
BBRv2+: Towards Balancing Aggressiveness and Fairness with
Delay-based Bandwidth Probing

Furong Yanga,b,c, Qinghua Wua, Zhenyu Lia,∗, Yanmei Liud, Giovanni Paue,f, Gaogang Xieg

aInstitute of Computing Technology, Chinese Academy of Sciences, China
bUniversity of Chinese Academy of Sciences, China

cSorbonne University, France
dAlibaba Group, China

eUniversity of Bologna, Italy
fUniversity of California, Los Angeles, USA

gComputer Network Information Center, Chinese Academy of Sciences, China

Abstract

BBRv2, proposed by Google, aims at addressing BBR’s shortcomings of unfairness against loss-based conges-
tion control algorithms (CCAs) and excessive retransmissions in shallow-buffered networks. In this paper, we
first comprehensively study BBRv2’s performance under various network conditions and show that BBRv2
mitigates the shortcomings of BBR. Nevertheless, BBRv2’s benefits come with several costs, including the
slow responsiveness to bandwidth dynamics as well as the low resilience to random losses. We then propose
BBRv2+ to address BBRv2’s performance issues without sacrificing its advantages over BBR. To this end,
BBRv2+ incorporates delay information into its path model, which cautiously guides the aggressiveness of
its bandwidth probing to not reduce its fairness against loss-based CCAs. BBRv2+ also integrates mecha-
nisms for improved resilience to random losses as well as network jitters. Extensive experiments demonstrate
the effectiveness of BBRv2+. Especially, it achieves 25% higher throughput and comparable queuing delay
in comparison with BBRv2 in high-mobility network scenarios.

Keywords: Congestion Control, BBR, BBRv2

1. Introduction

Congestion control has been one of the active re-
search topics in computer networks since it was in-
troduced in the 1980s [1]. More than three decades
of research on congestion control have brought us
a plethora of congestion control algorithms (CCAs)
and TCP variants, aiming at efficient utilization of
available bandwidth while fairly sharing the bot-
tleneck bandwidth among multiple flows. For in-
stance, Linux kernel alone has more than 15 differ-
ent CCAs [2]. While we see many recent proposals
on learning-based CCAs (e.g. Remy [3], Aurora [4],

∗Corresponding author
Email addresses: yangfurong@ict.ac.cn (Furong

Yang), wuqinghua@ict.ac.cn (Qinghua Wu),
zyli@ict.ac.cn (Zhenyu Li), miaoji.lym@alibaba-inc.com
(Yanmei Liu), giovanni.pau@unibo.it (Giovanni Pau),
xie@cnic.cn (Gaogang Xie)

PCC-Vivace [5], Indigo [6], Orca [2]), the wildly de-
ployed CCAs today are still classic ones (e.g. Cu-
bic [7], BBR [8]).

In this paper, we focus on BBR and its up-
grade, BBRv2, as BBR has been used by 22% of
the Alexa Top 20K websites [9] and BBRv2 will
likely replace BBR in the near future1. BBR is
a rate-based CCA that sets its sending rate based
on the measured bottleneck bandwidth (BtlBW)
and round trip propagation time (RTprop). That
said, instead of reacting to congestion signals such
as losses or delay dynamics, BBR tries to actively
operate at Kleinrock’s optimal operating point [11]
to maximize throughput without incurring standing
queues at a bottleneck link. The previous empirical
studies [12–17] have disclosed several shortcomings

1As of March 2021, Google has finished roll-out of BBRv2
for internal TCP traffic, and tuning performance to enable
roll-out for external traffic [10].

Preprint submitted to Computer Networks July 8, 2021

ar
X

iv
:2

10
7.

03
05

7v
1

 [
cs

.N
I]

 7
 J

ul
 2

02
1

of BBR: (1) it causes excessive retransmissions in
shallow-buffered networks; (2) it is not fair when
competing with flows using loss-based CCAs (e.g.
Cubic) and BBR flows with different Round Trip
Times (RTTs); (3) its performance degrades when
network jitters are high.

To address these issues in BBR, Google proposed
BBRv2 [18] that inherits most of the design princi-
ples from BBR, while reacts to losses and Explicit
Congestion Notification (ECN) marks for better co-
existence with loss-based CCAs and being less ag-
gressive in shallow-buffered networks. Given that
BBRv2 may eventually replace BBR, understand-
ing how BBRv2 actually performs is of great impor-
tance for improved performance and fairness. We
have also seen several studies [19–23] on measur-
ing BBRv2, which have shown that, in comparison
with BBR, BBRv2 improves the inter-protocol fair-
ness against loss-based CCAs and reduce retrans-
missions in shallow-buffered networks. Neverthe-
less, we found in this paper, these improvements
come with several costs, including the low resilience
to random packet losses and the slow responsiveness
to bandwidth dynamics.

In this paper, we first evaluate BBRv2 in various
network conditions with an emphasis on the reasons
behind the observed performance issues. Our key
observations from the empirical study of BBRv2 are
as follows:

• Due to its conservative strategies in bandwidth
probing and inflight cap estimation, BBRv2
achieves better inter-protocol fairness against
loss-based CCAs in shallow-buffered networks
than BBR. On the other hand, these strate-
gies also make BBRv2 slightly less competitive
than BBR in terms of throughput under moder-
ate buffers. BBRv2 also improves RTT fairness
among flows, compared with BBR.

• In shallow-buffered networks, retransmissions
of BBRv2 are significantly reduced compared
with that of BBR. However, the throughput of
BBRv2 is 13%∼16% lower than that of BBR
under shallow buffers, as BBRv2 limits its in-
flight size to about 0.85× BDP for most of the
time in these networks.

• BBRv2 is less resilient to random losses than
BBR. Interestingly, we find that carefully tun-
ing the loss threshold parameter in BBRv2 ac-
cording to bottleneck buffer sizes can enhance
BBRv2’s loss resilience without sacrificing its
advantages in retransmission and fairness.

• BBRv2 is less responsive to bandwidth dynam-
ics than BBR, which leads to low bandwidth
utilization and high queuing delay in networks
with bandwidth dynamics. The long bandwidth
probing interval and the long expiry time of bot-
tleneck bandwidth estimation are the two major
contributors.

• Like BBR, BBRv2’s performance still suffers
from congestion window (cwnd) exhaustion in
high-jitter networks that are not rare in wire-
less scenarios [16, 24–27].

The results of our empirical study of BBRv2
raise one question to us: are we able to improve
BBRv2’s performance while keeping its advantages
in retransmission and fairness? If so, how do we
achieve this goal?

Compared with BBR, BBRv2’s shortcomings lie
in the lower loss resilience and slower responsiveness
to bandwidth dynamics. On one hand, the issue
regarding loss resilience can be mitigated by care-
fully tuning the loss threshold parameter in BBRv2.
On the other hand, we can increase the aggressive-
ness of BBRv2 in bandwidth probing to improve
its responsiveness to bandwidth dynamics. But,
this aggressiveness needs to be cautiously guided,
as blindly behaving aggressively may cause unfair-
ness against loss-based CCAs like BBR. Currently,
the aggressiveness of bandwidth probing in BBR
and BBRv2 is either hard-coded or pre-configured
according to designers’ experience without the per-
ception of the network environment. This kind
of unguided aggressiveness may make the band-
width probing be either over-aggressive (like BBR)
or over-conservative (like BBRv2) in certain envi-
ronments. Thus, the feedback from the network en-
vironment needs to be considered in BBRv2’s band-
width probing strategy to guide the aggressiveness
of bandwidth probing.

To address the above gap, we propose BBRv2+.
Firstly, BBRv2+ integrates delay information into
its path model, which serves as the feedback to
guide its aggressiveness in bandwidth probing. Sec-
ondly, to utilize the delay information to guide
the aggressiveness of BBRv2+’s bandwidth prob-
ing, the state-machine of BBRv2 is partially re-
designed. In doing so, BBRv2+ balances between
the aggressiveness in probing for more bandwidth
and the fairness against loss-based CCAs. Thirdly,
to avoid being suppressed when co-existing with
loss-based CCAs in deep-buffered networks because
of using the delay information, BBRv2+ incorpo-

2

rates a dual-mode mechanism, where it switches to
use BBRv2’s state-machine if no RTT sample ap-
proaching RTprop is observed for a long time pe-
riod and returns back to use the redesigned state-
machine if it constantly observes RTT samples ap-
proaching RTprop. Finally, as an optimization,
BBRv2+ addresses the cwnd exhaustion problem in
high-jitter networks by compensating its estimated
Bandwidth Delay Product (BDP) according to ob-
served jitters; the compensation mechanism allows
the estimated BDP to be close to the actual BDP,
and can also be applied to BBR and BBRv2.

Extensive experiments based on both Mininet
and Mahimahi with real-world traces show that
compared with BBRv2, BBRv2+ succeeds to bal-
ance the aggressiveness of bandwidth probing and
the fairness against loss-based CCAs, improves
the resilience to network jitters, and, particularly,
achieves 25% higher throughput and comparable
queuing delay in high-mobility scenarios where the
bandwidth is very dynamic.

To summarize, the contributions of this paper
are three-fold: (1) a deep dive into BBRv2 that
reveals its pros and cons, compared with BBR;
(2) BBRv2+ that addresses the shortcomings of
BBRv2 while barely sacrificing BBRv2’s advan-
tages; (3) extensive experiments demonstrating
that BBRv2+ meets its design goals. We open-
source BBRv2+ to the research community for fur-
ther test and improvement [28].

The remainder of this paper is organized as fol-
lows. We first give an overview of BBR and BBRv2
in §2. Then, a deep dive into BBRv2, which mo-
tivates the design of BBRv2+, is presented in §3.
Next, the design and implementation of BBRv2+
is described in §4, and the evaluation of BBRv2+
is shown in §5. After that, we present the related
work in §6. Finally, the paper is concluded in §7.

2. Background: an overview of BBR and
BBRv2

BBR aims at maximizing throughput while keep-
ing the lowest latency; it requires accurate measure-
ments of both BtlBW and RTprop. Since these two
variables cannot be measured simultaneously, BBR
introduces a state-machine-based method that al-
ternatively estimates BtlBW and RTprop.

