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Abstract

A scalable, flexible and reliable Analytics service has become a requirement toward building efficient Fifth Generation (5G) ex-
perimental platforms that can support a suite of end-user experiments and verticals. Our paper presents the challenges that come
with designing such a service-based Analytics component, and shows how we have used it in the context of open experimental
platforms in the 5GENESIS project. Our Analytics service was designed both for enabling the efficient setup and configuration of
the underlying platform, and also for ensuring that it provides useful insights into the experimentation Key Performance Indicators
(KPIs) toward the end-user. Thus, Analytics proved to be a useful tool across several stages, starting from ensuring correct operation
during the initial phases of the network setup and continuing into the normal day-to-day experimentation. Our experiments show
how the tool was used in our setup and provide information on how to apply it to different environments. The Analytics component,
designed as a set of microservices that serve several goals in the analytics workflow, is also provided as open source, being part of
the Open5Genesis suite.
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1. Introduction

Fifth Generation (5G) cellular systems are expected of be-
ing able to support different service types, i.e., enhanced Mo-
bile Broadband (eMBB), Ultra Reliable Low Latency Com-
munications (URLLC), and massive Machine Type Commu-
nications (mMTC), in a seamless manner [1]. This is mainly
achieved via radio plane enhancements and by enabling virtu-
alization and dynamic deployment of system resources, which
enable the needed system flexibility but also introduce further
complexity in terms of system management. Throughout the
different stages of a network setup and operation, a flexible,
scalable, and reliable analytics service that can support network
operations and give proper insights becomes a key system com-
ponent, with the aim of supporting operational efficiency and
optimising network performance [2].

Such an Analytics service is also vital for ensuring com-
pliance with Service Level Agreements (SLAs). The SLA is
usually defined as a set of end-to-end Key Performance Indi-
cators (KPIs) that must be guaranteed to end-users and verti-
cals. This leads to the need for automated experimentation and
validation methods that use Monitoring and Analytics (M&A)
techniques for identifying network bottlenecks and system con-
figurations or malfunctions that hinder the compliance with
SLAs. A reliable and efficient M&A framework should con-
sider both end-users’ and operators’ perspectives, aiming at
improving the Quality of Service (QoS) and users’ Quality of

Experience (QoE), while minimizing operators’ management
and operational costs. To utilize the monitored data, captured
within such a framework, the Analytics service should support
advanced data analysis methods, e.g., based on Machine Learn-
ing (ML) and Artificial Intelligence (AI), towards 5G system
optimization [3, 4].

Within the above context and with such goals in mind, in
this paper we design, implement and showcase a service-based
Analytics module that can be easily embedded in 5G exper-
imentation platforms and systems. In particular, the module
is currently integrated in the open 5G experimentation facility
implemented in the context of the H2020 5GENESIS project1,
which is formed by five 5G platforms with different underlying
capabilities (e.g., standalone and non-standalone deployments,
support for Internet of Things (IoT) and mission-critical ser-
vices, satellite communications, etc.). The contributions of this
paper can be summarized in terms of the following aspects:

• General-purpose design: We design an Analytics module
with descriptive, diagnostic and predictive functionalities
[3][4]. In particular, in the 5GENESIS context, the compo-
nent is being used for covering two broad use case areas,
i.e., network-side system management and user-side per-
formance analysis and prediction, with a focus on ensuring
that 5G KPIs are properly measured and validated during

1www.5genesis.eu, Accessed on: November 2021.
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the experimentation phases. The general-purpose design
makes the proposed module different compared to most
of the analytics frameworks proposed for networking sys-
tems, where the engines often focus on specific use cases,
such as traffic analysis, prediction, and anomaly detection.

• Modular implementation and flexible architecture: We im-
plement a component with a modular and flexible architec-
ture. In order to provide different analytics methods (e.g.,
time series management, anomaly detection, correlation
analysis, feature selection mechanisms, and prediction ser-
vices, see Section 4), the module is based on microser-
vices, designed as containerised modules, that make use
of standard ML, visualisation, and reporting libraries, as
well as well-defined interfaces. This development choice
enables a straightforward reuse and extension of the com-
ponent outside the 5GENESIS facility, and makes it flex-
ible, easily deployable, and scalable. The microservices
can be instantiated on heterogeneous underlying infras-
tructures in a distributed fashion, with each container pro-
viding a specific service that can be used on its own or in
combination with other services. New containers can also
be easily developed and integrated in the module. Consid-
ering the ongoing standardization activities towards em-
bedding ML/AI capabilities in 5G systems, the proposed
module can be seen as a solution for some key analyt-
ics functionalities that are expected to be provided in the
5G Core (5GC), as defined by the 3rd Generation Partner-
ship Project (3GPP), e.g., via Management Data Analyt-
ics Function (MDAF) and Network Data Analytics Func-
tion (NWDAF) (see [3, 4] and references therein).

• 5G-integrated and tested component: We integrate and test
the Analytics component in real 5G deployments. Hence,
the module supports 5G experimentation and takes into ac-
count the peculiarities of the experiment definition and of
the 5GENESIS platforms. In this paper, we showcase inte-
gration and usage of the component by running dedicated
experiments in the 5G infrastructure at the University of
Malaga, i.e., one of the 5GENESIS platforms.

• Open source software and dataset: Together with several
other components developed in the context of the 5GENE-
SIS project, the Analytics module is open source and avail-
able as part of the 5GENESIS Open Suite [5]. Moreover,
the 5G dataset used in this paper for testing the module is
also provided to the community, as a further contribution
from 5GENESIS.

Further details on the above contributions are provided in
Section 2.3, following the analysis and discussion of related
standardization and research activities in Sections 2.1 and 2.2.
Altogether, component design, implementation, and testing al-
lowed to derive the insights provided in this paper. These in-
sights fall under several categories: (1) Considering the opera-
tional health of the system where Analytics is used, the services
provided by the component enable a simplified troubleshoot-
ing of end-to-end deployments, by pinpointing nominal opera-
tions as well as possible malfunctions that need to be addressed;

(2) In terms of the scenarios used to verify the Analytics ser-
vices, the use of 3GPP-defined scenarios for typical network
conditions is key for being able to extract insights on how well
the experiments were running, e.g., by comparing expected vs.
achieved performance; (3) Considering the deployment of the
Analytics component, placement (e.g., in cloud or in edge) and
configuration of its microservices play a key role for provid-
ing timely services, especially if data needs to be exchanged
across microservices. This means that, while planning for the
deployment mode of the component (e.g., all the microservices
in the cloud or in the edge, or even a mixed placement), a user
should be aware of data transfer rates between containers and
time bounds on Analytics results. Indeed, we noticed that trans-
ferring large amounts of data between the containers might have
a non-negligible impact on the timeliness of the results.

The rest of the paper is organized as follows: Section 2 pro-
vides a comprehensive overview of related work, including both
standardization and research-related activities, and gives an in-
depth explanation of the contribution of our work. Section 3
provides the background for this work in the context of the
5GENESIS project, while Section 4 details the library of meth-
ods that we have implemented for the Analytics component,
and explains how these methods relate to specific challenges
in 5G experimentation. Sections 5 and 6 present our experi-
mental setup in the Malaga platform, and the results obtained
by using the Analytics component in the 5GENESIS context.
In Section 7 we discuss the experience gained by designing and
deploying the Analytics component, and point out opportunities
for future work. Finally, we provide examples of the Analytics
Application Programming Interfaces (APIs) and corresponding
responses in Appendix A, in order to provide a quick reference
for readers and users.

2. Related Work and Contribution

As mentioned in Section 1, there is an increasing interest to-
wards the application of data analytics, based on ML and AI,
to the management and optimization of 5G (and beyond) sys-
tems [3, 4, 6, 7, 8, 9, 10, 11, 12]. The use of ML/AI allows
to deal with the increased complexity of communication net-
works, and leads to a better management and exploitation of
the large amount of data such networks generate. Data analyt-
ics can help minimizing the need for manual management and
achieving higher system performance and user QoS/QoE, since
it allows to derive and use optimized configurations and policies
based on ML/AI models of system and user behaviours.

The trend towards ML/AI-based networks is reflected in sev-
eral standardization and research activities, as summarized in
the next two subsections. Our contribution in the context of
these works is also explained in detail at the end of this section.

2.1. Standardization Activities

In Release 15, 3GPP has defined MDAF and NWDAF in the
5GC, aiming at providing data analytics to other Network Func-
tions (NFs) [3, 4, 9, 10, 11]. MDAF provides services con-
sumed by the Management and Orchestration (MANO) layer
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of 5G systems. For example, MDAF can retrieve Operations,
Administration, and Maintenance (OAM) data from different
NFs and produce data-driven policies that can be used to rec-
ommend appropriate management actions to network operators.
NWDAF, on the other hand, focuses on data plane services,
and aims at providing data analytics for several analytics use
cases, including the optimization of slice and Radio Access
Network (RAN) configurations towards enhanced user expe-
rience. For example, the Policy Control Function (PCF) and
Network Slice Selection Function (NSSF) in the 5GC can use
the information provided by NWDAF on the load level of a slice
instance, and derive an optimized tuning of slice components or
the selection of a new slice that better suits service requirements
[4][11].

