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Uncertainty in quality-of-transmission (QoT) estimation is traditionally addressed through empirical, myopic
margins, ignoring the fact that each unseen lightpath is subject to different levels of uncertainty. To address
this limitation, in this work, deep quantile regression is leveraged to finer capture QoT estimation uncertainty
through the inference of margins that act discriminative over the unseen lightpaths. Specifically, deep-quantile
regression is applied to approximate QoT models capable of inferring the QoT of unseen lightpaths, according
to a predefined level of certainty. Quantile models automatically account for the uncertainty during inference,

without the need to consider additional empirical margins for decision-making (i.e., the margins are learned
and considered upon inference). It is shown that quantile QoT models lead to significant margin reduction when
compared to baseline myopic margin schemes, resulting in more confident and network efficient allocation

decisions.

1. Introduction

Machine learning (ML), with proven capabilities on sufficiently
modeling the non-linear nature of physical layer impairments (PLIs),
has been extensively studied in the optical networks literature with the
purpose of accurately estimating the quality-of-transmission (QoT) of
unseen (unestablished) lightpaths [1-4]. This information, is then used
to examine the feasibility of any unseen lightpath and take decisions
accordingly; that is, establish or deny service to the unseen lightpath
under consideration.

Commonly, regression is leveraged to approximate a QoT model ca-
pable of conducting inference about the QoT value of unseen lightpaths.
Specifically, with regression, a least squares loss function is usually
minimized to find a QoT model, which is, in essence, an approximation
of the relationship between the input variables (i.e., lightpaths) and
the output variables (i.e., QoT values). The output of the QoT model
is an estimate or an approximation containing some uncertainty that
is represented by the variability around the mean response value.
Obviously, model accuracy, even though important, is not a sufficient
measure of how much such point-based estimates can be trusted for
confident decision-making. In fact, uncertainty, resulting from the er-
rors in the model itself and the noise over the input variables, may
result in erroneous decisions, especially when the QoT estimates greatly
overestimate the true QoT values of some lightpaths; that is, a lightpath
with a true QoT value that violates some acceptable threshold may
be erroneously considered feasible and hence admitted in the network
instead of being blocked.

* Corresponding author.

While QoT model uncertainty is already considered in the literature,
this is generally done through the estimation of myopic empirical
margins [5,6], largely ignoring the fact that diverse input patterns are
subject to different levels of uncertainty. One limitation of considering
such margins, is that the QoT estimate of every unseen lightpath is
equally degraded, without discrimination, according to a value that
reflects the worst uncertainty level that can be statistically measured.
While by doing so it is ensured that lightpaths with a true QoT that is
insufficient will not be established in the network (i.e., the possibility
of establishing in the network a lightpath with insufficient QoT is
mitigated or even alleviated), the true QoT of some feasible lightpaths
may be greatly underestimated, possibly leading to unjustified denial
of service, lightpath overprovisioning, and ultimately to inefficient
network decisions and waste of resources.

To this end, given the existing gap in the literature on closely
capturing QoT estimation uncertainty (i.e., fine-tuning margins over
lightpath uncertainty), the main contribution of this work is to provide
a framework capable of measuring the certainty level of QoT model
estimates towards confident and network efficient decision-making.
In ML, several approaches exist capable of achieving this objective,
including conducting Bayesian or Monte Carlo dropout inference [7],
and through the estimation of conditional quantile functions (e.g., deep
quantile regression) [8]. In this work, as a first step towards capturing
QoT estimation uncertainty, a deep quantile regression framework is
adopted, in which margins are learned and inferred in a discrimina-
tive fashion over lightpath patterns. In this framework, deep neural
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networks (DNNs) are trained to estimate conditional quantile functions
(i.e., models) by minimizing an asymmetrically weighted sum of ab-
solute errors [9]. Hence, the outputs of estimated conditional quantile
functions automatically take the uncertainty into consideration and can
be directly used for decision-making without considering any additional
margins.

1.1. Related work

Machine learning has been widely adopted in the optical net-
works literature [10,11] and within the communications systems in
general [12,13] for various functions and applications. Regarding op-
tical networks, where this work focuses on, ML has been indica-
tively applied for traffic prediction and resource allocation optimiza-
tion [14-16], fault detection/localization [17-19], attack detection/
identification [20,21], and QoT estimation [1,5,6,22]. In this work,
we focus on ML for QoT estimation for which a survey of the state-
of-the-art can be found in [23]. Given the already rich literature on
ML for QoT estimation, evidently, this topic has received considerable
attention over the last few years.

In fact, ML is considered today as a promising approach for model-
ing the non-linear nature of PLIs present in optical networks
(e.g., crosstalk, polarization mode dispersion, amplified spontaneous
emission noise, etc.), demonstrating significant margin reduction com-
pared to the conservative margins considered in traditional linear
physical layer models (PLMs) [24-26]. A general ML-aided QoT esti-
mation framework, enabled by the software-defined networking (SDN)
advances [15,27], can be described as the exploitation of historical QoT
data of previously established lightpaths with the purpose of inferring
accurate QoT models for unseen (unestablished) lightpaths [2,3,6,22,
28-30].

To achieve this objective, several ML models have been exploited,
such as DNNs, k-nearest neighbors, support vector machines, and Gaus-
sian Processes [23,31], with DNNs validated both in the field [32,33]
and experimentally [2,34] with the use of real datasets. In general, the
model of choice, is trained either as a binary classifier [29,35-37] or as
aregressor [5,6,22,27] by means of supervised learning, given a labeled
dataset of previously observed lightpaths.