As illustrated in Fig. 1, there are four states in
the BBR life-cycle. BBR uses pacing gain to con-
trol the sending behavior—to probe for more band-
width, to drain the queue at the bottleneck link, or

Fig. 1: Illustration of BBR life-cycle

Fig. 2: Illustration of BBRv2 life-cycle

to cruise at the speed of BtlBW. Firstly, BBR starts
the Startup state which exponentially increases the
inflight size and sending rate by setting pacing gain
to 2/ln(2). BBR transits into the Drain state when
it is in the plateau of BtlBW for three RTTs. In the
Drain state, BBR reduces pacing gain to ln(2)/2 to
drain the standing queue at the bottleneck link in-
duced during Startup. After the above two stages,
BBR has successfully built the path model, with
RTprop measured at the beginning of Startup and
BtlBW measured at the end of Startup. After that,
BBR switches to a steady phase where BBR al-
ternatively runs in the ProbeBW and ProbeRTT
state. During the ProbeBW state, BBR sets pac-
ing gain to 1.0 to cruise at Kleinrock’s optimal
point for 6 cycles, then sets pacing gain to 1.25 to
explore more bandwidth for 1 cycle and thereafter
sets pacing gain to 0.75 to drain the possible stand-
ing queue for 1 cycle. In the ProbeRTT state, BBR
reduces its inflight size to 4× MSS (Max Segment
Size) and waits for max{RTT, 200ms} to measure
an updated value of RTprop.

As observed in numerous previous studies [12–
16], BBR has two key issues: the unfairness of band-
width share with loss-based CCAs and the high
retransmission rate in shallow-buffered networks.

3

The reasons behind these issues are that BBR is
congestion signal agnostic and is over-aggressive
when probing for more bandwidth. To mitigate the
problems above, Google proposed BBRv2, which
inherits most of BBR’s design (e.g. the core princi-
ple, the overall building blocks, etc.) yet redesigns
the ProbeBW state, as illustrated in Fig. 2.

BBRv2 adds measurements of packet loss and
DCTCP-style ECN marks [29] for estimating the
capacity of a bottleneck link. Specifically, it intro-
duces inflight lo and bw lo as the short-term lower
bounds of inflight size and sending rate respectively,
in order to capture the temporary status of the net-
work path (e.g. cross-traffic takes a share of ca-
pacity); it uses inflight hi as the long-term upper
bound of inflight size to reduce the likelihood of
packet loss. To avoid recklessly probing for more
bandwidth, BBRv2 decomposes BBR’s ProbeBW
state into four sub-states: ProbeCruise, ProbeRe-
fill, ProbeUp, and ProbeDown.
ProbeCruise: In ProbeCruise, BBRv2 sets pac-
ing gain to 1. If any loss or ECN mark occurs,
BBRv2 updates inflight lo and bw lo to max{(1 −
β) × inflight lo,BtlBWcurr} and max{(1 − β) ×
bw lo, inflightcurr} respectively, where BtlBWcurr

and inflightcurr are the current measurements of
bandwidth and inflight size.
ProbeRefill: When BBRv2 has been in Probe-
Cruise for a period of T (T is determined in
ProbeDown), BBRv2 transits to ProbeRefill, by
setting inflight lo and bw lo to +∞ to refill the
“pipe” with BDP-sized inflight data, which lasts
for one RTT. The goal of this state is to avoid early
losses before the capacity is fully utilized in shallow-
buffered networks since BBRv2 will accelerate in
the following ProbeUp state, which may lead the
bottleneck buffer to overflow.
ProbeUp: During ProbeUp, BBRv2 sets pac-
ing gain to 1.25 to probe for more available band-
width. This state ends either when the current
loss rate exceeds a pre-defined explicit loss thresh-
old (2%), (or the ECN mark rate exceeds an ECN
threshold), or when the inflight size reaches 1.25×
BDP and at least one RTprop has passed. In the
former case, BBRv2 sets inflight hi to the current
inflight size.
ProbeDown: During ProbeDown, BBRv2 drains
the potential queue at the bottleneck link by
setting pacing gain to 0.75. BBRv2 also sets
the duration (T) for the next ProbeCruise state
to min{rand(2, 3), BDP

MSS × RTT} seconds, where
rand(2, 3) means a number between two and three.

The intention of T is to match the interval between
loss recovery epochs of Reno for TCP fairness. The
ProbeDown state ends when BBRv2 cuts its inflight
size below the minimum value between 1× BDP and
0.85 × inflight hi. Thereafter, BBRv2 transits to
the next ProbeCruise state.

As the bandwidth probing behaviors of BBRv2
are different from BBR, BBRv2 no longer uses a
10-RTT-windowed max filter to track the estima-
tion of BtlBW, and it rather takes the maximum
bandwidth measured in the recent two ProbeBW
stages as the estimation of BtlBW, which ensures
that the bandwidth samples from ProbeUp states
are considered.

Summary of BBRv2: The inflight bound mech-
anism, driven by losses or ECN marks, and the
less aggressive bandwidth probing strategy make
BBRv2 more conservative than BBR in shallow-
buffered networks, which thus mitigates the prob-
lems regarding excessive retransmissions and un-
fairness. However, the two changes can potentially
reduce BBRv2’s performance under random losses
and bandwidth dynamics, because, compared with
BBR, BBRv2 probes for bandwidth less frequently,
takes more time to expire BtlBW estimations, and
slows down constantly if the random loss rate ex-
ceeds 2%.

3. A Deep Dive into BBRv2

In this section, we conduct extensive measure-
ments to investigate the improvements and over-
heads of BBRv2, in comparison with BBR. Our
key observations include: (1) BBRv2 improves the
inter-protocol fairness and RTT fairness, and also
reduces retransmissions in shallow-buffered net-
works; this observation reaffirms those in the pre-
vious studies [19–23]; (2) the improvements of
BBRv2 come with the cost of the low resilience to
random loss and the slow responsiveness to band-
width dynamics. That said, it fails to achieve
a balance between the aggressiveness in probing
for more bandwidth and the fairness against loss-
based CCAs; (3) like BBR, BBRv2 experiences low
throughput in high-jitter networks because of un-
derestimation of BDP.

3.1. Methodology

We utilize Mininet [30] to build an emulation-
based testbed. The testbed, whose topology is
shown in Fig. 3, was run on a server with 8 Intel

4

Xeon Platinum cores and 32GB of memory. The
operating system is Ubuntu 18.04.5 with BBR and
BBRv2 [31] installed. Linux tc-netem [32] is used
to emulate different network conditions (e.g. router
buffer size, link speed, RTT, random loss rate, jit-
ter). Iperf3 [33] generates TCP traffic between
senders and receivers. During the transmission,
various performance metrics (e.g. RTT, through-
put, retransmissions, inflight bytes) are measured
by tcpdump [34] and tcptrace [35]. Moreover, a set
of internal variables (e.g. cwnd, pacing rate, RT-
prop, BtlBW) in BBR and BBRv2 are reported by
Linux kernel module and the backlog information of
the standing queue in bottleneck routers (R2 and
R3) is reported by tc [36]. Each set of experiments
is repeated five times and the average results are
reported.

Fig. 3: Mininet testbed

3.2. Fairness

We first evaluate the fairness of BBRv2. Two
types of fairness are investigated: the inter-protocol
fairness against loss-based CCAs and RTT fairness.
In this set of experiments, two flows start simulta-
neously, one from H1 to H3 and the other from H2
to H4, and last for three minutes for the conver-
gence of throughput. The bottleneck bandwidth is
fixed at 40Mbps without network jitters or random
losses.

We use Jain’s fairness index [37] (F) of the two
flows as the metrics of fairness, calculated according
to Eq. 1, where Ti is the average throughput of the
i-th flow.

F =
(T1 + T2)2

2 ∗ (T 2
1 + T 2

2)
(1)

F = 1 indicates the maximum fairness where two
flows have the same average throughput, and F =
0.5 represents that one flow’s throughput is zero
and the fairness is minimized. As the size of the
bottleneck buffer also impacts fairness results, we
varied the buffer size to study their relationship.

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBR
Cubic

(a) BBR vs Cubic

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2
Cubic

(b) BBRv2 vs Cubic

Fig. 4: Inter-protocol fairness of BBR/BBRv2 under
different buffer sizes.

3.2.1. Inter-protocol fairness

In the experiment, the flow from H1 to H3 uses
either BBR or BBRv2, and that from H2 to H4
uses Cubic, which is the default CCA in Linux and
MacOS. The RTTs of the two paths of the two flows
are set to 40ms.

Fig. 4 shows the inter-protocol fairness results
for both BBR and BBRv2. We can observe that
compared with BBR, BBRv2 significantly improves
Jain’s fairness index when the buffer is shallow (i.e.,
less than 2× BDP). This is due to the fact that
BBRv2 reacts to losses caused by buffer overflow
and bounds the inflight size by using inflight hi and
inflight lo. When the bottleneck buffer becomes
deeper, Cubic obtains more bandwidth than BBR
or BBRv2. This is because that the inflight size of
both BBR and BBRv2 is limited by about 2× BDP,
while Cubic’s inflight size can go beyond this value
under deep buffers. As the two flows experience
similar RTTs, a larger inflight size means higher
throughput. We also note that BBRv2 is less com-
petitive than BBR under moderate buffers. The
reason lies in that BBRv2 is more conservative in
bandwidth probing and inflight cap estimation.

3.2.2. RTT fairness

In this experiment, both flows use the same CCA,
either BBR or BBRv2. The path between H1 and
H3 has an RTT of 40ms and that between H2 and
H4 has an RTT of 150ms. Fig. 5 shows the RTT
fairness results of BBR and BBRv2, where we set
the buffer size to x times of the BDP of the path
between H2 and H4.

When the buffer is quite shallow (i.e., 0.2× BDP),
BBR has good fairness. When the buffer size be-
comes larger, the BBR flow with longer RTT grad-
ually occupies all the bandwidth and starves the
flow with shorter RTT. The reason for the poor
RTT fairness of BBR is well documented by the

5

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBR/40ms
BBR/150ms

(a) BBR

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2/40ms
BBRv2/150ms

(b) BBRv2

Fig. 5: RTT fairness of BBR/BBRv2 under different
buffer sizes.

previous studies [14, 17]. The bandwidth probing
of BBR leads the aggregated sending rate of two
flows to exceed bottleneck bandwidth, thus, form-
ing a persistent queue at the bottleneck link. As
the inflight cap of BBR is proportional to RTprop,
the flow with longer RTT pours more data into the
bottleneck buffer, thus, leading to a larger share
of the bottleneck link’s capacity. This problem is
not severe under shallow buffers, as excess packets
are mostly dropped instead of forming a persistent
queue.

Compared with BBR, BBRv2 has better RTT
fairness, especially under deep buffers. The likely
reason is three-fold. First, when the buffer size is
moderate, losses are triggered due to buffer over-
flow, and then both flows reduce their inflight size
proportional to BDP. As the flow with longer RTT
has a larger BDP, it reduces its inflight size more
than the flow with shorter RTT. Second, when
BBRv2 flows are cruising at the speed of BtlBW,
they always try to leave headroom2 for other flows
to explore the bandwidth. Third, BBRv2 enters the
ProbeRTT state more often than BBR, thus, lead-
ing BBRv2 flows to yield occupied capacity more
frequently.