During the activities that led to Release 16, 3GPP started a
study item referred to as FS-eNA “Study of enablers for Net-
work Automation for 5G”, that analyzes how to enable net-
work automation and extend NWDAF use cases including cus-
tomized mobility management, load balancing, and network
performance prediction, among others. On similar aspects,
3GPP also defined two further study items, i.e., “Study on
Self-Organizing Networks (SONs) for 5G” and “RAN-Centric
Data Collection and Utilization for Long Term Evolution (LTE)
and New Radio (NR)”, that mainly address data analytics for
RAN optimization [4]. Such RAN-related activities nicely map
onto the ongoing enhancements proposed by the OpenRAN Al-
liance (O-RAN)2, toward establishing a common reference ar-
chitecture for the implementation of next-generation RAN in-
frastructures, based on common hardware and shared defini-
tions of components and interfaces. Among several functional-
ities, the O-RAN architecture includes specific components that
allow the use of ML/AI for RAN optimization, e.g., real time
and non real time RAN Intelligent Controllers (RICs) [11].

With regards to other standardization bodies, the European
Telecommunications Standards Institute (ETSI) has created an
industry specification group called Experiential Networked In-
telligence (ENI)3, that defines a ML/AI-based architecture to
support operators in automating their systems based on user
needs, environmental conditions, and business goals [10].

2.2. Research Activities

The research community is proposing several ML/AI mech-
anisms and showing the benefits of applying them to network-
ing aspects. In the following, we analyze some reference lit-
erature, aiming at framing the state-of-the-art and discussing
open challenges, in terms of a) which application methodolo-
gies, ML/AI techniques, and analytics use cases are under in-
vestigation, b) architectural and implementation aspects toward
embedding ML/AI in 5G systems, and c) empirical analyses of
5G systems.

2https://www.o-ran.org, Accessed: November 2021.
3https://www.etsi.org/technologies/

experiential-networked-intelligence, Accessed: November 2021.

2.2.1. Methodologies, techniques, and use cases
Comprehensive reviews on ML/AI methodologies, tech-

niques, and use cases in communication networks are provided
in [13][14]. The work in [13] defines a methodology for ap-
plying ML/AI to networks, in terms of a complete workflow
where the main steps are data collection, feature engineering,
establishment of ground truth, definition of performance met-
rics, and model validation. It also groups analytics use cases
in traffic prediction, classification, and routing, management of
resources, faults, and QoS/QoE, congestion control, and secu-
rity. A similar workflow is proposed in [12], with steps limited
to feature extraction, data modeling, and prediction (with online
refinement), while similar analytics use cases are instead identi-
fied in [3], which also includes ML/AI-based network planning,
load balancing, and beamforming, among others. The work in
[14] gives a detailed description on ML/AI techniques appli-
cable to networking scenarios (supervised, unsupervised, and
reinforcement learning), and differentiates analytics use cases
across system layers, i.e., from physical to application layers. A
similar approach is also taken by [9], which however focuses on
physical, Medium Access Control (MAC), and network layers.
The highlighted analytics use cases include channel estimation,
network planning, user association and scheduling, etc. Further
discussions on ML/AI techniques and analytics use cases in 5G
and beyond networks are provided in [6] [10].

2.2.2. Architectural and implementation aspects
Several investigations discuss architectural and implementa-

tion aspects toward embedding ML/AI in 5G systems.
Considering architectural aspects, several works focus on the

5G architecture, and specifically on MDAF and NWDAF. The
work in [15] studies the application of regression and classifica-
tion methods to several expected NWDAF functionalities, i.e.,
analysis of abnormal vs. expected behaviour for a group of User
Equipments (UEs), and network load prediction. Test and val-
idation are performed on a simulated 5G dataset, that includes
a topology with a fixed number of cells and subscribers with
different traffic patterns. Each cell is modeled using a set of
features retrieved from other NFs, including transmitted bytes,
subscriber categories, and subscriber identifiers. Anomalies in
terms of unexpected data traffic patterns are included in order to
make the dataset more realistic. The work in [16] analyzes how
NWDAF can support the 5G Access Traffic Steering, Switching
and Splitting architecture (ATSSS), defined in 3GPP Release
16 and providing mechanisms for selection and aggregation of
3GPP and non-3GPP access networks (e.g., 5G NR and WiFi),
toward load balancing and QoS/QoE improvement at the user
end [17].

The necessity for a RAN-dedicated analytics engine, referred
to as RAN-DAF, is stressed out in [4]. In the proposed frame-
work, RAN-DAF is decoupled from MDAF and NWDAF but
can still communicate with them and with other analytics en-
gines, referred to as Application Function (AF)-DAF and Data
Network (DN)-DAF, which are possibly provided by 3rd par-
ties and tailored on specific applications and services. Such
analytics engines are deployed in a distributed fashion and ex-
change raw/processed data via inter-domain message buses,
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while having common performance improvement goals. RAN-
DAF is devoted to near real time radio resource management,
as showcased in the proposed case study, where it takes ad-
vantage of UE traffic and mobility prediction performed by
a dedicated AF-DAF to provide enhanced resource allocation
schemes, which are tested in a Fourth Generation (4G) simu-
lated environment. The need for RAN-DAF is also advocated
in [11], where UE prototype trajectories and radio resource uti-
lization patterns are used for showcasing enhanced handover
and admission control mechanisms. Both analytics use cases
take as a reference a dataset collected in 31 cells of an LTE
network in an urban area of a European city, covering a pe-
riod of two weeks with measurements taken every 15 minutes.
In both works, the need for RAN-DAF is justified by consid-
ering that a) RAN and 5GC may need similar analytics but
at different granularity (e.g., UE position with higher (RAN)
vs. lower (5GC) resolution), b) RAN-DAF implementation im-
proves scalability since faster decisions can be executed locally
(e.g., in RAN co-located edge units), with no need for mov-
ing data towards cloud-based core networks, and c) business
aspects. In the O-RAN context, recent examples of integration
and usage of analytics engines can be found in [18] and [19].

The above works marginally discuss implementation aspects,
i.e., how to practically implement a ML/AI engine to be easily
embedded in 5G, which is instead the focus of the following
investigations.

Data management, storage, and processing engines under
the Apache Software Foundation4 have been often proposed as
starting implementation points. For example, [20] and [21] pro-
pose the use of Apache Hadoop5 for storage and analysis of
traffic data collected at either Internet Exchange Points (IXPs)
[20] or inside cellular networks [21]. In both cases, data man-
agement and analytics functionalities are based on MapReduce
[22]. Efficient data partitioning and querying are proposed
and tested in [20], while traffic analytics functionalities (e.g.,
derivation of traffic statistics, and analyses on application-layer,
web service provider, and user behaviour) are provided and
tested in [21], which uses on a dataset from a Second Gener-
ation (2G)/Third Generation (3G) network.

Beyond traffic analysis and targeting service quality man-
agement in wireless networks, the work in [23] introduces an
analytics module called Deep Network Analyzer (DNA) that
is based on Apache Spark.6 DNA performs anomaly detec-
tion and root cause analysis for the detected anomalies, and
it is tested on two datasets from network operators, contain-
ing various undisclosed parameters referred to as KPIs and Key
Quality Indicators (KQIs), with the latter representing the tar-
get features. Apache Spark is also used in [24] for designing
CellScope, an analytics service that tries to mitigate the trade-
off between latency in collecting data and accuracy of ML mod-
els trained on such data. CellScope primarily targets the opti-
mization of RAN management; in order to achieve this goal,
it employs a) intelligent grouping of data from different base

4https://www.apache.org, Accessed: November 2021.
5http://hadoop.apache.org/, Accessed: November 2021.
6https://spark.apache.org, Accessed: November 2021.

stations composing the RAN and b) multi-task learning with
hybrid offline/online model training/update. CellScope perfor-
mance are tested by leveraging data collected on a large LTE
operational deployment, for two analytics use cases, i.e., classi-
fication of connection drops (via Random Forest) and through-
put prediction (via Lasso regression).

Finally, the Net2Vec solution proposed in [25] embeds ML
and Deep Learning (DL) capabilities exploiting Python li-
braries, including SciKit-Learn and TensorFlow. Net2Vec is
shown capable of handling a large amount of data (generated
synthetically) for implementing and using a system that creates
user profiles in a timely manner.

2.2.3. 5G empirical analyses
Due to initial deployments of 5G systems being only re-

cently available, in terms of both dedicated testbeds and op-
erational networks, current literature mostly uses simulations
and/or older generation data (e.g., LTE datasets) for testing the
proposed ML/AI schemes.

Initial performance measurements and statistical assessment
on 5G operational networks have been recently presented in
[26] and [27]. On the one hand, [26] analyzes a sub-6 GHz
Non-Standalone (NSA) deployment in a dense urban environ-
ment in China, in terms of coverage, handover, UE energy
consumption, and end-to-end throughput, latency, and applica-
tion performance. On the other hand, [27] analyzes through-
put, latency, and application performance over Millimeter Wave
(mmWave) deployments of three US operators.

Aiming at reliable validation of 5G KPIs, our previous work
in [28] provides the definition of testing procedures for reliable
performance assessment in dedicated testbeds, and provides ini-
tial insights on the achievable throughput and latency perfor-
mance on a 5G NSA deployment at 3.5 GHz.

One of the first ML-based analyses of 5G performance is
given in [29] where, following the line drawn by similar in-
vestigations on 4G data (e.g., [30][31]), several ML schemes
are used jointly with parameters collected at the UE side in or-
der to assess the predictability of the throughput achievable in
a mmWave urban deployment.