In classification, the model is trained to predict the class of an
unseen lightpath; that is, the feasible or the infeasible class, which is
determined merely according to a predefined QoT threshold. In essence,
classification combines prediction and decision-making, which, may
however lead to erroneous decisions. Specifically, while it was shown
that high classification accuracies can be achieved in both classes of
interest, the slight model inaccuracies (i.e., uncertainty) that still exist
within each class may lead to erroneous decisions, especially when an
infeasible lightpath is misclassified to the class of feasible lightpaths.

As classification does not provide any way of fixing such inaccura-
cies prior to decision-making, regression is applied to infer the actual
QoT values (i.e., bit error rate, optical signal to noise ration, Q-factor)
of unseen lightpaths [5,6,22,27]. Regression, enables the estimation of
error margins, that when considered before decision-making can, to
some extend, fix model inaccuracies. Commonly, such margins are used
to degrade the inferred QoT values of every unseen lightpath prior to
deciding about their feasibility.

Related works addressing model inaccuracies with error margins
approximate a QoT model by minimizing a mean squared error (MSE)
loss function over a training dataset. The test dataset is afterwards
used to evaluate both the performance accuracy and error spread of
the model [5,6], with the error spread used for margin estimation.
However, as previously mentioned, in this approach a constant margin
is estimated and considered, without discrimination, for all unseen
lightpaths prior to decision-making. This approach may lead to erro-
neous decisions, especially for those unseen lightpaths that the model
is almost certain about their feasibility, as diverse unseen lightpaths are
subject to different levels of uncertainty.
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1.2. Contribution

Evidently, QoT model margins are currently roughly approximated,
with the potential of ML to achieve further improvement in decision-
making and network efficiency remaining greatly unexplored. Thus, in
order to appropriately represent and consider the QoT model and input
uncertainty over unseen lightpaths, in this work, we present an uncer-
tainty representation framework aiming to alleviate the limitations of
existing myopic margins that are commonly applied to compensate for
QoT model uncertainty.

Specifically, the aim is to closely capture model uncertainty by
fine-tuning the estimation of margins that act discriminatively over
the unseen lightpaths. In particular, we leverage deep quantile re-
gression [8] to approximate conditional quantile functions capable of
inferring QoT values that already account for margins, according to
a predefined certainty level g¢; that is, given an unseen lightpath, the
trained model infers a QoT value such that the probability that the
true QoT of this lightpath is below the inferred value is equal to gq.
Hence, the inferred QoT values of each unseen lightpath are in essence
automatically adjusted by the conditional quantile model (i.e., the ¢-
quantile) to consider what the model already knows about each unseen
lightpath.

Preliminary results of this work were first presented in [38], where
it was shown that g-quantiles achieve significant margin reduction
when compared to baseline margin estimation schemes without, how-
ever, any compromise on the classification accuracy achieved for both
the classes of interest. In contrast, it was shown that baseline, myopic,
margins greatly underestimate the true QoT of the lightpaths, leading
to accurate decisions only in the class of infeasible lightpaths. These
outcomes were obtained for a wavelength division multiplexing (WDM)
network examining only a single lower g threshold. The QoT was mea-
sured in dB according to the Q-factor metric for WDM networks [26].
This work, greatly extends [38] by:

» Examining margin reduction and accuracy of decisions for various
g-quantiles acting as lower estimation bounds. The purpose is to
investigate the importance of appropriately fine-tuning the lower
g value towards further margin reduction and higher classification
accuracy.

Examining the impact of the best ¢g-quantile obtained on the per-
formance of the network. Specifically, the performance of various
margin schemes are evaluated and compared in terms of blocking
probability on a dynamic optical network. In this network, an
elastic optical network (EON) is considered, and routing and
spectrum allocation (RSA) decisions are taken by utilizing: (i) the
g-quantile model, (ii) the least-squares model considering error
spread margin.

Creating appropriate datasets for model training and evaluation,
by redefining the input lightpath features of the models to now
account for the EON technology. The QoT values are measured in
dB according to the Q-factor metric for EONs [24].

It is shown that all g-quantiles considered achieve significant margin
reduction compared to the baseline approaches, also demonstrating
significant improvement in the overall classification accuracy and ac-
curacy achieved for the class of feasible lightpaths. A small penalty is
observed in the classification accuracy of infeasible lightpaths (i.e., up
to 0.3%), which is however negligible given the overall improve-
ments observed. Furthermore, it is shown that different g-quantiles
perform differently, indicating the importance of fine-tuning parameter
q before considering a model for decision-making. Importantly, it is
shown that ¢g-quantiles have a positive impact on network performance,
significantly outperforming baseline approaches in terms of blocking.

The rest of the paper is organized as follows. Section 2 presents
background information on deep quantile regression, Section 3 dis-
cusses dataset generation, and Section 4 presents the model training
and evaluation procedure. The design margin estimation results are
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Fig. 1. USNET topology.

presented in Section 5, including a comparison with benchmark tech-
niques, while the decision accuracy results and their comparison with
the benchmark approaches are presented in Section 6. Finally, Sec-
tion 7 examines the impact of the proposed approaches on the network
performance in terms of blocking probability, and Section 8 presents
concluding remarks and avenues for future research.

