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Abstract

A substantial component of the Internet of Things (IoT) network is made up of unmonitored IoT devices that are generally
deployed in hostile situations where attackers attempt to capture and compromise them to gain control of the entire network. One
such illustration of this malevolent behaviour on the part of an adversary is the cloning of IoT devices. In a clone node attack,
an attacker attempted to physically capture the devices to gather sensitive information to conduct various insider attacks. Several
solutions for detecting clone node attacks on IoT networks have been presented in the viewpoints above. These solutions are focused
on specific system designs, processes, and feature sets and act as a high-level abstraction of underlying system architectures based
on a few performance requirements. However, critical features like formal analysis, modelling, and verification are frequently
overlooked in existing proposed solutions aimed at verifying the correctness and robustness of systems in order to ensure that no
problematic scenarios or anomalies exist. This paper presents a formal analysis, modelling, and verification of our existing proposed
clone node attack detection scheme in IoT. Firstly, we modelled the architectural components of the proposed scheme using High-
Level Petri Nets (HLPNs) and then mapped them using their specified functionalities. Secondly, we defined and analysed the
behavioural properties of the proposed scheme using Z specification language. Furthermore, we used the Satisfiability Modulo
Theories Library (SMT-Lib) and the Z3 Solver to validate and demonstrate the overall functionality of the proposed scheme.
Finally, in addition to modelling and analysis, this work employs Coloured Petri Nets (CPNs), which combine Petri Nets with a
high-level programming language, making them more suitable for large-scale system modelling. To perform the simulations in
CPN, we used both timed and untimed models, where timed models are used to evaluate performance, and untimed models are
used to validate logical validity.
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1. Introduction

An emerging and promising network paradigm known as the
Internet of Things (IoT) involves numerous devices connect-
ing people and objects to the internet to accomplish various
functions [1]. These devices are heterogeneous in nature and
are placed in a variety of environments to collect data and in-
formation that is then sent to some controlling authorities, e.g.
clouds, for analysis or decision-making enhancement [2]. Some
of the advanced IoT-powered smart home features include ther-
mostats, doorbells, security alarms, and similar automated de-
vices, which enable people to remotely control and manage
their homes and notify them if something suspicious happens
in their absence. However, several risks have pervaded IoT de-
vices, ranging from security threats to privacy concerns, ow-
ing to the numerous constraints imposed by their functional
capabilities (processing, storage, and power) and the various
design features [3]. For example, IoT devices are frequently
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non-tempered resistant and versatile, making them easy targets
for attackers [4, 5].

There are numerous types of attacks on IoT devices, and one
type is a clone-node attack, also known as a device replication
attack [6]. In a clone-node attack, the attacker can extract the
personal device ID, public and private keys from the IoT net-
work and use this information to control the physical device(s).
In order to leverage this vulnerability, an attacker must first lo-
cate the physical device, collect the secret credentials, and then
use these credentials to manipulate the device’s function before
reinstalling it in the network [7]. Clone-node attacks are more
likely to occur if the IoT devices are not updated with the lat-
est security software and their security certificates are outdated.
Additionally, the clone node attack can be used in tandem with
other malevolent attack vectors on the IoT network, including
a selective forwarding attack, wormhole attack, and blackhole
attack [8].

In recent years, the surge in popularity of IoT-based specific
applications has intensified the interest in designing and devel-
oping security solutions to protect IoT devices and their data.
Existing studies have been proven that a clone node attack de-
tection mechanism effectively protects IoT devices from adver-
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saries, as it enables systems to detect when the attacker initiates
abnormal activity, which results in duplicate nodes being es-
tablished in the network [7]. One of the effective methods to
mitigate the risk of a clone-node attack on an IoT network is
that every device uses a data forwarding protocol to send au-
thentication messages containing all of the information of their
neighbours to a base station. The base station receives the mes-
sage and validates it by utilising a key exclusively assigned to
that device [9]. Some other methods for finding the cloned node
attacks include finding network witnesses [6], measuring the
signal strength of devices [9], randomly picking secret keys
[10], calculating trust values [11, 12], managing distributed
trust [13], localization algorithms [14] and multi-dimensional
scaling [15]. A detailed analysis of existing schemes based on
wireless sensor networks, IoT, and mobile ad-hoc networks for
detecting clone node attacks is summarised here [16].

Existing clone node attack detection approaches, on the other
hand, are strictly limited to the system’s architectures, includ-
ing its functions and feature sets. Additionally, another com-
mon trend observed in existing clone node attack detection
schemes is that they provide a high level of abstraction for sys-
tem architectures and evaluate schemes solely on well-known
performance parameters such as detection rate, detection time,
and various system overhead complexities such as computa-
tion, communication, and storage, without providing any mod-
elling and verification of their works to verify the correctness
and robustness. In this work, we conducted formal modelling,
analysis and verification of our existing proposed clone node
attack detection scheme [16] to provide the fine-grained ab-
straction level and to ensure that our proposed scheme does
not contain any problematic scenarios or anomalies. Our pro-
posed clone node attack detection scheme uses semantic in-
formation about IoT devices, known as context information,
sensed from the deployed environment to locate them securely.
Furthermore, our proposed scheme designed the location proof
mechanism by combining location proofs and batch verifica-
tion of the extended elliptic curve digital signature technique
(ECDSA*) to accelerate the verification process at selected
trusted nodes. Section 2 goes into detail regarding our exist-
ing proposed scheme and its working mechanism.

Formal verification is a systematic process that evaluates a
proposed system or approach by defining rational arguments
and determining whether or not the proposed system satisfies
the provided design, engineering, and implementation require-
ments [17]. We follow three fundamental steps of the formal
verification process in this work: modelling, analysis, and veri-
fication. First, we use HLPNs to illustrate our proposed system
model and information about the various components and in-
ternal links to get a detailed understanding of the design. Then,
HLPN is utilised to model the systems and present mathemat-
ics to understand and analyse system behaviour and structural
properties. Moreover, the model is used to help analyse the
interconnection of the components and processes, reveal the
flow of information and processing of that information in-depth,
and answer how the flow of information and processing occurs.
Next, we used the PIPE+ tool to estimate the HLPNs’ esti-
mated incidence markers and confidence interval values dur-

ing the result analysis phase. Afterwards, Z-language is ap-
plied to the systematic and behavioural characteristics of the
system to model, describe and analyse. Additionally, we eval-
uated the models in three-fold: (i) we applied the automated
model checking technique using the Satisfiability Modulo The-
ories Library (SMT-Lib) and Z3 solver to perform automated
verification of the models. First, the models are translated into
SMT and the specified properties, then SMT is used to vali-
date the Petri Net models, (ii) The Z3 solver is used to exam-
ine the model to see if it is adhering to the specifications, (iii)
Finally, we extend this work by modelling and analysis of pro-
posed scheme using CPNs.

To the best of our knowledge, no existing work has been
conducted to formally model, analyse, and verify the detection
scheme for clone node attacks on IoT networks. This work aims
to demonstrate the correctness of our proposed clone node at-
tack detection scheme, which will enable researchers to com-
prehend the design, modelling, analysis, and verification pro-
cesses required to analyse the efficient functioning of any sys-
tem architecture and its underlying set of features.

The following constitute the primary contributions to this pa-
per:

• Model our proposed scheme with HLPNs and analyse the
results with the help of incidence marking and confidence
intervals.

• Analyse the proposed HLPNs using the Z specification
language.

• Provide formal verification of the proposed HLPNs and
their defined specifications and properties using SMT-Lib
and Z3 solver.

• Model our proposed scheme with CPNs gives the user the
ability to design models as a hierarchy of modules sup-
porting timed and untimed simulations.

The organisation of this paper is structured as follows: Sec-
tion 2 provides an overview of our proposed clone node attack
detection scheme. The preliminaries used in this paper are dis-
cussed in section 3. Section 4 presents the modelling and anal-
ysis of the proposed scheme using high-level Petri nets and Z
specification language, respectively. Formal verification of the
proposed system along with its properties and results is illus-
trated in the section 5. Section 6 provides the modelling and
analysis of our proposed scheme using CPNs. Finally, section
7 includes the conclusion to our work.

2. An Overview of Our Existing Proposed Clone Node At-
tack Detection Scheme

This section provides an overview of our existing proposed
clone node attack detection scheme [16], including the back-
ground description, methodology with the network components
and proposed algorithms, to assist readers in understanding the
proposed scheme’s procedure and helping with the system mod-
elling, analysis and verification processes.
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The proposed scheme leveraged context-aware systems in
IoT networks to detect clone node attacks using context infor-
mation from deployed IoT devices. Context-aware systems are
IoT systems that keep track of surrounding objects and provide
timely feedback to users. Context Information is the semantic
information that enables users to comprehend the networking
environment and locate network entities based on their rela-
tionships with the environment. The proposed scheme also in-
tegrates location-based services (LBS) and context-aware sys-
tems to track network nodes. The LBS can enable numerous
services in IoT-based applications, such as tracking and moni-
toring patients, tracking vehicles on the road, and determining
an individual’s actual position. LPSs are being implemented in
IoT-based applications to create and share digitally signed con-
text data to prove the user’s location at any given time. The pro-
posed scheme used digital signatures to verify the authenticity
of devices or messages during communication to ensure IoT de-
vice and data security. Since the scalability of IoT networks is
crucial in most applications, verifying individual device signa-
tures is not recommended. For this reason, the proposed scheme
makes use of batch verification, which verifies digital signatures
in batches. Batch verification is a concept that involves verify-
ing multiple signatures simultaneously in order to minimise the
time taken to validate each signature submitted by thousands of
sensor nodes in large-scale IoT networks.

There are two primary components to the proposed scheme:
an enhanced ECDSA* and a location-proof system (LPS), as
explained in sections 2.1 and 2.2 respectively. These two com-
ponents help us design an HLPN-based model, which is subse-
quently verified and analysed.

2.1. An ECDSA* Technique
As stated above, the proposed scheme used batch verification

rather than individual signature validation to reduce verification
time. In batch verification, the signer interacts with the verifier
to generate t signatures, and the verifier validates them all at
once. An ECDSA is a widely used digital signature technique
in the IoT, as it provides the same level of security as public-key
cryptography but requires smaller key sizes. An ECDSA* is a
variation of ECDSA that provides 40% improved verification
efficiency without sacrificing security.

The ECDSA* algorithms used in the proposed scheme are
explained in the following sections.

2.1.1. Key Generation
An ECDSA* Key Generation algorithm generates a pair of

public and private keys for use in the signing and verification
processes. The algorithm accepts as inputs standard domain pa-
rameters from elliptic curve cryptography (ECC), including p,
E, P, n, h. These parameters are defined in the following order:
p denotes order of prime field, E denotes an elliptic curve gen-
erated over the prime field, P denotes a non-zero random base
point in E, n denotes the ordinal value of P, which is typically
a prime integer, and h denotes a co-factor.

2.1.2. Signature Generation
An ECDSA* Signature Generation procedure takes the fol-

lowing parameters as an input such as message m, hash function

H, and domain parameters such as P, and then outputs the sig-
nature (r, s) for each device. This process started by selecting a
random integer between 1 and n-1 for the k parameter. Follow-
ing that, a coordinate value X is then determined by multiplying
the random integer k by the random point P. The hash function
H (in this example SHA-1) takes the message m and outputs a
digest string value, which is then transformed to an integer e.
Finally, a signature value s is calculated by taking the inverse
of k random integers and multiplying the sum of integer e and
private key d by r. The final output of ECDSA* signature gen-
eration is a pair, such as (r, s).

2.1.3. Signature Verification
An ECDSA* Signature Verification mechanism verifies the

signer’s signatures sent with his/her public key. The verifica-
tion process is entirely dependent on the signature size in terms
of computational time. For instance, the lengthy signature re-
quires additional verification time. The verification algorithm
requires a signature value (r, s) and a public key Q as inputs.
To be more specific, the signature verification output is a bi-
nary choice (accept or reject). The signature verification pro-
cess starts by determining if the signature values r and s are in
the interval [1, n-1]. The hash H function then computes the
hash value of the message m for comparison. Similarly to the
signature generation algorithm, the hash value is converted into
an integer e. Further, by taking the modulus of the inverse value
of the signature, an integer value w is generated. Two coordi-
nates, u1 and u2, are determined by multiplying the integers e
and r by the value w, respectively. An X value is generated by
combining the multiplications of P and Q by the calculated co-
ordinates (u1, u2) from the previous step. If X =O, the signature
will be rejected; otherwise, it will be accepted if and only if υ
= r.

2.2. Location Proof System (LPS)
The LPS component used context-aware modalities localisa-

tion to detect clone node attacks on IoT networks. As the name
implies, context-based localisation collects contextual informa-
tion about the IoT device’s environment (e.g. ambient acoustic
light, noise level, humidity, temperature, Wi-Fi and Bluetooth
signal power) and then use proofs to determine the device’s ex-
act location. Contextual information is collected concurrently
by devices and verifiers, with the device generating proofs of
presence from the collected data and the verifier validating such
proofs. The proposed LPS mechanism consists of the following
interacting components: prover, clone node, verifier, and LBS.
According to the proposed scheme, verifiers aim to inform an
LBS about the existence of provers at a specific place to detect a
clone node attack. A prover and a verifier collect context infor-
mation from the deployed environment. To validate the proofs,
the verifier IoT devices compare the context information ob-
tained from the prover IoT devices to their context information
to determine whether or not the IoT device has been compro-
mised. The following sections illustrate the working of LPS
in the proposed scheme: calculate location, generate location
proof, and verify location proof.
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2.2.1. Calculate Location
The Calculate Location algorithm shows how to locate net-

work devices. The proposed scheme calculates the location of
each device (such as the prover and verifier) by measuring the
distance between them in two-dimensional (2-D) space.

2.2.2. Generate Location Proof
The Generate Location Proof algorithm shows how to gener-

ate location proofs for IoT devices based on LBS. The prover
and the verifier first collect contextual information about their
deployed environment. A verifier first requests the prover to
generate a location proof utilising sensed context information
as CI. The proof is then signed using the prover’s private key
KPr.

2.2.3. Verify Location Proof
Finally, the Verify Location Proof algorithm describes the

process of verifying location proofs for IoT devices claiming
to be at a given location. The verifiers utilised the prover’s pub-
lic key KPb to validate the signature Psign. After successfully
validating each prover’s signature, the verifier will accept the
proof with location confirmation and other credentials. If the
signature is not validated, the verifier informs the LBS about
the compromise of devices.

3. Preliminaries

This section explains the preliminaries for various tech-
niques, technologies, and tools that helped us achieve our goals
and ensure the paper’s readability. This work includes HLPNs,
SMT-Lib, Z3 solver, formal verification, and CPNs as prelimi-
naries.

3.1. The High-Level Petri Nets
The HLPN determines system behaviour using modular de-

sign and mathematical principles. The HLPN approach is use-
ful for representing systems with various schemas, such as
serial and parallel, synchronous or asynchronous distributed,
pseudo-deterministic and stochastic [18] [19]. Each system has
its analytical capabilities and limitations. For large networks-
based systems, it is necessary to specify fine-grained modules
and generalisation for protocol analysis. HLPNs, or Petri nets,
are widely accepted as the best technique to model and con-
struct a system for evaluation and validation. In simple terms,
HLPN is an array N which has seven tuples, for example N={P,
T, F, ϕ, R, L, M0}. The definition of each tuple is as follows
[20] [21]:

• P is a set of fixed places.

• T is a set of fixed transitions, thus, P and T are two differ-
ent sets denoted by P ∩ T = φ.

• F representing a directed flow from transition to place or
place to transition, so F ⊆ (P × T) ∪ (T × P).

• ϕ denotes a mapping function that maps the places P to
defined data types such as ϕ : P ∪ T → Data types.

• R is a set of finite rules that map T to logical formulae,
such as R:→ Formula or logical reasoning

• L is the label associated with each flow as F, such that L :
F→ Label.

• M0 is the Petri Net’s start state that initiates flow and pro-
duces tokens M : P→ Tokens.

