded

pstream to natO—eth interface.

of # of # of
attack packets # of attack packets # of
packets fwd calls packets fwd calls
received | upstream received upstream
Caller 65 NA 20 182 NA 59
100
N — - 512,488 NA | 4,000,073 3061 NA

of SIP-Clientl, SIP-Client2, and 100 bots at run time. The
same attack tool, inviteflood [46], was used to send INVITE
packets.

2) Result: Similar to the previous experiment, these are the
three areas that are relevant: the number of successful calls
from SIP client, the number of packets forwarded upstream,
and CPU utilization. These results are important to indicate
whether the detection and mitigation functions were effective
to protect SIP service for legitimate users.

The number of successful SIP calls with legacy switch was
20 as shown in Fig. 38. With microVNF, the SIP client was
able to made 59 successful calls during the experiment as
depicted in Fig. 40.

The number of packets forwarded upstream with legacy
switch was 512,488 (Fig. 39) compared to 3,061 with mi-
croVNF (Fig. 41). This experiment with 100 attackers quickly
overwhelmed the switch and it stopped functioning at packet
count 512,488. If the switch were running, the counter would
show a much higher count.

From a CPU utilization perspective, the legacy switch
peaked at 51% during the DDoS attack as shown in Fig. 42,
whereas for microVNF, the CPU peaked at 78% as shown in
Fig. 43.

OutGoing call c
Total Call created

Fig. 38. Experiment 6: Testl Result: SIP DoS attack to a SIP Server from
100 bots with legacy switch. Calls were disrupted when the attack started. 20
successful calls completed

3) Discussion: In this experiment we introduced 100 at-
tackers to create a SIP DDoS attack. The use case is similar
to real life where a large number of IoT devices were hijacked

25
25;
257

oing call cre
Total Call created

Fig. 40. [Experiment 6: Test2 Result: SIP DoS attack to a SIP Server from
100 bots with microVNFE. 59 calls were successful.

by the same botnet and these devices were instructed to launch
a SIP DoS attack by the botmaster.

From the end-users perspective, they would measure success
by the number of successful calls that they can make during
the attack. With the legacy switch, the SIP-client was only able
to make 20 successful calls. The SIP-client was no longer able
to make a call after the 100 bots started attacking the PBX. In
contrast, with microVNEF, the SIP-client was able to make 60
successful calls. This shows that the SIP client was still able
to make calls even after the 100 bots started the attack, and
therefore preserve the availability of the SIP service.

From the network integrity perspective, the network opera-
tors would measure success by the number of malicious pack-
ets that can be mitigated locally and not forwarded upstream.
The legacy switch does not have the capability to recognize
malicious packets and therefore it forwarded all packets up-
stream. In contrast, microVNF dropped the malicious packets
and only forwarded legitimate packets upstream as shown in
Fig. 41. Out of 3061 packets that were forwarded upstream, the
legitimate user (SIP-clientl) generated 182 packets (as shown
by sl-ethl row), and the remaining packets were attributed to
the initial malicious packets before the mitigation function on
microVNF was activated.

The CPU utilization confirms the observation that mi-
croVNF consumed more resources due to the detection and
mitigation activities that it performed. With the legacy switch,
the functionality was limited to forwarding packets upstream
and therefore utilization peaked at 51%. In comparison, mi-
croVNF peaked at 78% as it performed deep packet inspection

8 BMRU
8 BMRU
@ BMRU
2 BMRU
@ BMRU
8 BMRU
8 BMRU
8 BMRU

180833

186832

1668831

1860834
1508

Fig. 41. Experiment 6: Test2 Result: SIP DoS attack to a SIP Server
from 100 bots with microVNF. Most of the attack packets from botnets were
dropped and not forwarded upstream.

legacy switch CPU Utilization

PERCENT

0 10 20 30 40 50 60 70 80 90 100
SECONDS

Fig. 42. Experiment 6: Test1: CPU utilization of legacy switch.

shieldVNF CPU Utilization

PERCENT

0 10 20 30 40 50 60 70 80 90 100 110 120
SECONDS

Fig. 43. Experiment 6: Test2: CPU utilization of microVNF.

at the SIP layer for attack detection, and dropping the mali-
cious packets for attack mitigation.