2. Deep quantile regression for QoT inference

In this work, deep quantile regression is applied to approximate the
conditional quantile function Qy(¢q|X), also known as the g-quantile,
where 0 < ¢ < 1, X is ar.v. representing the past lightpath observations,
Y is a r.v. representing the true QoT value of unseen lightpaths, and x,
y are possible realizations of X and Y. By definition, a g-quantile is
learned to return a value J, such that the probability that the true QoT
value y of an unseen lightpath, given x, will be less than or equal to J, is
equal to ¢ [9]. In essence, the g-quantile determines the percentage of
a population that is above or below a certain threshold. Hence, for our
use case, where the QoT value is measured in dB, it is important that
q is low enough (i.e., ¢ — 0) to approximate a lower QoT estimation
bound j for each input x; that is, to increase the probability that the
true QoT of an unseen lightpath x does not fall below QoT estimate j.

In a deep learning framework, a g-quantile is estimated by minimiz-
ing the asymmetrically weighted sum of absolute errors [8,9]:

if z>0,

if z<0, )

n

L,= % Z‘ p,(yi = Oy(lx), py(2) ={ f;’_ Dz,
where n is the number of observed lightpaths, x; € R? is a vector
describing the ith lightpath of X, y;, € R is the true QoT value of this
lightpath, and QY(qlxi) is an approximation of the g-quantile returning
QoT estimate ; for lightpath i, Vi = 1, ..., n. In this work, the ¢g-quantile
is parameterized by a DNN model that is trained to estimate Qy(qu ,0),
where 6 are the unknown parameters of the quantile DNN model.
Specifically, the model is optimized to minimize the loss function of
Eq. (1) given a labeled dataset D = (X,Y) = {x,, y,-};’=1.

In dataset D, the inputs of the DNN model are defined according
to an EON over the feature vectors x; = [x;;,...,x;7], where x;, is
the length (in km) of lightpath i, X, is the maximum link length
(in km) of i, x;5 is the identification number of the first spectrum
slot allocated to i, x; 4 is the number of spectrum slots allocated to i,
x;5 = 1,2,3,4 if BPSK, QPSK, 8-QAM, or 16-QAM modulation format
is used for i, respectively, x; is the number of erbium doped fiber
amplifiers (EDFAs) along i, and x, ; is the number of links along i. Note
that these inputs constitute commonly considered lightpath features
that have been proven to sufficiently describe a lightpath for ML-aided
QoT estimation [29,30].

Regarding the output of the DNN model, y;, this is the Q-factor
value of i that in practice can be obtained through optical performance
monitoring (OPM) [15]. Since OPM can only take place after a lightpath
is established, probing lightpaths can be used to enrich the dataset
information with lightpaths of insufficient QoT values (i.e., lightpaths
that cannot be admitted in the network). As probing lightpaths are
costly, active and transfer learning techniques can be used to reduce
both the number of probing lightpaths and the dataset size required
for training QoT models of sufficient accuracies [22].

It is worth mentioning, that the loss function of Eq. (1) does not
incur any additional computational complexity during DNN model
training; rather, the computational complexity of the model is only
affected by the DNN architecture (i.e., number of hidden layers, number
of units, activation functions considered) and the optimization algo-
rithm applied for training the DNN model. Hence, the computational
complexity of the g-quantile DNN model is similar to the complexity
of a DNN model trained according to the commonly considered least
squares loss function (i.e., the MSE loss function), as long as the
underlying DNN model architecture is the same. A theoretical analysis
regarding the computational efficiency of training neural networks can
be found in [39].

3. Dataset generation

Dataset D was generated on the US backbone network (USNET)
topology (Fig. 1) assuming an EON with single-mode single-core fibers
operating with BPSK, QPSK, 8-QAM, and 16-QAM modulation formats.
Each fiber link has a capacity of 320 frequency slots (FSs), spaced
at 12.5 GHz, and with a baud rate of 10.5 Gbaud. Five thousand
connection requests were generated in a dynamic network following
a Poisson process with exponentially distributed holding times for a
network load equal to 300 Erlangs. Each connection request, defined by
a source node, a destination node, and a bit-rate demand, was gener-
ated as follows: a source—destination pair was randomly sampled from
the set of network nodes and a bit-rate demand was randomly sampled
from the interval [50,200] Gbps following a uniform distribution. For
the connection provisioning phase, a conventional RSA algorithm was
implemented during which dataset D was created by extracting the
input and output features from each computed lightpath.

Specifically, for each arriving connection request, the routing sub-
problem was solved according to the k-shortest path algorithm [40],
with k = 3, while the spectrum allocation (SA) sub-problem was solved
according to the first-fit scheme, ensuring that all three SA constraints
were met; that is, the spectrum continuity, contiguity, and no frequency
overlap constraints. Note that for each connection request, the spec-
trum demand, measured in frequency slots, was computed according