The three building blocks (P, T, F) define the structure of
Petri nets. Additionally, three blocks (ϕ, R, L) contain informa-
tion about the Petri net metadata that is used during implemen-
tation and validation part. In HLPNs, places are represented
by circles, transitions by rectangles and directed arrows can be
used to connect places and transitions, and vice versa. How-
ever, no links between places or transitions are established. For
each HLPN, the “Start” transition is used to activate the HLPN,
and the “Inputs” places include the tokens that can input the
model and travel through several places and transitions before
reaching the end place in the Petri net. To create tokens and
initiate the process from the input place, the R (Input) = ∃ x ∈
X | . x = θ rule is used.

3.2. SMT Lib and Z3 Solver
Satisfiability Modulo Theories (SMT) [22, 23] is a com-

monly used decision-making technique that can solve large
decision-making problems based on first-order logic formulae
and provide system satisfaction using a broad range of dynami-
cally typed theorems. SMT-Lib is evolved from Boolean Satis-
fiability solvers (SAT); however, SMT-Lib relies on first-order
formulae while SAT relies on propositional formulae. SMT has
the advantage of supporting a wide range of theories and deci-
sion problem domains, including integers, real numbers, ratio-
nals, arrays, and even supported equality, as well as bit-vectors
and uninterrupted functions. The SMT is used for model veri-
fication, inductive reasoning software verification, test gener-
ation, and simulation. SMT-Lib is included to quantify the
verification facility for a large number of different solvers. In
SMT-Lib, the suggested system’s behaviour required abstract
models and bounded model procedures executed by bounded
symbolic execution. SMT-Lib is a Microsoft Research library
that supports and integrates various solvers, including STP [24],
OpenSMT [25], [26], Boolector [27], Beaver [28] and Z3 [29].

The Z3 is an automated satisfiability prover developed by Mi-
crosoft Research that uses the standard SMT-LIB built-in theo-
ries. It also supports other theories such as bit vectors, empty
theory, arrays, data types, linear and nonlinear arithmetic, and
quantifiers. Like other SMT solvers such as MathSatb [23] and
CVC4 [30], Z3 has its own verification language.

3.3. Formal Verification
Formal verification is a mathematical technique for proving

or disproving the correctness of a model built for an underly-
ing system [29]. The criteria for measuring the system correct-
ness are often specified in a property specification language as
logical properties. The correctness procedure determines and
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verifies that the model acts as indicated in the properties. Un-
like simulation and testing, formal verification thoroughly eval-
uates the behaviour of a model. It presents a formal proof based
on a complex logical description of the system. The verifica-
tion approach examines all relevant states of the system model
to ensure that the properties given for each state are fulfilled.
Model checker demonstrates how to achieve the failure state
of the model if any state is found to be violating the observed
property [31]. The most extensively used formal verification
techniques are bounded model checking and theorem proving.

We first built our system as a finite-state model with specifi-
cations denoted by temporal logic properties to conduct formal
verification. We then verified these models using the bounded
model checking technique specified as an automated technique
and analysed the results using SMT-Lib and the Z3 solver. The
bounded model checking problem is shown below: For exam-
ple, a model checking tool accepts inputs as a finite state model
Fm and a property p to find and validate the property expressed
as Fm| = p.

The solver checks the expression and returns sat (satisfiable)
or unsat (unsatisfiable). If the outcome is sat, the property fails
(i.e. Fm| = p) and the solver provides a counterexample showing
how the model fails. If the solution results are unsatisfactory,
the property is true in Fm. To define Bounded Model Checking,
we use the Kripke Structure [32].

Definition 3.1. (Bounded Model Checking) [32] Given a
Kripke structure, M = (S, S 0, T, L), where S denotes all states,
S 0 denotes initial states,T denotes transitions, and L denotes
the labelling function. The problem of model checking is to de-
termine the set of all states in S that satisfy f, i.e. {s ∈ S |, M, s ,
f} where f is a temporal logic formula expressing some desired
specification.

3.4. Coloured Petri Nets
Coloured Petri Nets (CP-nets) is a modelling language or

graphical tool extensively used to describe and specify concur-
rent and distributed systems and investigate their behaviour us-
ing simulation and verification based on mathematical proper-
ties [33]. Petri net is a fundamental layer upon which graphical
notations for specified models are constructed. These graphi-
cal notations can support control structure, concurrency, com-
munication, and synchronisation using basic modelling prim-
itives. For formal analysis, utilising CPNs provides a speci-
fication language with dynamic nature and formal semantics.
Moreover, unlike domain-specific modelling, CPN modelling
is more generic, allowing it to build a broad range of distributed
and concurrent systems [21, 34].

CPNs have been used in a wide range of systems, includ-
ing concurrent and distributed systems, complex data networks,
communication protocols, business process management, sci-
entific workflows, embedded systems, multi-agent systems, and
manufacturing processes. CP-nets can also be used with cur-
rent modelling languages and methods like Unified Modelling
Language (UML). UML is a functional programming language
that includes primitives for defining data types, expressing

data manipulation and generating parametric graphical mod-
els. Furthermore, state spaces and place invariant simulation
are utilised to validate CPN models [18].

CPNs improve the overall usability of Petri Nets and extend
their applications to large-scale systems. For example, CPN
models concurrent systems using Petri Net graphical compo-
nents for process communication and synchronisation, while
ML functional programming allows for new data types and data
value modification. Furthermore, complex networks and sys-
tems can be described in the CPN language as collections of
modules [35].

The following two types of models can be built with CPNs.

• Timed Models: Time is a key performance indicator for
concurrent systems. Timed models are used to evaluate
system performance in a CPN-based simulation environ-
ment.

• Untimed Models: Unlike timed models, untimed models
are commonly used to verify a system’s logical or theoret-
ical correctness during a simulation.

The main objective of CPN is to define a modelling language
for concurrent systems that can be scaled to industrial appli-
cations. In light of the preceding, several formal modelling
languages, notably CPNs, have been developed to address the
complexity of concurrent system designs, which can occasion-
ally result in small, undetected errors. Furthermore, with grow-
ing interest in the correctness of concurrent systems, formal
verification approaches have evolved into a critical component
of developing reliable systems.

The main differences between CPNs and standard Petri nets
are the following: (i) Petri Net tokens have no data attached to
them, (ii) Tokens usually are black dots in Petri Nets, but in the
CPN, tokens can be any colour (types), (iii) Tokens can be de-
fined as a sequence of complex data types such as colour sets
using CPN, (iv) Despite the differences in tokens between CPNs
and Petri Nets models, CPNs allow a variety of data types to be
added into the model, (v) The arc inscriptions used in CPNs
are expressions, not constants, (vi) The CPN ML used a vari-
ety of data types, including integers, strings, reals, Booleans,
and the void unit, (vii) Custom data types like the product, sub-
range, enumeration, record, union, and the list can be created
using CPN ML, (viii) CPNs make Petri Nets more practical by
introducing a programming language with a higher degree of
abstraction, increasing their scalability, and effectiveness [36].

CPNs is an array N which has nine tuples, for example N={P,
T, A, ϕ, C, F, G, L, M0}. The definition of each tuple is as
follows [21]:

• P is a set comprising a fixed number of places.

• T is a set of transitions with a finite number, such as P and
T are two different sets denoted by P ∩ T = φ.

• A representing the arcs from transition to place or place to
transition.

• ϕ representing the universal colour set consisting of all
colours, actions, and functions.
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• C denotes a colour function that maps the places P and
transitions T to defined colour set such as C : P ∪ T → ϕ.

• F representing a node function that maps A into places and
transitions such as A ⊆ (P × T) ∪ (T × P).

• G ∈ g is a function that acts as a guard. Each transition t ∈
T is associated with a guard expression g. The guard ex-
pression’s output should be a Boolean value: true or false.

• L is the label (or expression) associated with each arc as A,
such that L : A→ Label or Expression.

• M0 ∈ M is the CPNs start state that initiates arc and pro-
duces markers M0 : P→Markers.

The places are depicted as circles or eclipses. Transitions
are represented by rectangles. The acrs are depicted as directed
arrows. When transitions occur, the arc expression describes
the change in each state of the CPNs. Each place contains a
collection of tokens. As compared to HLPNs, the CPN’s tokens
represent some data values tied with the place.

4. Modelling and Analysis of Proposed Scheme Using High-
Level Petri Nets

This section details the formal modelling and analysis of the
proposed scheme for detecting clone node attacks. We used
HLPNs to model our proposed scheme and the Z specification
language to specify the rules or properties that defined the be-
haviour of the underlying proposed system’s model.

We divide our proposed scheme into parts to facilitate the
modelling process, such as an ECDSA* technique and a LPS
technique. Each part, along with its HLPN modelling, is pre-
sented separately in the sections 4.1 and 4.2. Furthermore, in
section 4.3, a set of rules consisting of syntax and semantics is
presented to specify the interaction behaviours of the proposed
scheme’s components. Finally, the analysis of the modelling re-
sults obtained using incidence marking and confidence intervals
are presented and discussed in detail in the section 4.4.

4.1. An ECDSA* Technique
An ECDSA* technique is divided into three HLPNs based on

the algorithms used to generate keys, generate signatures, and
verify signatures.

4.1.1. ECDSA* Key Generation
Fig. 1 illustrates the HLPN of the key generation process in

the ECDSA* technique. In Petri nets, the process starts with
the “Start” transition, the initial state of any HLPN and is re-
sponsible for creating tokens that transit through all subsequent
transitions. The terms “Inputs”, “Domain Parameters Store”
and “Keys Store” refer to the places or stores used to store the
preliminary data (or variables). The “Inputs” place contains the
initial data required to generate the domain parameters. The
“Domain Parameters Store” place has the domain parameter
values used during the key generation process, and the “Keys
Store” place contains the public and private keys. Transitions

Figure 1: An ECDSA* Key Generation - Petri Net

are responsible for carrying out the anticipated actions or ac-
tivities in the algorithms. For example, as indicated previously,
the “Start” transition initiates the entire process. The “Gen-
erate Domain Parameters” transition generates the domain pa-
rameters, and the “Generate Keys” transition generates the keys
based on inputs from the “Domain Parameters Store” place.

4.1.2. An ECDSA* Signature Generation
The Petri net of the signature generation process in an

ECDSA* technique consists of five working transactions and
four places, as shown in Fig. 2.

Figure 2: An ECDSA* Signature Generation - Petri Net
In this Petri net, the transitions are “Start”, “Compute Co-

ordinates”, “Compute Hash”, “Generate Signature Pair 1”, and
“Generate Signature Pair 2”, while the places are “Inputs”, “Co-
ordinates store”, “Hash Integer Store”, and “Signature Store”.
The “Start” transition begins the ECDSA* signature generation
process and stores all initial variables in the “Inputs” place. In
contrast, the “Compute Coordinates” transition accepts the inte-
ger value from the “Inputs” place. It computes the coordinates
used in the signature generation pairs stored in the “Coordi-
nates Store” place. The “Compute Hash” transition computes
the hash value of the inputs specified in the “Inputs” place, con-
verts it to an integer value, and stores it in the “Hash Integer
Store” place. The transitions “Generate Signature Pair 1” and
“Generate Signature Pair 2” take inputs from the “Coordinates
Store” and “Hash Integer Store” places and generate the signa-
ture pair, which is then stored in the “Signature Store” place.

4.1.3. An ECDSA* Signature Verification
The HLPN of the signature verification in an ECDSA*

scheme is depicted in Fig. 3.
The HLPN contains various transitions, including “Start”,

“Get Signature Integers”, “Calculate Hash”, “Calculate Point”,
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Figure 3: An ECDSA* Signature Verification - Petri Net

“Calculate Coordinates” and “Verify Signatures”. On the other
hand, the places include the “Inputs”, “Signature Store”, “Hash
Integer Store”, “Point Store”, “Coordinates Store”, and “Ac-
cept / Reject”. The signature verification procedure begins with
the “Start” transition, which stores the signature parameters and
public key in the “Inputs” place. The “Get Signature Integers”
transition then extracts the signature parameters and stores them
in the “Signature Store” place for later verification. The “Com-
pute Hash” transition accepts the message as an input and con-
verts it to a hash integer, placed in the “Hash Integer Store”
place. On the other hand, the “Calculate Point” transition ac-
cepts the signature parameters from the “Signature Store” place
and storing them in the “Point Store” place. Next, the “Com-
pute Coordinates” transition calculated the coordinates by ob-
taining the inputs from the “Hash Integer Store” and “Point
Store” places and storing them in the “Coordinates Store” place.
Finally, a “Verify Signature” transition accepts the coordinates
from the “Coordinates Store” place and verifies whether to ac-
cept or reject the signature decision.

The complete HLPN of the ECDSA* technique, including
key generation, signature generation, and signature verification,
is illustrated in Fig. 4, and the working mechanism is then de-
scribed in detail using a set of Z specification rules from 1-11.

Table 1 specifies the places, mappings, and descriptions of
each place used in an ECDSA* technique. Since an ECDSA*
technique includes several steps or actions, from key genera-
tion to signature generation and verification, we define algo-
rithms for each step. Each step associated with the algorithms
specified for an ECDSA* technique defines the operations of
each component, including standard domain parameters, key
generation, point coordinate generation, hash functions, signa-
ture generation, and signature verification, as well as their as-
sociated working flows, such as input and output. For example,
three places are utilised in the keys generation Petri net: inputs,
domain parameter store, and keys store. The input place is used
to store the domain parameters at their initial state. The domain
parameters place is used to store the standard domain param-
eters after being modified, and the keys store place is used to
store the private and public keys.

The process of generating an ECDSA* signature comprises

Table 1: Places, Mappings and Description of an ECDSA* Technique
Places Mappings Description
An ECDSA* Key Generation

ϕ (Inputs) P(p × E × P × n × h)
Holds the standard
domain parameters

ϕ (Domain Parameters Store) P(p × E × P × n × h)
Holds the standard
domain parameters

ϕ (Keys Store) P(d × Q)
Store the private
and public keys

An ECDSA* Signature Generation

ϕ (Inputs) P(m × d × H × P × k)
Holds the input

variables used in the
signature generation

ϕ (Coordinates Store) P(X)
Stores the x

and y coordinates

ϕ (Hash Integer Store) P(e)
Stores the hash
integer value

ϕ (Signature Store) P(r × s)
Stores the signature

pair
An ECDSA* Signature Verification

ϕ (Inputs) P(r × s × Q × m)
Holds the signature
pair and public key

ϕ (Signature Store) P(r × s)
Stores the signature

pair

ϕ (Hash Integer Store) P(e)
Stores the hash
integer value

ϕ (Point Store) P(w)
Stores the point

value

ϕ (Coordinates Store) P(u1 × u2)
Stores individual
coordinate values

ϕ (Accept / Reject) P(X)
Stores

Coordinate point

four places: inputs, coordinates store, hash integer store, and
signature store. The inputs store contains a message that must
be hashed and signed, the private key used to sign the signature,
the hash function, a random base point, and a random value.
The coordinates store place is used to hold the values of the
coordinates or points. Further, the hash integer store saves a
hash integer value. Finally, the signature pairs are stored in a
signature store place.

Finally, the ECDSA* signature verification method entails
using the following places: inputs, signature store, hash integer
store, point store, coordinates store, and accept/reject store. The
inputs place contains signature pairs, a public key, and the mes-
sage to verify. A signature store place is where the signature
pairs extracted from the input places are stored. The message’s
hash integer value is computed and saved in the hash integer
store. The point value and coordinates are respectively kept in
the places called point store and coordinates store. Finally, the
accept/reject store place stores the verification decision.

Table 2 lists the data types used in an ECDSA* scheme.

4.2. Location Proof System
The proposed clone node attack detection scheme based on a

LPS is divided into three HLPNs based on the algorithms used,
such as calculating location, generating location proof, and ver-
ifying location proof.

4.2.1. Calculate Location
Fig. 5 illustrates the HLPN of the location calculation for

the proposed location proof scheme in which the location cal-
culation process starts with the “Start” transition providing the
initial variables to “Inputs” place to determine 2-D point space.