3.3. Retransmission and throughput

As one of BBRv2’s design goals is to reduce un-
necessary retransmissions in shallow-buffered net-
works, next we investigate whether BBRv2 achieves
this design goal. The experimental setup is sim-
ilar to that in the previous work [12], where the
bottleneck bandwidth varies in 10∼750 Mbps and
the path RTT varies in 5∼150 ms as these values
are commonly employed in modern networks [12,

2BBRv2 always limits its inflight size below 0.85× in-
flight hi to leave headroom for faster throughput conver-
gence with other flows if there is any.

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

0

2

4

6

8

Re
tx

 R
at

e
%

(a) BBR

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

0

2

4

6

8

Re
tx

 R
at

e
%

(b) BBRv2

Fig. 6: The heatmap of the retransmission rate of
BBR/BBRv2 under various network conditions. The
numbers in squares are retransmission rates in percent-
age.

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

20

10

0

10

20

Tp
ut

 G
ai

n
%

(a) 100KB buffer

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

20

10

0

10

20

Tp
ut

 G
ai

n
%

(b) 10MB buffer

Fig. 7: The heatmap of Tput Gain (in percentage) in
(a) shallow and (b) deep buffered networks.

14, 38]. The buffer size at the bottleneck link is
set to 100KB to emulate a shallow-buffered net-
work because 100KB is less than the BDP of most
bandwidth-RTT combinations in our setup. One
TCP flow from H1 to H3 runs for 30 seconds and
the retransmission rate is recorded for each setup.

The heatmaps in Fig. 6 show the retransmission
rates of BBR and BBRv2 under various network
conditions. We can observe that the retransmission
rate of BBRv2 is significantly reduced compared
with that of BBR, especially when the BDP is larger
than 400KB (i.e. the buffer size ≤ 0.25× BDP).

The lower retransmission rate of BBRv2 in
shallow-buffered networks stems from the fact that
BBRv2 reacts to packet losses, while BBR does not.
In the Startup and ProbeUp state, BBRv2 tries to
send at a rate higher than the bottleneck band-
width, which leads to excessive losses (i.e. loss rate
≥ 2%). The excessive losses trigger inflight hi to
be set to the current inflight size that is likely close
to BDP in shallow-buffered networks. As a result,
BBRv2’s inflight size is bounded beblow 0.85× in-
flight hi in ProbeCruise because it tries to leave
headroom for other flows to explore bandwidth.
Since BBRv2 flows spend most of their lifecycle in

6

ProbeCruise, the average throughput of BBRv2 is
expected to be 15% lower than the available band-
width.

That said, BBRv2 trades off throughput against
retransmission in shallow-buffered networks. To
verify this, we compute the throughput gain of BBR
over BBRv2 (Tput Gain), which is defined in Eq. 2,
where TputBBR (resp. TputBBRv2) is the average
throughput of a BBR (resp. BBRv2) flow over 30
seconds.

Tput Gain =
TputBBR − TputBBRv2

TputBBRv2
(2)

Fig. 7a plots the Tput Gain under various net-
work conditions. We can observe that in the
network conditions where BBRv2 reduces the re-
transmission rate (when the BDP exceeds 400KB),
BBRv2 achieves lower throughput than BBR.
Specifically, the throughput of BBRv2 is 13%∼16%
lower than that of BBR in these cases, which coin-
cides with our analysis.

In deep-buffered networks, however, the packet
losses are much less often. It is thus expected that
the throughput of BBR and BBRv2 are compara-
ble. This is confirmed by the results in Fig. 7b,
where the buffer size is configured at 10MB, larger
than the BDP of most of the bandwidth-RTT com-
binations in our setup. The throughput differences
between BBR and BBRv2 are indeed marginal in
these networks.

3.4. Resilience to random losses

Several early tests [20, 22, 23] have shown that
BBRv2 is less resilient to random losses than BBR,
since BBRv2 limits its inflight size by the inflight lo
and inflight hi, which both react to all types of
losses. In BBRv2, there are two parameters that
decide how the inflight lo and inflight hi react to
losses. One is the explicit loss threshold (α) and
the other one is the inflight lo reduction factor (β).
In our experiments, we investigate BBRv2 vari-
ants with different α and β under random loss,
where each specific BBRv2 variant is referred as
BBRv2(α, β). For α, we cap it at 20% to match
the maximum loss rate that BBR can tolerate; for
β, we only evaluate the difference between the case
with (i.e. β = 0.3) and without it i.e. (β = 0)3.

3The default value 0.3 is necessary for BBRv2 to co-exist
with Cubic [31]

10 4 10 3 10 2 10 1 100 101

Random loss rate (%)
0

10

20

30

40

Tp
ut

. (
M

bp
s) Cubic

BBR
BBRv2
BBRv2(5%,0.3)
BBRv2(10%,0.3)
BBRv2(15%,0.3)
BBRv2(20%,0.3)
BBRv2(20%,0.0)

Fig. 8: Avg. throughput against different random loss
rates (buffer size = 32× BDP).

In the experiment, the bottleneck bandwidth is
set to 40Mbps, and the path RTT is 40ms. The
buffer size is set to 32× BDP to avoid packet loss
due to buffer overflow. The random loss rate ranges
from 0% to 30%.

Fig. 8 reports the average throughput of each
CCA against random loss rates. We observe that
the throughput of BBRv2 drops significantly af-
ter the random loss rate reaches 2%. There is a
clear sign that the α impacts the loss resilience of
BBRv2: as the α increases, we can observe the
improvement of loss resilience of BBRv2. For in-
stance, with a 10% random loss rate, BBRv2(20%,
0.3) reaches around half of the maximum band-
width while BBRv2’s throughput nearly drops to
zero. The impact of β is also remarkable: the loss
resilience of BBRv2(20%, 0.3) is lower than that of
BBRv2(20%, 0) that performs similar to BBR.

The above results indicate that BBRv2’s loss re-
silience can be improved via raising the α. Yet,
there is a concern — how does the α impact the
retransmission rate in shallow-buffered networks as
we already saw that BBRv2 alleviates the retrans-
mission issue by setting inflight hi upon the loss
rate exceeding α to lower down its inflight size (see
§3.3).

To investigate the aforementioned concern, we
further extended the experiments by considering
more BBRv2 variants (α ∈ [2%, 100%], β = 0.3)
and more configurations on buffer size (buffer size
∈ {0.2, 0.5, 1.0, 1.5, 2.0}× BDP). Fig. 9 plots the
retransmission rates of all those BBRv2 variants un-
der 0% random loss rate (to eliminate the impact of
random losses on retransmission rate), which shows
the impact of buffer size. Two observations are no-
table. Firstly, we observe that the retransmission
rate increases when the α exceeds a certain point,
which depends on the bottleneck buffer size. The α
values beyond the turning points are too high to be
reached by the temporary loss rate, thus, limiting

7

0 20 40 60 80 100
BBRv2 loss threshold () (%)

0.0

0.2

0.4

0.6

Re
tx

 ra
te

 (%
) 0.2xBDP

0.5xBDP
1.0xBDP

1.5xBDP
2.0xBDP

Fig. 9: Retransmission rates versus loss thresholds (α)
under networks with various buffer sizes. The errorbars
in the figure represent the standard deviations of re-
transmission rate. Note that the β was fixed at 0.3 for
all experiments; the default α in BBRv2 is 2% (the first
data point of every line).

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2
Cubic

Fig. 10: Inter-protocol fairness of BBRv2(20%, 0.3).

the efficacy of inflight hi. Secondly, if the buffer size
is large enough (i.e. 2× BDP in our experiments),
the retransmissions are eliminated, thus, the value
of α becomes irrelevant.

Another concern about lifting α is the impact
on the inter-protocol fairness because the larger
α is, the slower reaction of BBRv2 to losses is,
which makes BBRv2 more aggressive to loss-based
CCAs. To investigate this concern, we test the
inter-protocol fairness of BBRv2(20%, 0.3) using
the same setup in §3.2.1, and plot the results in
Fig. 10. In comparison with Fig. 4b, we can see
that the inter-protocol fairness of BBRv2 is indeed
worsened in the case of extremely shallow buffer
(0.2× BDP) due to the increased aggressiveness
caused by a larger α. Nevertheless, we also observe
that the fairness index is improved under moder-
ate buffers because the increased aggressiveness also
makes BBRv2 less vulnerable to Cubic when the
bottleneck buffer becomes larger.

Summary of random loss resilience: The loss
resilience of BBRv2 can be improved by raising
the loss threshold α. Nevertheless, the threshold
α should be carefully tuned according to the bot-
tleneck buffer size to avoid increasing retransmis-

sions and being too aggressive to loss-based CCAs
in extremely shallow-buffered networks.

3.5. Responsiveness to bandwidth dynamics

In networks with highly dynamic available band-
width [27, 39, 40], BBRv2’s bandwidth probing may
fail to quickly adapt to bandwidth changes. Next,
we investigate BBRv2’s responsiveness to band-
width changes.

The experiments are designed as follows. The
bandwidth of the bottleneck link is configured to
increase or decrease 5Mbps every 2 seconds, the
path delay is set to 40ms, and the buffer size is
set to 32× BDP. The internal variables during flow
transmission (including pacing rate and BtlBW, in-
stantaneous throughput, and the queue length at
the bottleneck link) are sampled at an interval of
100ms.

Fig. 11 shows how BBR and BBRv2 adapt
to bandwidth increases or decreases respectively.
In this figure, the upward and downward spikes
of queue length correspond to the actions of
BBR/BBRv2 in probing for more bandwidth or
draining the bottleneck buffer. We can observe that
BBRv2 is less effective than BBR in terms of re-
sponsiveness to bandwidth dynamics, resulting in
low utilization of bandwidth and long queuing de-
lay.

As we discussed in §2, to match the in-
terval between Reno loss recovery epochs for
better inter-protocol fairness, BBRv2 uses
min{rand(2, 3), BDP

MSS × RTT} seconds as its
probing interval. This interval can be tens of
RTTs, which is too conservative in such a dy-
namic environment. That said, BBRv2 improves
the inter-protocol fairness, at the cost of poorer
responsiveness to bandwidth dynamics.

3.6. Resilience to network jitters

Several works [16, 27] have shown that through-
put collapse occurs when BBR operates in high-
jitter networks that are widely deployed, e.g. WiFi
and 5G networks operating in mmWave band [16,
24, 25], and cellular networks [16, 26] especially
when high-mobility involves such as high-speed
rails [27]. It is interesting to investigate whether
BBRv2 operates well in networks with high jitters.