H. Maryam et al.

Computer Networks 212 (2022) 108992

061 | —— Train 12 ‘l —— Train
{ Validation [ Validation
os{ | 10 '
w 04 [ . 08
8 | 2 (
\ -
5037 | ~ 064 |
3 \ T \
02 \ 04 \
\ \
01 \ 02 N
00 T 00 T . -
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Epochs Epochs
200
\ —— Train 251 ) —— Train
175 { | \
Validation | Validation
1s0{ | 20 l
125 l
§ @ 15 ‘
3 100 ll\ ] |
] ~ \
S 075 \ g 10 \
\ \
050 \ \
\ 0s \
025 N .
0.00 T —— — — 00 — —
0 S0 100 150 200 250 300 350 400 0 S0 100 150 200 250 300 350 400
Epochs Epochs
o \l Train 1601 1 —— Train
| Validation 1o{ | Validation
25
| 120 |
u 20 l @ 100 l
= -
n 15 | w 80
~ \ (2]
3 \ = @ I
10 \
\ a0 |
0s \ \
N 20 \
00 . — 0 ~—— —
0 S0 100 150 200 250 300 350 400 © s0 100 150 200 250 300 350 400
Epochs Epochs

Fig. 2. Loss versus the number of training epochs for various loss functions: L5, Lo, Los» Loss Lgas, MSE loss functions.

to a conventional distance-adaptive modulation scheme. Specifically,
a modulation format was selected according to the physical distance
of the selected route, and the number of requested FSs was computed
according to the bit-rate demand [41]. A connection was considered as
blocked (not provisioned) if a feasible spectrum allocation could not be
found for any of the k-shortest paths computed for that connection. For
each provisioned lightpath i, the features described in Section 2 were
extracted to form input patterns x;, while for the output QoT values, y;,
the Q-tool analytically described in [24] was used. Hence, our dataset
D was synthetically generated, following a common approach in the
literature when real datasets are not available [23]. As 349 connection
requests were blocked, resulting to 7% blocking probability, n = 4651
patterns were included in dataset D.

4. Model training and evaluation

Dataset D was used for training several QoT models, with each QoT
model minimizing a different loss function. Specifically, for quantile
regression, the loss function in Eq. (1) was applied for ¢ = 0.05, g = 0.1,
g = 0.15, ¢ = 0.2, and ¢ = 0.25 to create the lower QoT estimates,
denoted as !, for any unseen lightpath pattern x, (i.e., a lightpath
pattern that was not used during training). The different g-quantile
models serve to demonstrate the importance of fine-tuning the g values
towards network efficient and confident decision-making, as discussed
in the sections that follow. Additionally, a QoT model was trained
to minimize the mean squared error (MSE) loss function to generate
the QoT estimate (i.e., prediction), denoted as j° in the conventional
way; that is, these predictions correspond to the mean response of the
model, commonly considered in the QoT estimation literature. In this
work, these predictions are utilized to estimate traditional empirical
margins and perform decisions in the conventional way, hence allowing
a comparison with the proposed approach (i.e., used as benchmarks).

All quantile and least squares QoT models were parameterized by
a DNN model with 3 hidden layers of 64, 32, and 32 hidden units,
respectively. The rectified linear unit (ReLU) activation function [42]
was used for all hidden units. Training was performed according
to the efficient, stochastic gradient decent (SGD), Adam optimization
algorithm [43] for 400 epochs, with a batch size equal to 50 and a
learning rate equal to 10~*. Before training, dataset D was scaled in
order for the input features to follow the standard normal distribution.
Seventy percent (70%) of the patterns in D were used for training,
from which twenty percent (20%) were used for validation purposes.
Hence, thirty percent (30%) of the patterns in D were used for testing
(i.e., 1395 test patterns in total).

Fig. 2 illustrates L5, Logr> Logss Loas Lozs, and MSE loss per-
formance over the training epochs. Note that for training each model
according to all 400 epochs, approximately up to 7 seconds of training
time was required. Clearly, the loss for both training and validation
datasets reduces and eventually approaches zero as the number of
epochs increases for all loss functions considered. Performance ac-
curacy in the test dataset closely follows the accuracy obtained in
the validation dataset for all models. Importantly, to validate the
accuracy of all quantile models with respect to the percentage of test
patterns that fall below the considered g-quantile, all ¢ estimates were
compared with their ground truths y,.

Table 1 summarizes the validation accuracy of all quantile QoT
models. According to Table 1, all g-quantiles are sufficiently approx-
imated as the validation accuracy is close to the pre-selected ¢ value.
Indicatively, the 0.05-quantile obtains lower estimation bounds for 93%
of the test patterns, with only 7% of the estimates falling below their
true QoT value. Note that, even though a perfect g-quantile model can
theoretically achieve g x 100% of patterns falling below their true QoT
value, slight variations between the g value and the validation accu-
racy is expected, since the g-quantiles are just DNN approximations.
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Table 1 Table 3
Quantile QoT model validation. Margin reduction (in dB).
Value of ¢ 0.05 0.1 0.15 0.2 0.25 g=0.05 g=0.1 g=0.15 g=02 =025
Validation accuracy 0.07 0.12 0.14 0.21 0.24 Ry tstd 716196  762£204  783+198 818183  836+164
Rq“, + std 57.1+£29.5 64.17 +30.8 67.2+29.8 723 +£27.6 753 +24.8
Table 2
Estimated margins (in dB).
M, M, Mygs + std My, + std  Mys = std My, + std  M,s + std 5.3. Equivalent average quantile margin
0.52 0.35 0.15+0.1 0.13+0.1 0.11+0.1 0.09+0.09  0.08 +0.08

Nevertheless, to sufficiently approximate a g-quantile model, several
models with diverse hyperparameters can be trained and the one that
results in the best validation accuracy within the test dataset can be
opted for. It should be noted that this procedure does not hinder the
practical applicability of the overall framework, since candidate DNN
models can be trained off-line and in parallel within seconds. In this
work, all models required less than 7 seconds to converge.