2.3. Contribution of our Analytics component
With regards to the application methodologies, we have gen-

eralized the analysis steps in [13] and based our work on a
more flexible workflow that includes data collection and stor-
age, data engineering and pre-processing, and data analysis as
main steps. With this workflow in mind, along with the goals
of the 5GENESIS project, we have implemented a M&A frame-
work, and integrated it on top of the 5GENESIS Reference Ar-
chitecture (see Section 3.1). As described and showcased in
this paper, the Analytics component covers the last two work-
flow steps (data engineering and analysis), and has been de-
signed and implemented in order to be easily deployed and used
within the five 5G experimentation platforms that are part of the
5GENESIS project. However, due to its flexible design and im-
plementation, the component can be easily deployed and used
in 5G platforms and networks outside the 5GENESIS project,
and thus we provide it open source to the community in [5].
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Considering analytics use cases and ML/AI techniques, the
current implementation of Analytics covers two broad use case
areas, i.e., network-side system management and user-side per-
formance analysis and prediction. This differs from most of
previous work on the use of analytics frameworks in networks,
where the proposed engines often focus on very specific analyt-
ics use cases (e.g., traffic analysis, prediction, and anomaly de-
tection). Following the taxonomy in [3][4], our Analytics mod-
ule provides descriptive, diagnostic, and predictive functional-
ities. Indeed, the component is being used in 5GENESIS for
network planning, (re-)configuration, troubleshooting, and user
QoS/QoE analysis and prediction. This is achieved through a
predominant use of statistical and supervised ML techniques, as
described in Section 4. Moreover, the component can be easily
extended for covering further analytics use cases. For example,
within 5GENESIS, decision-making and prescriptive analytics
functionalities could be embedded through establishing coordi-
nated operations between Analytics, Slice Manager, and policy
engines at UE and network sides, i.e., NEAT [32] and APEX
[33].

Considering architectural and implementation aspects, we
provide a general-purpose Analytics component, that can be
transparently used and integrated as part of MDAF, NWDAF,
and even RAN-DAF, at least for some analytics use cases. Due
to its descriptive, diagnostic, and predictive nature, the compo-
nent specifically covers offline data analysis (e.g., it can be used
for training a model of a KPI by using historical data); trained
models can then be exposed and used by decision-making en-
gines, e.g., non real time RICs in an O-RAN architecture.

As detailed in Section 4, Analytics functionalities are easily
accessed by other NFs and components via REST APIs, the set
of which can be extended toward providing further services for
more specific analytics use cases. Moreover, such functionali-
ties are decoupled from the underlying physical/virtual infras-
tructure, since they are provided as interconnected microser-
vices, formed by Python-based data analysis code encapsulated
in Docker7 containers. This adds a further level of flexibil-
ity, since the microservices can be instantiated in a distributed
fashion across the underlying infrastructure, and can be flexi-
bly initiated, reconfigured, moved, and terminated on demand.
Hence, in contrast to several previous works, we open source a
component that can be easily integrated, used, and extended in
heterogeneous physical/virtual 5G infrastructures, thanks to its
flexible ecosystem formed by REST APIs and microservices.

Finally, considering empirical analyses of 5G systems, in this
paper we extend [28] and validate the Analytics component by
performing dedicated experiments in the real 5G NSA experi-
mentation testbed at the University of Malaga. By doing so, we
prove that the component can be used for better understanding
of the correlations and causalities between system deployment,
configurations, and user performance, which is in turn benefi-
cial for optimized system and performance management.

7https://www.docker.com/, Accessed: November 2021.

3. 5GENESIS Background

The Analytics component targeted in this paper has been de-
veloped within the context of the 5GENESIS project whose goal
is to bring together five 5G experimentation platforms from
different European countries into one 5G experimentation fa-
cility, and allow experimenters to create and run experiments,
as well as access data about KPIs related to the experiments.
The five platforms of the 5GENESIS Facility are: Athens plat-
form, Malaga platform, Limassol platform, Surrey platform,
and Berlin platform. For the experiments presented in this pa-
per we use the Malaga platform, but the Analytics component is
used within all 5GENESIS platforms and constitutes an integral
part of the 5GENESIS experimentation facility. To provide the
context for the Analytics component and our results, we intro-
duce hereafter the 5GENESIS reference architecture and then
we provide a more detailed description of the 5GENESIS M&A
framework, in which the Analytics component resides.

3.1. 5GENESIS Reference Architecture

Figure 1 shows the reference architecture for the 5GENESIS
platforms [34]. The Analytics component is part of the upper
layer, called the Coordination layer. The Coordination layer
[35] and the Slice manager are cross-platform components that
are instantiated across all the five 5GENESIS platforms, formu-
lating the Open 5GENESIS Suite, i.e., an open-source frame-
work for automated experimentation that 5GENESIS has re-
leased. The lower layers are instead specific to the character-
istics of each platform and therefore they can differ among the
5GENESIS platforms.

The design and implementation of the Coordination layer is
guided by the implementation of reference test cases devoted
to the testing of KPIs in 5G networks and also for applica-
tions. A key part of these test cases is the definition of the
testing scenarios, the measurement collection, and the execu-
tion of the tests. The Coordination layer allows to specify a
common and sustainable interface that any test platform can
instantiate in order to be able to apply the 5GENESIS experi-
mentation methodology [28]. The 5GENESIS experimentation
methodology follows a modular approach to specify the input
data and the network configuration required for executing an
experiment, the workflow for running such an experiment, and
the output results to collect for further analysis. The method-
ology includes the templates for the specification of the exper-
iments as well as the specification and implementation of the
components that orchestrate the execution of the experiments
defined in such way. Such components include the Coordina-
tion layer and the Slice manager, as introduced previously. By
adopting this methodology, different 5G platforms can perform
automated experiments that yield comparable results which, in
turn, allows the benchmarking of different technologies, appli-
cations and services. One key asset in the Coordination layer is
the Experiment Life Cycle Manager (ELCM). The ELCM is the
entity that performs the management, orchestration and execu-
tion of the experiments in the Open 5GENESIS Suite, including
three main components, namely the Scheduler, the Composer

5
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Infrastructure layer

Management and Orchestration layer

Slice Management and Optimization

Radio Access Network

Coordination layer Analytics Services

Storage (InfluxDB)

Management and Orchestration Virtual Infrastructure Manager

Network Management System

Monitoring ProbesMonitoring ProbesMonitoring ProbesMonitoring Probes

Experiment Life Cycle Manager (ELCM)

Core Network User EquipmentMain Data Center

Figure 1: The 5GENESIS reference architecture. The blocks written in orange represent the components part of the M&A framework.

and the Execution Engine (responsible for experiment automa-
tion), as well as several auxiliary elements. The Scheduler is
responsible for managing the execution of the experiments on
a higher level, by keeping track of the execution of the exper-
iment stages (i.e., Pre-Run, Run, and Post-Run) for multiple
experiments. The Execution Engine includes the logic for man-
aging the execution of each experiment stage, by generating an
independent Executor. The Composer is responsible for creat-
ing platform-specific configurations for the experiments to be
executed. The Coordination layer also includes the Analytics
module, whose architecture is explained in detail in Sections
3.2 and 4 and is the main focus of this paper.

The MANO layer is mainly responsible for the manage-
ment of physical and virtual elements, including network slices.
This layer contains the Network Function Virtualization (NFV)
MANO, the Virtual Infrastructure Manager (VIM), and the
Network Management System (NMS), responsible for the man-
agement of virtualized and physical resources, respectively.
These components include monitoring probes for their specific
domains, whose data is used also by the Analytics module.

The bottom layer is the Infrastructure layer, whose compo-
nents essentially aim to constitute the end-to-end data path for
the user traffic. We also have here the various probes used for
monitoring the different elements in the network and the perfor-
mance in the end-user equipment. As before, this data will be
used by the Analytics module for the various analyses needed
for 5G KPIs assessment and for performance optimization.

3.2. 5GENESIS Monitoring and Analytics Framework

As introduced above, the Analytics component is part of the
5GENESIS M&A framework that is in turn integrated with the
5GENESIS reference architecture. Before providing a detailed
description of the Analytics component (Section 4), this subsec-
tion describes on a high-level the full-chain M&A framework.

The main goal of Analytics is to analyze heterogeneous data,
that is, parameters related to the infrastructure status and to

measured end-to-end KPIs, in order to a) verify the status of the
5GENESIS facility during the experiments, b) allow for reliable
assessment of 5G KPIs, and c) pinpoint possible issues causing
performance losses that require new management policies and
network configurations. Hence, from a functional perspective,
the Analytics component is tightly coupled with the Monitoring
system.

The Monitoring system is a distributed component that lies
in the MANO and Infrastructure layers of the 5GENESIS ar-
chitecture. It includes two functional blocks, referred to as
Infrastructure Monitoring (IM) and Performance Monitoring
(PM). On the one hand, IM collects data exposed by the compo-
nents and probes available at MANO and Infrastructure layers,
such as, radio access and core networks, cloud/edge resources
in the slices, and UE. On the other hand, PM focuses on mea-
suring QoS/QoE KPIs, mainly at the UE side. Therefore, a large
set of IM/PM probes is being developed, integrated, and used
in the 5GENESIS facility, including:

• Network-side IM probes: These probes retrieve metrics
mainly through the exporters in the Prometheus software.8

In particular, through the Node exporter9, physical/virtual
units forming MANO and Infrastructure layers can expose
metrics on their memory load and consumption, among
others. For example, as detailed in [36], the Slice manager
uses Prometheus exporters to provide info on the status
of the slice(s) instantiated during an experiment. Other
exporters, based on Simple Network Management Proto-
col (SNMP), monitor further components, e.g., core and
radio networks of specific technology providers;

• UE-side IM probes: These probes monitor physical layer
parameters and configurations of the UEs during exper-

8https://prometheus.io, Accessed: November 2021.
9https://github.com/prometheus/node_exporter, Accessed:

November 2021.
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iment executions, e.g., coverage-related parameters, in-
cluding Reference Signal Received Power (RSRP) and
Signal to Interference plus Noise Ratio (SINR), which
are key for better understanding the experienced QoS/QoE
KPIs;

• UE-side PM probes: These probes measure 5G QoS/QoE
KPIs, e.g., latency, throughput, and vertical-specific KPIs.
The set of PM probes includes custom made Android apps
that runs on Android phones as well as the MONROE
Virtual Node (VN), that is, a Virtual Machine (VM) de-
veloped by reshaping MONROE physical nodes10 and en-
abling a range of containerized experimentation on any
general purpose Linux-based machine with a 4G/5G radio
interface [37][38].