In this experiment, the bottleneck bandwidth is
40Mbps and the path RTT is 40ms. The bottleneck
buffer size is set to 32× BDP to avoid buffer over-
flow. To emulate jitters, tc is used to add jitters fol-
lowing Gaussian distribution at R3’s interface that

8

2 4 6 8 10 12 14 16
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s) BltBW real bw. queue_len

0

20

40

60

Qu
eu

e
Le

ng
th

 (p
kt

)

(a) BBR (bw. increasing)

2 4 6 8 10 12 14 16
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s) BltBW real bw. queue_len

0

100

200

300

Qu
eu

e
Le

ng
th

 (p
kt

)

(b) BBR (bw. decreasing)

2 4 6 8 10 12 14 16
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s) BltBW real bw. queue_len

0

20

40

60

Qu
eu

e
Le

ng
th

 (p
kt

)

(c) BBRv2 (bw. increasing)

2 4 6 8 10 12 14 16
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s) BltBW real bw. queue_len

0

100

200

300

Qu
eu

e
Le

ng
th

 (p
kt

)

(d) BBRv2 (bw. decreasing)

Fig. 11: Responsiveness to bandwidth increases (a, c) and decreases (b, d). The red line represents the BtlBW
estimation of BBR/BBRv2, and the green line indicates the real bandwidth of the bottleneck. The dark line shows
the dynamics of the bottleneck link’s queue length. Note that the spikes of queue length in (a) and (c) are caused
by the periodical bandwidth probing of BBR/BBRv2, and the sudden drop of queue len around 10s in (b) and (d)
is because BBR/BBRv2 enters the ProbeRTT state.

0 20 40 60 80 100 120
Jitter (ms)

0

10

20

30

40

Tp
ut

. (
M

bp
s)

BBR
BBRv2
Cubic

Fig. 12: Avg. throughput against different levels of
jitters. x = 0 is equivalent to no jitters.

connects to H3. The mean value of the Gaussian
distribution varies from 0∼120 ms to emulate dif-
ferent degrees of jitters.

Fig. 12 shows the average value and the stan-
dard deviation of throughput of Cubic, BBR, and
BBRv2 under various levels of jitter. Compared
with Cubic, both BBR and BBRv2 experience low
throughput under high jitters. As documented by
Kumar et al. [16], BBR underestimates RTprop in
such networks because it uses a recent 10s minimum
RTT to approximate RTprop, leading to cwnd ex-
haustion. This problem still exists in BBRv2, even
if BBRv2 updates RTprop 2× frequently than BBR

(i.e. BBRv2 uses the minimum RTT in recent 5s
to estimate RTprop). We also note that the signifi-
cant throughput degradation starts when the aver-
age jitter reaches the path RTT without jitter (i.e.
40ms).

3.7. Summary and Implication

We observe that BBRv2 improves the inter-
protocol fairness and RTT fairness, and reduces re-
transmission rates under shallow buffers, at the cost
of slow responsiveness to bandwidth dynamics and
low resilience to random loss.

First, the root cause for the slow responsiveness
is that BBRv2 is over-conservative regarding band-
width probing. That said, it fails to achieve a
good balance between the aggressiveness in prob-
ing for more bandwidth and the fairness against
loss-based CCAs. Note that, however, recklessly
increasing BBRv2’s aggressiveness in bandwidth
probing may lead BBRv2 to generate overwhelming
retransmissions and unfairly share bandwidth with
loss-based CCAs. In the next section, we propose
BBRv2+, which incorporates delay information to
cautiously guide the aggressiveness of bandwidth
probing to avoid reducing the fairness against loss-
based CCAs. The challenge is how to effectively

9

Fig. 13: BBRv2+ architecture. The parts that differs
from BBRv2 are highlighted in red color.

use this signal and how to avoid being suppressed
by other loss-based CCAs in deep-buffered networks
as other delay-based CCAs.

Second, the resilience to random loss can be im-
proved by raising the loss threshold α, where the
value of α needs to be set according to the bottle-
neck buffer size.

Last, the throughput degradation of BBR and
BBRv2 in high-jitter networks is own to the un-
derestimation of RTprop, which in turn leads to
a smaller estimation of BDP. We propose a com-
pensation mechanism of BDP that enables the es-
timated BDP to be close to the real BDP.

4. Design and implementation of BBRv2+

Motivated by our measurement results, we design
and implement BBRv2+, in order to address the
pitfalls of BBRv2 while maintaining its advantages
over BBR (i.e. improved fairness and reduced re-
transmissions in shallow-buffered networks). The
basic idea is to incorporate delay information in
BBRv2+’s path model to balance between the ag-
gressiveness in probing for more bandwidth and the
fairness against loss-based CCAs (§4.2). That said,
BBRv2+ tries to be more aggressive than BBRv2,
where the aggressiveness is guided by the delay in-
formation. As the use of the delay information may
lead BBRv2+ to perform poorly when it co-exists
with loss-based CCAs, a dual-mode mechanism is
introduced in BBRv2+, where BBRv2+ switches to
use BBRv2’s state-machine (i.e. invalidating the ef-
fect of the delay information) or returns back to use
the redesigned state-machine depending on whether
loss-based competitors co-exist (§4.3). Moreover,

BBRv2+ compensates the estimated BDP when de-
tecting high jitters in order to get an accurate esti-
mation of BDP. (§4.4).

4.1. Overview

The architecture of BBRv2+ is shown in Fig. 13.
BBRv2+ incorporates delay information in its path
model. Specifically, the delay information consists
of three state variables (the first three variables
listed in Table. 1) of minimum RTTs, which re-
flect the change of queuing delay over time. The
delay information facilitates quick responsiveness
to bandwidth dynamics. Particularly, a new sub-
state, ProbeTry, is added into the ProbeBW state.
In ProbeTry, BBRv2+ slightly speeds up to exam-
ine if this acceleration will lead to increased RTTs.
In the case of increased RTTs, BBRv2+ quits this
probing and moves to the ProbeDown state to drain
the queue at the bottleneck link; otherwise, it moves
to the ProbeUp state to further explore available
bandwidth. BBRv2+ also uses the delay informa-
tion to quickly adapt to bandwidth decreases—it
quickly updates its bottleneck bandwidth estima-
tion to the current bandwidth measurement if an
obvious increase of RTT is observed when BBRv2+
is not probing for bandwidth.

Like other CCAs that use delay-based signals,
BBRv2+ will be suppressed when co-existing with
loss-based CCAs under deep buffers [41], as the
loss-based CCAs constantly fill the buffer, leading
BBRv2+ to falsely yield up obtained bandwidth.
BBRv2+ uses a dual-mode mechanism that forces
BBRv2+ to use BBRv2’s state-machine when loss-
based CCAs co-exist.

Finally, BBRv2+ uses a BDP compensation
mechanism to address the cwnd exhaustion prob-
lem caused by network jitters. Our key observation
is that in high-jitter networks, the BDP will be un-
derestimated because of the underestimation of RT-
prop. The mechanism compensates BDP by taking
the recent RTT variations into consideration; this
compensation mitigates the underestimation issue
significantly.

4.2. Redesign of the ProbeBW state

In the case of bandwidth increments, BBRv2+
needs to start probing for more bandwidth quickly
instead of spending time on cruising with the cur-
rent estimated BtlBW. Thus, the probing interval
needs to be reasonably shortened, which is set to
approximately match the probing interval of BBR

10

Variable Functionality

MinRTTprev rtt The minimum RTT measured in the previous RTT round.
MinRTTcurr rtt The minimum RTT measured in the current RTT round.
MinRTTbefore probe Saving the MinRTTcurr rtt before entering ProbeUp.
MinRTTcurr cruise The minimum RTT measured in the current ProbeCruise state.

Max4RTT(jitter)
The max filter tracking the maximum jitter in recent four RTT rounds. Here, the
jitter is equivalent to the RTT variation maintained by TCP.

Table 1: The new state variables in BBRv2+

(8 rounds of RTT). However, if BBRv2+ is al-
ready sending at the speed close to bottleneck band-
width, the probing interval above may result in
more packet losses and thus unfairness against loss-
based CCAs in shallow-buffered networks.

Thus, a two-step probing mechanism incorporat-
ing the delay information is introduced in BBRv2+,
as shown in Fig. 13. A new sub-state ProbeTry,
which lasts for two RTTs, is inserted before en-
tering ProbeUp in the state machine. In the first
RTT of ProbeTry, BBRv2+ slightly increases its
pacing rate by increasing pacing gain to 1.1. In
the second RTT, BBRv2+ reduces pacing gain to
1.0 and monitors if MinRTTcurr rtt is larger than
γ × MinRTTprev rtt, where MinRTT is measured
on the ACKs for the packets sent in the previous
round, thus, reflecting the queuing delay caused
by the previous round (see Table 1). The ratio-
nale of using γ > 1 is to introduce a relaxing fac-
tor tolerate noises in RTT measurements, where a
small γ may lead BBRv2+ to miss some chances
to explore bandwidth while a large γ may make
BBRv2+ over-aggressive. In our current implemen-
tation, we set γ = 1.02 to tolerate noises for 2% of
RTT measurements. It is worth noting that γ is a
design parameter and can be tuned by designers4.
If MinRTTcurr rtt > γ ×MinRTTprev rtt, BBRv2+
transits to ProbeDown with pacing gain as 0.9 to
drain the queue accumulated during the first RTT
of ProbeTry. Otherwise, it enters ProbeUp to probe
for more bandwidth.

To further boost the speed of bandwidth dis-
covery, BBRv2+ also incorporates a continuous
probing mechanism based on the delay informa-
tion . Specifically, at the end of ProbeUp, if the
MinRTTcurr rtt ≤ γ×MinRTTbefore probe, BBRv2+

4All the design parameters of BBRv2+ in our cur-
rent implementation are exposed to user-space through the
/sys/module interfaces, enabling designers to change the pa-
rameters without recompiling the kernel module.

re-enters ProbeUp. The rationale behind this is
that there is possible more free bandwidth capacity
as no significant increment of queuing delay arises
in the current ProbeUp sub-state.

In the case of bandwidth decrements, BBRv2+
needs to update its BtlBW estimation to new band-
width measurements as soon as possible. When
bandwidth decreases, BBRv2+ sends data faster
than the bottleneck bandwidth and packets accu-
mulate in the buffer of the bottleneck link. We thus
also leverage the delay information to detect band-
width decrement. If BBRv2+ is in ProbeCruise
or ProbeDown, on the receipt of a new ACK in
an RTT round, Algorithm 1 is called5. The reason
that the algorithm is only applicable in ProbeCruise
or ProbeDown is to eliminate the impact on delay
variations caused by ProbeTry and ProbeUp sub-
states. In Algorithm 1, BBRv2+ expires its current
BtlBW estimation if MinRTTcurr rtt is larger than
the recently measured minimum RTT by θ times.
θ is a parameter to balance the speed to converge
to new bandwidth and the resistance to noises in
bandwidth measurements. A small θ may lead to
throughput oscillation, while a large θ may reduce
BBRv2+’s responsiveness to bandwidth dynamics.
We recommend θ ∈ [1.05, 1.15] according to our ex-
periences.