The “Points Store” place holds the points, also known as co-
ordinates on 2-D space, to determine the position of provers
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Figure 4: A Complete HLPN of an ECDSA* Technique

Table 2: Data Types used in an ECDSA* Scheme
Data
Types Description

p An integer type for the representation of order of prime field
E A float type for the representation of coordinates point over the prime field
P An integer type for the representation of a non-zero random base point in E

n
A integer type for the representation of the ordinal value of

P, which is normally a prime number
h A float type for the representation of co-factor
d A byte type for the for the representation of private key
Q A byte type for the representation of public key
m A byte type for the representation of messages to be signed
H A byte type for the representation of values of hash function
k An integer type for the representation of the random value
X A float type for the representation of coordinate points

e
An integer type for the representation of hash value

converted from hash byte value H
r A float type for the representation of first pair value of signature
s A float type for the representation of second pair value of signature
w A float type for the representation of point value
u1 A float type for the representation of first coordinate value
u2 A float type for the representation of second coordinate value

Figure 5: Calculate Location- Petri Net

and verifiers. Based on these coordinates, the distance is calcu-
lated between provers and verifiers and stored in the “Proverss’
Distance Store”. Transitions are responsible for carrying out
the anticipated actions or activities in the algorithms. For in-
stance, as indicated previously, the “Start’ transition initiates
the entire process, the “Determine 2-D Point Space” transition
executed the 2-D space for the provers and verifiers in the pro-
posed scheme, and “Calculate Distance” transition calculates
the distance as a location between provers and verifiers.

4.2.2. Generate Location Proof
The Petri net of the generate location proof in the proposed

scheme is depicted in Fig. 6.

Figure 6: Generate Location Proof- Petri Net

The HLPN consists of five places and five transitions. The
places includes in the generate location proof HLPN are “In-
puts”, “Context Information Store”, “LBS Information Store”,
“Location Proofs Store” and “Signed Location Proofs Store”
while transitions are “Start”, “Sense Context Information”,
“Stored Context Information”, “Request Location Proof” and
“Generate Location Proof”. The location proof generation pro-
cedure starts with the “Start” transition, which forwards and
store the context information, private key and hash function to
the “Inputs” place. Following that, the “Sense Context Infor-
mation” transition allows both provers and verifiers to sense the
context information such as ID, time, location and activity from
the deployed environment and store the context information to
the “Context Information Store”. Finally, the verifier performs
an additional step in the “Stored Context Information” transi-
tion, which allows the verifiers to store the sensed context in-
formation in the “LBS Information Store” place. Besides, the
verifiers request the provers with the location proofs performed
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with the “Request Location Proof” transition to send the lo-
cations proofs to verify their locations in the 2-D space and
stored in the “Location Proofs Store” place. Upon receiving
the requests from the verifiers at the prover side, the provers
generated the location proofs by signing their sensed context
information with their private key as generated in the “Gener-
ate Location Proof” transition and send and store in the “Signed
Location Proofs Store”.

4.2.3. Verify Location Proof
The HLPN of the verifying location proofs in the proposed

scheme is depicted in Fig. 7.

Figure 7: Verify Location Proof- Petri Net

Similar to HLPN of the generate location proof, the HLPN of
verifying location proof is also consists of five places and five
transitions. The places includes in the HLPN are “Inputs”, “Ex-
tracted Context Information Store”, “Location Proofs Store”,
“Verify Context Information” and “Verify Location Proof”.
The transitions includes in the HLPN are “Start”, “Extract Con-
text Information”, “Accept Location Proof Request”,“Verify
Context Information” and “Verify Location Proof”. The pro-
cess of verifying location proof is initiated with the “Start”
transition, which created the initial variables such as a set of
provers’ signatures and their public keys, and a set of veri-
fiers and stored all of them in the “Inputs” place. Following
the initiation of the verification process, the verifiers extract the
context information from the LBS by using the “Extract Con-
text Information” transition and stored this information in the
“Extracted Context Information Store” place. Upon accepting
the location proofs from the provers through the “Accept Loca-
tion Proof Requests” transition, the verifiers stored the location
proof requests to the “Location Proof Store”. When the ver-
ifiers receive the proofs from the provers, the verifiers verify
and match the context information in the “Verify Context Infor-
mation” transition obtained from the provers with the context
information from the LBS and stored in the “Verified Informa-
tion Store”. Finally, the “Verify Location Proof” transition ver-
ify the location proof signatures with the respective public key
and determines the acceptance or rejection of location proof in
the “Accept / Reject Location Proof”.

The complete HLPN of the proposed clone node detection
scheme on the base of LPS, including location calculation, gen-
erate location proof and verify location proof, is illustrated in
Fig. 8. The working mechanism of each Petri net is described
in detail using a set of rules from 12 - 21.

Table 3: Places, Mappings and Description of location proof system
Places Mappings Description
Calculate Location

ϕ (Inputs) P(p1 × p2 × v1 × v2)
Holds the Coordinates of

provers and verifiers

ϕ (Points Store) P(p1 × p2 × v1 × v2)
Holds the Coordinates of

provers and verifiers
ϕ (Provers’ Distance Store) P(d) Stores the provers’ distances
Generate Location Proof

ϕ (Inputs)
P(ID × T × Loc × Actv × KPr

× H )
Holds the context information

variables, private keys,
and hash function

ϕ (Context Information Store) P(CI)
Stores the context information

CI

ϕ (LBS Information Store) P(CI)
Stores the context information

CI

ϕ (Location Proofs Store) P(Pr)
Stores the location

proof requests

ϕ (Signed Location Proofs Store) P(Psign )
Stores the signed
location proofs

Verify Location Proof

ϕ (Inputs) P(Psign × KPb × V)
Holds the signatures,

public keys, and
list of verifiers

ϕ (Extracted Context Information Store) P(CI)
Stores the extracted context

information
ϕ (Location Proofs Store) P(Pr) Stores the location proofs

ϕ (Verified Information Store) P(CI)
Stores the verified

context information

ϕ (Accept / Reject Location Proofs Store) P(A × R)
Stores individual
coordinate values

Table 3 specifies the places, mappings, and descriptions of
each place used in LPS. The proposed scheme consists of a
mechanism detecting the clone node attack in IoT networks.
Thus, it includes several steps or actions, from location find-
ing, location proof generation and location proof verification.
Each action is associated with the algorithms specified for de-
tecting clone nodes attacks, such as deploying nodes in the 2-D
space, calculate the location of prover and verifier using the
euclidean distance method, sensing context information from
the deployed environment, storing context information on LBS,
generate location proof and then verify location proof. For each
Petri net, we specified different places to store the data or vari-
ables before or after performing the operations through transi-
tions.

To calculate the Petri net, the inputs points store and provers’
distance store are utilised. In inputs and point store places, the
coordinates of provers and verifiers on 2-D space are stored. In
the provers’ distance store, the location of provers concerning
verifiers in the LPS is stored.

Generating the location proofs comprises four places: in-
puts, context information store, LBS information store, loca-
tion proofs store, and signed location proofs store. The inputs
place contains the context information such as ID, time, loca-
tion, activity, private key of prover and hash function. The con-
text information store and LBS information store both saves the
context information sensed by the verifiers. All location proofs
requests from the provers are stored at the location proofs store
place. Finally, the signed location proofs are stored at the
signed location proofs store place.

Like the generate location proof process, five places are
utilised in the verify location proof process: inputs, extracted
context information store, location proofs store, verified infor-
mation store, and accept or reject location proofs store. The
inputs place is utilised to store the signed location proofs, pub-
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Figure 8: A Complete HLPN of the LPS

lic keys and list of verifiers. The context information extracted
from the LBS is stored on the extracted context information
store place. All received location proofs received by the veri-
fiers are stored in the location proofs store place. Further, ver-
ified context information is stored at the verified information
store place. Finally, the decision about acceptance or rejection
of location proofs is stored in the accept/reject location proofs
store.

Table 4 lists the data types used in the LPS of the proposed
clone node attack detection scheme.

Table 4: Data Types used in LPS
Data
Types Description

p1 A float type for the representation of x-coordinate of a prover
p2 A float type for the representation of y-coordinate of a prover
v1 A float type for the representation of x-coordinate of a verifier
v2 A float type for the representation of y-coordinate of a prover
d A float type for the representation of location of a prover

ID An integer type for the representation of unique identification
T An integer type for the representation of data sensing time

Loc A float type for the representation of location in 2-D space
Actv A string type for the representation of provers’ activities
KPr A byte type for the representation of private key of prover

H A byte type for the representation of hash value
CI A byte type for the representation of context information
Pr A byte type for the representation of location proof request

Psign A byte type for the representation location proof signature
KPb A byte type for the representation of public key of prover

V A byte type for the representation of verifiers list
A A string type for the representation of accepted decision
R A string type for the representation of rejected decision

4.3. Z Specification Rules
This section presented a set of rules consistent with the syn-

tax and semantics of the Z language for specifying the inter-
action behaviours of the proposed scheme’s components. As
previously stated, the proposed scheme is modelled into two
parts, each illustrated with its HLPN. The rules 1 - 11 specify
the modelling part of an ECDSA*, while rules 12 - 21 specify
the modelling part of a LPS.

An ECDSA* process begins with the generation of crypto-
graphic keys, both public and private. To create the keys, the
process accepts a series of standard key parameters referred to
as domain parameters, which include { p, E, P, n, h}. These
parameters are defined in the following order: p denotes the or-
der in which the prime field exists, E denotes an elliptic curve
formed over the prime field, P denotes a non-zero random base
point in E, n denotes the ordinal value of P, which is typically a
prime integer, and h denotes a co-factor. The entire process
of generating domain parameters is demonstrated in Rule 1,
namely the “Generate Domain Parameters” function.

R(Generate Domain Parameters) = ∀dp ∈ DP,∀gdp ∈ GDP|

gdp[1] := prime.field.order(dp)∧
gdp[2] := elliptic.curve(dp)∧

gdp[3] := base.point(dp)∧
gdp[4] := ordinal.value(dp)∧

gdp[5] := cofactor(dp)∧
gdp[6] := Generate Domain Parameters(gdp[1], gdp[2], gdp[3],

gdp[4], gdp[5])∧
GDP′ = GDP ∪ {gdp[1], gdp[2], gdp[3], gdp[4], gdp[5], gdp[6]}

(1)

The procedure for generating keys, such as public and pri-
vate keys, is described in Rule 2. Key generation procedure
generates a pair of public and private keys for use in the signing
and verification processes. For example, the private key can be
generated by selecting a random integer d and multiplying it by
a non-zero random base point P to get the public key Q. The
“Generate Keys” function receives the domain parameters as
input and returns the private and public keys to sign and verify
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signatures.

R(Generate Keys) = ∀dk ∈ DK,∀gk ∈ GK|

gk[1] := generate.private.key(dk)∧
gk[2] := generate.public.key(dk)∧

gk[3] := Generate Keys(gk[1], gk[2])∧
GK′ = GK ∪ {gk[1], gk[2], gk[3]}

(2)

The function “Compute Coordinates” in Rule 3 defines and
computes the coordinates that can be used in the signature gen-
eration process. This procedure begins by selecting a random
integer for the k parameter. The coordinates X are then calcu-
lated by multiplying the random number k by the random point
P.

R(Compute Coordinates) = ∀gdp ∈ GDP,∀k ∈ K,∀c ∈ C|

c[1] := random.integer(k)∧
c[2] := base.point(gdp[3])∧

c[3] := Compute Coordinates(c[1], c[2])∧
C′ = C ∪ {c[1], c[2], c[3]}

(3)
After computing the coordinates, the function “Compute

Hash” acts as a hash function H, taking the message m and pro-
ducing a hash value in the form of a digest string value, which
is then transformed into an integer e, as shown in Rule 4.

R(Compute Hash) = ∀h ∈ H,∀e ∈ E|

e[1] := message(h)∧
e[2] := compute.hash(e[1])∧

E′ = E ∪ {e[1], e[2]}

(4)

The Rule 5 outlines the procedure of generating signature
pair 1, which is performed by the function “Generate Signa-
ture Pair 1”. This function calculates the signature parameter r
by modifying the previously calculated x in the range of total
numbers n.

R(Generate Signature Pair 1) = ∀r ∈ R,∀sr ∈ S R|

sr[1] := mod(r)∧
sr[2] := mod(r)∧

sr[3] := Generate Signature Pair 1 (sr[1], sr[2])∧
S R′ = S R ∪ {sr[1], sr[2], sr[3]}

(5)

The Rule 6 computes the function “Generate Signature Pair
2”, which outlines the process of calculating the second signa-
ture pair s by taking the inverse of the k random integers and
multiplying the sum of the integer e and the private key d by
r. Finally, the signature is stored with both the signature values
computed in Rules 5 and 6. Afterwards, the signature is then

sent to the verifier’s party for verification.

R(Generate Signature Pair 2) = ∀k ∈ K,∀gk ∈ GK,∀prk ∈ PRK,

∀s ∈ S ,∀S S ∈ S |

ss[1] := private.key(gk[1])∧
ss[2] := random.integer(k[1])∧

ss[3] := hash.integer(s)∧
ss[4] := Generate Signature Pair 1(ss[1], ss[2], ss[3])∧

S S ′ = S S ∪ {ss[1], ss[2], ss[3], ss[4]}
(6)

The process of signature verification begins with extracting
the signatures computed in the function “Get Signature Inte-
gers”, such as r and s, from the signatures store generated in
the Rules 5 and 6. The procedure of determining whether the
signature values r and s are within the interval. The entire pro-
cedure for obtaining the signature integers is explained in Rule
7.

R(Get Signature Integers) = ∀si ∈ S I,∀sig ∈ S IG|

sig[1] := signature.integer.1(si)∧
sig[2] := signature.integer.2(si)∧

sig[3] := Generate Signature Integers(sig[1], sig[2])∧
S IG′ = S IG ∪ {sig[1], sig[2], sig[3]}

(7)

After obtaining the signature integers for verification, the
hash function H computes the hash value of the message m for
comparison. Then, as with the hash creation in Rule 4, the hash
value is transformed to an integer e using the function “Com-
pute Hash”, as computed in Rule 8.

R(Compute Hash) = ∀m ∈ M,∀hi ∈ HI|

hi[1] := message(m)∧
hi[2] := Compute Hash(hi[1])∧

HI′ = HI ∪ {hi[1], hi[2]}

(8)

In the function “Calculate Point”, Rule 9 provides the proce-
dure for calculating the point integer. By using the modulus of
the inverse value of the signature s, the algorithm calculated the
point w.

R(Calculate Point) = ∀sp ∈ S P,∀cp ∈ CP|

cp[1] := get.integer.point(sp)∧
cp[2] := Calculate Point(cp[1])∧

CP′ = CP ∪ {cp[1], cp[2]}

(9)

Rule 10 outlines the procedure for computing coordinates by
calculating the integer value w. u1 and u2 are determined by
multiplying the numbers e and r by the value w, respectively,
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using the function “Compute Coordinates”.

R(Compute Coordinates) = ∀he ∈ HE,∀w ∈ W, rp ∈ RP, cc ∈ CC|

cc[1] := integer.point.1(he)∧
cc[2] := integer.point.2(w)∧

cc[3] := coordinate.point(rp)∧
cc[4] := Compute Coordinates (cc[1], cc[2], cc[3])∧

CC′ = CC ∪ {cc[1], cc[2], cc[3], cc[4]}
(10)

Finally, Rule 11 calculates the X value by multiplying P and
Q by the determined coordinates u1 and u2, as in the preceding
Rule 10. For signature verification, the function “Verify Signa-
tures” is computed and it is determined whether X = O indicates
that the signature should be rejected or accepted.

R(Verify Signatures) = ∀cci ∈ CCI,∀o ∈ O,∀pq ∈ PQ, ds ∈ DS |

ds[1] := point.1(pq)∧
ds[2] := point.1(cci)∧

ds[3] := calculate.point.1(ds[1], ds[2])∧
ds[4] := point2 (pq)∧
ds[5] := point2 (cci)∧

ds[6] := calculate.point.2(ds[4], ds[5])∧
ds[7] := Verify Signatures (ds[3], ds[6])∧

ds[7] = o[1]→ Not Verified ∧ DS ′ = DS ∪ {ds[1], ds[2], ds[3],
ds[4], ds[5], ds[6]}∨

ds[7] , o[1]→ Verified ∧ DS ′ = DS ∪ {ds[1], ds[2], ds[3],
ds[4], ds[5], ds[6]}

(11)
The process of detecting clone node attacks on IoT devices

in a LPS begins with deploying provers and verifiers in their
defined locations inside the mobile network. By measuring the
distance between the prover and verifiers in 2-D space, we es-
timate the location of each device (such as the prover and ver-
ifier) as a key element of context information in our proposed
location proof framework model. In 2-D space, a prover is rep-
resented by P = {x1, y1}, whereas a verifier is represented by V
= {x1, y1}. The process for identifying the coordinates of both
the prover and the verifiers in 2-D space is computed using the
function “Determine 2-D Point Space” as described in Rule 12.