The Analytics component is hosted by the Coordination
layer, along with the data Storage utility. The Storage is the
infrastructure point where a) the Monitoring system redirects
the data collected during experiment executions, and b) Ana-
lytics redirects its queries for retrieving specific data portions
needed to run its analyses.

The 5GENESIS facility uses InfluxDB for the creation of
platform-specific instances of a long-term storage utility. In-
fluxDB is an open-source engine part of the InfluxData frame-
work11, and handles non-relational time series data. The ELCM
is in charge of redirecting data collected by the different probes
and the logging data available at the different components of
the infrastructure to the InfluxDB instance, once the execution
of an experiment in one of the 5GENESIS platforms is termi-
nated. It is also in charge of adding further metadata, e.g., the
Experiment (Execution) ID, that might be useful for some of
the Analytics functionalities. The integration of new probes and
components is done by the development of plugins that will en-
able the communication of the new probe/component with the
ELCM. The only requirement is that the probe/component pro-
vides a command line interface for its control and management
and the retrieval of the measurements. The guidelines for inte-
grating new probes and components are available at [39]. It is
worth mentioning that InfluxDB also provides a lightweight in-
tegration with Prometheus and Grafana12, this latter being used
in the 5GENESIS web portal for visualizing raw collected data
(in parallel to the Analytics visualization service that provides
visual representation of the results of the executed analyses).

The connection between Analytics and the InfluxDB
database is performed through REST calls to the InfluxDB
server. Note that a pre-existing InfluxDB-Python client could
have been used13, but we noticed that direct HTTP queries en-
able faster connection and data retrieval, and thus we adopted
this second approach. Once retrieved from the database, data
is converted to Pandas14 dataframes, goes through some pre-

10https://www.monroe-project.eu, Accessed: November 2021.
11https://www.influxdata.com, Accessed: November 2021.
12https://grafana.com, Accessed: November 2021.
13https://github.com/influxdata/influxdb-python, Accessed:

November 2021.
14https://pandas.pydata.org, Accessed: November 2021.

processing, if needed, and is finally provided as input to the
micro-services in the Analytics component (cf. Section 4).

4. Service-based Analytics

In order to tackle the health and performance analysis of the
network and experimentation infrastructure, we implemented
a variety of analytics methods as microservices using Docker
containers (see Figure 2). These include, among other things,
anomaly detection and correlation services for health analysis
purposes (e.g., is the experiment doing what it is supposed to
do?), and predictive services for performance analysis purposes
(e.g., are the network elements achieving the expected perfor-
mance?). Our choice of algorithms and software was guided by
the 5G experimentation requirements in the 5GENESIS project,
which we can summarize as follows:

• Domain relevancy: The Analytics component has to
specifically focus on the analysis of mobile network ex-
periments and be aware of the characteristics of these ex-
periments. Hence, general-purpose solutions are not fit for
use;

• Data privacy: Data collected during experiments in the
5GENESIS facility has to remain on the local platform
servers. Hence, cloud-hosted solutions are not fit for use
in our case;

• Accessibility and costs: Analytics services has to be open
source. Hence, proprietary solutions are not fit for this
goal;

• Usability: It should not be mandatory to use complex
queries or to know the database format for using the com-
ponent. Hence, solutions not providing an easy-to-use
Graphical User Interface (GUI) are not fit for use in our
case;

• Scalability: Analytics services have to be lightweight and
easy to instantiate/terminate on demand. Hence, con-
tainerised solutions should be preferred.

We further observe that a substantial collection of analytics
solutions exist15, but none of them fit all the aforementioned
5GENESIS requirements. For example, tools such as Acumos16

and Kubeflow17 are powerful frameworks for the optimization
and lifecycle management of ML/AI models. However, Acu-
mos is a general solution that facilitates the manipulation and
optimization of ML/AI models rather than providing a ready-
to-use analytics framework. Similarly, Kubeflow is designed to
make easier the deployment of ML models in Kubernetes. We
could use Acumos and Kubeflow toolkits to support the creation

15https://github.com/0xnr/awesome-analytics, Accessed:
November 2021.

16https://www.acumos.org/, Accessed: November 2021.
17https://www.kubeflow.org/, Accessed: November 2021.
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Figure 2: Overview of the containerised analytics microservices and their functions, including data handling, correlation, KPI prediction, statistical analysis, feature
selection and visualisation. A graphical user interface (GUI) provides easy access to the different services.

and deployment of (parts) of the 5GENESIS Analytics compo-
nent. However, we believe that our standalone component re-
sults in a more compact, practical, and lightweight tool, since it
specifically serves the analysis of KPIs in the 5G domain, and
does not aim to be a general toolkit to be used in other contexts.
The 5GENESIS Analytics component was designed both for en-
abling the efficient setup and configuration of 5G platforms, and
for ensuring that such platforms provide useful insights on the
experimentation and analysis of end-user KPIs.

Our developed Analytics component is thus tailored on the
5GENESIS requirements, but it is flexible enough to be applied
and extended to other 5G experimentation platforms and use
cases. Additional analytics microservices can be defined, based
on specific additional needs to suit other goals for new 5G plat-
forms. To ensure that the additional containers are properly
built and deployed, their details and credentials must be in-
cluded in the analytics-stack.yaml file and in the install
script. A comprehensive README file is included in the online
repository at https://github.com/5genesis/Analytics,
explaining all the set up procedures for containers, which can
be followed for new containers being added. If visualisation
for the new containers is also required, then the visualisation
microservice must be also modified to reflect this need. In the
following sections, we describe the algorithms and services we
implemented as part of our Analytics component.

4.1. Visualisation Service

The visualisation service allows for visual representation of
the results from the other services. It provides a GUI that runs

in the browser and lets the user see the output of the other con-
tainers.

The goal is to provide access to the results of the Analytics
services as interactive visual results. After an experiment is run
and its data is stored in the InfluxDB server, the user can browse
and analyse the experiment results through the GUI shown in
Figure 2 (top right). In the 5GENESIS context, the user can se-
lect which experiment to analyze by providing an experiment
ID in the dedicated field on the left hand side of the GUI. The
main part of the GUI service is a tabbed environment, where the
user can select one of the other Analytics services. In the cur-
rent service release, the tabs contain (1) time series overview,
(2) statistical analysis, (3) KPI correlation, (4) feature selection,
and (5) KPI prediction.

4.2. Data Handler Service

The data handler service provides a unified access to data that
is stored in an InfluxDB instance (e.g., the database of a spe-
cific 5GENESIS platform). It also provides data pre-processing
functionalities, including time series synchronisation, as well
as outlier detection and removal. The following subsections de-
scribe these services in details.

4.2.1. Time Series Synchronisation
To run advanced analyses on the data collected during the ex-

ecution of experiments, we need to merge the data coming from
different monitoring probes activated during the execution. In
5GENESIS, as in most distributed systems, the measurements
may be recorded at slightly different times, often with a few
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Figure 3: Time series synchronisation: Individual measurement points can be
aligned by synchronisation (dotted lines).

milliseconds difference, or with a different granularity, as exem-
plified in Fig. 3. As an example in the scope of the 5GENESIS
M&A framework, IM and PM probes (see Section 3.2) may be
nearly but not perfectly synchronised, since they are activated
by the ELCM in consecutive steps. Moreover, they may collect
data with different sampling periods. For example, targeting
data collection scalability, IM probes collecting the CPU con-
sumption of computing units may work at reduced rates com-
pared to PM probes, which may instead require a more granular
data collection in order to better monitor QoS/QoE KPI, e.g.,
user-experienced throughput.

Synchronisation is a way to align data points that are close in
time, instead of using the exact time when they were recorded.
In Figure 3, synchronisation is depicted via yellow dotted lines
connecting data points from different monitored parameters,
i.e., measurements from different monitoring probes, identified
by red, green, and black time series. The synchronisation ap-
proach is feasible when, as in the 5GENESIS context, the time
difference between data points across measurements is usually
much smaller (often in the order of milliseconds) than the time
difference to the neighbouring data points in the same measure-
ment (often in the order of seconds), which allows for accurate
matching of data points across measurements. Another advan-
tage of this method is that it uses the real values that are reported
from the measurement probes and devices (as opposed to in-
ferred values). In the current implementation of this service,
a time granularity can be specified, on which the data points
from all measurements will be synchronised. For example, if
the granularity of one second is specified, the timestamp of each
data point will be truncated to the full second. If there are mul-
tiple data points per second, the average is calculated. As a
further note, we observe that the measurement rate depends on
the probes. Moreover, the reporting period can be configurable
or not. When the reporting interval can be adjusted, a reason-
able value for it should reflect the purpose of the test and the
radio propagation conditions during such a test. In this paper,
the tests used for showcasing Analytics functionalities focus on
measuring the achievable end-to-end user throughput at the ap-
plication level (cf. Section 5.2). A reporting period of 1 sec-
ond has been then configured because we did not observe high
fluctuations in the preliminary phases used to setup the exper-
iments. Note that if the focus of the test was, for example, to
evaluate the performance of the MAC scheduler we would need
a reporting period in the order of milliseconds and thus probes

able to provide such measurement granularity.