Algorithm 1: Advance BtlBW max filter

Input : conn: BBRv2+ TCP connection
1 target rtt ←− θ ∗ conn.RTprop
2 should advance ←− (conn.MinRTTcurr rtt >

target rtt)
3 if should advance then
4 expire the oldest value(conn.BtlBW)

5It is called once at maximum for every RTT round to
avoid expiring the BtlBW estimation too frequently.

11

4.3. Dual-mode mechanism

Due to the use of the delay information to guide
the aggressiveness in bandwidth probing, BBRv2+
will be starved by loss-based CCAs under deep
buffers, suffering from the similar problem existing
in most delay-based CCAs [41]. The root cause is
that loss-based CCAs constantly fill the bottleneck
buffer, where BBRv2+ falsely treats the increments
of RTT as the signal of bandwidth decrements.

As BBRv2+ periodically drains the bottleneck
buffer, during which the measured minimum RTT
(MinRTTcurr cruise listed in Table. 1) is close to RT-
prop if no loss-based competitor exists. By com-
paring the MinRTTcurr cruise with the recorded RT-
prop value, BBRv2+ estimates the existence of loss-
based competitors. If loss-based competitors co-
exist, BBRv2+ switches to use BBRv2’s ProbeBW
state, which enables BBRv2+ to co-exist with loss-
based CCAs in the same way as BBRv2 that does
not yield up obtained bandwidth due to RTT in-
crements. Further, if the loss-based competitors no
longer exist, BBRv2+ returns back to use the re-
designed ProbeBW state. We note that the dual-
mode mechanism does not switch BBRv2+ to use
BBRv2’s ProbeBW state if the bottleneck buffer
is very shallow, because loss-based CCAs can not
bloat the bottleneck buffer and BBRv2+ will not
be starved.

Algorithm 2: The dual-mode mechanism

Input : conn: BBRv2+ TCP connection
1 if conn.probe bw mode = BBRv2+ then
2 switch thld ← λ1 ∗ conn.RTprop
3 if conn.MinRTTcurr cruise > switch thld

then
4 conn.buffer filling++
5 else
6 conn.buffer filling ← 0
7 if conn.buffer filling ≥ η1 then
8 conn.probe bw mode ← BBRv2
9 restart from startup(conn)

10 else
11 switch thld ← λ2 ∗ conn.RTprop
12 if conn.MinRTTcurr cruise ≤ switch thld

then
13 conn.buffer empty++
14 else
15 conn.buffer empty ← 0
16 if conn.buffer empty ≥ η2 then
17 conn.probe bw mode ← BBRv2+

The dual-mode mechanism is detailed in Algo-
rithm 2, which runs at the end of ProbeCruise. If
the sender is running in BBRv2+’s ProbeBW state
and has not seen RTT samples close to the RTprop
for a number of (η1) successive ProbeCruise sub-
states, it switches to use BBRv2’s ProbeBW state
and restarts itself from Startup (line 1–9). We note
that restart from startup(conn) in line 9 is a
heuristic to quickly regain the bandwidth that has
been potentially yielded up to loss-based competi-
tors by BBRv2+ recently. If the sender’s ProbeBW
state is BBRv2 and it has seen low RTTs for η2
successive ProbeCruise sub-states, it returns back
to use BBRv2+’s ProbeBW state because the com-
petitors are most likely gone. We note that the
four parameters in Algorithm 2, λ1, λ2, η1, and η2,
are to control the sensitivity of BBRv2+ to the co-
existence of loss-based CCAs. In practice, we used
1.1, 1.05, 2, and 4 for λ1, λ2, η1, and η2 respectively.
Nevertheless, these parameters can be tuned to fit
specific networks in user space in our current im-
plementation.

4.4. Compensation for BDP estimation

We have seen in §3.6, when network jitters are
high, BBRv2 (also BBR) underestimates RTprop,
thus the BDP of the network path, leading to cwnd
exhaustion and thus performance degradation. To
boost BBRv2+’s performance under high network
jitters, BBRv2+ takes network jitters into account
when estimating the BDP of the network path.

BBRv2+ compensates the BDP estimation with
a component proportional to RTT variations when
network jitters are high, which is detailed in Algo-
rithm. 3. As instantaneous RTT variations could
be very dynamic, to ensure that BBRv2+ can
tolerate jitters up to the maximum extent, we
use the recently measured maximum RTT varia-
tion, Max4RTT(jitter) in Table. 1, as the indicator
of recent jitters. When Max4RTT(jitter) exceeds
µ × RTprop, the estimated RTprop is increased to
the sum of the original RTprop and the delay vari-
ation (Max4RTT(jitter)) to mitigate the underesti-
mation of RTprop. We recommend setting µ around
0.5 because the performance of BBRv2 starts to de-
grade when jitters approach half of RTprop as ob-
served in §3.6.

4.5. Implementation

BBRv2+ is implemented as a Linux kernel mod-
ule (∼2100 LoCs), based on Google’s BBRv2 al-
pha kernel module [31]. Therefore, it is easy to

12

Algorithm 3: Compensating BDP estima-
tion
Input : conn: BBRv2+ TCP connection
Output: the BDP estimation of BBRv2+

1 jitter ←− conn.Max4RTT(jitter)
2 threshold ←− µ ∗ conn.RTprop
3 fixed RTprop ← conn.RTprop
4 if jitter > threshold then
5 fixed RTprop ← fixed RTprop + jitter
6 return conn.BtlBW ∗ fixed RTprop

deploy BBRv2+ on the hosts where BBRv2 is al-
ready in use. The parameters of BBRv2+ are ex-
posed to user-space through the /sys/module in-
terfaces, which allows users to change the param-
eters according to their need without recompiling
the kernel module. The code of BBRv2+ is open-
sourced on Github [28] to the research community
for further test and improvement.

5. Evaluation of BBRv2+

In this section, we evaluate BBRv2+ based on
both Mininet-based emulation and real-world trace
driven emulation. First, we describe our experi-
ment setup in §5.1. We then evaluate the benefits
of BBRv2+ from the perspectives of the responsive-
ness to bandwidth changes (§5.2) and the resilience
to network jitters (§5.3). Next, we demonstrate
that BBRv2+ is able to keep the advantages of
BBRv2 in inter-protocol fairness (§5.4), RTT fair-
ness (§5.5), and low retransmissions (§5.6). Finally,
we evaluate the performance of BBRv2+ through
real-world trace driven emulation in §5.7.

5.1. Evaluation setup

Two testbeds are used for the evaluation of
BBRv2+. One is the Mininet-based testbed used
in §3, as a controlled environment to evaluate
BBRv2+ from various perspectives. The other is
based on Mahimahi [42], a trace-driven emulator
that can accurately replay real-world packet-level
traces, as illustrated in Fig. 14. The physical server
running the two testbeds is the same one as that
used to evaluate BBRv2 in §3. The toolset for data
analysis and traffic generation is also the same as
that in §3.

In all experiments in this section, the α (the loss
threshold) of BBRv2+ is set to 20% as the value
is suitable for most of the buffer sizes according to
the results in §3.4.

Fig. 14: Mahimahi testbed

5.2. Responsiveness to bandwidth dynamics

To evaluate BBRv2+’s responsiveness to band-
width dynamics, we use the same settings as that
in §3.5, in order to run BBRv2+ to have a micro-
scopic view on how it reacts to bandwidth dynam-
ics. Fig. 15 shows the results.

In Fig. 15a, when there is no bandwidth incre-
ment, BBRv2+ only enters ProbeTry for a very
short duration and finishes bandwidth probing very
soon, which leads to an instantaneous short stand-
ing queue. However, when the bandwidth is in-
creased, BBRv2+ can timely adapt its’ BtlBW es-
timation to the real bandwidth. Compared with the
results of BBR in Fig. 11a and BBRv2 in Fig. 11c,
BBRv2+ is capable to utilize newly available band-
width as quick as BBR, while its guided probing
strategy (by the delay information) incurs lower
queuing delay than BBR.

In Fig. 15b, when bandwidth decreases, BBRv2+
notices that the queuing delay is obviously rising
up via increased RTT (see §4.2). It expires the old
BtlBW estimation and adapts its BtlBW estima-
tion to the available bandwidth. Compared with
the results of BBR and BBRv2 in Fig. 11, BBRv2+
adapts its sending rate to the decreased bandwidth
much faster, which leads to lower queuing delay.

Next, we compare the responsiveness of Cubic,
BBR, BBRv2, and BBRv2+ to bandwidth dynam-
ics in our trace-driven emulation testbed Mahimahi,
using five synthesized network traces where the
bandwidth changes as step functions, as illustrated
in Fig. 16. Following the settings in [2], we set the
buffer size to 1.5MB, the delay to 20ms, and the loss
rate to zero. In each experiment, the flow through-
put, as well as the sojourn time of each packet in
the buffer of the bottleneck link (denoted as queu-
ing delay), are recorded.

To compare the overall performance of all CCAs
on a network trace, we normalized the average
queuing delay and the average throughput of all
CCAs to the minimum average queuing delay and

13

2 4 6 8 10 12 14 16
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s) BltBW real bw. queue_len

0

20

40

60

Qu
eu

e
Le

ng
th

 (p
kt

)

(a) bw. increasing

2 4 6 8 10 12 14 16
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s) BltBW real bw. queue_len

0

100

200

300

Qu
eu

e
Le

ng
th

 (p
kt

)

(b) bw. decreasing

Fig. 15: BBRv2+’s responsiveness to bandwidth increases (a) and decreases (b). The red line represents the BtlBW
estimation of BBRv2+, and the green line indicates the real bandwidth of the bottleneck. The dark line shows the
dynamics of the bottleneck link’s queue length.

Fig. 16: An example of traces with bandwidth chang-
ing as a step function.

1510152025303540
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

BBR
BBRv2
BBRv2+
Cubic

Fig. 17: Normalized throughput and queuing delay
of different CCAs. (markers: average throughput and
queuing delay; left end of the lines: 95%-tile of queuing
delay; ellipses: the standard deviations)

the maximum average throughput achieved on that
trace, respectively. In addition, we also normal-
ized the 95%tile queuing delay of all CCA on a net-
work trace to the minimum average queuing de-
lay achieved on that trace. Then, we averaged
all normalized values over all traces. The results
are shown in Fig. 17. We observe that BBRv2+
achieved significantly higher throughput and lower
queuing delay than BBRv2, and lower queuing de-
lay at the cost of slightly lower throughput than
BBR. These observations stem from the facts that:
(1) BBRv2+ probes for bandwidth at a frequency

similar to BBR’s one, thus, achieving high band-
width utilization as BBR does; (2) BBRv2+ adapts
its sending rate to decreased bandwidth faster than
BBR as it quickly updates its BtlBW estimation
upon increased queuing delay.