5. Margin estimation and comparisons

A design margin is typically considered to compensate for the inac-
curacies of ML-aided QoT models, usually optimized according to least
squares techniques (e.g., optimized to minimize the MSE loss function).
Specifically, a design margin is appropriately estimated and used to
address the inaccuracies resulting from the predictions overestimating
the true QoT of lightpaths. Since the predictions that will end up
overestimating the true QoT of unseen lightpaths cannot be known
a-priori, this margin is used to penalize the predictions of all unseen
lightpaths. For margin estimation purposes, several approaches have
been proposed, such as the worst error margin [6] and the empirical
rule error margin [5]. In this work, both these approaches are used as
benchmarks. In this section, both margins are initially defined, and then
their corresponding values are estimated according to the QoT model
trained to minimize the MSE loss function in Section 4. The equivalent
average quantile margin metric is also defined, that is subsequently
used for comparison purposes; that is, to examine whether the g¢-
quantiles result in margin reduction, as opposed to the existing margin
estimation approaches.

5.1. Worst error margin

The worst error margin (M,,) is defined as the maximum error
resulting between the true and predicted QoT values amongst all light-
paths with their true QoT overestimated by the predictions:

~ !
Mw=maﬁ>§{|y,~—yfl},'-’=1, 2

Vi<V

where r’ is the number of patterns in the test dataset, and j” is the QoT
prediction (i.e., mean response of the model).

5.2. Empirical rule error margin

The empirical rule error margin (M,) is based on the empirical rule
error stating that 99.7% of the data (i.e., errors) will be within three
standard deviations of the mean error (i.e., y + 3¢), provided that the
errors follow a Gaussian distribution. Hence, to account for the worst
error, M, is given by:

M, =pu+30o, 3)

!
where y = % 1 |y = 97| is the mean absolute error resulting be-

tween the true and predicted QoT values in the test dataset, and ¢ =
% Z;’;l(y,- — §7)? is the standard deviation of the error.

In the proposed framework, the g¢-quantile model automatically
predicts a lower QoT estimate for each individual lightpath. Hence, in
practice, margin estimation is not required, as the outputs of the lower
quantile model can be directly used for decision-making. However,
for comparison purposes, to evaluate whether the proposed approach
is successful in reducing the margins considered in the benchmark
approaches, the quantile equivalent margin (M, ) is defined as the mean
difference between the predicted and the g-quantile QoT estimates of
all lightpaths in the test dataset. Specifically,

M, = = Y6 - 3. )
i=1

Hence, just like M, and M,, an M, value, computed for a single
lightpath pattern, indicates the equivalent penalty applied to a least
squares prediction (i.e., indicates by how much a prediction is reduced
to reach the lower g-quantile value considered for decision-making for
a single lightpath). Since the M, value is different for each lightpath i
(e, My, = jzf’ - jzf), the average quantile margin M, Pt computed over
all test lightpaths.

5.4. Margin comparisons

All types of margins are estimated according to the trained models
and corresponding test dataset of Section 4 and summarized in Table 2.
Clearly, M, , outperforms both benchmarks for all ¢ values considered.
Interestingly, as ¢ increases, M, further reduces. This trend is reason-
able, since higher ¢ values increase the percentage of unseen patterns
that may fall below the g-quantile, relaxing the lower QoT estimation
bounds and consequently leading to further margin reduction.

To quantify the achievable margin reduction, Rq‘* is defined as the
average quantile margin reduction over margin M,, where * denotes
either the worst error margin (i.e., w index) or the empirical rule error
margin (i.e., e index). Hence, the average quantile margin reduction is
given by:

_ 5 (M, = M)
Ry = % Z M = : ®)
i=1 *

Table 3 summarizes the margin reduction achieved for all ¢4 values,
when compared to the benchmark margins. According to these results,
margin reduction varies between 71% to 83% when the quantile margin
is compared to M,, and between 57% to 75% when compared to M,.
The highest reduction is observed for the highest ¢ value examined.
Note that, even though in this work M, outperforms M,,, in the sense
that M, is lower than M, this may not always be the case, since their
values merely depend on the dataset available and on what can be
observed from the test patterns (i.e., it is possible that in the avail-
able test dataset the highest possible deviation between the true and
predicted patterns is not observed). On the other hand, the behavior of
the g-quantiles tends to be stable, since the quantile margins are not
estimated according to the test patterns, but rather they are learned
during training and inferred for each unseen lightpath.

Insights on why g¢-quantiles achieve such a reduction as ¢ increases
are given by observing Fig. 3. Fig. 3 illustrates the quantile estimates
94 for ¢ = 0.05 and g = 0.25, the mean response predictions §°, and the
ground truths y,, for a small number of lightpath samples randomly
selected from the test dataset. Clearly, the ground truths of some
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Fig. 3. Ground truths, predictions, and quantile estimates for ¢ = 0.05 and ¢ = 0.25, over a number of lightpath samples.

lightpaths are tightly bounded by the lower quantiles (i.e., the quantile
estimates and the ground truths are close to each other), while for other
lightpaths the deviation between lower quantiles and ground truths is
larger. In general, the deviation between lower quantiles and ground
truths varies, depending on the uncertainty level of the g-quantile
model, over each unseen lightpath. The lower quantiles capture exactly
this fact by discriminating between the different inputs, hence returning
a QoT estimate that is not lower than necessary, given the desired
certainty level (i.e., the g value). Importantly, the deviation between
lower quantiles and ground truths seems to be mitigated when ¢ = 0.25,
as compared to the case where ¢ = 0.05, demonstrating the importance
of fine-tuning the ¢ value prior to decision-making.