This experiment presents evidence that microVNF is effec-
tive for detecting and mitigating SIP DDoS attacs. It was able
to protect the availability of the SIP service for end-users in
the midst of a SIP DDoS attack that was launched by 100
bots.

V. DISCUSSION

The prevalence of data breaches, ransomware, and ad-
vanced, persistent threats challenge conventional defense mod-
els, which are strong with respect to network perimeters but
weak in the internal networks. Given the sophistication of
modern attacks, adversaries can be assumed to already be
within a network, through either phishing attacks, unsecured
connections, or misconfigured equipment. An alternative that
has thus gained momentum is zero trust architecture [47], in

which trust is never granted implicitly based on network loca-
tion (i.e., externally or internally). This architecture highlights
the importance of continual evaluation of network security
postures.

That the internal network is more easily exploited and more
vulnerable to attack is due to two contributing factors: lack of
investment in internal security controls, and human nature.
Adversaries take advantage of this situation by leveraging
human tendencies to fall for phishing attacks by spams,
e.g., sending malware-loaded attachments in emails. An email
masquerading as having come from the CEO would naturally
attracts clicks. Due to practical and financial reasons the zero
trust model has not been as widely implemented as it should.
However, network function virtualization and programmable
data plane technology have progressed to the level where
democratization of inspection functions for application-layer
in the internal network is now possible.

With a programmable data plane, the NFV concept of
separating network function from the hardware can now
be extended to the edge switches as well. Virtual network
functions are typically implemented on commodity servers.
However, the introductory white paper believes that the NFV
is applicable to any data plane packet processing and control
plane function [48]. While popular implementation found in
the literature is on commodity servers, the concept introduced
in the white paper can be extended to the programmable data
plane that exists on some modern switches today. With these
switches, porting virtualized functions from the commodity
servers to the network switches is now possible. This approach
extends VNF deeper and wider into the network, and the
network edge can now be leveraged to perform dual func-
tionality: to provide network connectivity for end-points, and
to implement the continual validation that the zero trust model
advocates.

Strategic planning for VNF placement is critical in order to
gain its full benefits while also reducing risks. Depending on
their environment, switches are typically designed to fill such
roles as access, distribution, core, spine, and leaf. Which role
a switch fills defines the features that the switch must have and
the functions that it must perform. For example, a core switch
must switch packets as quickly as the hardware allows and
disable any features that might introduce unnecessary delay.
Edge and access-layer switches would typically have end
point-facing features such as network access control or tagging
packets with appropriate QoS settings. Given that porting
virtualized network functions imposes additional workload,
careful design is required so that the ported function does not
negatively interfere with normal functionalities for the switch.

In the use case presented in this paper, the edge or access-
layer switch was appropriate for performing application-layer
inspection due to its position in the network. Edge layer
switches are connected to a finite number of end-points and,
under normal working conditions, the switch CPU utilization
ranges from 5 to 40% [49], providing room on which to run
virtualized network functions. In a worst-case scenario where
the attacks degrade the performance of the entire edge switch,

the risk is contained within a switch and the impact is felt only
by the end-points that are connected to the same switch. When
the network is designed with a hierarchical model in which
the core or aggregation switch is connected to multiple edge
switches, losing one edge switch would not typically affect the
availability of the core switch or other edge switches. In the
case of a botnet outbreak, the edge switch does not propagate
malicious packets upstream and therefore protects the core and
the rest of the network.