5.3. Resilience to network jitters

Next, we evaluate the performance of BBRv2+
under network jitters, using the same settings as
in §3.6. The throughput of BBRv2+, Cubic, BBR
and BBRv2 under various levels of jitters are shown
in Fig. 18a. Different from BBR and BBRv2, the
throughput of BBRv2+ does not degrade when the
network jitters become larger. Fig. 18b further
plots the average inflight bytes of four CCAs; the
results confirm that the BDP compensation mech-
anism of BBRv2+ succeeds to increase the inflight
size for higher throughput when the network jitter
becomes larger. Nevertheless, the throughput of
BBRv2+ is slightly lower than Cubic. The reason
is that our compensation to BDP is a bit conserva-
tive; in contrast, Cubic’s cwnd can grow far beyond
the real BDP as it is not affected by network jitters.

0 20 40 60 80 100 120
Jitter (ms)

0

10

20

30

40

Tp
ut

. (
M

bp
s) BBR

BBRv2
BBRv2+
Cubic

(a) Throughput

0 20 40 60 80 100 120
Jitter (ms)

0

2

4

Av
g.

 in
fli

gh
t b

yt
es

 (M
B)

BBR
BBRv2
BBRv2+
Cubic

(b) Avg. inflight bytes

Fig. 18: Resilience to network jitters

14

5.4. Inter-protocol fairness

The inter-protocol fairness of BBRv2+ is evalu-
ated using the same settings as that in §3.2.1. We
considered BBRv2+ with/without the dual-mode
mechanism (see §4.3) to study the impact of this
mechanism on inter-protocol fairness. The results
are shown in Fig. 19. Several observations are no-
table.

First, the results demonstrate the efficacy of the
dual-mode mechanism. In Fig. 19a, we can observe
that BBRv2+ without the dual-mode mechanism
is starved by Cubic in deep-buffered cases. This
is because BBRv2+ falsely treats the RTT incre-
ments caused by Cubic as a signal of bandwidth
shrinking, thus, constantly yielding up bandwidth
to Cubic. The problem is eliminated by the dual-
mode mechanism as shown in Fig. 19b.

Second, compared with the results of
BBRv2(20%, 0.3) in Fig. 10, we can see that:
(1) BBRv2+ provides better inter-protocol
fairness than BBRv2(20%, 0.3) under an ex-
tremely shallow buffer (i.e. 0.2× BDP); (2)
BBRv2+’s inter-protocol fairness is similar to that
of BBRv2(20%, 0.3) under other buffer sizes. The
reason for the better inter-protocol fairness of
BBRv2+ under an extremely shallow buffer is that
BBRv2+ does not enter ProbeUp, which is more
aggressive than ProbeTry, thanks to the two-step
probing mechanism (see §4.2) while BBRv2(20%,
0.3) periodically enters ProbeUp.

Third, compared with the results of BBR in
Fig. 4a and BBRv2 in Fig. 4b, BBRv2+ performs
no worse than the better one among BBR and
BBRv2 under different buffer sizes. The reasons
are three-fold: (1) under shallow buffers, BBRv2+
achieves similar inter-protocol fairness to that of
BBRv2 thanks to its cautiously aggressive band-
width probing strategy (see §4.2); (2) under mod-
erate buffers, BBRv2+ is close to BBRv2(20%, 0.3)
that has better inter-protocol fairness than BBRv2
in these cases as explained in §3.4; (3) under deep
buffers, the three CCAs perform closely as they all
have an inflight cap around 2× BDP, thus, unable
to beat loss-based CCAs.

5.5. RTT fairness

Next, we evaluate the RTT fairness of BBRv2+
using the same setting as that in §3.2.2. The re-
sults are presented in Fig. 20. Compared with the
results of BBR in Fig. 5a and those of BBRv2 in
Fig. 5b, BBRv2+ has better RTT fairness than

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2+
Cubic

(a) Without the dual-mode
mechanism

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s) BBRv2+

Cubic

(b) With the dual-mode
mechanism

Fig. 19: BBRv2+: Inter-protocol fairness

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s) BBRv2+/40ms

BBRv2+/150ms

Fig. 20: BBRv2+: RTT fairness

BBR and behaves close to BBRv2. The results
are expected as the mechanisms in BBRv2 that
improves the RTT fairness over BBR (see §3.2.2)
remain unchanged in BBRv2+.

5.6. Retransmissions in shallow-buffered networks

In the following, we evaluate whether BBRv2+
is as aggressive as BBR to lead to excessive re-
transmissions in shallow-buffered networks, using
the same setting as that in §3.3. The results
are shown in Fig. 21. We observe that when the
buffer is extremely shallow (e.g. 0.02× BDP when
the bandwidth is 500Mbps and the RTT is 75ms),
BBRv2+ incurs more retransmissions than BBRv2.
This is because the bandwidth probing frequency of
BBRv2+ is higher than that of BBRv2. Although
BBRv2+ uses a relatively small pacing gain (1.1)
when it starts to probe for more bandwidth in Pro-
beTry, it still causes buffer overflow when the net-
work buffer is extremely shallow. However, com-
pared with the results of BBR in Fig. 6a, BBRv2+
reduces retransmissions significantly.

5.7. Real-world trace driven emulation

To evaluate how BBRv2+ performs in real net-
work conditions, we compare BBRv2+ with Cubic,
BBR, BBRv2, and Orca [2] in the emulation-based

15

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

0

2

4

6

8

Re
tx

 R
at

e
%

Fig. 21: BBRv2+: retransmission rate (100KB buffer)

Mahimahi testbed, using traces collected in real-
world networks. Orca6 is used for comparison as a
representative of the state-of-the-art learning-based
CCAs.
Trace collection: We collected traces from WiFi
and LTE networks, using saturatr [39]. In total, 20
network traces are collected, half of which are col-
lected when the collector is stationary to the base
station (LTE) or the Access Point (WiFi), and the
other half are collected when the collector is mov-
ing at high speeds (i.e. in vehicles or on high-speed
rails). In stationary scenarios, the network band-
width is usually stable, while in high-mobility sce-
narios, the bandwidth fluctuates greatly. Examples
of stationary and high-mobility traces are shown in
Fig. 22. The network delay and loss rate are also
measured using ping.

(a) An example of stationary
traces

(b) An example of high-
mobility traces

Fig. 22: Example of traces used in our trace-driven
evaluation

Experimental results: The network buffer size is
set to 1.5MB. The collected traces, including band-
width dynamics, network delay, and loss rate are
the inputs of the emulator. Using the same metrics
as that in §5.2, the results for the stationary and
high-mobility scenarios are shown in Fig. 23a and
Fig. 23b respectively.

In stationary scenarios, BBR, BBRv2, and
BBRv2+ perform very close to each other because

6We directly used the model trained by the authors in
our experiments.

the bandwidth is usually stable. Cubic shows
slightly better throughput for most of the time at
the cost of high queuing delays. Orca has the lowest
throughput probably because the network scenario
where the model was trained is different from our
collected traces, which also demonstrates the limi-
tation of learning-based CCAs.

In high-mobility scenarios, BBR and BBRv2+
achieve the highest and the second-highest through-
put respectively. Meanwhile, BBRv2 and Cu-
bic fail to achieve consistently high throughput
across different high-mobility traces. Compared
with BBRv2+, BBR achieves higher throughput at
the cost that it incurs higher queuing delays as it is
more aggressive. Orca fails to achieve consistently
high throughput and low delays in high-mobility
scenarios; the results of Orca raise a concern on the
generalization ability of learning-based CCAs.

The above results of trace-driven emulation us-
ing Mahimahi demonstrate that BBRv2+ performs
closely to BBR and BBRv2 in stationary net-
work scenarios, but shows great improvements over
BBRv2 in high-mobility scenarios as it has better
responsiveness to bandwidth dynamics.

5.8. Summary of experimental results

We can conclude from the above experiments
that BBRv2+ succeeds to balance the aggressive-
ness of bandwidth probing and the fairness against
loss-based CCAs. With such a balance, which is
neither achieved by BBR nor BBRv2, BBRv2+
achieves higher throughput and lower delay than
BBRv2 in scenarios where the bandwidth fluctu-
ates, while keeping the advantages of BBRv2 with
regard to inter-protocol fairness and reduced re-
transmissions under shallow buffers. Moreover, the
dual-mode mechanism makes BBRv2+ able to co-
exist with loss-based CCAs under deep buffers and
the compensation mechanism for BDP estimation
efficiently enhances the performance of BBRv2+
under high network jitters.

6. Related work

BBR evaluation: Since BBR [8] was released by
Google in 2016, it has been examined under various
network conditions by researchers [12–17]. BBR
is unfair when sharing a bottleneck link with Cu-
bic flows or BBR flows with different RTTs [12–
14, 17]. In particular, BBR flows are always able
to claim at least 35% of the total bandwidth in

16

1.02.55.07.510
.0

12
.5

15
.0

17
.5

20
.0

Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

BBR
BBRv2
BBRv2+

Cubic
Orca

(a) Stationary traces

151015202530
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

BBR
BBRv2
BBRv2+

Cubic
Orca

(b) High-mobility traces

Fig. 23: Normalized throughput and queuing delay of different CCAs. (markers: average throughput and queuing
delay, left end of the lines: 95%-tile of queuing delay, ellipses: the standard deviations of the throughput and queuing
delay)

deep-buffered networks when competing with Cu-
bic flows [13]. This percentage, however, depends
on the link capacity and delay, the bottleneck buffer
size, and the number of BBR flows [15]. In shallow-
buffered networks, BBR can lead to massive re-
transmissions [14]. Moreover, the throughput of
BBR collapses when network jitters are high, ei-
ther in experimental emulation [16] or networks in
high-speed train scenarios [27].

BBR enhancement: The issues of BBR identi-
fied by empirical studies motivated optimizations
on BBR from various perspectives. For instance,
[16, 27] proposed several modifications in the RT-
prop estimation of BBR to counter against network
jitters, [17, 43, 44] improved BBR’s RTT fairness,
[45, 46] improved BBR’s inter-protocol fairness with
loss-based CCAs, and [47] reduced BBR’s aggres-
siveness in shallow-buffered networks to suppress
the unnecessary retransmissions.