Unlike quantile margins, the M,, and M, margins cannot distin-
guish between input patterns, hence they unnecessarily penalize all
lightpaths. As an example, the M,, margin will unnecessarily reduce
the predictions of several lightpaths (e.g., samples 1,3,5,7,12 in Fig. 3
for which the MSE model is almost certain) by a large constant margin
to mitigate the error of sample 11 (i.e., sample 11 results in the worst
error margin M, ). The same holds for the M, margin, which is lower
than M, but will still unnecessarily reduce the predictions of these
lightpaths. On the other hand, lower quantiles for these lightpaths
suggest that reductions of such magnitude are not required, with high
certainty.

Nevertheless, lower quantile estimates still have a probability of
failing, depending on the g-quantile selected. This is clearly shown
in sample 28 of Fig. 3, where its ground truth falls below the 0.25
quantile estimate. Note that this situation does not appear when the
0.05-quantile is considered, at least for the samples illustrated in Fig. 3.
Clearly, even though for both quantiles there exists a probability for
this situation to occur, this probability reduces to zero as ¢ — 0.
However, in decision-making, pushing this probability to zero is not
of the utmost importance; instead, it is more important to sufficiently
tune this probability to the point where decision accuracy, in both
classes of interest, is the best possible; that is, the probability to cor-
rectly recognize lightpaths with insufficient QoT is close to 1, without
significantly reducing the probability to correctly recognize lightpaths
with sufficient QoT.

6. Decision accuracy and comparisons

To investigate the impact of each margin estimation approach on
decision accuracy, the two classes of interest according to a predefined
QoT threshold are initially defined, and then the outputs of each QoT
model are compared against this threshold. Specifically, each unseen
lightpath is classified as infeasible if its QoT estimate is below the

Table 4
Classification accuracy for several QoT thresholds.

Threshold 12 dB

M, M, Mys My, My .15 My, My s
Accuracy 0.86 0.92 0.98 0.98 0.98 0.98 0.99
Class 1 accuracy 1 1 0.997 0.995 0.997 0.984 0.995

Class 2 accuracy 0.8 0.86 0.98 0.98 0.97 0.98 0.98
Threshold 12.5 dB

Mn: Me Mll.(\S MO.I MI).IS M(J.2 Mll.25
Accuracy 0.84 0.89 0.96 0.97 097 0.98 0.98
Class 1 accuracy 1 1 0.998 0.995 1 0.995 0.997

Class 2 accuracy 0.73 0.82 0.94 0.94 0.95 0.96 0.98
Threshold 13 dB

Mu.' Me Mll.(lS M(i.] M). 15 MOAZ Mll.25
Accuracy 0.88 0.91 0.96 0.96 0.97 0.98 0.98
Class 1 accuracy 1 1 0.997 1 0.995 0.997 0.996

Class 2 accuracy 0.7 0.78 0.89 0.91 0.94 094 0.96
Threshold 13.5 dB

Mu.' Ma M(l.(lS M(J.] M().lS MOAZ M(l.ZS
Accuracy 0.9 0.94 0.97 0.97 0.98 0.98 0.98
Class 1 accuracy 1 1 0.999 0.998 0.999 1 0.997
Class 2 accuracy 0.65 0.78 0.9 0.91 0.94 0.95 0.94

Threshold 14 dB

M, M, My o5 M, My s My, My s
Accuracy 0.9 0.95 0.98 0.98 0.99 0.99 0.99
Class 1 accuracy 1 1 1 1 1 0.999 0.998
Class 2 accuracy 0.44 0.7 0.9 0.91 0.94 0.96 0.97

QoT threshold (Class 1), otherwise it is classified as feasible (Class
2). Note that the estimates of the least squares QoT models are first
reduced either by the M, or M,, margin before classification takes
place, depending on the margin scheme applied. The estimates of the
g-quantile QoT models are directly used for classification purposes.

As shown in Table 4, several QoT thresholds are considered, with
the classification accuracy evaluated on the lightpaths of the test
dataset. Hence, decisions are taken according to the inferred QoT values
reduced by the margin considered (if any, depending on the margin
scheme applied), and accuracy is tested against the ground truths
in the test dataset. Table 4 denotes each approach according to the
corresponding margin scheme applied; that is, M,,, M,, and M, for the
various g values considered.

According to the results of Table 4, both the M,, and M, schemes
achieve 100% accuracy for Class 1, hence ensuring that a lightpath with
insufficient QoT will never be established in the network. However, the
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Fig. 4. General framework of the quantile QoT model training and QoT-aware RSA over unseen lightpaths.

drawback of these schemes is that they demonstrate a low accuracy for
Class 2 (varying between 44% to 86%), which is a direct consequence of
the fact that these margins tend to greatly underestimate the true QoT
of all lightpaths. In contrast, the quantile approach, for all M, values
considered, similarly succeeds for Class 1, while also achieving a high
classification accuracy for Class 2 (varying between 94% to 98%). It
should be noted that a slight loss in classification accuracy of Class 1
is observed (up to 1.6% for the g-quantile value performing the worst,
i.e., for ¢ = 0.2 and QoT threshold equal to 12 dB), due to the significant
margin reduction that quantiles achieve when compared to the M,, and
M, values.