R(Determine 2-D Point Space) = ∀p ∈ P,∀ps ∈ PS |

ps[1] := prover.coordinate.1(p)∧
ps[2] := prover.coordinate.2(p)∧

ps[3] := verifier.coordinate.1(p)∧
ps[4] := verifier.coordinate.2(p)∧

ps[5] := Determine 2-D Point Space(ps[1],ps[2],ps[3],ps[4])∧
PS ′ = PS ∪ {ps[1], ps[2], ps[3], ps[4], ps[5]}

(12)
We used the Euclidean distance algorithm to determine the

location of each prover concerning the verifiers based on their

estimated distances. The d(V,P) denotes the distance between
verifier and prover. The Euclidean distance calculation proce-
dure begins by taking the prover and verifier’s coordinates in
2-D space as input values, such as P = {x1, y1} and V = {x1, y1}.
It determines the distance between each verifier {Ver1, Ver2,
Ver3, . . . , Vern} by calculating the square root of the difference
in the coordinates of each verifier and prover pair. Following
the calculation of the distance between their provers, each veri-
fier keeps a list of the euclidean distances between their provers
as determining positions at specific points, such as {dP1, dP2,
dP3, . . . , dPn}. The complete process of computing the distance
between provers and verifiers is accomplished through the use
of the function “Calculate Distance”, which is stated in Rule
13.

R(Calculate Distance) = ∀d ∈ D,∀pd ∈ PD|

pd[1] := prover.coordinate(d)∧
pd[2] := verifier.coordinate(d)∧

pd[3] := Calculate Location(pd[1],pd[2])∧
PD′ = PD ∪ {pd[1], pd[2], pd[3]}

(13)

After deploying provers and verifiers in 2-D space, both
provers and verifiers sense contextual information about the de-
ployed environment. The context information contains the IoT
device’s identifier ID, the data sensing time T, the device’s ac-
curate position Loc, and its activity Actv. The activity of an IoT
device can take any form, including monitoring, detecting, or
transmitting at a certain time T. The function “Sense Context
Information” is responsible for perceiving the context informa-
tion, as described in Rule 14.

R(Sense Context Information) = ∀ci ∈ CI,∀pd ∈ PD,∀cis ∈ CIS |

cis[1] := id(ci)∧
cis[2] := time(ci)∧

cis[3] := location(pd[3])∧
cis[4] := activity(ci)∧

cis[5] := Sense Context Information(cis[1], cis[2], cis[3], cis[4])∧
CIS ′ = CIS ∪ {cis[1], cis[2], cis[3], cis[4], cis[5]}

(14)
Rule 15 computes the function “Stored Context Informa-

tion”, which denotes the process of storing context informa-
tion at location-based services (LBS). The combination of these
pieces of information is referred to as CI, and it is maintained
and stored at LBS in the form of a list as {CI1, CI2, CI3, . . . ,
CIn}.

R(Stored Context Information) = ∀vci ∈ VCI,∀cis ∈ CIS ,

∀lci ∈ LCI|

lci[1] := extract.context.information(cis[5])∧
lci[2] := store.context.information(vci)∧

lci[3] := Stored Context Information(lci[1], lci[2])∧
LCI′ = LCI ∪ {lci[1], lci[2], lci[3]}

(15)
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After sensing and storing context information on the LBS,
the verifier generates and sends a location proof to the prover in
order to authenticate its location and determine whether or not
the prover has been compromised. To build a location proof,
the verifier first requests that the prover generate a proof us-
ing sensed context information such as CI. The procedure for
requesting location proofs from verifiers is defined in the Rule
a verifier first requests that the prover generate a proof using
sensed context information such as CI and is determined using
the function “Request Location Proof”.

R(Request Location Proof) = ∀rlp ∈ RLP,∀lps ∈ LPS |

lps[1] := extract.context.information(rlp)∧
lps[2] := Request Location Proof (lps[1])∧

LPS ′ = LPS ∪ {lps[1], lps[2]}

(16)

The Rule 17 details the procedure for generating location
proofs, which is accomplished through the use of the func-
tion “Generate Location Proof”. First, the proof is generated
by hashing and signing the CI context information with the
prover’s private key KPr. Next, the signature Psign is generated
using the ECDSA* technique for signature generation.

R(Generate Location Proof) = ∀pi ∈ PI,∀pci ∈ PCI,∀glp ∈ GLP,

∀slp ∈ S LP, |

slp[1] := location.proof(glp)∧
slp[2] := extract.context.information(pci)∧

slp[3] := private.key(pi)∧
slp[4] := hash(pi)∧

slp[5] := Generate Location Proof (slp[1], slp[2], slp[3], slp[4])∧
S LP′ = S LP ∪ {slp[1], slp[2], slp[3], slp[4], slp[5]}

(17)
After the provers in the LPS generate the location proofs,

the next task is to verify them at the verifier’s side to assess
the clone node attack. This document outlines the process of
evaluating location proofs for IoT devices that claim to be at
a specific place using context information CI. In addition, the
Rule 18 outlines the process for extracting context information
from the LBS using the function “Extract Context Information”.

R(Extract Context Information) = ∀eci ∈ ECI,∀rlp ∈ RLP,

∀eis ∈ EIS |

eis[1] := extract.context.information(rlp)∧
eis[2] := extract.context.information(eci)∧

eis[3] := Extract Context Information (eis[1], eis[2])∧
EIS ′ = EIS ∪ {eis[1], eis[2], eis[3]}

(18)
After gathering information from the LBS, the verifier takes

location proofs from provers and verifies them for clone node
detection. Accepting location proofs from provers is stated in

the Rule 19 via the function “Accept Location Proof Request”.

R(Accept Location Proof Request) = ∀alp ∈ ALP,∀lp ∈ LP|

lp[1] := location.proof.request(alp)∧
lp[2] := Accept Location Proof Request (lp[1], lp[2])∧

LP′ = LP ∪ {lp[1], lp[2]}
(19)

The procedure of verifying the context information obtained
in the accepting location proof (Rule 19 and Rule 18) with the
extracted information from LBS is described in Rule 20. If
the information is successfully matched using the “Verify Con-
text Information” function, the verifier proceeds with the ac-
cepted location proof and performs the actual location proof-
verification task.

R(Verify Context Information) = ∀cci ∈ CCI,∀vls ∈ VLS ,

∀vci ∈ VCI|

vci[1] := location.proof.request(vls)∧
vci[2] := extracted.context.information(cci)∧

vci[3] := Verify Context Information (vci[1], vci[2])∧
VCI′ = VCI ∪ {vci[1], vci[2], vci[3]}

(20)
The verification process begins by obtaining inputs such as

the provers’ signatures in the structure {P1sign, P2sign, P3sign, . . . ,
Pnsign}, as well as their respective public keys in the structure
{K1Pb, K2Pb, K3Pb, . . . , KnPb}. To validate the prover’s position
proof, the verifiers {Ver1, Ver2, Ver3, . . . , Vern} evaluate the
contextual information CI from the LBS and execute ECDSA*
batch verification on the signatures after confirming the avail-
ability of stored information on the LBS. Since the batch ver-
ification process is carried out by several verifiers selected ac-
cording to the trust model, the LBS manages and controls the
list of verifiers. The verifiers validated the signature Psign using
the prover’s public key KPb. After successfully confirming the
signatures collected from each designated verifier, the verifier
will confirm the IoT device’s validity in the network and accept
the proof with location confirmation and other credentials. If
the signature cannot be verified correctly, the verifier notifies
the LBS of the prover’s compromise in the IoT network. The
function ”Verify Location Proof” is responsible for the entire
verification process of location proofs, as stated in the Rule 21.

R(Verify Location Proof) = ∀pr ∈ PR,∀vi ∈ VI,

∀arl ∈ ARL|

arl[1] := verified.information(vi)∧
arl[2] := public.key(pr)∧

arl[3] := Verify Location Proof (arl[1], arl[2])∧
arl[3] , arl[1]→ Not Verified ∧

ARL′ = ARL ∪ {arl[1], arl[2], arl[3]} ∨
arl[3] = arl[1]→ Verified ∧

ARL′ = ARL ∪ {arl[1], arl[2], arl[3]}

(21)
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4.4. Analysis
We modelled the ECDSA* and LPS techniques in the pro-

posed clone node attack detection scheme using the PIPE+ tool
[37, 38]. PIPE+ is a commonly used modelling tool for devel-
oping and analysing Petri nets built using the bounded model
checking (BMC) technique. A model is a network of ver-
tices and edges containing two distinct nodes (or components):
places and transitions. P places are denoted by circles that con-
tain tokens representing the state of the modelled system, whilst
T transitions are denoted by bars that reflect the events to deter-
mine how tokens “flow” inside the Petri Net.

Transitions are further subdivided into two categories: timed
and immediate. When events are connected to delay times, a
timed transition Tt is created, which is represented as a white
transition. When no delay period exists, an immediate transi-
tion Ti occurs, as indicated by a black transition.

To facilitate understanding and application of our proposed
scheme from a modelling standpoint, we model each compo-
nent (or algorithms) of techniques (e.g., an ECDSA* and LPS)
separately.

Please refer to Appendix A for Pipe+ illustrations of each
HLPN model designed for each component. The illustrations
of HLPN models for both techniques demonstrated the com-
plete execution of the specified rules and parameters due to the
HLPNs’ formal modelling.

However, to provide users with an idea of the HLPN mod-
els, we have only included the complete Pipe+ illustrations of
these HLPN models. Figures 9 and Fig. 10 illustrate the entire
Pipe+ view of HLPN models for ECDSA* and LPS methods,
respectively.

We employed two evaluation factors, incidence marking and
confidence intervals (minimum and maximum threshold val-
ues), to obtain simulation results for these HLPN models, as
discussed in the following sections 4.4.1 and 4.4.2, respectively.

4.4.1. Incidence Marking
In incidence marking, we compute the various types of matri-

ces, including forwards, backwards, combined, and inhibition,
to define the link between places and transitions. To specify
the relationship between places and transitions in HLPNs, for-
wards and backwards incidence matrices are employed. The
arc between points P and T leads to value (P, T) > 0 only if the
desired input is transmitted from place to transition. The matrix
of forwards incidences represents the total number of tokens
generated from places and fires in the transition direction. In
comparison, the backwards incidence matrix represents the to-
tal number of tokens available at the place P that used to enable
the transaction T. The 1’s indicate interactions between places
and transitions in forwards and backwards incidence matrices,
whereas the 0’s indicate no interaction between places and tran-
sitions.

The combined incidence matrix I integrates the incidence
results, such as 0’s, 1’s and -1’s. For example, both 0’s and
1’s represent the forwards and backwards incidence matrices in
terms of summarising the token created at numerous places and
determining their difference. However, -1 indicates the direc-
tion in which the relation between the transition and the place

is backwards. Finally, we calculated the inhibition matrix H of
the Petri Nets presented, which characterises any weak connec-
tions between the points in the given graph. In our example,
the Os in the inhibition matrix denotes all places’ interconnec-
tivity, thereby validating the correctness and reachability of the
techniques in our proposed scheme.

The Petri nets, in combination with the analysis of the results
of the preceding matrices, are used to simplify the interpretation
of the models and to aid in further improving the verifiability
and correctness of any simulation. Additionally, these matrices
can achieve the most accurate and trustworthy results of any
algorithm, technique, or methodology. We used the incidence
marking feature in the PIPE+ tool to obtain and analyse the
results of ECDSA* and LPS techniques under these matrices.

The results analysis of the ECDSA* key generation process
using various incidence markings (forwards, backwards, com-
bined, and inhibition matrices) are provided in Table 5.

Please see the Appendix B for an analysis of incidence mark-
ings of other methods in the ECDSA* and LPS techniques.

Table 5: High Level Petri Net Incidences - ECDSA* Key Generation
Forwards Incidence Matrix I+ Backwards Incidence Matrix I−

Start
Generate
Domain

Parameters

Generate
Keys Start

Generate
Domain

Parameters

Generate
Keys

ϕ (Inputs) 1 0 0 ϕ (Inputs) 0 1 0

ϕ
(Domain

Parameters
S tore)

0 1 0 ϕ
(Domain

Parameters
S tore)

0 0 1

ϕ
(Keys
S tore) 0 0 1 ϕ

(Keys
S tore) 0 0 0

Combined Incidence Matrix I Inhibition Matrix H

Start
Generate
Domain

Parameters

Generate
Keys Start

Generate
Domain

Parameters

Generate
Keys

ϕ (Inputs) 1 -1 0 ϕ (Inputs) 0 0 0

ϕ
(Domain

Parameters
S tore)

0 1 -1 ϕ
(Domain

Parameters
S tore)

0 0 0

ϕ
(Keys
S tore) 0 0 1 ϕ

(Keys
S tore) 0 0 0

4.4.2. Confidence Interval
Confidence interval is another critical factor in analysing

HLPNs as it determines the necessary confidence intervals for
the observed transitions’ firing rates and specifies the differ-
ence between them using the minimum and maximum thresh-
old values. In our simulation setup, the minimum and maxi-
mum threshold values are first calculated to determine the con-
fidence interval for each HLPN model using the ECDSA* and
LPS techniques. The minimum threshold values are determined
by passing 100 firings and five replications through the Petri
nets. In comparison, the maximum threshold values are deter-
mined by passing 1000 firings and 50 replications through the
Petri nets. The simulation results indicate the minimum and
maximum threshold values derived for the 95% confidence in-
terval regarding the average number of tokens produced at each
place and the acceptable threshold of error for each processing
state.

We calculate the confidence interval using the probability
value for each processing state and corresponds to the confi-
dence interval between 1 and α. The confidence interval, also
a percentage, tells the reader about the probability of accurate
findings within the specified range. We used the parameter
α = 0.05 in our simulation results to establish the lowest and
maximum thresholds, using (1-α), which provides a 95% con-
fidence value in the chance of accurate outcomes.
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Figure 9: A Pipe+ View of Complete HLPN of an ECDSA* Scheme

Figure 10: A Pipe+ View of Complete HLPN of LPS

We estimated the average number of token throws at places
specified in the HLPNs and determined the minimum and max-
imum threshold values for the confidence interval for each
Petri net. For example, Table 6 presented the average num-
ber of tokens at each place in the ECDSA* key generation
HLPN and the confidence interval’s derived minimum and max-
imum threshold values. The simulation results for the max-
imum and minimum HLPN threshold values demonstrate the
proposed scheme’s precision regarding the accessibility of nu-
merous places and states once the stated rules are used. More-
over, the confidence interval values in our HLPNs also indicate
the maximum level of confirmation of the proposed clone node
attack detection scheme’s correctness.

Table 6: Average Number of Token with Minimum and Maximum Threshold
Values - ECDSA* Key Generation

Places Average Number
of Tokens

Minimum
Threshold

Values

Average Number
of Tokens

Maximum
Threshold

Values
Inputs 3.86 4.5 11.35065 15.17

Domain
Parameters

Store
1.9802 2.228 18.33566 9.32

Key Store 14.11881 1.85 150.55633 7.897

Please refer to Appendix C for the average number of to-
kens with minimum and maximum threshold values for other
methods in the ECDSA* and LPS techniques.

5. Verification of Proposed Models Using SMT-Lib and Z3
Solver

This section details our proposed HLPNs model verification
process. First, we utilise the Z specification language to illus-
trate the behaviour of our system. After that, the HLPN models
and properties are transformed to SMT-Lib. A Z3 solver is then
utilised to validate or invalidate the correctness claims.

Using SMT-Lib and Z3 solver, we validated both ECDSA*
and the proposed clone node attack detection scheme. The Z3-
SMT Solver is a powerful tool for evaluating and analysing al-
gorithms, applications, and systems based on one or more the-
ories. Using the theories mentioned above, we utilised array
theory [29] to validate and satisfy the logic rules (or formulae)
in our proposed scheme.