4.2.2. Anomaly Detection
Another challenge that we must address before diving into

further analyses is the occurrence of anomalies. Anomalies are
values that were recorded but do not lie in the typical range
of a variable (e.g., a 32-digit figure where the normal range
is in the 3-digit area). A recorded number that is very far
off from the expected values suggests an error in the measure-
ment or reporting, which is relevant for the health monitoring
of the experiment components, such as measurement probes.
Two anomaly detection methods are currently integrated in the
Analytics component: Z-Score and Median Absolute Devia-
tion (MAD).

Z-Score uses the standard deviation of the given distribution
of recorded data points in a measurement to determine whether
a data point does not belong to that distribution. The Z-Score
for a variable xi is calculated as follows:

zi =
xi − x̄

S
, (1)

where x̄ is the sample mean and S the sample standard devi-
ation. Variables with a zi value greater than 3 (at least three
standard deviations away from the mean) are considered out-
liers and are thus removed before proceeding to other analyses.

MAD, also known as Robust Z-Score, uses the so-called
MAD score to detect outliers. The score is defined, for each
population sample xi, as follows:

Mi =
0.6745(xi − x̃)

MAD
, (2)

where MAD = median{|xi − x̃|}, x̃ represents the median of the
sampled population, and the value of 0.6745 is derived under
the assumption of normally distributed data, being the 75% per-
centile of the standard normal distribution. The samples for
which |Mi| > 3.5 are considered outliers [40].

In our Analytics component, both methods are implemented
using Pandas and NumPy vectorisation methods with a focus on
performance and near real time application, and present compa-
rable computational costs.

4.3. Statistical Analysis Service

This service provides a statistical overview of the data col-
lected during the execution of an experiment. In particular, this
service executes the KPI validation process defined in 5GEN-
ESIS [41]. As detailed in [28], an experiment dedicated to the
validation of a 5G KPI under specific network configurations
and conditions, is executed in 5GENESIS platforms as a repe-
tition of a statistically significant number of consecutive trials
(i.e., iterations). Therefore, the KPI validation process includes:

• A preliminary analysis of each iteration separately, where
several indicators are evaluated and collected (e.g., min,
max, median, and average values of the KPI under analysis
observed during each iteration);
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• The derivation of the same indicators at the experiment
level, obtained by averaging the indicators of each itera-
tion and adding a confidence interval that assesses the pre-
cision of the provided outcome.

In the Analytics component, this service relies on standard
Python libraries (Pandas and NumPy) that allow for a straight-
forward evaluation of a full set of statistical indicators (e.g.,
min, max, mean, standard deviation, etc.)

4.4. Linear Correlation Analysis Service

This service provides state-of-the-art correlation algorithms,
including Pearson, Kendall, and Spearman, to find linear rela-
tionships between variables collected during experiments.

The experimenter may be interested in observing the tempo-
ral behaviour of recorded variables, and evaluate the similar-
ity between them. Therefore, in the 5GENESIS and in other
5G experimentation frameworks, linear correlation is a fast and
computationally efficient way to gain insights in terms of possi-
ble similarities between monitored parameters and KPIs. In the
current implementation, the experimenter can specify the type
of correlation they want to perform, choosing from the above
mentioned correlation methods. The algorithms are provided
via the Pandas library.

In particular, the correlation service currently provides two
types of use cases:

• Correlation between variables in the same experiment:
This allows the experimenter to compare parameters and
KPIs collected during an experiment. For example, the
experimenter can investigate the correlation between UE
throughput and power consumption during an experiment
executing in a urban environment under mobility;

• Correlation between variables across different experi-
ments: This enables the evaluation of correlation between
same variables collected during different experiments. For
example, the experimenter may be interested in compar-
ing the difference in trends for throughput collected during
two experiments executed under the same network condi-
tions but different configurations, in order to verify how
the configuration changes impact the throughput experi-
enced at the user end.

4.5. Feature Selection Service

The feature selection service uses algorithms, such as
Backward Elimination (BE), Recursive Feature Elimination
(RFE), and Least Absolute Shrinkage and Selection Opera-
tor (LASSO) to identify the most relevant variables with respect
to target variable, e.g., a KPI.

Feature selection is an important step in data analysis. Given
a dataset related to a particular experiment, feature selection
can be primarily applied in quest of dimensionality reduction,
e.g., to discard parameters collected by the monitoring probes
that are not directly correlated with the KPI under analysis.
The presence of these parameters may in fact hinder follow-
ing analyses, e.g., prediction, as they may negatively impact the

fitted model. In its current release, we implemented a service
that focuses on numeric feature selection, that is, all categor-
ical variables possibly collected during an experiment are not
considered. Algorithms for numeric feature selection are tradi-
tionally divided in three main categories, that is, filter, wrap-
per, and embedded methods. Hence, we implemented one fil-
ter method, which basically reuses the linear correlation ser-
vice described in the previous subsection, two wrapper meth-
ods, namely, BE and RFE, and one embedded method based on
LASSO-regularized regression [42][43].

Being part of the wrapper category, BE adopts a ML algo-
rithm to fit a specific model using the available features. It starts
with the entire set, and iteratively removes features based on
the model accuracy. More precisely, the same model is built at
each iteration using the remaining features, and the p-value for
each of them is evaluated. In our implementation, the features
resulting in a p-value larger than 0.05 are removed. In its cur-
rent implementation, an Ordinary Least Squares (OLS) model
is adopted, since it is largely used to perform linear regression.

Similar to BE, RFE works by recursively removing features
while building a model. It initially fits a model, e.g., linear re-
gression, based on all features. Then, at each iteration, it evalu-
ates feature coefficients and importance, ranks them on the ba-
sis of the linear regression accuracy, and finally removes low
ranking features.

Across embedded methods, the ones based on regularization
are quite popular. LASSO regularization deals with possible
linear regression overfitting by penalizing unimportant features,
assigning them coefficients up to zero. In this case, a regular-
ization parameter, denoted α in our service, is needed in order
to control the strength of shrinkage and in turn the selection of
the relevant features.

Users can thus select one across the above methods and run
the selection task. Multiple service queries with different algo-
rithms make also possible to compare the results, i.e., the set of
selected features obtained when different algorithms are used.
The feature selection service in our Analytics component build
on top of Pandas, NumPy, and SciKit-Learn libraries.

4.6. Prediction Service

The prediction service provides state-of-the-art ML algo-
rithms to train prediction models on a given target KPI. The
trained models can then be used for live predictions.

With the aid of KPI prediction, the experimenter can attempt
to identify how the various network elements impact the tar-
geted measurement KPIs, in order to understand how the net-
work can be optimised to achieve a desired increase / decrease
of the KPI. A typical application is to predict the resource re-
quirements that are needed to achieve a desired throughput.

In the current release of the Analytics module, we imple-
mented a number of algorithms to this end: Linear Regression,
Random Forest and Support Vector Machines (SVM)-based
regression algorithms, utilising freely available SciKit-Learn
modules. Our selection was driven by a focus on faster train-
able models that are served to the visualisation service in near
real-time (linear regression) or with an acceptable waiting time
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(random forest and SVM), for small and medium-sized data.
A wider selection of prediction algorithms may be included in
future releases, possibly including deep learning algorithms.

4.7. API Description

The Analytics dashboard provided by the visualisation ser-
vice (described in Section 4.1) is the primary way of accessing
the various Analytics services. The dashboard can be accessed
through a web browser at visualisation-URL/dash.

All other services can be consumed programmatically
through their respective REST APIs, with each request return-
ing a JavaScript Object Notation (JSON) response. For the full
API description for each service, we refer the reader to the
5GENESIS open source code repository [5]. The README file
includes descriptions of the APIs for each service and also gives
examples of using the APIs and the corresponding responses.
In this section we explain some of the common REST API calls
for our Analytics services, and we also include full examples
of these API usage and responses in Appendix A.

Data Handler API: The most common call to the data han-
dler service is to retrieve (and preprocess) data. This will return
a collection of KPIs and their values (as exemplified in Ap-
pendix A.0.1), where each data point is UNIX-timestamped.
The data handler service also provides other endpoints, for
example listing all available datasources, all available exper-
iments, available experiments for a given measurement and
available measurements for a given experiment.

Statistical Analysis API: The call to the statistical analysis
endpoint returns test statistics about the experiment data. Ex-
periment id, KPI and measurement parameters must be speci-
fied, as shown in Appendix A.0.2. The result returns statistics
metrics such as percentiles, min, max and mean for each indi-
vidual experiment iteration (0, 1, 2, ...) as well as for the whole
experiment run, averaged over all iterations.

Linear Correlation Analysis API: The most common
call to the linear correlation service is to request the correla-
tion matrix for all fields/KPIs collected during an experiment.
An optional parameter remove outliers can also be speci-
fied, to exclude outliers from the data used for the correla-
tion. The exact call and results are exemplified in Appendix
A.0.3. The result shows the pairwise correlation values for
all fields. The correlation service also offers another endpoint
(/correlate/experiments) that allows the user to retrieve
the correlation values for KPIs across different experiments.

Feature Selection API: The feature selection service offers
one endpoint (/selection), which requires the experiment
identifier and measurement parameters, as shown in Appendix
A.0.4. The result contains three parts. ”Features - Original”
contains the full unfiltered list of features in the data, ”Features
- Selected” contains the subset of features that were chosen by
the feature selection algorithm, and ”Score” contains the scores
that the algorithm assigned to each feature for more information
about the selected features.