Nevertheless, the results clearly indicate the importance of appro-
priately fine-tuning the ¢ values to achieve a negligible loss for Class 1,
while also preserving a high accuracy for Class 2. Specifically, accord-
ing to Table 4, this loss varies between 0% to 0.3% by appropriately
selecting the g-quantiles performing the best for each QoT threshold
considered (shown in bold in Table 4), with the improvement in Class
2 accuracy ranging between 11% to 25% when 0.3% loss is observed.
Overall, however, the improvement for Class 2 can be up to 53%
when ¢-quantile models are opted for, depending on the QoT threshold
considered. In general, to identify a good g-quantile, a straightforward
approach is to examine various incremental ¢ values up to the point
where the accuracy for Class 1 is considered sufficient. Identifying an
optimal ¢ value in an automated manner is planned for future work.

7. Network performance evaluation

To further demonstrate the importance of closely capturing uncer-
tainty prior to QoT related decisions (i.e., fine-tuning margins over
lightpath uncertainty), the impact of the various approaches on net-
work performance (in terms of blocking probability) was also examined
according to a dynamic QoT-aware RSA framework. Specifically, in
the dynamic QoT-aware RSA framework, decisions regarding the QoT
feasibility of arriving connection requests were taken according to one
of the various DNN-QoT models and margin estimation approaches
examined in this work; that is,

» QoT related decisions were taken according to a least squares
DNN-QoT model with the QoT estimates degraded according to
the state-of-the-art M, margin before decision-making,

QoT related decisions were taken according to a least squares
DNN-QoT model with the QoT estimates degraded according to
the state-of-the-art M, margin before decision-making,

QoT related decisions were taken according to the estimates of
the proposed g-quantile DNN-QoT model. Note that the estimates
of the g-quantile DNN-QoT model are directly considered for
decision-making, without any additional margin reduction, as
they already account for margins during inference.

Additionally, we compare all approaches against the decisions taken
by the Q-tool used for generating dataset D. Hence, the Q-tool results
serve to examine how close each margin estimation approach is to the
accurate decisions in terms of blocking probability.

The general framework of the quantile-based dynamic QoT-aware
RSA scheme is described in Fig. 4, illustrating that quantile QoT model
training/testing is performed off-line, by means of supervised learning,
according to a dataset D already collected from a dynamic network.
Once the quantile QoT model is available, the QoT-aware RSA is
executed on-line for each new connection request, described by a
source—destination (s-d) pair and a bit-rate demand, to extract input
pattern x, of the unseen (new) lightpath. Specifically, for each x,, the
quantile QoT model returns the lower quantile estimate $? which is
compared against a predefined QoT threshold. The unseen lightpath
is established if $ is equal to or above the acceptable QoT threshold;
otherwise, it is blocked or reprovisioned over a different lightpath. In
our work, for simplicity, we opted to directly block the connection if the
QoT of a lightpath is not sufficient. Note that the dynamic QoT-aware
RSA framework of Fig. 4 is similar for every margin estimation scheme
examined in this work, with the difference that a different loss function
is minimized during QoT model training when the baseline schemes are
considered (i.e., the MSE loss function), and that after model inference
a precomputed margin (i.e., M,, or M,) is used to degrade j, QoT
estimates before comparing them against the QoT threshold.

Hence, for the simulations, for each margin estimation approach,
6000 connection requests were generated considering the EON parame-
ters of Section 3 for a network load of 200 Erlangs and 160 FSs on each
network link. For the connection provisioning phase a conventional
QoT-aware RSA algorithm was implemented, in which a lightpath was
considered feasible if both the SA and QoT constraints were met.
Lightpath feasibility was examined by iterating over the k-shortest
paths (with k£ = 3), and a connection was blocked if a feasible SA with
a QoT that is above the QoT threshold could not be found.

For the first 5000 connection requests, QoT feasibility was examined
according to the Q-tool described in [24], while a dataset D was at the
same time created for training and testing the QoT model under con-
sideration. Hence, after the first 5000 connection requests, a DNN-QoT
model was trained to replace the Q-tool for the next 1000 connections.
Depending on the margin estimation approach followed, M,,, M,, or a
margin equal to zero was computed and used to degrade the DNN-QoT
model estimates before examining the QoT feasibility of each computed
lightpath.

For the DNN-QoT models trained to minimize the MSE loss function,
M, or M, was computed. For the DNN-QoT model trained to minimize
a g-quantile loss function, the margin was set to zero. Note that for the
latter approach, the DNN-QoT model was validated not only according
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Network performance evaluation with QoT threshold equal to 12 dB.

Q-tool DNN-QoT with M,

DNN-QoT with M, ~ DNN-QoT with M, 5

Blocking probability 0.28 0.37
Blocking probability due to QoT 0.25 0.34
Blocking probability due to capacity 0.03 0.03

0.35 0.3
0.31 0.26
0.04 0.04

to its performance over the test patterns but also according to the
accuracy of the percentage of test patterns that fell below the lower
g-quantile estimate (i.e., according to the accuracy with respect to the
q value). All DNN-QoT models were trained according to the parameters
described in Section 4, with the number of epochs increased to 500
to account for the higher diversity of patterns in the newly created
datasets, that is a direct consequence of the added QoT constraint
which is considered in the QoT-aware RSA. Training time for each
model was on the order of seconds (i.e., up to 7 seconds in the worst
case for the MSE QoT model), while inference time was on the order
of milliseconds, enabling the on-line provisioning and QoT-related
decisions to be performed within an acceptable time (i.e., appropriate
for real implementations).