5.1. Properties
To validate an ECDSA* and our proposed clone node de-

tection approaches, we defined the following properties of the
proposed algorithms.

5.1.1. ECDSA* Key Generation
An ECDSA* Key Generation method is detailed in Rule 22,

which creates cryptographic keys, including public and private
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keys, using standard elliptic curve cryptography domain param-
eters. Following is the order in which the system selects and
asserts the domain parameters: prime field order, elliptic curve,
random base point, prime number and co-factor. The key gener-
ation method produced the public and private keys that are used
in signing and verifying processes. Our conclusion in response
to this argument is unsat.

(assert(not(or(= (selectprime. f ield.order1)
(selectelliptic.curve2)

(selectbase.point3)(selectordinal.value4)
(selectco f actor5))

(= (selectgenerate.private.key6)
(selectgenerate.public.key7)))))(check − sat)

(22)

5.1.2. ECDSA* Signature Generation

An ECDSA* Signature Generation procedure selects and as-
serts properties such as a random integer and a base point in the
system used to compute the elliptic curve’s coordinates. Fol-
lowing this, a hash function is chosen and claimed to compute
the message hash and generate the asserted integer value. Fi-
nally, using the hash integer value and private key, the signature
attributes are asserted and computed. The property for generat-
ing ECDSA* signatures is shown in Rule 23. The outcome we
reached in response to this assertion is unsat.

(assert(not(or(= (selectrandom.integer1)
(selectbase.point2))
(= (selectmessage3)

(selectcompute.hash4))
(= (selectmod5))

(= (selectprivate.key6)
(selecthash.integer7)))))(check − sat)

(23)

5.1.3. ECDSA* Signature Verification

In Rule 24, the property for ECDSA* Signature Verification
is described. This property verifies and approves a signature
established in Rule 23. This property selects and asserts the
required signature attributes for the message. A hash func-
tion is applied to the message to transform it into an integer
value known as the hash value. When verifiers accept signa-
ture attributes, a point value and corresponding coordinates are
asserted and computed to indicate whether the signature is ac-
cepted or rejected. The outcome we reached in response to this

assertion is unsat.

(assert(not(or(= (selectsignature.integer1)
(selectsignature.integer2))

(= (selectmessage3))
(= (selectget.integer.point4))(=

(selectinteger.point.15)(selectinteger.point26)
(selectcoordinate.point7))(=

(selectcalculatepoint.1veri f ied)
(selectcalculatepoint.2veri f ied)))))(check − sat)

(24)

5.1.4. Calculate Location
The property for determining the location of provers in the

proposed clone node attack detection mechanism is shown in
Rule 25. The location calculation process starts with selecting
and asserting the coordinates of the provers and verifiers on 2-
D space. By following this, the distance or location of each
prover is calculated by using the Euclidean Distance algorithm
concerning the verifiers that generate the location request in the
system. The outcome we reached in response to this assertion
is unsat.

(assert(not(or(= (selectprover.coordinate1)
(selectprover.coordinate2))

(= (selectveri f ier.coordinate3)
(selectveri f ier.coordinate4))

(= (selectprover.coordinate5)
(selectveri f ier.coordinate6)))))(check − sat)

(25)

5.1.5. Generate Location Proof
The Rule 26 describes the process of generating location

proofs for IoT devices demonstrating their presence at a speci-
fied location in terms of LBS. The proof generation procedure
begins by selecting and asserting the prover’s and verifier’s con-
textual information about their deployed environment. The con-
text information contains the IoT device’s unique identifier, the
date and time of data sensing, as well as the device’s exact loca-
tion and activity. Next, the verifier selects the location request
and sends it to the prover to validate. After receiving the lo-
cation proof request, the prover uses her private key to gener-
ate the signature and sends it to the verifier. The outcome we
reached in response to this assertion is unsat.

(assert(not(or(= (selectid1)
(selecttime2)

(= (selectlocation3)
(selectactivity4)))

(= (selectextract.context.in f ormation5)
(selectstore.context.in f ormation6))

(= (select

location.proo f 7)
(selectprivate.key8)(selecthash9)))))(check − sat)

(26)
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5.1.6. Verify Location Proof
In Rule 27, the property for verifying location proofs for IoT

devices claiming to be at a given location with context informa-
tion is demonstrated. The verification process begins by obtain-
ing the signatures of provers and their associated public keys as
inputs. After confirming the availability of stored information
on the LBS, the verifiers examine the contextual information CI
from the prover and perform ECDSA* batch verification on the
signatures. The outcome we reached in response to this asser-
tion is unsat.

(assert(not(or

(= (selectextract.context.in f ormation1)
(selectextract.context.in f ormation2))

(= (selectlocation.proo f .request3))
(= (selectextracted.context.in f ormation4))

(= (selectveri f ied.in f ormation6)
(selectpublic.key7))

(= (selectveri f ied.location.proo f veri f ied)))))(check − sat)
(27)

5.1.7. Results
For verification, the proposed model and transition rules are

defined and converted to SMT. We used the“QF AUFLIA” logic
of SMT-Lib to transform the rules. This logic includes quan-
tified free logic equations and free sort functions that can be
easily integrated into many theories, including integer arrays.
Next, we used the Z3 solver to determine whether or not the
proposed model meets the specified properties. The system
modelling results and defined properties imply that the pro-
posed scheme is correct in terms of reliability and validity in the
underlying scenario. The Z3 solver takes the properties as input
parameters, computes them, and delivers the results as Boolean
satisfiers (sat, unsat). Unsatisfactory results (sat) result in im-
precision or lack of specified attributes. However, satisfactory
findings (unsat) indicate that the proposed scheme is correct in
system modelling and properties.

The verification results of the ECDSA* technique and LPS
technique in the proposed clone node attack detection scheme
are expressed in terms of the time required by the solver to ver-
ify the given properties of the proposed algorithms. Table 7
displays the execution time (in seconds) for the specified prop-
erties. The verification results for the stated properties are gen-
erated in a finite amount of time. Hence, confirm and satisfy
the properties in terms of correctness.

Table 7: Execution Time of the Specified Properties
Specified Properties Execution Time
ECDSA* Key Generation 0.0357 sec
ECDSA* Signature Generation 0.0598 sec
ECDSA* Signature Verification 0.0620 sec
Calculate Location 0.0293 sec
Generation Location Proof 0.0575 sec
Verify Location Proof 0.0762 sec

6. Modelling and Analysis of Proposed Scheme Using
Coloured Petri Nets

This section describes the modelling and analysis proce-
dure for the proposed scheme using CPNs. As with section
4, we divided the proposed scheme into two parts: an enhanced
ECDSA* and a LPS for modelling and analysis using CPN. The
sections 6.1 and 6.2 describe the process of developing a CPN
model for an enhanced ECDSA* and a LPS, respectively. We
then used timed and untimed methods to analyse and demon-
strate the CPN models.

6.1. An Enhanced ECDSA* Scheme
This section demonstrates how an ECDSA* approach can be

modelled using CPNs. A CPN model is characterised as fol-
lows: The places include colour sets and are described as data
types. Arc inscriptions are specified expressions evaluating the
current placements of input places during the transition. A tran-
sition is acceptable in CPNs if the variables used in the transi-
tion arcs have consistent bindings from all inputs. The resulting
transition arc is a subset of a multiset. When a transition is fired,
it removes the related multiset of tokens from each input point
where the transition was applied. Also, it uses the multiset of
tokens to generate each outcome for which the expression eval-
uates. In arc expressions, variables must be declared using var.

The figures 11-16 illustrates the CPN models used in the pro-
posed scheme for the timed and untimed ECDSA* key gener-
ation, ECDSA* signature generation, and ECDSA* signature
verification processes, respectively.

6.1.1. ECDSA* Key Generation
Fig. 11 illustrates a CPN model of an ECDSA* Key Gen-

eration process. We used the comprehensive types declaration
feature in CPN to declare Inputs as a token with all desirable
characteristics. The following are the colour set declarations
for the CPN model of an ECDSA* Key Generation:
colset IN = with p | E | P | n | h;

colset DPS = with sp | sE | sP | sn | sh;

colset KS = with PUK | PRK;

Figure 11: A CPN Model of an ECDSA* Key Generation Process

The initial marking for the “Inputs” place is specified by a
multiset inscription such as 1’p++1’E++1’P++1’n++1’h. The
variables in the green box and circle show the total number of
current tokens and their colour set. For the “Inputs” place, the
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inscription IN identifies the input colour as an option. The
domain parameters {p, E, P, n, h}, are required to generate
the public and private keys. The multiset inscription such as
1’sp++1’sE++1’sP++1’sn++1’sh specifies the initial mark-
ing for the “Domain Parameters Store” place and shows the de-
tails and number of current tokens in the place. The inscription
DPS proclaims the colour set for the “Domain Parameters Store”
place, which contains domain parameters like {sp, sE, sP, sn,
sh}. Following that, the multiset inscription 1’PUK++1’PRK

specified the initial marking for the “Keys Store” place, and the
associated green box and circle represent the details and num-
ber of currently residing tokens in the place during simulation.
The inscription KS specifies the colour scheme for the “Keys
Store” place, which contains the created keys such as {PUK,
PRK}.

A CPN model of an ECDSA* Key Generation has three vari-
ables, each with its own declaration:
var i: IN;

var s: DPS;

var k: KS;

The variables i, s and k are defined for the colour set declara-
tions IN, DPS and KS, respectively.

The following user-defined functions leverage a built-in CPN
functionality to use inputs to initiate transitions and store the
result in many places ahead. The functions for the ECDSA*
Key Generation CPN model are as follows.
fun genDomParms (i) = (s, IN);
fun genKeys (s) = (k, DPS);

During CPN transitions, the guard function can be used to
control the execution of associated transitions. In the ECDSA*
Key Generation CPN model, one transition is labelled “Gener-
ate Domain Parameters”, and the other “Generate Keys”. An
arc inscription over the “Inputs” place states that the value of
i can be set to any of the domain parameters. The “Generate
Domain Parameters” transition executes and stores the result of
the function call genDomParms(i) in the “Domain Parameters
Store” place. The arc inscription for the “Domain Parameters
Store” place is a variable s, which can be tied to any of the
stored domain parameters. The transition “Generate Keys” ex-
ecutes and stores the result of the function call genKeys(s) in
the “Keys Store” place. The arc inscription for the “Keys Store”
place is a variable k, which can be tied to any of the following
transitions.

Fig. 12 shows how to include time into a CPN model for
ECDSA* Key Generation. This information allows us to eval-
uate the system’s efficiency and processes. Timed models are
beneficial for validating real-time systems when accurate tim-
ing of events and outputs is required rather than just output
completion. Time is introduced with CPNs by a colour set to-
ken and a second value containing the time stamp. This process
is done by setting a timer for the desired colour set. Depending
on the context, this timestamp may be interpreted as the pro-
cessing or execution time of the impacted transitions. CPNs
allow us to utilise both timed and untimed tokens, so we do not
have to declare each token type individually. Thus, if a net-
work supports both timed and untimed activities, the untimed
transitions must fire before the timed transitions.

Figure 12: A timed CPN Model of an ECDSA* Key Generation Process

For the ECDSA* Key Generation CPN model, the following
timed colour set declarations are provided:
colset IN = with p | E | P | n | h timed;

colset DPS = with sp | sE | sP | sn | sh timed;

colset KS = with PUK | PRK timed;

With these enhancements, the domain parameters in the “In-
puts” place now include a timestamp showing the initial arrival
time. Each domain parameter is allocated a unique timestamp,
increment by 1’p@+1++1’E@+3++1’P@+5++1’n@+7

++1’h@+9 respectively. Therefore, until the global clock has
read a time that is higher than or equal to the time stamp on a do-
main parameter, transition i will not be fired. A similar conven-
tion is employed for all stored parameters, including incremen-
tal time stamps, such 1’sp@+1++1’sE@+3++1’sP@+5++1’sn

@+7++1’sh@+9.

6.1.2. ECDSA* Signature Generation
A CPN model of an ECDSA* Signature Generation process

in the proposed scheme is illustrated in Fig. 13. The following
are the extensive type colour set declarations for the CPN
model of an ECDSA* Signature Generation:
colset IN: = with m | d | H | P;

colset CS = with x | y;

colset S P1 = with nx | n;

colset S P2 = with nk | ne | nd | nr;

colset S P1XS P2 = product S P1 * S P2;

The multiset inscription 1’m++1’d++1’H++1’P specifies the
initial marking for the “Inputs” place. In green box and circle,
these variables show how many total current tokens are present
and their colour set declaration, respectively. The inscription
IN declares the colour set for the “Inputs” place, which con-
tains the prescribed input parameters such as {m, d, H, P} re-
quired to commence the signature generation procedure in an
ECDSA*. The multiset inscription 1’x++1’y specifies the ini-
tial marking for the “Coordinates Store” place, while the ac-
companying green box and circle represent the features and
currently placed tokens in the place during simulation process,
respectively. The inscription CS indicates the colour set for the
“Coordinates Store”, which is responsible for storing the ECC
coordinates points such as x and y. The multiset inscription
1’e, in conjunction with the inscription HS, defines the initial
marking for the ’‘Hash Integer Store” place, which stores the
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Figure 13: A CPN Model of an ECDSA* Signature Generation Process

hash integer value e. In the green box and circle, these vari-
ables show how many total current tokens are present and their
colour set declaration. The following multiset inscriptions, in-
cluding 1’nx++1’n and 1’nk++1’ne++1’nd++1’nr, as well
as the inscriptions S P1 and S P2, specify the initial marking
for the “Signature Pair 1 Store” and “Signature Pair 2 Store”
places, respectively. These places are used to hold signature
values such as r and s, and the matching green box and cir-
cle indicate the features and count of located tokens in those
locations during simulation. Finally, an inscription S P1XS P2
declares the colour set for the “Signature Store” place, which is
responsible for merging and storing the signature data.

The following six variables are declared in a CPN model of
an ECDSA* Signature Generation.
var i: IN;

var c: CS;

var h: HS;

var r: S P1;

var s: S P2;

var ss: S P1 X S P2;

A variable i is declared for the colour set IN, a variable c is
declared for the colour set CS, a variable h is declared for the
colour set HS, a variable r is declared for the colour set S P1, a
variable s is declared for the colour set S P2 and a variable ss is
declared for the colour set S P1 X S P2.

The following are user-defined functions for the ECDSA*
Signature Generation CPN model.
fun compCoord(i) = (c, IN);
fun compHash (i) = (h, IN);
fun genSigPair1 (c) = (r, CS);
fun genSigPair2 (h) = (s, HS);
fun comSign (r,s) = (s, S P1, r, S P2);

Five transitions are used in the ECDSA* Signature Gener-
ation CPN model: “Compute Coordinates”, “Compute Hash”,
“Generate Signature Pair 1”, “Generate Signature Pair 2” and
“Combine Signature”. An arc inscription at the ”Inputs” place
is a variable i, which can be tied to any of the input parameters.
The transition “Compute Coordinates” executes and stores the

result of the function call comCoord(i) in the “Compute Co-
ordinates” place. The variable c contains an arc inscription of
the Coordinates Store” place and can be tied to any of the coor-
dinates in the coordinate store. The transition “Compute Hash”
executes and stores the result of the function call compHash(i)
in the “Hash Integer Store” place. The arc inscription of the
“Hash Integer Store” location is a variable h, which can be as-
sociated with an integer value in the hash integer store. The
transition “Generate Signature Pair 1” executes and stores the
result of the function call genSigPair1(c) in the “Signature
Pair 1 Store” place. Similarly, the transition “Generate Signa-
ture Pair 2” executes and stores the result of the function call
genSigPair2(h) in the “Signature Pair 2 Store” place. The
arc inscriptions for the “Signature Pair 1 Store” and “Signature
Pair 2 Store” places are the variables r and s, which can be
tied to the signature value stored in them. Finally, the transi-
tion “Combined Signature” executes and stores the result of the
function call comSig(r,s) in the “Signature Store” place. The
arc inscription for the “Signature Store” place are the variables
s and r, which can be tied to any of the final signature values.