Prediction API: The prediction service offers an endpoint to
train an ML model, where the desired algorithm and target KPI
are specified in the path. At least one experiment id parame-
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Commercial
UE

Figure 4: The 4G/5G experimental testbed at the University of Malaga.

3GPP technology 4G LTE+, 5G NSA
Core Network Polaris Rel-15 EPC

Core Cloud Openstack
Slice Manager Katana

MANO OSM v6
Automation Platform OpenTAP

Infrastructure Monitoring Prometheus

Table 1: Main infrastructure elements of the 5GENESIS Malaga platform.

ter must be specified as well, and we may also ask the predic-
tion service to remove outliers by specifying the outlier removal
method, as shown in Appendix A.0.5. The result shows the co-
efficient of the trained model (feature importance), the real and
predicted values of the test set, and the results of the prediction
on the test set, including R2 and Mean Squared Error (MSE)
(exemplified in Appendix A.0.5). A second endpoint (/model)
is also available that allows to download the last trained ML
model for future use.

5. Experimental setup

In this section, we describe the 5GENESIS Malaga platform
and its configuration, the conducted experiments and the corre-
sponding collected dataset.

5.1. Setup and Configuration
The testbed used in our experiments is a 5G NSA private

network deployed at the University of Malaga. This private net-
work, depicted in Figure 4, includes a RAN composed of four
5G gNBs and four 4G eNBs, a 3GPP Rel-15 Evolved Packet
Core (EPC) as network core, and a main data centre. The setup
also includes probes for monitoring radio parameters, IP traffic,
and resource usage in the main data centre and the UE. More
details about the infrastructure and the software components are
provided in Table 1.

On top of the infrastructure shown in Figure 4, the Open
5GENESIS Suite [5] has been deployed. This experimentation
framework has been used for the execution of the experiments
whose results are analysed in this paper.
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Band n78
Tx Mode Time Division Duplex

Bandwidth 40 MHz
Carrier Components 1 carrier

MIMO layers 2 layers
Downlink MIMO Mode 2x2 TM3

Modulation Adaptive (up to 256-QAM)
Beams Single beam

Subcarrier Spacing 30 kHz
Uplink/Downlink Slot Ratio 2/8

Scheduler Proactive

Table 2: 5G NR NSA configurations adopted during the experiments presented
in this paper.

Band B7
Tx Mode Frequency Division Duplex

Bandwidth 20 MHz
Carrier Components 1 carrier

MIMO Layers 4 layers
Downlink MIMO Mode 4x4 TM4

Modulation Adaptive (up to 256-QAM)

Table 3: 4G network configurations adopted during the experiments presented
in this paper.

Regarding the radio configuration in the infrastructure, the
data plane has been configured to use only the 5G data plane
(data bearers are handled by gNB nodes), while 4G is acting as
the anchor point for the control plane. Taking into account this
configuration, only the 5G configuration parameters indicated
in Table 2 should be taken into account to calculate the avail-
able bandwidth, according to [44]. The commercial UE used
during the testing has been Samsung Galaxy Note 10 (Exynos
chipset). The UE has been placed at two static locations: Lo-
cation A is in the Line of Sight (LoS) of one of the four re-
mote radio heads and in close proximity, in order to achieve
the maximum theoretical throughput of 286 Mbps, according
to the configurations in Table 2 and formula in [44]; Location
B is in Non Line of Sight (NLoS) and closer to the edge of the
cell, in order to quantify the degradation due to bad radio con-
ditions. Finally, several tests were executed while walking and
driving around the building, in order to analyse the correlations
between traffic and radio parameters in pedestrian and vehicular
scenarios.

Table 3 provides the details of the 4G configurations applied
during our experiments, in order to complement the 5G con-
figurations presented in Table 2. We further observe that the
proactive scheduling functionality was activated for 5G in or-
der to further reduce latency. This is a vendor-specific feature,
which consists in a proactive allocation of grants in order to
maintain the resource allocation for a user in case further up-
link data arrives for transmission.

5.2. Executed Experiments and Collected Dataset
We have run three different measurement campaigns with

different properties, resulting in three different datasets:

• Static LoS: The device was located close to a window,
with a direct line of sight to the antenna pointing into the
laboratory in order to provide good coverage within the
building hosting the servers and the baseband unit. Very
good propagation conditions are observed in this location.

• Static NLoS: The antenna pointing into the laboratory was
deactivated. In these conditions the serving cell changed
to one of the antennas pointing into the area in front of the
building where the laboratory is located. Very bad condi-
tions are observed in this scenario.

• Vehicular scenario near the building: The last dataset was
collected during a driving test around the building where
the antennas are deployed and also around other buildings
in the area. Therefore, a high variability in the radio condi-
tions is observed in this scenario, ranging from extremely
bad to very good radio conditions.

The traffic bandwidth configuration to use depends on the
test purpose of the experiment. For the experiments presented
in this paper, the target is to characterise the maximum user
data rate available. Therefore, the traffic bandwidth is set above
the maximum that is available in the network scenario. In par-
ticular, the generated traffic was based on User Datagram Pro-
tocol (UDP) streams with a target throughput configured to a
slightly higher value than the theoretical maximum data rate
calculated according to the formula provided in [44] and for the
network parameters described in Table 2.

Both Nemo Handy [45], a radio monitoring and drive test
tool for Android devices, and 5GENESIS monitoring probes
[46], a set of tools for traffic generation and automation based
on iPerf18, were used in the tests. Additionally, the Global Posi-
tioning System (GPS) location of the device was tracked during
non-static tests.

The collected measurements include MAC Block Error Rate
(BLER), Radio Link Control (RLC) BLER, RSRP, Reference
Signal Received Quality (RSRQ), Received Signal Strength In-
dicator (RSSI), Rank indicator distribution, SINR, and through-
put at IP, Packet Data Convergence Protocol (PDCP), MAC,
and physical layer. Figures 5 and 6 are visualization examples
(in space and time domain, respectively) of the PDCP through-
put collected during the driving test.

In terms of analysing and troubleshooting the containers in
the Analytics module, there are several tools available for con-
tainer management and troubleshooting. Among those, we used
Portainer19 for observing and troubleshooting the containers’
behaviour. We specifically focused on its observability fea-
tures, which allowed us to get insights into the issue of con-
tainer deployment impact onto the speed of getting results and
also allowed us to inspect the logs for each container for any
troubleshooting issues.

18www.iperf.fr, Accessed: November 2021.
19www.portainer.io, Accessed: November 2021.
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Figure 5: Geomapping of the PDCP downlink throughput [Mbps] collected
during the mobile experiment.

6. Framework Evaluation

In this section, we leverage a selection of services provided
by the Analytics module (Section 4), to analyze several aspects
related to the 5G experiments executed in the Malaga platform.
The reported analyses and results do not form an exhaustive list
but rather serve as reference examples of use cases made avail-
able by the current release of the Analytics component. There-
fore, we showcase different use cases for different experiments.
We started by applying the statistical analysis service to investi-
gate the performance in terms of downlink throughput obtained
under static LoS and NLoS scenarios toward providing a reli-
able validation for the nominal KPI. We then apply correlation,
feature selection, and prediction services to the mobile experi-
ment, to investigate the behaviour of different parameters col-
lected in a dynamic scenario, as well as the relationship of such
parameters with downlink throughput.

6.1. Anomaly Detection
An essential step in data processing is the detection and re-

moval of outliers. Two aspects need to be taken into account:

1. The presence of outliers is a key information, as it may
indicate malfunctions in the setup adopted while running
the experiments.

2. The removal of outliers avoids undesired skews in the data
distribution that could lead to incorrect analyses and con-
clusions on the experiments, e.g., when further analysis
methods provided by the Analytics component are used.

Outliers may appear for various reasons that require in-depth
investigations. In the 5GENESIS context, one possible explana-
tion for the presence of outliers is the following: as anticipated
in Section 4.3, experiments for KPI validation are conceived as
a repetition of consecutive but independent iterations, with the
ELCM restarting the components involved in the experiment,
including the monitoring probes, at the beginning of each it-
eration. On the one hand, the presence of iterations is meant
to increase data collection reliability and makes it possible to
study experiment statistics on two different levels, i.e., per iter-
ation (by isolating samples belonging to each iteration) and per

experiment (by merging results from iterations). On the other
hand, this start/stop functioning may provoke sudden malfunc-
tions in the monitoring probes, particularly at the beginning/end
of the iterations, leading to possible data outliers.

Figure 7 shows the presence of outliers in the downlink
throughput collected during the static NLoS experiment exe-
cuted in the Malaga platform, as well as its removal using Z-
score. In this case, the presence of outliers leads to a misleading
picture of the minimum and maximum throughput achieved in
the adopted experimental setup. Indeed, the nominal range of
data is narrower than the one the outliers would suggest, with a
maximum throughput closer to 18 Mbps rather than the value of
45 Mbps collected in an isolated sample. Note that taking into
account this value would also bias other statistical indicators,
e.g., the average, therefore, it is a good norm to remove outliers
before proceeding with further analyses.

All results presented in this section use outlier removal with
the Z-Score method as described in Section 4.

6.2. Statistical Analysis

Figure 8 and Table 4 showcase the application of the sta-
tistical analysis service on the PDCP downlink throughput col-
lected during (Figure 8a) static LoS and (Figure 8b) static NLoS
experiments.

As discussed in Section 4.3, this service provides the results
of the procedure defined in 5GENESIS for a reliable KPI valida-
tion under well-defined network conditions and configurations.
On the one hand, Figure 8 shows the statistics of the PDCP
downlink throughput on a per-iteration basis.20 On the other
hand, Table 4 shows the results obtained on the entire experi-
ment, by averaging the statistical indicators over iterations and
adding a confidence interval to each indicator.