Performance degradation of an edge switch at 78% CPU uti-
lization (Fig. 43) draws attention and signals a botnet outbreak
to the network operator. The cost to the end-users would be
in terms of a temporary performance hit, and the scope of this
experience is confined to end-users which are connected to a
particular edge switch. The impact for degraded performance
is relatively less severe than having advanced persistent threat
(APT) attacks. With APT attacks, there is a time delay between
the exploit and its discovery, a period possibly spanning weeks
or even months and so allowing exfiltration of sensitive data
or the spread of the malware further into the network. In
the worst case scenario, when the whole switch is degraded
due to workload involving the virtualized network function,
users and network operator will become aware, which prompts
corrective actions required to restore service. This awareness
is beneficial, in that it enables the network operator to locate
the source of infection and isolate the damage to a switch,
rather than allowing the infection to spread to other parts
of the network. From a risk-management perspective, dealing
with a known issue is more manageable than dealing with an
unknown one where adversaries are quietly operating within
the network.

The results of the experiments reported here support the
hypothesis that placing application-layer inspection on an edge
switch is effective in combating botnets. The experiments were
performed to highlight relevant use cases both before and after
the infection point. MicroVNF successfully defended against
SIP scanning, enumeration, and brute force attacks prior to
infection. After the infection, it successfully defended against
connection attempts to CNC, SIP DoS, and SIP Distributed
DoS attacks.

In addition to implementation on a virtual switch, mi-
croVNF can also run on hardware based P4 switches. Part
of the appeal of P4 is being target agnostic, by which we
mean that the same P4 program can be implemented on
both software and hardware-based P4 switches, or even on a
Raspberry Pi [50]. This independence is achieved through the
use of a P4 compiler that translates a P4 program to a target
specific implementation. The switch vendor is responsible for
producing a P4 compiler that is compliant to the P4 language
specification. This approach is similar to programming lan-
guages that achieve portability through a virtual machine or
interpreter that is specific for particular hardware. However the
scope of this proof-of-concept paper is limited to the virtual
environment, with the intention to establish the viability of our
approach.

In a real-world deployment environment, hardware based

P4 switches would likely be deployed at the access, distri-
bution, and core network. In addition, the P4 program and
its corresponding network functions would be tailored for
specific layer. For example, filtering functions are deployed
at the access-layer switches, whereas switching or routing
optimization functions are deployed at the core.

VI. CONCLUSION

This paper has presented microVNF, a novel VNF that
runs on an edge switch’s programmable data plane and op-
erates at the application layer. It defends against SIP attacks
such as scanning, enumeration, brute force, DoS, and DDoS,
a function typically performed currently by hardware-based
middle-boxes. MicroVNF is also intended to off-load the
defensive workload from the data center and distribute it
to spare capacity in the edge switches’ data plane. Thus,
microVNF scales network defense, thereby allowing network
operators to have highly distributed and cost-effective SIP
defense functions. Currently, microVNF is implemented on
a software-based switch but implementation on a hardware-
based architecture would improve the performance.

The benefits of placing VNF workload on an edge switch
outweigh the risk. Unlike core switches which have high-
performance requirements, edge switches have lighter work-
loads due to the number of end-points connected to them,
making this additional workload feasible and low impact to
the overall network stability. Service degradation occurring on
an edge switch due to attacks launched by the end-points will
allow the network operator to identify the source of the attack
and contain the damage to a switch, thus protecting the rest
of the network. Service degradation to an edge switch poses a
lower risk profile rather than being unaware of the adversaries’
presence for an extended period of time.

Besides SIP, other popular text-based, application-layer pro-
tocols such as HTTP and SMTP that share similar operational
characteristics could benefit from adopting the same approach.
Having application-layer inspection at edge switches would
enable network operators to mitigate attacks near their sources,
before these malicious packets travel farther towards the core
network, use up more network resources, and reach their
ultimate destination. This proposed approach would enable
network operators to scale up their defense and reduce risks to
their networks, particularly when vulnerable IoT devices are
present on the network.

REFERENCES

[11 K. Angrishi, “Turning internet of things(IoT) into internet of vulnera-
bilities (IoV) : IoT botnets.” https://arxiv.org/abs/1702.03681, 2017.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
et al., “Understanding the mirai botnet,” in 26th {USENIX} security
symposium ({USENIX} Security 17), pp. 1093-1110, 2017.

[3] D. Goodin, “Record-breaking ddos reportedly delivered by >145k
hacked cameras.”” https://arstechnica.com/information-technology/
2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-
ddos-ever/, September 2016.