A timed CPN model of an ECDSA* Signature Generation
process in the proposed scheme is depicted in Fig. 14. For the
ECDSA* Signature Generation CPN model, the timed colour
set declarations are as follows:
colset IN = with m | d | H | P timed;

colset CS = with x | y timed;

colset S P1 = with nx | n timed;

colset S P2 = with nk | ne | nd | nr timed;

colset S P1XS P2 = product S P1 * S P2 timed;

With these enhancements, the input parameters in the “In-
puts” section include a time stamp showing their arrival time.
Each input parameter contains an incremental time stamp,
such as1’m@+1++1’d@+3++1’H@+5++1’P@+7. Consequently,
the transition i will not be activated until the global clock
reads a time more than or equivalent to the time stamp on
the set parameters. Each coordinate in the “Coordinates
Store” has a unique time stamp assigned incrementally, such
as 1’x@+1++1’y@+3 using a variable c on the arc that fire to
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Figure 14: A timed CPN Model of an ECDSA* Signature Generation Process

the “Generate Signature Pair 1” transition. A hash value in
the “Hash Integer Store” is assigned a unique time stamp in-
crementally, for example, 1’e@+1, using the variables h on
arc that fire to the “Generate Signature Pair 2” transition.
Both signature pairs generated in the “Generate Signature Pair
1” and “Generate Signature Pair 2” processes have a unique
time stamp assigned incrementally, as 1’nx@+1++1’n@+3 and
1’nk@+1++1’ne@+3++1’nd@+5++1’nr@+7, respectively, us-
ing the variables r and s on their arcs.

6.1.3. ECDSA* Signature Verification
A CPN model of an ECDSA* Signature Verification process

in the proposed scheme is shown in Fig. 15. A CPN model
of an ECDSA* Signature Verification has the following
user-defined colour set declarations:
colset IN = with r | s | Q;

colset SS = with sr | ss;

colset HS = with e;

colset PS = with ns | n;

colset HS X PS = product HS * PS;

colset NAR = with product HS * PS * IN;

The multiset inscription 1’r++1’s++1’Q establishes the ini-
tial marking for the “Inputs” place. In the green box and circle,
these variables show how many total current tokens are present
and their colour set declaration. An arc inscription IN speci-
fies the colour scheme for the “Input” place that contains the
input parameters {r, s, Q} required to commence the signature
verification procedure in an ECDSA* technique. The multiset
inscription, for example, 1’sr++1’ss, establishes the initial
marking for the “Signature Store” place. The inscription SS in-
dicates the colour set for the “Signature Stor” place, which is
responsible for storing signature values such as r and s. The
multiset inscription 2’e with an inscription HS specifies the
initial marking for the ’‘Hash Integer Store” place by storing
the hash integer value e, while the matching green box and cir-
cle represent the details and count of current tokens located in
the location during simulation. Additionally, the multiset in-
scription 1’ns++1’n with an inscription PS defines the initial

marking for the ‘’Point Store” place by storing the point value
w. Additionally, an inscription HS X PS establishes the ini-
tial marking for the “Coordinates Store” location by storing the
product of the HS and PS values. Finally, an inscription NAR es-
tablishes the initial marking for the “Coordinates Store” loca-
tion by storing the product of the HS, PS and IN values depicting
the decision about signature acceptance or rejection.

A CPN model of an ECDSA* Signature Verification contains
six variables, the declarations for which are listed below:
var i: IN;

var si: SS;

var hi: HS;

var ps: PS;

var cs: HS X PS ;

A variable i is declared for the colour set IN, a variable si is
declared for the colour set SS, a variable hi is declared for the
colour set HS, a variable ps is declared for the colour set PS, a
variable cs is declared for the colour set HS X PS and a variable
ar is declared for the colour set AR.

The following are user-defined functions for the ECDSA*
Signature Verification CPN model.
fun getSigInt(i) = (si, IN);
fun compHash (i) = (hi, IN);
fun calcPoint (si) = (ps, SS);

Five transitions are used in the ECDSA* Signature Verifica-
tion CPN model: “Get Signature Integers”, “Compute Hash”,
“Calculate Point”, “Compute Coordinates” and “Verify Signa-
tures”. An arc inscription at the “Inputs” place is the variable
i, which can be tied to any of the input parameters. The transi-
tion “Get Signature Integers” executes and stores the result of
the function call getSigInt(i) in the “Signature Store” place.
The variable si contains the arc inscription of the “Signature
Store” place and can be tied to any of the signature values in
the signature store. The transition “Compute Hash” executes
and stores the result of the function call compHash(i) in the
“Signature Store” place. The arc inscription of “Hash Integer
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Figure 15: A CPN Model of an ECDSA* Signature Verification Process

Store” place is simply the variable hi, which can be bound to
an integer value in the hash integer store. The transition “Cal-
culate Point” executes and stores the result of the function call
calcPoint(si) in the “Point Store” place. The arc inscrip-
tion for the “Point Store” place is the variable ps, which can
be tied to any of the point values in the point store. The tran-
sition “Compute Coordinates” executes and stores the result of
the hi, ps in the “Coordinates Store” place. The arc inscrip-
tion of “Coordinates Store” place is the variable cs, which can
be tied to either the hash integer store value or the point store
inscriptions in the coordinates store. The transition “Verify Sig-
natures” executes and stores the result of the hi, ps, i in the
“Accept / Reject” place, which can be tied to either the accept
or reject final signature choice.

Fig. 16 illustrates the timed CPN model of an ECDSA* Sig-
nature Verification process. The following are the timed colour
set declarations for the CPN model of an ECDSA* Signature
Verification:
colset IN = with r | s | Q timed;

colset SS = with sr | ss timed;

colset HS = with e timed;

colset PS = with ns | n timed;

colset HSXPS = product HS * PS timed;

colset NAR = with product HS * PS * IN timed;

With these modifications, the input parameters in the “In-
puts” place now include a timestamp showing their arrival time.
Each input parameter has an incremental time stamp, such as
1’r@+1++1’s@+3++1’Q@+5. Therefore, the transition i will
remain inactive until the world clock reads a time more than or
equal to the time stamp on the set parameters. Each signature
value in the “Signature Store” place is allocated a unique time
stamp incrementally, as follows: 1’sr@+1++1’ss@+3 using the
variables si on arc that fire to the “Calculate Point” transition. A
hash value in the “Hash Integer Store” is assigned a unique time
stamp incrementally, as in 2’e@+1, using the variables hi,ps on

arc that fire to the “Compute Coordinates” transition. A signa-
ture decision in the “Accept / Reject” place has a unique times-
tamp assigned incrementally with a variable hi, ps, i on an arc
that fires to the next transitions if any.

6.2. Location Proof System
This section outlines the process of modelling a LPS utilising

CPNs in a proposed scheme.

6.2.1. Calculate Location
Fig. 17 depicts a CPN model to calculate the location

process of the LPS in the proposed scheme. We refer to this as
utilising the rich type declaration facility of CPNs by declaring
Inputs as a token with all desired characteristics. The following
are the declarations for the colour sets used in the CPN model
of calculating location:
colset IN = with p1 | p2 | v1 | v2;

colset PS = with sp1 | sp2 | sv1 | sv2;

colset PDS = with pdl1 | pdl2 | pdl3 | pdln;

On the top of the “Inputs” place, a multiset inscription
1’p1++1’p2++1’v1

++1’v2 defines the initial marking for it. In the green box
and circle, these variables show how many total current to-
kens are present and their colour set declaration. An inscrip-
tion IN specifies the colour scheme for the “Inputs” place. It
contains the coordinates in 2-D space for provers and veri-
fiers such as {p1, p2, v1, v2} that are required to determine
the prover’s location relative to the verifier. The multiset in-
scription, for example, 1’sp1++1’sp2++1’sv1++1’sv2, es-
tablishes the initial marking for the “Point Store” place, while
the accompanying green box and circle display the details and
count of current tokens existing in the location during simu-
lation. An inscription PS specifies the colour scheme for the
“Point Store” place. It contains the prover and verifier’s stored
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Figure 16: A timed CPN Model of an ECDSA* Signature Verification Process

coordinates, such as {sp1, sp2, sv1, sv2}. The multiset in-
scriptions such as 1’pdl++1’pdl2++1’pdl3++1’pdln speci-
fied the initial marking for the “Provers’ Distance Store” place,
while the accompanying green box and circle represent the de-
tails and count of currently residing tokens in the location dur-
ing simulation. An inscription PDS specifies the colour scheme
for the “Provers’ Distance Store”. It contains the provers dis-
tance list, such as {pdl1, pdl2, pdl3 . . . pdln}.

A CPN model of a Calculate Location in the LPS contains
three variables, the declarations for which are listed below:
var i: IN;

var ps: PS;

var d: PDS;

A variable i is declared for the colour set IN, a variable ps is
declared for the colour set PS and a variable d is declared for
the colour set PDS.

The following are user-defined functions for the Calculate
Location CPN model.
fun det2DSpace(i) = (ps, IN);
fun calDistance(ps) = (d, PS);

Figure 17: A CPN Model of a Calculate Location Process in LPS

Two transitions are used in the Calculate Location CPN
model: “Determine 2-D Point Space” and “Calculate Dis-
tance”. The arc inscription for the “Inputs” place is simply the
i variable. The transition “Determine 2-D Point Space” exe-

cutes and stores the result of the function call det2DSpace(i)
in the “Point Store” place. Therefore, for the provers and ver-
ifiers, i can be tied to any of the coordinates in the 2-D space.
The arc inscription for the “Point Store” place is just the vari-
able ps, which can be tied to any of the stored coordinates. The
transition “Calculate Distance” executes and stores the result of
the function call calDistance(ps) in the “Provers’s Distance
Store” place. The arc inscription for the “Provers’ Distance
Store” place is the variable d, which can be tied to any of the
following places.

Figure 18: A timed CPN Model of a Calculate Location Process in LPS

The timed CPN model of the Calculate Location process
for the LPS in the proposed scheme is depicted in Fig. 18.
The following are the timed colour set declarations for the
Calculate Location CPN model:
colset IN = with p1 | p2 | v1 | v2 timed;

colset PS = with sp1 | sp2 | sv1 | sv2 timed;

colset PDS = with colset PDS = with pdl1 | pdl2

| pdl3 | pdln timed;

With these updates, the input parameters in the “Inputs”
place now include a timestamp showing their arrival time.
Each input parameter contains an incremental time stamp, such
as 1’p1@+1++1’p2@+3++1’v1@+5++1’v2@+7. Therefore, the
transition i will remain inactive until the world clock reads
a time more than or equal to the time stamp on the set pa-
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Figure 19: A CPN Model of a Generate Location Proof Process in LPS

rameters. Each coordinate in the “Point Store” for the prover
and verifier has a unique timestamp assigned incrementally,
as follows: 1’sp1@+1++1’sp2@+3++1’sv1@+5++1’sv2@+7

with the variables ps on arc that fire to the “Calculate Distance”
transition. In the “Provers’ Distance Store” place, each prover
distance has a unique timestamp assigned incrementally, such
as 1’pdl@+1 with the variables d on an arc that fire to the next
forthcoming transition.

6.2.2. Generate Location Proof
Fig. 19 depicts a CPN model of a Generate Location Proof

process in the proposed scheme. We refer to this as utilising
the rich type declaration facility of CPNs by declaring Inputs
as a token with all desired characteristics. The following are
the declarations for the colour sets used in the CPN model of
produce location proof:
colset IN = with ID | Time | Loc | Act | PRK |

H;

colset CIS = with SID | STime | SLoc | SAct;

colset LIS = with CI1 | CIn;

colset LPS = with RLPNonEmpty | RLPEmpty;

colset SLP = product IN * CIS * LPS;

On the top of the “Inputs” place, the multiset inscription
such as 1’ID++1’Time++1’Loc++1’Act++1’PRK++1’H de-
fines the initial marking for it. In the green box and circle,
these variables show how many total current tokens are present
and their colour set declaration. The inscription IN specifies
the colour scheme for the “Inputs” place. It comprises context
information sensed by both provers and verifiers, a private key
used to sign location proofs, and a hash function, and is thus
represented as{ID, Time, Loc, Act, PRK, H}. The multiset in-
scription, for example, 1’SID++1’STime++1’SLoc++1’SAct,
defines the initial marking for the “Context Information Store”
place, while the associated green box and circle indicate the

details and count of current tokens existing in the location dur-
ing simulation. The inscription CIS specifies the colour scheme
for the “Context Information Store” place. It contains context
information that the prover and verifier have stored, such as
{SID, STime, SLoc, SAct}. The multiset inscriptions such as
1’CI1++1‘CIn specified the initial marking for the “LBS In-
formation Store” place, and the accompanying green box and
circle indicate the details and count of currently holding to-
kens in the location during simulation. The inscription LIS de-
clares the colour set and provides a list of context information
to be utilised in verifying location proofs such as {CI1, CI2,
CI3 . . . CIn}. Additionally, the multiset inscriptions such as
1’RLPNonEmpty++1‘RLPEmpty specified the initial marking for
the “Location Proof Store” place, while the matching green
box and circle display the details and count of current to-
kens existing in the location during simulation. The inscrip-
tion LPS specifies the colour set and includes a list of request
proofs collected from provers for verification, such as {LP1,
LP2, LP3 . . . LPn}. Finally, the multiset inscriptions such as
1’CI++1‘PRKN++1‘HashN++1‘PS ig defined the initial mark-
ing for the ’‘Signed Location Proofs Store” place, while the
matching green box and circle display the details and count of
current tokens residing in the location during simulation. The
inscription SLP of this place declares the colour set and includes
information necessary to verify the location proofs, such as con-
text information, the provers’ private keys, the hash function,
and the generated location proof, which are represented as the
product of the inscriptions IN, CIS and LPS.

A CPN model of Generate Location Proof in the LPS con-
tains five variables, each of which has its own declaration:
var i: IN;

var cis: CIS;

var lis: LIS;

var lps: LPS;

var slp: SLP;
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Figure 20: A timed CPN Model of a Generate Location Proof Process in LPS

A variable i is declared for the colour set IN, a variable cis is
declared for the colour set CIS, and a variable lis is declared for
the colour set LIS, a variable lps is declared for the colour set
LPS and a variable slp is declared for the colour set SLP.

The following are user-defined functions for the Generate
Location Proof CPN model.
fun senConInformation(i) = (cis, IN);
fun storeConInformation(cis) = (lis, CIS);
fun reqLocProof(i, cis, lis) = (i, IN, cis, CIS,

lps, LPS);

Four transitions are used in the Generate Location Proof CPN
model: “Sense Context Information” and “Stored Context In-
formation”, “Request Location Proof” and “Generate Location
Proof”. The arc inscription of the “Inputs” place is merely the
variable i, which can be tied to any of the context informa-
tion perceived by the provers and verifiers to reach the “Sense
Context Information” transition. The transition “Sense Con-
text Information” executes and stores the result of the func-
tion call senConInform(i) in the “Context Information Store”
place. The arc inscription for the “Context Information Store”
place is simply the variable cis and can be associated with
any of the context information saved. The arc inscription for
the “LBS Information Store” place is simply the variable lis,
which can be connected to any of the subsequent transitions;
for example, in this case, the subsequent transition is “Re-
quest Location Proof”. The transition “Stored Context In-
formation” executes and stores the result of the function call
StoreConInform(cis) in the “LBS Information Store” place.
The transition “Request Location Proof” executes and stores
the result of the function call reqLocation Proof(lis) in
the “Location Proof Store” place. Finally, the transition “Gen-
erate Location Proof” executes and stores the result of the func-
tion call genLocProof(i,cis,lps) in the “ Signed Location

Proof Store” place.