Per-iteration inspection is key for pinpointing possible mal-
functions or sudden changes in network conditions and config-
urations, which may happen during a specific iteration. Hence,
this Analytics service allows to pinpoint and help manage these
situations, ultimately suggesting to discard and repeat anoma-
lous iterations. In the reported examples, we instead observe
a high stability of the throughput collected over the iterations,
which is a key proof of the validity of all the iterations defining
both experiments under analysis.

Per-experiment inspection allows to finalize the KPI valida-
tion procedure and, to do so, the statistical analysis service pro-
vides the results reported in Table 4. Among several possible
observations, a straightforward comparison allows to highlight
the significant impact of the network scenario on the achiev-
able throughput. Indeed, a significantly higher throughput is
obtained in the LoS scenario (about 271 Mbps on average, with
a standard deviation of 3.55 Mbps) compared to its NLoS coun-
terpart (about 15 Mbps on average, with a standard deviation of
1.91 Mbps).

20Note that a subset of 11 iterations are shown in Figure 8 for simplicity. 25
consecutive iterations are the minimum requirement defined by 5GENESIS for
obtaining a reliable and statistically significant KPI validation [28].
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Figure 6: Time series visualization of the PDCP downlink throughput [Mbps] collected during the mobile experiment.

Figure 7: Z-score based outlier removal for the downlink throughput [Mbps]
collected during the static NLoS experiment.

(a)

(b)

Figure 8: Statistical analysis of the PDCP downlink throughput KPI [Mbps].
Figure shows boxplots for the first 11 iterations of the static LoS (a) and static
NLoS (b) experiments.

static LoS static NLoS
Indicator Value Conf. Int. Value Conf. Int.
95% Percentile 277.27 0.30 16.71 0.10
75% Percentile 273.25 0.27 16.22 0.04
25% Percentile 269.12 0.27 15.35 0.25
5% Percentile 265.95 0.48 11.59 1.50
Max 283.24 4.58 19.26 0.73
Median 270.94 0.21 15.93 0.06
Mean 271.23 0.18 15.38 0.24
Min 258.27 4.72 3.80 1.36
Standard Dev. 3.55 0.29 1.91 0.39

Table 4: Test case statistics and corresponding confidence intervals for PDCP
downlink throughput [Mbps], for static LoS and static NLoS experiments.

6.3. Correlation Analysis
A first approach for identifying the relationship between

measured variables is to run a linear correlation analysis, which
allows to see, in an easily interpretable way, to which degree the
variables collected during an experiment are inter-dependent,
might affect each other, or might be affected in the same way
by other experimental variables.

Figure 9 depicts a heatmap representation of a correlation
matrix, where the pairwise inter-dependency between several
parameters collected during the mobile experiment is shown.
In order to improve visibility, the matrix reports a subset of col-
lected parameters selected via domain knowledge; This filtering
functionality is made available by the Analytics dashboard.

In the reported example, we use Pearson correlation coef-
ficients to evaluate the relation between each pair of parame-
ters. On the one hand, values near 1.0 (color-coded in green
in the heatmap) indicate a strong positive correlation, i.e., the
measured parameters increase (or decrease) simultaneously. In
particular, we see that, as expected in nominal situations, the
downlink throughput observed at different layers of the protocol
stack (e.g., MAC, PDCP, Physical Downlink Shared Channel
(PDSCH), and RLC) positively correlated to variables related to
the radio coverage experienced by the UE (e.g., RSRP, RSRQ,
and SINR of the cell the UE is connected to). On the other hand,
values near −1.0 (color-coded in red in the heatmap) indicate
strong negative correlation, where measured values change in
opposite increase vs. decrease directions. In the reported ex-
periment, among others, the RLC downlink BLER data nega-
tively correlated with the throughput and coverage-related pa-
rameters. We also observe strong negative correlations between
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Figure 9: Correlation matrix evaluated for measurements collected during the
mobile experiment. Measurements include a) throughput and other indicators
at different layers (i.e, MAC, RLC, PDSCH, and PDCP), b) radio-related pa-
rameters (i.e., RSRP, RSRQ, and SINR) and c) the distance between collection
points and the 5G serving cell (denoted CellDistance in the matrix).

the UE-cell distance (denoted as CellDistance in the correlation
matrix) and both throughput and coverage-related parameters.
These are again examples of a nominal behaviour in wireless
scenarios: indeed, the error rate is expected to decrease (resp.
increase) as the throughput increases (resp. decreases), while
throughput and coverage are expected to decrease (resp. in-
crease) as the UE-cell distance increases (resp. decreases).

From an experimental perspective, the correlation service
provided by our Analytics component helps understand the
inter-dependency between measured parameters. The lack of
some expected correlations, as well as the presence of unex-
pected correlations between one or more parameters provide
a key indication of the health of the experimental setup dur-
ing the execution of experiments. Such indications may in turn
be used to trigger troubleshooting and possibly needed recon-
figurations. However, being based on linear correlation, this
service is not able to pick up non-linear relationships between
variables. Therefore, to gain additional insights, we need to fol-
low a predictive analysis based route, as highlighted in the next
sections.

6.4. Feature Selection

Feature selection is a precursor to the predictive analysis, and
allows to focus on a subset of variables that affect a given target
KPI. Furthermore, feature selection aims to minimize the size
of the model that will be trained by the prediction algorithm,
in order to get a simpler (and therefore faster) model without
losing prediction accuracy.

To showcase the feature selection service provided by the
Analytics component, we select the PDCP downlink through-
put collected during the mobile experiment as our target KPI.

Aiming at revealing insightful but not too obvious relation-
ships between the target KPI and other variables, we first apply
our domain knowledge, as also done for the correlation analysis
service, and exclude variables that are in essence synonyms of
the target KPI, e.g., the throughput values obtained in the other
layers of the 5G protocol stack (e.g., MAC and RLC).

We then adopt the LASSO algorithm to automatically select
the parameters that would form a reduced set of prediction fea-
tures for PDCP downlink throughput, as reported in Table 5. A

LASSO Feature selection
Elevation
MAC downlink BLER 2nd
MAC uplink throughput
PDSCH MCS CW0
PDSCH TBS CW0
PUSCH PRBs
PUSCH throughput
RACH access delay
RACH logical root sequence index
RACH pathloss
RLC uplink block rate
SINR (pcell)
Slot utilization DL

Table 5: LASSO-selected parameters for the PDCP downlink throughput col-
lected during the mobile experiment. In total, 63 out of the 76 numerical fea-
tures were discarded with a regularization parameter α = 0.1.

total of 76 numerical features were collected during the experi-
ment, thanks to the activation of PM/IM probes at the UE side,
i.e., the 5GENESIS iPerf-based PM probe and the Nemo Handy
tool used as IM probe, as also discussed in Section 5.2. As
reported in Table 5, the LASSO algorithm with regularization
parameter α = 0.1 selects 13 parameters as sufficient to build an
accurate prediction model for the PDCP downlink throughput.
Among other, the set of features include SINR alongside var-
ious PDSCH, Physical Uplink Shared Channel (PUSCH) and
Random Access Channel (RACH) variables. Therefore, the
feature selection service allows to drastically reduce the set of
necessary features to predict a target KPI and build a simpler
prediction model, which has advantages in terms of both per-
formance (a simpler models is faster to train and use) and inter-
pretability (a simpler model is easier to comprehend).

6.5. Predictive Analysis
In order to gain deeper understanding of the measured KPIs,

as well as provide KPI models that could be used for further
performance analysis and network optimization, the Analyt-
ics component also provides a predictive analysis service. We
showcase this functionality by focusing again on the PDCP
downlink throughput KPI and other parameters collected dur-
ing the mobile experiment. The PDCP downlink throughput
behaviour over time is shown in Figure 5, hence, providing an
example of throughput experienced under mobility.

6.5.1. Prediction with LASSO-selected features
As a first example, we train a Random Forest regression for

our target KPI by using the set of features obtained via LASSO
selection (cf. Section 6.4). As reported in Section 4.6, Ran-
dom Forest is one of the prediction algorithms available in the
prediction service of the Analytics module.

To test the model’s accuracy, we split the data into a train-
ing (80%) and a testing (20%) set. The results are reported
in Table 6, where we observe a correlation coefficient between
actual and predicted values of 0.99, and a Mean Absolute Er-
ror (MAE) of 3.72. This is a very small error, considering that
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Metric Train Test
Mean 100.36 84.14
Standard deviation 47.18 67.08
R2 0.99
MAE 3.72
MSE 49.83

Table 6: Accuracy results of the Random Forest prediction on the PDCP down-
link throughput [Mbps] collected during the mobile experiment. The model
uses LASSO-selected features (see Table 5) as input features.

Figure 10: Visualization of actual (x-axis) vs. predicted (y-axis) PDCP down-
link throughput [Mbps] for the mobile experiment. Prediction is performed via
Random Forest, using LASSO-selected features (see Table 5) as input features.

the target KPI has a mean of 100.36 and a standard deviation of
47.18 in the training data. The low error also shows the feasi-
bility of reducing the set of features to a much smaller set with
little to no losses in model accuracy.

Since the error values do not paint a complete picture in a
regression task, we also inspect the data points that the ob-
tained model predicts for each actual PDCP downlink through-
put value. This is shown in Figure 10, with an almost ideal dis-
tribution around the diagonal. This means that each predicted
value is close to the actual PDCP downlink throughput value
across the data.