[4] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoSin the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.

[5]

[6]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

C. Williams, “Today the web was broken by countless hacked de-
vices — your 60-second summary.” https://www.theregister.co.uk/2016/
10/21/dyn_dns_ddos_explained, October 2016.

Krebs, “Krebsonsecurity hit with record DDoS.”
https://https://krebsonsecurity.com/2016/ 09/krebsonsecurity-hit-with-
record-ddos/, September 2016.

J. Leyden, “Mirai IoT botnet blamed for smashing Liberia off the
internet.” https://www.theregister.co.uk/2016/11/04/liberia_ddos/, 2016.
A. Khraisat and A. Alazab, “A critical review of intrusion detection
systems in the internet of things: techniques, deployment strategy, vali-
dation strategy, attacks, public datasets and challenges,” Cybersecurity,
vol. 4, no. 1, pp. 1-27, 2021.

M. Dutta, J. Granjal, et al., “Towards a secure internet of things: A
comprehensive study of second line defense mechanisms,” IEEE Access,
vol. 8, pp. 127272-127312, 2020.

B. B. Zarpeldo, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in internet of things,” Journal of Network
and Computer Applications, vol. 84, pp. 25-37, 2017.

M. Wazzan, D. Algazzawi, O. Bamasaq, A. Albeshri, and L. Cheng,
“Internet of things botnet detection approaches: Analysis and recommen-
dations for future research,” Applied Sciences, vol. 11, no. 12, p. 5713,
2021.

V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: Application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82721-82743, 2019.

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, 2017.

J. Portilla, G. Mujica, J.-S. Lee, and T. Riesgo, “The extreme edge at
the bottom of the internet of things: A review,” IEEE Sensors Journal,
vol. 19, no. 9, pp. 3179-3190, 2019.

A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing

and related edge computing paradigms: A complete survey,” Journal of

Systems Architecture, vol. 98, pp. 289-330, 2019.

N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying iot security: An exhaustive survey on iot vulnerabilities
and a first empirical look on internet-scale iot exploitations,” IEEE
Communications Surveys Tutorials, vol. 21, no. 3, pp. 2702-2733, 2019.
S. Kaur, K. Kumar, and N. Aggarwal, “A review on p4-programmable
data planes: Architecture, research efforts, and future directions,” Com-
puter Communications, vol. 170, pp. 109-129, 2021.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

A. Febro, H. Xiao, and J. Spring, “Telephony denial of service defense
at data plane (tdosd@dp),” in NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium, pp. 1-6, 2018.

A. Febro, H. Xiao, and J. Spring, “Distributed sip ddos defense with p4,”
in 2019 IEEE Wireless Communications and Networking Conference
(WCNC), 2019.

S. Torabi, E. Bou-Harb, C. Assi, M. Galluscio, A. Boukhtouta, and
M. Debbabi, “Inferring, characterizing, and investigating internet-scale
malicious iot device activities: A network telescope perspective,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 562-573, IEEE, 2018.

A. Mangino, M. S. Pour, and E. Bou-Harb, “Internet-scale insecurity of
consumer internet of things: An empirical measurements perspective,”
ACM Trans. Manage. Inf. Syst., vol. 11, Oct. 2020.

M. Dahlmanns, J. Lohmoller, I. B. Fink, J. Pennekamp, K. Wehrle,
and M. Henze, “Easing the conscience with opc ua: An internet-wide
study on insecure deployments,” in Proceedings of the ACM Internet
Measurement Conference, IMC ’20, (New York, NY, USA), p. 101-110,
Association for Computing Machinery, 2020.

M. Guri, Y. Mirsky, and Y. Elovici, “9-1-1 ddos: Attacks, analysis and
mitigation,” in 2017 IEEE European Symposium on Security and Privacy
(EuroS P), pp. 218-232, 2017.

H. Singh, “p4-info.” https://github.com/hesingh/p4-info.

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, SOSR ’17, (New York,
NY, USA), p. 164-176, Association for Computing Machinery, 2017.