The timed CPN model of the Generate Location Proof
process for the LPS in the proposed scheme is depicted in Fig.
20. The following are the timed colour set declarations for the
CPN model of Generate Location Proof:
colset IN = with ID | Time | Loc | Act | PRK | H

timed;

colset CIS = with SID | STime | SLoc | SAct

timed;

colset LIS = with CI1 | CIn timed;

colset LPS = with RLPNonEmpty | RLPEmpty timed;

colset SLP = product IN * CIS * LPS timed;

With these updates, the input parameters in the “Inputs”
place now include a timestamp showing their arrival time.
Each input parameter has an incremental time stamp, such as
1’ID@+1++1’Time@+3++1’Loc@+5++1’Act@+7++1‘PRK

@+9++1‘H@+11. The transition i will remain inactive until the
world clock reads a time more than or equal to the time stamp
on the set parameters. Following that, each piece of context
information stored in the “Context Information Store” place
by the verifiers is incrementally assigned a unique timestamp,
as follows: 1’ID@+1++1’Time@+3++1’Loc@+5++1’Act@+7

with the variables cis on arc that fire to the “Stored Con-
text Information” transition. The context information recorded
at the LBS and in the ”LBS Information Store” has an in-
cremental time stamp, such as 1’CI1@+1++1‘CIn@+3 with
a variable lis on an arc that fires to the next transi-
tion “Request Location Proof”. Additionally, the location
proof requests carry an incremental time stamp, such as
1’RLPNonEmpty@+1++1‘RLPEmpty@+3, using a variable lps on
arc fire to the next transition. Finally, all information associ-
ated with signed proofs, such as context information, private
key, hash function, and signed proof, and assigned to arc vari-
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Figure 21: A CPN Model of a Verify Location Proof Process in LPS

ables i, cis, slp via an arc that fires to the next transition, if any.

6.2.3. Verify Location Proof
Fig. 21 illustrates a CPN model of Verify Location Proof

process in the proposed scheme. By defining Inputs as a token
with all of the desired characteristics, we are utilising CPN
powerful type declaration facility. The following are the colour
set declarations for the CPN model of verifying location proof:
colset IN = with PS ig | PPK | Ver;

colset ECI = with CIExist | CINotExist;

colset LPS = with LPRequest1 | LPRequestn;

colset VIS = product ECI * LPS;

colset AR = with VIS * IN;

On the top of the “Inputs” place, a multiset inscription such
as 1’PS ig++1’

PPK++1’Ver defines the initial marking for it. In the green
box and circle, these variables show how many total current
tokens are present and their colour set declaration. The inscrip-
tion IN specifies the colour scheme for the “Inputs” place. This
place contains the signature lists. {PS ig1 , PS ig2 , PS ig3 . . . PS ign },
public keys lists {PPK1 , PPK2 , PPK3 . . . PPKn } and verifiers list
{Ver1, Ver2, Ver3 . . . Vern} selected through the use of a trusted
model. The multiset inscription 1’CIExist++1’CINotExist speci-
fies the initial marking for the “Extracted Context Information
Store” place, while the associated green box and circle display
the details and count of current tokens living in the location
during simulation. The inscription ECI specifies the colour
scheme for the “Extracted Context Information Store” place.
It contains context information that the prover and verifier have
stored, such as {SID, STime, SLoc, SAct}, and has established
the presence of such information. The multiset inscriptions
such as 1’LPRequest1++1‘LPRequestn specified the initial marking
for the “Location Proofs Store” place, and the accompanying
green box and circle display the details and count of currently
residing tokens in the location during simulation. This place’s
inscription LPS states the colour set and includes a list of loca-

tion proof requests that must be validated, such as {LPRequest1 ,
LPRequest2 , LPRequest3 . . . LPRequestn }. Additionally, the multi-
set inscriptions 1’VCI1++1‘VCIn specified the initial marking
for the “Verified Information Store” place, while the accom-
panying green box and circle indicate the details and count of
current tokens residing in the location throughout simulation.
The inscription VIS states the colour set and provides a list of
validated context information collected from the LBS for veri-
fication and represented as the product of the inscriptions ECI
and LPS. Finally, the inscription AR of this location declares the
colour set and includes information necessary to verify the loca-
tion proofs, such as the prover’s signature, the prover’s public
key, and the decision result regarding the location proof’s ac-
ceptance or rejection, and is thus represented as the product of
the inscriptions VIS and IN.

A CPN model of Verify Location Proof in the LPS contains
five variables, each of which has its own declaration:
var i: IN;

var eci: ECI;

var lps: LPS;

var vis: VIS;

var ar: AR;

A variable i is declared for the colour set IN, a variable eci
is declared for the colour set ECI, and a variable lps is declared
for the colour set LPS, a variable vis is declared for the colour
set VIS and a variable ar is declared for the colour set AR.

The following are user-defined functions for the Generate
Location Proof CPN model.
fun extConInform(i) = (eci, IN);
fun accetLocProof(eci) = (lps, ECI);
fun verConInform(eci,lps) = (eci, ECI, lps,

LPS);
fun verLocProof(vsi,i) = (vis, VIS, i, IN);

Four transitions are used in the Verify Location Proof CPN
model: “Extract Context Information”, “Accept Location Proof
Request”, “Verify Context Information” and “Verify Location
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Figure 22: A timed CPN Model of a Verify Location Proof Process in LPS

Proof”. The arc inscription for the “Inputs” place is sim-
ply the variable i, which can be bound to any of the acces-
sible information, such as the prover’s signature, public key,
or list of verifiers, and all of which reach the transition “Ex-
tract Context Information”. The transition “Extract Context
Information” executes and stores the result of the function
call extConInform(i) in the “Extracted Context Information
Store” place. The arc inscription for the “Extracted Context
Information Store” place is just the variable eci, which can
be tied to any of the LBS-acquired context information. The
arc inscription for the “Location Proofs Store” place is sim-
ply the variable lps, which can be connected to any of the
subsequent transitions; for example, in this case, the subse-
quent transition is ‘Verify Context Information”. The transi-
tion “Accept Location Proof Request” executes and stores the
result of the function call acceptLocProof(eci) in the “Lo-
cation Proofs Store” place. The transition “Verify Context In-
formation” executes and stores the result of the function call
verConInform(eci,lps) in the “Verified Information Store”
place. Finally, the transition “Verify Location Proof” executes
and stores the result of the function call verLocProof(vis,i)
in the “Accept / Reject Location Proof Store” place. The arc in-
scription for the “Verified Information Store” place is a variable
vis, and the arc inscription for the “Accept / Reject Location
Proof Store” place are the variables vis, i, both of which can be
bound to their respective following transitions.

The timed CPN model of the Verify Location Proof proce-
dure for the LPS in the proposed scheme is depicted in Fig.
22. The following are the timed colour set declarations for the
CPN model of Verify Location Proof:
colset IN = with PS ig | PPK | Ver timed;

colset ECI = with CIExist | CINotExist timed;

colset LPS = with LPRequest1 | LPRequestn timed;

colset VIS = product ECI * LPS timed;

colset AR = with VIS * IN timed;

With these enhancements, the input parameters in the “In-
puts” place now include a timestamp showing their arrival
time. Each input parameter has an incremental time stamp,
such as 1’PS ig@+1++1’PPK@+3++1’Ver@+5. Thus, the tran-
sition i will remain inactive until the world clock reads a time
more than or equal to the time stamp on the set parameters.
Following that, each piece of extracted context information
from the LBS that is stored in the ”Extracted Context Infor-
mation Store” is assigned an incremental time stamp, such as
1’CIExist@+1++1’CINotExist@+3, using the variables eci on an
arc that fire to the “Accept Location Proof Request” transition.
The location proof requests received from the provers and kept
in the location proofs store include a unique timestamp assigned
incrementally, such as 1’LPRequest1@+1++1‘LPRequestn

@+3 with a variable lps on an arc that fires to the following tran-
sition “Verify Context Information”. Additionally, the validated
data with a variable vis on arc firing to the next transition. Fi-
nally, all information about the verification of location proofs,
such as signed location proofs, public keys, and decisions re-
garding location proofs, with the variables vis, i via an arc that
fires to the next transition, if any.

6.3. Analysis
We utilised CPN Tools 4.0.1 [39], the most recent version

available, to model and simulate both the ECDSA* technique
and LPS technique in the proposed clone node attack detec-
tion scheme. CPN Tools is a free, open-source software tool
kit that provides comprehensive support for editing, creation,
and simulation of CPN models, as well as numerous features
for interactive and automatic simulation, monitoring, and pro-
cess communication. We used the monitoring and data log-
ging capabilities of the CPN Tools to determine the size of the
states’ markings to keep track of the number of tokens in vari-
ous places employed in our models.

The data collector monitors measure two types of statistics:
(i) calculate an average (ii) calculate a time average. A moni-
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tor tool that computes the mean (of either constant or discrete-
parameter variables) is a discrete-parameter statistics calculator.
On the other hand, a continuous-time statistic monitor is known
as a time-average monitor. Depending on the processes in our
proposed scheme, we utilise both types of monitors to perform
various calculations, including count (number of observations),
minimum, maximum, sum, and average.

Statistics obtained from the data logging facility, such as the
total, average, and maximum, are calculated using the values
that are returned by the observation function. The sum of the
data values recorded by this monitor represented the number of
duplicate data packets received throughout a simulation. The
percentage of duplicated data packets to the overall number of
data packets received is calculated as the average of the data
values. Moreover, In simulation-based performance analysis,
several scenarios or configurations of a system are frequently
compared. As a result, system performance is often determined
by multiple variables. In particular, the number of packets that
are successfully transmitted, the minimum and maximum peri-
ods between the arrival of data packets, and even the diversity
of inter-arrival times all impact the timed CPN models.

Tables 8 and 9 summarised the state marking size for the un-
timed CPN and the timed CPN for an ECDSA* Key Generation
process, respectively, utilising various calculated statistics such
as token counts, sum, average, minimum, and maximum values.

Table 8: Marking Size of the States - An Untimed CPN Model of ECDSA* Key
Generation

Untimed CPN Model Statistics
Places Count Sum Average Min Max
Inputs 51 56 1.098039 0 5

Domain Parameters Store 51 454 8.901961 5 10
Keys Store 51 1178 23.098039 2 47

Table 9: Marking Size of the States - A Timed CPN Model of ECDSA* Key
Generation

Timed CPN Model Statistics
Places Count Average Min Max
Inputs 7 0.510204 0 5

Domain Parameters Store 52 9.489796 5 10
Keys Store 47 22.000000 2 47

Tables 10 and 11 summarised the state marking size for the
untimed CPN and the timed CPN for the ECDSA* Signature
Generation process, respectively, utilising various calculated
statistics such as token counts, sum, average, minimum, and
maximum values.

Table 10: Marking Size of the States - An Untimed CPN Model of ECDSA*
Signature Generation

Untimed CPN Model Statistics
Places Count Sum Average Min Max
Inputs 51 204 4.000000 4 4

Coordinates Store 51 377 7.392157 2 13
Hash Integer Store 51 280 5.490196 1 12

Signature Pair 1 Store 51 330 6.470588 2 10
Signature Pair 2 Store 51 393 7.705882 4 10

Signature Store 51 118 2.313725 0 5

Tables 12 and 13 summarised the state marking size for the
untimed CPN and the timed CPN for the ECDSA* Signature
Verification process, respectively, utilising various calculated

Table 11: Marking Size of the States - A Timed CPN Model of ECDSA* Sig-
nature Generation

Timed CPN Model Statistics
Places Count Average Min Max
Inputs 18 4.000000 4 4

Coordinates Store 43 6.242424 2 11
Hash Integer Store 9 2.818182 1 4

Signature Pair 1 Store 36 13.575758 2 34
Signature Pair 2 Store 8 3.969697 3 7

Signature Store 4 0.787879 0 2

statistics such as token counts, sum, average, minimum, and
maximum values.

Table 12: Marking Size of the States - An Untimed CPN Model of ECDSA*
Signature Verification

Untimed CPN Model Statistics
Places Count Sum Average Min Max
Inputs 51 153 3.000000 3 3

Signature Store 51 123 2.411765 0 5
Hash Integer Store 51 325 6.372549 2 11

Point Store 51 429 8.411765 2 15
Coordinates Store 51 175 3.431373 0 8

Accept / Reject 51 354 6.941176 0 11

Table 13: Marking Size of the States - A Timed CPN Model of ECDSA* Sig-
nature Verification

Timed CPN Model Statistics
Places Count Average Min Max
Inputs 32 3.000000 3 3

Signature Store 34 1.589474 0 3
Hash Integer Store 25 7.621053 2 13

Point Store 22 5.294737 2 10
Coordinates Store 21 6.452632 0 12

Accept / Reject 9 3.178947 0 7

Table 14: Marking Size of the States - An Untimed CPN Model of Calculate
Location for LPS

Untimed CPN Model Statistics
Places Count Sum Average Min Max
Inputs 51 204 4.000000 4 4

Point Store 51 834 16.352941 4 28
Provers’ Distance Store 51 696 13.647059 1 27

Table 15: Marking Size of the States - A Timed CPN Model of Calculate Lo-
cation for LPS

Timed CPN Model Statistics
Places Count Average Min Max
Inputs 17 4.000000 4 4

Point Store 52 11.371429 4 19
Provers’ Distance Store 37 16.800000 4 39

For the clone node attack detection scheme, Tables 14 and
15 summarised the state marking size for the untimed CPN and
the timed CPN for the Calculate Location process, respectively,
utilising various calculated statistics such as token counts, sum,
average, minimum, and maximum values.

Tables 16 and 17 summarised the state marking size for the
untimed CPN and the timed CPN for the Generate Location
Proof, respectively, utilising various calculated statistics such as
token counts, sum, average, minimum, and maximum values.

Finally, Tables 18 and 19 summarised the state marking size
for the untimed CPN and the timed CPN for the Verify Location
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Table 16: Marking Size of the States - An Untimed CPN Model of Generate
Location Proof for LPS

Untimed CPN Model Statistics
Places Count Sum Average Min Max
Inputs 51 306 6.000000 6 6

Context Information Store 51 628 12.313725 4 19
LBS Information Store 51 408 8.000000 2 16
Location Proof Store 51 511 10.019608 2 18

Signed Location Proofs Store 51 340 6.666667 4 9

Table 17: Marking Size of the States - A Timed CPN Model of Generate Loca-
tion Proof for LPS

Timed CPN Model Statistics
Places Count Average Min Max
Inputs 14 6.000000 6 6

Context Information Store 26 8.266667 4 12
LBS Information Store 40 6.733333 2 14
Location Proof Store 32 11.8000000 2 28

Signed Location Proofs Store 6 6.333333 4 8

Proof, respectively, utilising various calculated statistics such
as token counts, sum, average, minimum, and maximum values.

Table 18: Marking Size of the States - An Untimed CPN Model of Verify Lo-
cation Proof for LPS

Untimed CPN Model Statistics
Places Count Sum Average Min Max
Inputs 51 153 3.000000 3 3

Extracted Context Information Store 51 484 9.490196 2 14
Location Proofs Store 51 417 8.176471 2 14

Verified Information Store 51 286 5.607843 0 11
Accept / Reject Location Proof Store 51 292 5.725490 0 15

Table 19: Marking Size of the States - A Timed CPN Model of Verify Location
Proof for LPS

Timed CPN Model Statistics
Places Count Average Min Max
Inputs 16 3.000000 3 3

Extracted Context Information Store 47 6.941176 2 11
Location Proofs Store 38 9.441176 2 20

Verified Information Store 25 6.764706 0 18
Accept / Reject Location Proof Store 7 1.705882 0 5

The CPN model describes the complex network in great de-
tail, explains the way in which it works, and details the various
ways information flows through it. Moreover, the CPN models
are designed to ensure the integrity of and to demonstrate the
presence of deadlocks in a system. From the above CPNs mod-
els and the result analysis of the marking size of places in these
models, it is clear that all of the model’s states are accessible.
Each model transition is enabled/fired during the simulation.
Additionally, these models have no bottlenecks, indicating that
they are entirely free of deadlocks. There may be a range of
tokens for each state, as the execution pattern or the number of
times a transition is fired will influence this number.

7. Conclusion

This paper has studied, examined, and analysed our exist-
ing proposed clone node attack detection scheme for IoT net-
works. We modelled the proposed scheme using HLPNs, which
have the advantage of giving a stable mathematical description
and analysing its functional and structural characteristics. We
specified several properties defining the proposed scheme’s be-
haviour using the Z specification language, and if the models

satisfy particular properties, they are considered correct. Fur-
ther, we validated our models using a model checking tech-
nique, utilising the SMT-Lib and Z3 solver. Verification results
demonstrated in this work indicate that the models used in the
proposed framework are adequate for behavioural aspects. We
extended our work by modelling the proposed scheme using
CPNs, which extend Petri Nets with high-level programming
language-like properties, making them more effective and ideal
for modelling complex systems. Finally, we verified the logical
validity and performance of the proposed approach using both
untimed and timed models of CPNs.
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Appendix A. Pipe+ Illustrations of HLPN Models

This appendix includes Pipe+ illustrations for the following
HLPN models: ECDSA* key generation, ECDSA* signature
generation, ECDSA* signature verification, calculate location,
generate location proof, and verify location proof.