BBRv2 evaluation: Google proposed BBRv2 [18]
to solve the problems identified in BBR. In Google’s
early tests [18, 20], BBRv2 shows better inter-
protocol fairness with loss-based CCAs and re-
duced retransmissions in shallow-buffered networks.
There are also several evaluations on BBRv2 [19,
21–23]. Gomez et al. [19] and Nadagiri et al. [21]
studied the inter-protocol fairness and RTT fairness
of BBRv2 through emulation. Kfoury et al. [23]
evaluated BBRv2 in emulated networks and found
that BBRv2 eliminates the massive retransmissions
in shallow-buffered networks. Song et al. [22] found
that BBRv2 cannot quickly utilize the newly avail-
able link capacity when the bottleneck bandwidth
increases.

Our work differs from the above studies in two
perspectives: (1) from the measurement perspec-
tive, we not only systematically evaluate the perfor-
mance of BBRv2 under various network conditions,
but also analyze the reasons behind the observed
performance issues; (2) from the optimization per-
spective, we propose BBRv2+ that addresses the
shortcomings of BBRv2 while barely sacrificing its
advantages in fairness and reduced retransmissions.

7. Conclusion

In this paper, we first comprehensively evaluated
BBRv2, revealed its pros and cons over BBR, and
analyzed the reasons behind BBRv2’s performance
issues. Motivated by the results of BBRv2’s evalu-
ation, we propose BBRv2+ that incorporates de-
lay information in its path model and redesigns
the ProbeBW state to achieve a good balance be-
tween the aggressiveness of bandwidth probing and
the fairness to loss-based CCAs. Extensive experi-
ments demonstrate that BBRv2+ significantly im-
proves the performance over BBRv2, especially in
high-mobility scenarios, while barely sacrificing the
advantages of BBRv2.

References

[1] V. Jacobson, Congestion avoidance and control, Com-
put. Commun. Rev. 25 (1995) 157–187.

[2] S. Abbasloo, C.-Y. Yen, H. J. Chao, Classic Meets
Modern: a Pragmatic Learning-Based Congestion
Control for the Internet, in: Proceedings of the Annual
conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,

17

https://dl.acm.org/doi/10.1145/3387514.3405892
https://dl.acm.org/doi/10.1145/3387514.3405892
https://dl.acm.org/doi/10.1145/3387514.3405892

architectures, and protocols for computer communi-
cation, ACM, Virtual Event USA, 2020, pp. 632–647.
doi:10.1145/3387514.3405892.
URL https://dl.acm.org/doi/10.1145/3387514.

3405892

[3] K. Winstein, H. Balakrishnan, TCP ex Machina:
Computer-Generated Congestion Control 12.

[4] N. Jay, N. H. Rotman, B. Godfrey, M. Schapira,
A. Tamar, A deep reinforcement learning perspective
on internet congestion control, in: ICML, 2019.

[5] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad,
B. Godfrey, M. Schapira, Pcc vivace: Online-learning
congestion control, in: NSDI, 2018.

[6] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby,
P. Levis, K. Winstein, Pantheon: the training ground
for internet congestion-control research, in: USENIX
Annual Technical Conference, 2018.

[7] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert,
R. Scheffenegger, CUBIC for Fast Long-Distance Net-
works, Tech. Rep. RFC8312, RFC Editor (Feb. 2018).
doi:10.17487/RFC8312.
URL https://www.rfc-editor.org/info/rfc8312

[8] N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacob-
son, Bbr: Congestion-based congestion control, Queue
14 (2016) 20 – 53.

[9] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi,
B. Leong, The Great Internet TCP Congestion Con-
trol Census, Proceedings of the ACM on Measurement
and Analysis of Computing Systems 3 (3) (2019) 1–24.
doi:10.1145/3366693.
URL https://dl.acm.org/doi/10.1145/3366693

[10] S. H. Yeganeh, P. Jha, Y. Seung, L. Hsiao, M. Mathis,
V. Jacobson, BBR Updates: Internal Deployment,
Code, Draft Plans 8.

[11] L. Kleinrock, Power and deterministic rules of thumb
for probabilistic problems in computer communications,
1979.

[12] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian,
A. Gandhi, When to use and when not to use BBR:
An empirical analysis and evaluation study, in: Pro-
ceedings of the Internet Measurement Conference,
ACM, Amsterdam Netherlands, 2019, pp. 130–136.
doi:10.1145/3355369.3355579.
URL http://dl.acm.org/doi/10.1145/3355369.

3355579

[13] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer,
F. Geyer, G. Carle, Towards a Deeper Understand-
ing of TCP BBR Congestion Control, in: 2018 IFIP
Networking Conference (IFIP Networking) and Work-
shops, 2018, pp. 1–9. doi:10.23919/IFIPNetworking.

2018.8696830.
[14] M. Hock, R. Bless, M. Zitterbart, Experimental evalua-

tion of BBR congestion control, in: 2017 IEEE 25th In-
ternational Conference on Network Protocols (ICNP),
2017, pp. 1–10. doi:10.1109/ICNP.2017.8117540.

[15] R. Ware, M. K. Mukerjee, S. Seshan, J. Sherry, Mod-
eling BBR’s Interactions with Loss-Based Congestion
Control, in: Proceedings of the Internet Measurement
Conference, ACM, Amsterdam Netherlands, 2019, pp.
137–143. doi:10.1145/3355369.3355604.
URL http://dl.acm.org/doi/10.1145/3355369.

3355604

[16] R. Kumar, A. Koutsaftis, F. Fund, G. Naik, P. Liu,
Y. Liu, S. Panwar, TCP BBR for Ultra-Low La-
tency Networking: Challenges, Analysis, and Solutions,

in: 2019 IFIP Networking Conference (IFIP Network-
ing), 2019, pp. 1–9, iSSN: 1861-2288. doi:10.23919/

IFIPNetworking.2019.8816856.
[17] S. Ma, J. Jiang, W. Wang, B. Li, Fairness of

Congestion-Based Congestion Control: Experimental
Evaluation and Analysis, arXiv:1706.09115 [cs]ArXiv:
1706.09115.
URL http://arxiv.org/abs/1706.09115

[18] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett,
V. Vasiliev, P. Jha, Y. Seung, M. Mathis, V. Jacobson,
BBR v2 A Model-based Congestion Control 36.

[19] J. Gomez, E. Kfoury, J. Crichigno, E. Bou-Harb,
G. Srivastava, A Performance Evaluation of TCP
BBRv2 Alpha, in: 2020 43rd International Confer-
ence on Telecommunications and Signal Processing
(TSP), IEEE, Milan, Italy, 2020, pp. 309–312.
doi:10.1109/TSP49548.2020.9163512.
URL https://ieeexplore.ieee.org/document/

9163512/

[20] N. Cardwell, Y. Cheng, S. H. Yeganeh, P. Jha, Y. Se-
ung, I. Swett, V. Vasiliev, B. Wu, M. Mathis, V. Jacob-
son, BBR v2: A Model-based Congestion Control IETF
105 Update 21.

[21] A. Nandagiri, M. P. Tahiliani, V. Misra, K. K.
Ramakrishnan, BBRvl vs BBRv2: Examining Per-
formance Differences through Experimental Eval-
uation, in: 2020 IEEE International Symposium
on Local and Metropolitan Area Networks (LAN-
MAN, IEEE, Orlando, FL, USA, 2020, pp. 1–6.
doi:10.1109/LANMAN49260.2020.9153268.
URL https://ieeexplore.ieee.org/document/

9153268/

[22] Y.-J. Song, G.-H. Kim, I. Mahmud, W.-K. Seo,
Y.-Z. Cho, Understanding of BBRv2: Evalu-
ation and Comparison with BBRv1 Conges-
tion Control Algorithm, IEEE Access (2021) 1–
1doi:10.1109/ACCESS.2021.3061696.
URL https://ieeexplore.ieee.org/document/

9361674/

[23] E. F. Kfoury, J. Gomez, J. Crichigno, E. Bou-Harb,
An emulation-based evaluation of TCP BBRv2 Alpha
for wired broadband, Computer Communications 161
(2020) 212–224. doi:10.1016/j.comcom.2020.07.018.
URL https://linkinghub.elsevier.com/retrieve/

pii/S014036642030092X

[24] M. Zhang, M. Polese, M. Mezzavilla, J. Zhu, S. Ran-
gan, S. Panwar, M. Zorzi, Will TCP work in mmWave
5G Cellular Networks?, arXiv:1806.05783 [cs]ArXiv:
1806.05783.
URL http://arxiv.org/abs/1806.05783

[25] D. Chitimalla, K. Kondepu, L. Valcarenghi, M. Tor-
natore, B. Mukherjee, 5G fronthaul-latency and jit-
ter studies of CPRI over ethernet, IEEE/OSA Jour-
nal of Optical Communications and Networking 9 (2)
(2017) 172–182, conference Name: IEEE/OSA Jour-
nal of Optical Communications and Networking. doi:

10.1364/JOCN.9.000172.
[26] J. D. Beshay, A. T. Nasrabadi, R. Prakash, A. Francini,

Link-Coupled TCP for 5G networks, in: 2017
IEEE/ACM 25th International Symposium on Qual-
ity of Service (IWQoS), 2017, pp. 1–6. doi:10.1109/