(27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]
[40]
[41]

[42]

[43]
[44]
[45]
[46]
[47]
(48]

[49]

[50]

Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge Computing
Security: State of the Art and Challenges,” Proceedings of the IEEE,
2019.

Q. Yan, W. Huang, X. Luo, Q. Gong, and F. R. Yu, “A multi-level
ddos mitigation framework for the industrial internet of things,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 30-36, 2018.

T. Alharbi, A. Aljuhani, and H. Liu, “Holistic ddos mitigation using nfv,”
in 2017 IEEE 7th Annual Computing and Communication Workshop and
Conference (CCWC), pp. 14, IEEE, 2017.

B. Rashidi and C. Fung, “Cofence: A collaborative ddos defence using
network function virtualization,” in 2016 12th International Conference
on Network and Service Management (CNSM), 1EEE, 2016.

M. De Donno and N. Dragoni, “Combining AntibloTic with fog com-
puting: AntibloTic 2.0,” in 2019 IEEE 3rd International Conference on
Fog and Edge Computing (ICFEC), pp. 1-6, IEEE, 2019.

W. Rafique, X. He, Z. Liu, Y. Sun, and W. Dou, “Cfadefense: A security
solution to detect and mitigate crossfire attacks in software-defined IoT-
edge infrastructure,” (Los Alamitos, CA, USA), pp. 500-509, IEEE
Computer Society, aug 2019.

Y. Khosroshahi and E. Ozdemir, “Detection of sources being used in
ddos attacks,” 2019.

E. Chen, “Detecting dos attacks on sip systems,” in /st IEEE Workshop
on VoIP Management and Security, 2006., pp. 53-58, 2006.

D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa,
“In-network volumetric ddos victim identification using programmable
commodity switches,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1191-1202, 2021.

W. Nazih, W. S. Elkilani, H. Dhahri, and T. Abdelkader, “Survey of
countering dos/ddos attacks on sip based voip networks,” Electronics,
vol. 9, no. 11, p. 1827, 2020.

M. M. Naeem, I. Hussain, and M. M. S. Missen, “A survey on
registration hijacking attack consequences and protection for session
initiation protocol (sip),” Computer Networks, vol. 175, p. 107250, 2020.
M. Azrour, M. Ouanan, and Y. Farhaoui, “Survey of sip malformed
messages detection,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 7, no. 2, pp. 457-465, 2017.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.
“P416 portable switch architecture (psa) version 1.1.” https://p4.org/p4-
spec/docs/PSA-v1.1.0.htmlsec-registers.

“Bloom filter calculator.” https://hur.st/bloomfilter/. Web. Accessed 18
October 2021.

J. Rosenberg, A. Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler, “RFC 3261: Session Initiation Protocol (SIP),” Internet
Engineeging Task Force, vol. 1, no. 11, pp. 1829-1841, 2002.

“Sipp online help (-h).” http://sipp.sourceforge.net/doc2.0/reference.html
Online+help+%?28-h%29.

“Sipvicious online help (-h).” https://tools.kali.org/sniffingspoofing/
sipvicious.

“John the ripper usage.” https://tools.kali.org/password-attacks/ john.
“Inviteflood usage.” https://tools.kali.org/sniffingspoofing/ inviteflood.
National Institute of Standards and Technology, “Zero Trust Architecture
- NIST Special Publication 800-207,” Nist, p. 49, 2020.

Chiosi, Margaret, et. al., “Network Functions Virtualisation Introductory
White Paper.” http://portal.etsi.org/NFV/NFV_White_Paper.pdf, 2012.
Cisco, “Troubleshooting High CPU Utiliza-
tion.” https://www.cisco.com/c/en/us/td/docs/switches/
lan/catalyst3750/software/troubleshooting/ cpu_util.htm154139, 2016.
S. Laki, R. Stoyanov, D. Kis, R. Soulé, P. Voros, and N. Zilberman,
“P4pi: P4 on raspberry pi for networking education,” SIGCOMM Com-
put. Commun. Rev., vol. 51, p. 17-21, July 2021.