In a performance monitoring use case, this model could now
be used to estimate, for example, which Signal-to-noise ra-
tio (SNR) level would be acceptable to reach a desired PDCP
downlink throughput. There are many potential avenues for
predicting network performance related KPIs. For example, a
similar model could be trained on hardware resource aspects,
such as CPU and memory, to estimate which hardware would
be required to achieve good signal strength in an IoT scenario.

6.5.2. Prediction using radio coverage and distance features
In the previous predictive analysis, we obtained a highly ac-

curate model that includes many features collected across the
layers of the protocol stack. In some simpler settings, many of
these parameters would be difficult to collect. It then makes
sense to further reduce the set of available parameters and
test the performance of the prediction service under limited
data availability. Therefore, in this second example, we only
take into account the parameters related to radio coverage, i.e.,

Feature Value
SINR 0.8038
RSRP 0.0958
RSRQ 0.0573
CellDistance 0.0431

Table 7: Feature importance values of the Random Forest model for the PDCP
downlink throughput [Mbps] collected during the mobile experiment. The
model only uses radio-related parameters (RSRP, RSRQ, and SINR) and UE-
cell distance (CellDistance) as input features.

Metric Train Test
Mean 100.36 84.14
Standard deviation 47.18 67.08
R2 0.86
MAE 14.83
MSE 609.58

Table 8: Accuracy results of the Random Forest prediction on the PDCP down-
link throughput [Mbps] collected during the mobile experiment. The model
only uses radio-related parameters (RSRP, RSRQ, and SINR) and UE-cell dis-
tance (CellDistance) as input features.

SINR, RSRP, and RSRQ, as well as the relative location of the
UE (CellDistance), which is calculated from the latitude, longi-
tude and elevation of the UE in relation to the 5G cell the UE is
connected to.

Table 7 shows the model learnt by the Random Forest algo-
rithm on this reduced set of features. SINR results in the most
impactful feature in this model, with RSRP and RSRQ taking
a less important role. CellDistance is the least important fea-
ture and does not contribute much to the model, although we
expect the distance between UE and cell to play a bigger role.
In Section 6.3, we observed some correlation between CellD-
istance and PDCP downlink throughput, but the radio features,
especially SINR, are clearly more indicative of the achieved
throughput.

The accuracy of this model is described in Table 8 and con-
firms our expectations with respect to the lower performance
when compared to the model that has access to a larger set of
features. However, the model still shows acceptable perfor-
mance, with 0.86 R2 and a MAE of 14.83 Mbps, considering
that data ranges between 0 and 230 Mbps. The scatter plot
that contrasts the actual and predicted values in Figure 11 still
exhibits an accumulation of data points around the diagonal,
but with a less well-defined shape around the diagonal when
compared to the same plot for the first experiment (Figure 10).
Noteworthy is that this model does not predict anything above
200 Mbps although the real data achieves values up to nearly
230 Mbps. Despite the lower performance compared to the first
model, this model would still be useful to predict throughput,
as long as it is adopted for use cases where the obtained error
margin is still acceptable.

7. Discussion and Conclusions

In this paper, we have presented the design and use of a flex-
ible and scalable Analytics framework, based on microservices
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Figure 11: Visualization of actual (x-axis) vs. predicted (y-axis) PDCP down-
link throughput [Mbps] for the mobile experiment. Prediction is performed
via Random Forest, using radio-related features (RSRP, RSRQ, and SINR) and
UE-cell distance (CellDistance) as input features.

that are open sourced and available to use by the community.
While designing the Analytics framework, we catered for a di-
verse set of requirements supporting the needs of different plat-
forms and their corresponding use cases. By doing so, we pro-
vided a homogeneous framework for analyzing and reporting
the results of the experiments executed in quite heterogeneous
platforms and service conditions. Furthermore, the Analytics
framework enabled us to apply different algorithms with ease
through different Analytics services. The ability to use these
services on their own or in a pipeline give us different ways of
analysing the datasets. We were able to observe how KPI trends
evolve over the duration of the experiments, and also how dif-
ferent KPIs are related to each other. We could also extract
correlations, detect outliers and apply advanced predictions, all
done in a sustainable manner.

The Analytics framework was also of great importance while
building the 5GENESIS Malaga testbed, as we found it to be a
very useful tool for troubleshooting. For example, we could
gather insights for the radio deployment or identify anomalous
iterations during the experimentation phase, or differences be-
tween PDCP and UDP traffic. Both of these results, when de-
tected, warrant a more thorough analysis, as they could pinpoint
to issues in the underlying platform.

Overall, our experiences within the 5GENESIS project lead
us to believe that this service-based Analytics component can
be deployed in a flexible manner to suit the particularities of
the underlying infrastructure, the specific needs for Analytics
in the platform (i.e., which Analytics services do we need) and
the performance of the Analytics service (i.e., being aware of
data transfer rates between containers and time bounds on An-
alytics results). We have successfully used our Analytics ser-
vice to derive insights both for network-based analytics to aid
in the infrastructure configuration and running, as well as for
providing insights towards the experimenters with regard to the
service KPI trends and performance.

In terms of future work, we plan to collect feedback and,
based on this, extend the Analytics service with additional
capabilities, such as non-linear time series correlation and
time-series forecasting. Moreover, we plan to make the APIs

more generic and flexible, especially in term of retrieving and
analysing results. Finally, we plan to use the Analytics com-
ponent for the analysis of more heterogeneous and complex
scenarios, by running experiments with multiple users possi-
bly having different service requirements and KPIs. On this
aspect, we highlight that the Analytics component can already
handle multi-user/service use cases if a) the activated probes
have a same reference time and b) the collected parameters are
properly labelled, e.g., with user/service identifiers.

The analysis of these scenarios where, for example, eMBB
and URLLC users may coexist on the same network deploy-
ment, can first help understanding and quantify the correlation
between users’ performance and network conditions and con-
figurations; Then, a second step could be to extract relevant
parameters and evaluate the predictability of the obtained per-
formance (e.g., throughput and latency for eMBB and URLLC
users, respectively) based on such parameters; Finally, the ob-
tained data-driven models could be used for deriving and testing
ML-based network optimization policies, e.g., in terms of eM-
BB/URLLC slice(s) configurations and/or radio resource man-
agement between heterogeneous users.
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Appendix A. Analytics API examples

The following excerpts are examples of API calls and re-
sponses from each analytics service, including data handler, sta-
tistical analysis, correlation, feature selection and prediction.

Appendix A.0.1. Data Handler API

data -handler -URL/get_data/datasource/experimentId

Response from /get data:

{

"PDCP downlink throughput ": {

"1600811115000": 163.4 ,

"1600811116000": 160.8 ,

...

},

"CellDistance ": {

"1600811115000": 44.9959961221 ,

"1600811117000": 47.3855153703 ,

...

},

...

}

Appendix A.0.2. Statistical Analysis API

stat -analysis -URL/statistical_analysis/database?

experimentid =123& kpi=Throughput&measurement=

throughput_measures

Response from /statistical analysis:

{

"Throughput ": {

"Iteration Statistics ": {

0: {

"5% Percentile ": 167,

"25% Percentile ": 176,

...

},

1: {

"5% Percentile ": 171.8,

"25% Percentile ": 177,

...

},

...

},

"Test Case Statistics ": {

"5% Percentile ": {

"Value": 171.43958333333333 ,

"Confidence Interval ":

0.5810154812485544

},

"25% Percentile ": {

"Value": 175.890625 ,

"Confidence Interval ":

0.3156676239473986

},

...

}

}

}

Appendix A.0.3. Linear Correlation Analysis API

/correlate/fields/datasource/experimentId?

remove_outliers=zscore

Response from /correlate/fields:

{

"CellDistance ": {

"CellDistance ": 1,

"PDCP downlink throughput ": -0.382707002 ,

"SINR": -0.336993597 ,

...

},

"PDCP downlink throughput ": {

"CellDistance ": -0.382707002 ,

"PDCP downlink throughput ": 1,

"SINR": 0.825896797 ,

...

},

"SINR": {

"CellDistance ": -0.336993597 ,

"PDCP downlink throughput ": 0.825896797 ,

"SINR": 1,

...

},

...

}

Appendix A.0.4. Feature Selection API

feature -selection -URL/selection/datasource/

algorithm/target?experimentid =123& measurement

=throughput_measures

Response from /selection:

{

"Features - Original ": {

0: "MAC downlink BLER",

1: "MAC downlink BLER 1st",

2: "MAC downlink BLER 2nd",

3: "PDCP downlink block rate",

4: "RLC downlink throughput",

...

},

"Features - Selected ": {

0: "PDCP downlink block rate",

1: "RLC downlink throughput"

},

"Score": {

"MAC downlink BLER": 0,

"MAC downlink BLER 1st": 0,

"MAC downlink BLER 2nd": 0,

"PDCP downlink block rate": 0.848355061 ,

"RLC downlink throughput ": 0.0458724611 ,

...

}

}

Appendix A.0.5. Prediction API
Example that includes outlier removal:

prediction -URL/train/datasource/algorithm/target?

experimentid =123& remove_outliers=zscore
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Response from /train:

{

"coefficients ": {

"MAC downlink throughput ": 0.4974099716 ,

"PDCP downlink block rate": 0.2324643848 ,

"RLC downlink throughput ": 0.1372971483 ,

"MAC downlink scheduled throughput ":

0.0665096093 ,

"PDSCH throughput ": 0.0533150278 ,

...

},

"real_predicted_values ": {

"y_pred ": {

0: 109.8001233468 ,

1: 141.7893004874 ,

...

},

"y_test ": {

0: 110.3 ,

1: 130.7 ,

...

}

},

"results ": {

"R2 score": 0.9956903516 ,

"Mean Squared Error": 19.393652019 ,

...

}

}
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