Table 5 summarizes the average results obtained from a set of four
simulation runs for each different approach examined. The QoT thresh-
old was set to 12 dB which corresponds to the case where the baseline
schemes performed the best with respect to the achievable classification
accuracy in both classes of interest (Table 4). Each approach in Ta-
ble 5 is denoted according to the margin estimation approach followed
(i.e., DNN-QoT with M,,, DNN-QoT with M,, and DNN-QoT with M,).
Note that q is set to 0.15, which corresponds to the ¢ value performing
the best for the 12 dB QoT threshold according to the results in Table 4.
Furthermore, Table 5 reports the average results obtained from the Q-
tool from which dataset D was created for training the models; that
is, the Q-tool results correspond to the blocking probability obtained
for the first 5000 connection requests and the DNN-QoT results for all
margin approaches correspond to the blocking probability obtained for
the last 1000 connection requests.

Overall, Table 5 clearly indicates that the g-quantile approach
(i.e., DNN-QoT with M|, 5) performs closer to the results obtained with
the Q-tool, when compared to the baseline techniques. This is to be
expected, since the g-quantile estimates tend to underestimate less the
true QoT of lightpaths when compared to the baseline approaches,
hence leading to more accurate QoT-related decisions. Importantly,
the g-quantile scheme achieves a blocking probability that is improved
approximately by 14% when compared to the DNN-QoT with M,
scheme and by 19% when compared to the DNN-QoT with M, scheme.
Clearly, fine-tuning margins over lightpath uncertainty has a significant
impact on the reduction of blocking probability, and deep quantile
regression constitutes a promising approach towards this objective.

To gain further insights on the reasons why the baseline schemes
experience a higher blocking probability compared to the g-quantile
approach, Table 5 reports also the percentages of blocking caused due
the QoT constraint and due to the capacity constraints (i.e., the SA con-
straints). Evidently, this higher blocking probability is mainly caused
due to the QoT constraint as a consequence of the conservative margins
that baseline approaches consider (with higher blocking probability
when M, is considered, as the M, margin tends to be lower than the
M, margin). Clearly, the lowest average margin is achieved by the ¢-
quantile scheme with ¢ = 0.15, that only slightly increases the blocking
probability due to QoT (i.e., by 3%) when compared to the accurate
QoT-related decisions (i.e., the decisions derived by the Q-tool). This
slight increase is to be expected, since the g-quantiles still experience
inaccuracies in the class of lightpaths with sufficient QoT (i.e., 3%
misclassification for Class 2 according to Table 4 for a QoT threshold
of 12 dB and M, s).

It should be noted that for these simulation results the QoT thresh-
old performing the best for the baseline schemes was considered;
thus, it is expected that the improvement for the rest of the QoT

thresholds will be even higher. Further, it is worth mentioning that
while the datasets of this work were synthetically generated, this does
not affect the scope of this work, which is to demonstrate the poten-
tial of quantile regression to better capture uncertainty over unseen
lightpaths. As the uncertainty is expected to be higher in real datasets
(e.g., due to noisy OPM inputs), such frameworks are expected to be
even more important in real network implementations. Finally, more
accurately capturing uncertainty for other network operation decisions
(e.g., ML-aided traffic-driven SA decisions to reduce over-provisioning
by fine-tuning margin estimations [44]) is expected to further improve
network performance; that is, the cumulative improvement on network
performance is expected to be significant when uncertainty is more
accurately considered for all data-driven network operations.

8. Conclusion

This work demonstrates the capabilities of deep quantile regression
for sufficiently addressing uncertainty of QoT estimates over unseen
lightpaths. The main advantage of this framework is that uncertainty
is addressed through the discriminative inference of margins over the
unseen lightpaths, alleviating the need to resort to empirically esti-
mated myopic margins. It is shown that g-quantile DNN-QoT models
achieve, on average, significant margin reduction (up to 83%) when
compared to baseline margin estimation approaches. Importantly, it
is also shown that decisions based on g-quantile DNN-QoT models
achieve classification accuracies that are high for both classes of in-
terest. Specifically, g-quantiles succeed with almost 100% accuracy to
identify lightpaths with insufficient QoT, while preserving a high accu-
racy (i.e., above 91%) for the class of feasible lightpaths. In contrast,
baseline approaches succeed only for the class of infeasible lightpaths,
significantly increasing the error for the class of feasible lightpaths (up
to 65% error). While a small error is observed in the critical class
of infeasible lightpaths when a g¢-quantile is opted for (up to 1.6%
error), this can be further reduced (i.e., to 0.3% error) by fine-tuning
the g value considered for model training. In any case, errors of such
magnitude are negligible, considering the fact that the improvement
for the class of feasible lightpaths is up to 53% when compared to the
baseline techniques. As the promise of margin reduction and accurate
decision-making is ultimately to improve network performance, it is
also shown that the g-quantiles are capable of achieving significant
improvements (up to 19%) in terms of blocking probability, when
compared to the baseline margin estimation schemes.

Examining and comparing various ML methods capable of address-
ing model uncertainty (e.g., MC dropout) is planned as future work.
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