IWQoS.2017.7969170.
[27] J. Wang, Y. Zheng, Y. Ni, C. Xu, F. Qian, W. Li,

W. Jiang, Y. Cheng, Z. Cheng, Y. Li, X. Xie, Y. Sun,
Z. Wang, An Active-Passive Measurement Study of

18

http://dx.doi.org/10.1145/3387514.3405892
https://dl.acm.org/doi/10.1145/3387514.3405892
https://dl.acm.org/doi/10.1145/3387514.3405892
https://www.rfc-editor.org/info/rfc8312
https://www.rfc-editor.org/info/rfc8312
http://dx.doi.org/10.17487/RFC8312
https://www.rfc-editor.org/info/rfc8312
https://dl.acm.org/doi/10.1145/3366693
https://dl.acm.org/doi/10.1145/3366693
http://dx.doi.org/10.1145/3366693
https://dl.acm.org/doi/10.1145/3366693
http://dl.acm.org/doi/10.1145/3355369.3355579
http://dl.acm.org/doi/10.1145/3355369.3355579
http://dx.doi.org/10.1145/3355369.3355579
http://dl.acm.org/doi/10.1145/3355369.3355579
http://dl.acm.org/doi/10.1145/3355369.3355579
http://dx.doi.org/10.23919/IFIPNetworking.2018.8696830
http://dx.doi.org/10.23919/IFIPNetworking.2018.8696830
http://dx.doi.org/10.1109/ICNP.2017.8117540
http://dl.acm.org/doi/10.1145/3355369.3355604
http://dl.acm.org/doi/10.1145/3355369.3355604
http://dl.acm.org/doi/10.1145/3355369.3355604
http://dx.doi.org/10.1145/3355369.3355604
http://dl.acm.org/doi/10.1145/3355369.3355604
http://dl.acm.org/doi/10.1145/3355369.3355604
http://dx.doi.org/10.23919/IFIPNetworking.2019.8816856
http://dx.doi.org/10.23919/IFIPNetworking.2019.8816856
http://arxiv.org/abs/1706.09115
http://arxiv.org/abs/1706.09115
http://arxiv.org/abs/1706.09115
http://arxiv.org/abs/1706.09115
https://ieeexplore.ieee.org/document/9163512/
https://ieeexplore.ieee.org/document/9163512/
http://dx.doi.org/10.1109/TSP49548.2020.9163512
https://ieeexplore.ieee.org/document/9163512/
https://ieeexplore.ieee.org/document/9163512/
https://ieeexplore.ieee.org/document/9153268/
https://ieeexplore.ieee.org/document/9153268/
https://ieeexplore.ieee.org/document/9153268/
http://dx.doi.org/10.1109/LANMAN49260.2020.9153268
https://ieeexplore.ieee.org/document/9153268/
https://ieeexplore.ieee.org/document/9153268/
https://ieeexplore.ieee.org/document/9361674/
https://ieeexplore.ieee.org/document/9361674/
https://ieeexplore.ieee.org/document/9361674/
http://dx.doi.org/10.1109/ACCESS.2021.3061696
https://ieeexplore.ieee.org/document/9361674/
https://ieeexplore.ieee.org/document/9361674/
https://linkinghub.elsevier.com/retrieve/pii/S014036642030092X
https://linkinghub.elsevier.com/retrieve/pii/S014036642030092X
http://dx.doi.org/10.1016/j.comcom.2020.07.018
https://linkinghub.elsevier.com/retrieve/pii/S014036642030092X
https://linkinghub.elsevier.com/retrieve/pii/S014036642030092X
http://arxiv.org/abs/1806.05783
http://arxiv.org/abs/1806.05783
http://arxiv.org/abs/1806.05783
http://dx.doi.org/10.1364/JOCN.9.000172
http://dx.doi.org/10.1364/JOCN.9.000172
http://dx.doi.org/10.1109/IWQoS.2017.7969170
http://dx.doi.org/10.1109/IWQoS.2017.7969170
https://dl.acm.org/doi/10.1145/3300061.3300123

TCP Performance over LTE on High-speed Rails, in:
The 25th Annual International Conference on Mobile
Computing and Networking, ACM, Los Cabos Mexico,
2019, pp. 1–16. doi:10.1145/3300061.3300123.
URL https://dl.acm.org/doi/10.1145/3300061.

3300123

[28] Y. Furong, yangfurong/BBRv2plus (Jul. 2021).
URL https://github.com/yangfurong/BBRv2plus

[29] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, M. Sridharan, Data cen-
ter tcp (dctcp), in: SIGCOMM ’10, 2010.

[30] Mininet: An Instant Virtual Network on Your Laptop
(or Other PC) - Mininet.
URL http://mininet.org/

[31] google/bbr.
URL https://github.com/google/bbr/tree/v2alpha

[32] tc-netem(8) - Linux manual page.
URL https://www.man7.org/linux/man-pages/man8/

tc-netem.8.html

[33] esnet/iperf.
URL https://github.com/esnet/iperf

[34] TCPDUMP/LIBPCAP public repository.
URL https://www.tcpdump.org/

[35] tcptrace(1): TCP connection analysis tool - Linux man
page.
URL https://linux.die.net/man/1/tcptrace

[36] tc(8) - Linux manual page.
URL https://man7.org/linux/man-pages/man8/tc.8.

html

[37] S. Floyd, Metrics for the Evaluation of Congestion
Control Mechanisms, RFC 5166 (Mar. 2008). doi:

10.17487/RFC5166.
URL https://rfc-editor.org/rfc/rfc5166.txt

[38] B. Huffaker, M. Fomenkov, D. Plummer, D. Moore,
K. Claffy, Distance metrics in the internet, 2002.

[39] K. Winstein, A. Sivaraman, H. Balakrishnan, Stochas-
tic Forecasts Achieve High Throughput and Low Delay
over Cellular Networks 13.

[40] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang,
X. Wang, M. Shen, R. Mijumbi, A measurement
study on multi-path TCP with multiple cellular
carriers on high speed rails, in: Proceedings of
the 2018 Conference of the ACM Special Interest
Group on Data Communication - SIGCOMM ’18,
ACM Press, Budapest, Hungary, 2018, pp. 161–175.
doi:10.1145/3230543.3230556.
URL http://dl.acm.org/citation.cfm?doid=

3230543.3230556

[41] R. Al-Saadi, G. Armitage, J. But, P. Branch, A Survey
of Delay-Based and Hybrid TCP Congestion Control
Algorithms, IEEE Communications Surveys Tutorials
21 (4) (2019) 3609–3638, conference Name: IEEE Com-
munications Surveys Tutorials. doi:10.1109/COMST.

2019.2904994.
[42] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-

stein, J. Mickens, H. Balakrishnan, Mahimahi: Ac-
curate Record-and-Replay for HTTP, in: ATC, 2015,
p. 14.

[43] M. Yang, P. Yang, C. Wen, Q. Liu, J. Luo, L. Yu,
Adaptive-BBR: Fine-Grained Congestion Control with
Improved Fairness and Low Latency, in: 2019 IEEE
Wireless Communications and Networking Conference
(WCNC), 2019, pp. 1–6, iSSN: 1558-2612. doi:10.

1109/WCNC.2019.8885527.
[44] G.-H. Kim, Y.-Z. Cho, Delay-Aware BBR Con-

gestion Control Algorithm for RTT Fairness
Improvement, IEEE Access 8 (2020) 4099–4109.
doi:10.1109/ACCESS.2019.2962213.
URL https://ieeexplore.ieee.org/document/

8943219/

[45] Y. Zhang, L. Cui, F. P. Tso, Modest BBR: Enabling
Better Fairness for BBR Congestion Control, in: 2018
IEEE Symposium on Computers and Communications
(ISCC), 2018, pp. 00646–00651, iSSN: 1530-1346. doi:

10.1109/ISCC.2018.8538521.
[46] Y.-J. Song, G.-H. Kim, Y.-Z. Cho, BBR-CWS: Im-

proving the Inter-Protocol Fairness of BBR, Electronics
9 (5) (2020) 862. doi:10.3390/electronics9050862.
URL https://www.mdpi.com/2079-9292/9/5/862

[47] I. Mahmud, G.-H. Kim, T. Lubna, Y.-Z. Cho,
BBR-ACD: BBR with Advanced Congestion Detec-
tion, Electronics 9 (1) (2020) 136. doi:10.3390/

electronics9010136.
URL https://www.mdpi.com/2079-9292/9/1/136

19

https://dl.acm.org/doi/10.1145/3300061.3300123
http://dx.doi.org/10.1145/3300061.3300123
https://dl.acm.org/doi/10.1145/3300061.3300123
https://dl.acm.org/doi/10.1145/3300061.3300123
https://github.com/yangfurong/BBRv2plus
https://github.com/yangfurong/BBRv2plus
http://mininet.org/
http://mininet.org/
http://mininet.org/
https://github.com/google/bbr/tree/v2alpha
https://github.com/google/bbr/tree/v2alpha
https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
https://github.com/esnet/iperf
https://github.com/esnet/iperf
https://www.tcpdump.org/
https://www.tcpdump.org/
https://linux.die.net/man/1/tcptrace
https://linux.die.net/man/1/tcptrace
https://linux.die.net/man/1/tcptrace
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://rfc-editor.org/rfc/rfc5166.txt
https://rfc-editor.org/rfc/rfc5166.txt
http://dx.doi.org/10.17487/RFC5166
http://dx.doi.org/10.17487/RFC5166
https://rfc-editor.org/rfc/rfc5166.txt
http://dl.acm.org/citation.cfm?doid=3230543.3230556
http://dl.acm.org/citation.cfm?doid=3230543.3230556
http://dl.acm.org/citation.cfm?doid=3230543.3230556
http://dx.doi.org/10.1145/3230543.3230556
http://dl.acm.org/citation.cfm?doid=3230543.3230556
http://dl.acm.org/citation.cfm?doid=3230543.3230556
http://dx.doi.org/10.1109/COMST.2019.2904994
http://dx.doi.org/10.1109/COMST.2019.2904994
http://dx.doi.org/10.1109/WCNC.2019.8885527
http://dx.doi.org/10.1109/WCNC.2019.8885527
https://ieeexplore.ieee.org/document/8943219/
https://ieeexplore.ieee.org/document/8943219/
https://ieeexplore.ieee.org/document/8943219/
http://dx.doi.org/10.1109/ACCESS.2019.2962213
https://ieeexplore.ieee.org/document/8943219/
https://ieeexplore.ieee.org/document/8943219/
http://dx.doi.org/10.1109/ISCC.2018.8538521
http://dx.doi.org/10.1109/ISCC.2018.8538521
https://www.mdpi.com/2079-9292/9/5/862
https://www.mdpi.com/2079-9292/9/5/862
http://dx.doi.org/10.3390/electronics9050862
https://www.mdpi.com/2079-9292/9/5/862
https://www.mdpi.com/2079-9292/9/1/136
https://www.mdpi.com/2079-9292/9/1/136
http://dx.doi.org/10.3390/electronics9010136
http://dx.doi.org/10.3390/electronics9010136
https://www.mdpi.com/2079-9292/9/1/136

	1 Introduction
	2 Background: an overview of BBR and BBRv2
	3 A Deep Dive into BBRv2
	3.1 Methodology
	3.2 Fairness
	3.2.1 Inter-protocol fairness
	3.2.2 RTT fairness

	3.3 Retransmission and throughput
	3.4 Resilience to random losses
	3.5 Responsiveness to bandwidth dynamics
	3.6 Resilience to network jitters
	3.7 Summary and Implication

	4 Design and implementation of BBRv2+
	4.1 Overview
	4.2 Redesign of the ProbeBW state
	4.3 Dual-mode mechanism
	4.4 Compensation for BDP estimation
	4.5 Implementation

	5 Evaluation of BBRv2+
	5.1 Evaluation setup
	5.2 Responsiveness to bandwidth dynamics
	5.3 Resilience to network jitters
	5.4 Inter-protocol fairness
	5.5 RTT fairness
	5.6 Retransmissions in shallow-buffered networks
	5.7 Real-world trace driven emulation
	5.8 Summary of experimental results

	6 Related work
	7 Conclusion