Figure A.23: A Pipe+ View of HLPN Model of an ECDSA* Key Generation

Fig. A.23 depicts the HLPN model of an ECDSA* Key Gen-
eration, which consists of three transitions and three places. All
transitions in this HLPN are timed.

Figure A.24: A Pipe+ View of HLPN Model of an ECDSA* Signature Gener-
ation

Fig. A.24 shows the HLPN model for ECDSA* Signature
Generation. This HLPN has four locations and five transitions.
Only ”Generate Signature Pair 2” is utilised as an immediate
transition.

Figure A.25: A Pipe+ View of HLPN Model of an ECDSA* Signature Verifi-
cation
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Fig. A.25 shows the HLPN model of an ECDSA* Signature
Verification. This HLPN has six places and six transitions. Two
of the six transitions are immediate: ”Compute Coordinates”
and ”Verify Signatures”.

Figure A.26: A Pipe+ View of HLPN Model of the Calculate Location in LPS

Fig. A.26 depicts the HLPN of Calculate Location in LPS,
which has three places and three transitions. All transitions in
this HLPN are timed.

Figure A.27: A Pipe+ View of HLPN Model of Generate Location Proof in
LPS

Fig. A.27 illustrates the HLPN model for Generate Loca-
tion Proof in LPS, which has five places and five transitions. A
”Generate Location Proof” is the only immediate transition.

Fig. A.28 illustrates the HLPN model of the verify location
proof in LPS, which comprises five places and five transitions.
From the five transitions, two are used as immediate transitions:
”Verify Context Information”, ”Verify Location Proof”.

Figure A.28: A Pipe+ View of HLPN Model of the Verify Location Proof in
LPS

Appendix B. Incidence Marking

This appendix presents the results of the incidence markings
of HLPN models, which comprise ECDSA* signature gener-
ation, ECDSA* signature verification, calculate location, gen-
erate location proof and verify location proof. The results of
the incidence markings are determined using several matrices,
including forwards, backwards, combined, and inhibition.

Table B.20: High Level Petri Net Incidences - ECDSA* Signature Generation
Forwards Incidence Matrix I+

Start
Compute

Coordinates
Compute

Hash
Generate

Signature Pair 1
Generate

Signature Pair 2
ϕ (Inputs) 1 0 0 0 0

ϕ
(Coordinates

S tore) 0 1 0 0 0

ϕ
(HashInteger

S tore) 0 0 1 0 0

ϕ
(S ignature

S tore) 0 0 0 1 1

Backwards Incidence Matrix I−

Start
Compute

Coordinates
Compute

Hash
Generate

Signature Pair 1
Generate

Signature Pair 2
ϕ (Inputs) 0 1 1 0 1

ϕ
(Coordinates

S tore) 0 0 0 1 0

ϕ
(HashInteger

S tore) 0 0 0 0 1

ϕ
(S ignature

S tore) 0 0 0 0 0

Combined Incidence Matrix I

Start
Compute

Coordinates
Compute

Hash
Generate

Signature Pair 1
Generate

Signature Pair 2
ϕ (Inputs) 1 -1 -1 0 -1

ϕ
(Coordinates

S tore) 0 1 0 -1 0

ϕ
(HashInteger

S tore) 0 0 1 0 -1

ϕ
(S ignature

S tore) 0 0 0 1 1

Inhibition Matrix H

Start
Compute

Coordinates
Compute

Hash
Generate

Signature Pair 1
Generate

Signature Pair 2
ϕ (Inputs) 0 0 0 0 0

ϕ
(Coordinates

S tore) 0 0 0 0 0

ϕ
(HashInteger

S tore) 0 0 0 0 0

ϕ
(S ignature

S tore) 0 0 0 0 0

Table B.20 presents the results of forwards, backwards, com-
bined, and inhibition incidence matrices for an ECDSA* Sig-
nature Generation Petri net.

The forwards, backwards, combined, and inhibition matrices
for the ECDSA* Signature Verification Petri Net are shown in
Table B.21.

Table B.22 shows the results of forward, backward, com-
bined and inhibition matrices for the scenario of Calculate Lo-
cation in the proposed clone node detection mechanism.

Table B.23 presents the results of forwards, backwards, com-
bined, and inhibition incidence matrices for the Generate Loca-
tion Proof Petri net in the proposed clone node attack detection
technique.

The forwards, backwards, combined, and inhibition matrices
for the Verify Location Proof Petri net of the proposed clone
node attack detection scheme are shown in Table B.24.

Appendix C. Confidence Intervals

This appendix contains the confidence intervals for several
HLPNs in the average number of tokens with minimum and
maximum threshold values. These HLPNs include ECDSA*
signature generation, ECDSA* signature verification, calculate
location, generate location proof, and verify location proof.
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Table B.21: High Level Petri Net Incidences - ECDSA* Signature Verification
Forwards Incidence Matrix I+

Start
Get

Signature
Integers

Compute
Hash

Calculate
Point

Compute
Coordinates

Verify
Signatures

ϕ (Inputs) 1 0 0 0 0 0

ϕ
(S ignatures

S tore) 0 1 0 0 0 0

ϕ
(Hash
Integer
S tore)

0 0 1 0 0 0

ϕ
(Point
S tore) 0 0 0 1 0 0

ϕ
(Coordinates

S tore) 0 0 0 0 1 0

ϕ
(Accept
Re ject) 0 0 0 0 0 1

Backwards Incidence Matrix I−

Start
Get

Signature
Integers

Compute
Hash

Calculate
Point

Compute
Coordinates

Verify
Signatures

ϕ (Inputs) 0 1 1 0 0 1

ϕ
(S ignatures

S tore) 0 0 0 1 1 0

ϕ
(Hash
Integer
S tore)

0 0 0 0 1 0

ϕ
(Point
S tore) 0 0 0 0 1 0

ϕ
(Coordinates

S tore) 0 0 0 0 0 1

ϕ
(Accept
Re ject) 0 0 0 0 0 0

Combined Incidence Matrix I

Start
Get

Signature
Integers

Compute
Hash

Calculate
Point

Compute
Coordinates

Verify
Signatures

ϕ (Inputs) 1 -1 -1 0 0 -1

ϕ
(S ignatures

S tore) 0 1 0 -1 -1 0

ϕ
(Hash
Integer
S tore)

0 0 1 0 -1 0

ϕ
(Point
S tore) 0 0 0 1 -1 0

ϕ
(Coordinates

S tore) 0 0 0 0 1 -1

ϕ
(Accept
Re ject) 0 0 0 0 0 1

Inhibition Matrix H

Start
Get

Signature
Integers

Compute
Hash

Calculate
Point

Compute
Coordinates

Verify
Signatures

ϕ (Inputs) 0 0 0 0 0 0

ϕ
(S ignatures

S tore) 0 0 0 0 0 0

ϕ
(Hash
Integer
S tore)

0 0 0 0 0

ϕ
(Point
S tore) 0 0 0 0 0 0

ϕ
(Coordinates

S tore) 0 0 0 0 0 0

ϕ
(Accept
Re ject) 0 0 0 0 0 0

Table B.22: High Level Petri Net Incidences - Calculate Location
Forwards Incidence Matrix I+ Backwards Incidence Matrix I−

Start

Determine
2-D

Point
Space

Calculate
Distance Start

Determine
2-D

Point
Space

Calculate
Distance

ϕ (Inputs) 1 0 0 ϕ (Inputs) 0 1 0

ϕ
(Points
S tore) 0 1 0 ϕ

(Points
S tore) 0 0 1

ϕ
(Provers′

Distance
S tore)

0 0 1 ϕ
(Provers′

Distance
S tore)

0 0 0

Combined Incidence Matrix I Inhibition Matrix H

Start

Determine
2-D

Point
Space

Calculate
Distance Start

Determine
2-D

Point
Space

Calculate
Distance

ϕ (Inputs) 1 -1 0 ϕ (Inputs) 0 0 0

ϕ
(Points
S tore) 0 1 -1 ϕ

(Points
S tore) 0 0 0

ϕ
(Provers′

Distance
S tore)

0 0 1 ϕ
(Provers′

Distance
S tore)

0 0 0

Table C.25 shows the results of ECDSA* signature genera-
tion HLPN in the form of the minimum and maximum thresh-
old values obtained by throwing an average number of tokens

Table B.23: High Level Petri Net Incidences - Generate Location Proof
Forwards Incidence Matrix I+

Start
Sense

Context
Information

Stored
Context

Information

Request
Location

Proof

Generate
Location Proof

ϕ (Inputs) 1 0 0 0 0

ϕ
(Context

In f ormation
S tore)

0 1 0 0 0

ϕ
(LBS

In f ormation
S tore)

0 0 1 0 0

ϕ
(Location

Proo f
S tore)

0 0 0 1 0

ϕ

(S igned
Location
Proo f s
S tore)

0 0 0 0 1

Backwards Incidence Matrix I−

Start
Sense

Context
Information

Stored
Context

Information

Request
Location

Proof

Generate
Location Proof

ϕ (Inputs) 0 1 0 0 1

ϕ
(Context

In f ormation
S tore)

0 0 1 0 1

ϕ
(LBS

In f ormation
S tore)

0 0 0 1 0

ϕ
(Location

Proo f
S tore)

0 0 0 0 1

ϕ

(S igned
Location
Proo f s
S tore)

0 0 0 0 0

Combined Incidence Matrix I

Start
Sense

Context
Information

Stored
Context

Information

Request
Location

Proof

Generate
Location Proof

ϕ (Inputs) 1 -1 0 0 -1

ϕ
(Context

In f ormation
S tore)

0 1 -1 0 -1

ϕ
(LBS

In f ormation
S tore)

0 0 1 -1 0

ϕ
(Location

Proo f
S tore)

0 0 0 1 -1

ϕ

(S igned
Location
Proo f s
S tore)

0 0 0 0 1

Inhibition Matrix H

Start
Sense

Context
Information

Stored
Context

Information

Request
Location

Proof

Generate
Location Proof

ϕ (Inputs) 0 0 0 0 0

ϕ
(Context

In f ormation
S tore)

0 0 0 0 0

ϕ
(LBS

In f ormation
S tore)

0 0 0 0 0

ϕ
(Location

Proo f
S tore)

0 0 0 0 0

ϕ

(S igned
Location
Proo f s
S tore)

0 0 0 0 0

at each place.
Table C.26 shows the results of ECDSA* signature verifica-

tion HLPN in the form of the minimum and maximum thresh-
old values obtained by throwing an average number of tokens
at each place.

Table C.27 shows the results of calculate location HLPN in
the form of the minimum and maximum threshold values ob-
tained by throwing an average number of tokens at each place.

Table C.28 shows the results of generate location proof
HLPN in the form of the minimum and maximum threshold
values obtained by throwing an average number of tokens at
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Table B.24: High Level Petri Net Incidences - Verify Location Proof
Forwards Incidence Matrix I+

Start
Extract
Context

Information

Accept
Location

Proof
Request

Verify
Context

Information

Verify
Location

Proof

ϕ (Inputs) 1 0 0 0 0

ϕ
(Extracted

ContextIn f ormation
S tore)

0 1 0 0 0

ϕ
(Location
Proo f s
S tore)

0 0 1 0 0

ϕ
(Veri f ied

In f ormation
S tore)

0 0 0 1 0

ϕ

(Accept/
Re ject

Location
Proo f )

0 0 0 0 1

Backwards Incidence Matrix I−

Start
Extract
Context

Information

Accept
Location

Proof
Request

Verify
Context

Information

Verify
Location

Proof

ϕ (Inputs) 0 1 0 0 1

ϕ
(Extracted

ContextIn f ormation
S tore)

0 0 1 1 0

ϕ
(Location
Proo f s
S tore)

0 0 0 1 0

ϕ
(Veri f ied

In f ormation
S tore)

0 0 0 0 1

ϕ

(Accept/
Re ject

Location
Proo f )

0 0 0 0 0

Combined Incidence Matrix I

Start
Extract
Context

Information

Accept
Location

Proof
Request

Verify
Context

Information

Verify
Location

Proof

ϕ (Inputs) 1 -1 0 0 -1

ϕ
(Extracted

ContextIn f ormation
S tore)

0 1 -1 -1 0

ϕ
(Location
Proo f s
S tore)

0 0 1 -1 0

ϕ
(Veri f ied

In f ormation
S tore)

0 0 0 1 -1

ϕ

(Accept/
Re ject

Location
Proo f )

0 0 0 0 1

Inhibition Matrix H

Start
Extract
Context

Information

Accept
Location

Proof
Request

Verify
Context

Information

Verify
Location

Proof

ϕ (Inputs) 0 0 0 0 0

ϕ
(Extracted

ContextIn f ormation
S tore)

0 0 0 0 0

ϕ
(Location
Proo f s
S tore)

0 0 0 0 0

ϕ
(Veri f ied

In f ormation
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Table C.25: Average Number of Token with Minimum and Maximum Thresh-
old Values - ECDSA* Signature Generation

Places Average Number
of Tokens

Minimum
Threshold

Values

Average Number
of Tokens

Maximum
Threshold

Values
Inputs 0.86139 0.356 1.02997 0.196

Coordinates
Store 0.26733 0.4366 0.2684 0.57542

Hash
Integer
Store

0.23762 0.0734 0.028 0.21279

Signature
Store 13.67327 0.5872 2.612 144.92008

Table C.26: Average Number of Token with Minimum and Maximum Thresh-
old Values - ECDSA* Signature Verification

Places Average Number
of Tokens

Minimum
Threshold

Values

Average Number
of Tokens

Maximum
Threshold

Values
Inputs 1.0297 0.3697 1.17183 0.27562

Signature
Store 0.68317 0.35744 0.46254 0.13784

Hash
Integer
Store

1.9604 4.48262 45.97802 17.2552

Point
Store 0.45545 0.29094 0.32068 0.16362

Coordinates
Store 0.17822 0.0359 0.12987 0.01708

Accept
Reject 4.08911 0.84402 40.39461 3.425

Table C.27: Average Number of Token with Minimum and Maximum Thresh-
old Values - Calculate Location

Places Average Number
of Tokens

Minimum
Threshold

Values

Average Number
of Tokens

Maximum
Threshold

Values
Inputs 2.65347 5.153333 33.81019 15.71
Points
Store 1.60396 3.087666 9.436666 13.28272

Provers’
Distance

Store
14.71287 2.4348 146.54146 8.12

each place.

Table C.28: Average Number of Token with Minimum and Maximum Thresh-
old Values - Generate Location Proof

Places Average Number
of Tokens

Minimum
Threshold

Values

Average Number
of Tokens

Maximum
Threshold

Values
Inputs 1.33663 1.2186 2.27473 1.074

Context
Information

Store
0.71287 0.512 1.02897 0.8534

LBS
Information

Store
1.0396 0.3306 1.3037 0.3034

Location
Proofs
Store

1.62376 0.617 0.86513 0.361

Signed
Location
Proofs
Store

4.70297 0.3852 61.03696 0.2952

Table C.29 shows the results of verify location proof HLPN
in the form of the minimum and maximum threshold values ob-
tained by throwing an average number of tokens at each place.

Table C.29: Average Number of Token with Minimum and Maximum Thresh-
old Values - Verify Location Proof

Places Average Number
of Tokens

Minimum
Threshold

Values

Average Number
of Tokens

Maximum
Threshold

Values
Inputs 1.11881 2.968 4.7033 1.456

Extracted
Context

Information
Store

0.78218 0.57056 0.91409 0.30618

Location
Proofs
Store

0.24752 0.0806 0.26174 0.033476

Verified
Information

Store
0.19802 0.082582 0.14785 0.02452

Accept / Reject
Location

Proof
Store

5.67327 0.4008 61.47453 0.199048
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