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ABSTRACT
As the default protocol for exchanging routing reachability information on the Internet, the abnormal
behavior in traffic of Border Gateway Protocols (BGP) is closely related to Internet anomaly events.
The BGP anomalous detection model ensures stable routing services on the Internet through its real-
time monitoring and alerting capabilities. Previous studies either focused on the feature selection
problem or the memory characteristic in data, while ignoring the relationship between features and
the precise time correlation in feature (whether it’s long or short term dependence). In this paper, we
propose a multi-view model for capturing anomalous behaviors from BGP update traffic, in which
Seasonal and Trend decomposition using Loess (STL) method is used to reduce the noise in the
original time-series data, and Graph Attention Network (GAT) is used to discover feature relationships
and time correlations in feature, respectively. Our results outperform the state-of-the-art methods
at the anomaly detection task, with the average F1 score up to 96.3% and 93.2% on the balanced
and imbalanced datasets respectively. Meanwhile, our model can be extended to classify multiple
anomalous and to detect unknown events.

1. Introduction
While the growth of the Internet promotes many fields,

many issues have emerged that affect network security
and stability. The BGP, as an inter-domain routing com-
munication protocol, is responsible for managing Network
Reachable Information (NRI) between Autonomous Sys-
tems (ASes), ensuring global reachability of information [1].
However, BGP is vulnerable to hijacking, misconfiguration,
DDoS attacks, and natural disasters (As shown in Fig. 1).
Statistics show that approximately 20% of the hijacking
and misconfigurations lasted less than 10 minutes but were
able to pollute 90% of the Internet in less than 2 minutes
[2]. For instance, on 24 February 2008, Pakistan Telecom
(AS17557) published the prefix 208.65.153.0/24 without
authorization, resulting in YouTube traffic being hijacked
worldwide [3]. Statistical or accessibility-based methods
[4, 5] for monitoring and determining nominal ranges are
limited by the need for extensive expert knowledge and
human resources [6]. Since hazards can not be identified
until the contamination of a portion of detectable features
of the ASes reaches the threshold, most methods are time-
lagged [7]. So it is of great importance to accurately detect
anomaly information or behaviors in BGP traffic while the
network is flooded with uncertainties.
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Figure 1: Cyber security events in the Internet.

The current machine learning models on BGP anomaly
detection are based on the dataset constructed from the
records of BGP update traffic packets, which are partitioned
into "anomalous" and "normal" samples. To improve the
anomaly detection performance, these models mainly focus
on the following two dimensions [8]: feature dimension (to
choose appropriate features) and time dimension (to choose
appropriate models). For traditional machine learning meth-
ods (like SVM), the data (i.e., the features) at different
timestamps are considered to be independent samples [9,
10, 11] in which the time correlations are totally ignored.
To overcome this shortcoming, the neural network based
methods take into account the memory effect to enhance
the detection performance. Despite these efforts, the factors
such as the relationship between features and the precise time
correlations for each feature are largely ignored, which may
have significant effects on the anomaly detection task.
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A Multi-View Framework for BGP Anomaly Detection via GAT

In this paper, we propose a unified framework that con-
siders the ignored factors mentioned above. To augment
the data, based on the window slicing, we incorporate STL
decomposition and construct two parallel pipelines in fea-
ture and time dimensions by using GAT to capture feature
relationships and temporal dependencies in time series data.
Through extensive experiments, we verify the effectiveness
of ourmodel. The contributions of our paper are summarized
as follows:

• We propose a novelty framework for BGP anomaly
detection at multi-view which applies STL decompo-
sition to weaken noisy data and to enhance the area
difference between positive and negative samples, and
focus on feature relationships and temporal correla-
tion in features for the first time.

• We extend the BGP anomalous events to six pieces for
a total of 12 different datasets, conduct experiments
from the perspective of balanced and imbalanced sam-
ples, respectively.

• Through a series of ablation experiments, we demon-
strate the practicality of data augmentation methods
(window slicing and STL) and multiple perspectives
(feature-based GAT and temporal-based GAT). We
conduct interpretable experiments on our model and
extend it to classify multiple anomalous events and to
detect unknown events.

The rest of paper is organized as follows. Section 2
introduces related work. Section 3 details the design and
implementation of our framework. We have conducted ex-
tensive experiments and corresponding analyses in section
4. Section 5 concludes this work.

2. Related Work
In this section, we describe BGP anomalies and the ML-

based detection models proposed in recent years.
2.1. BGP Anomaly Detection

The abnormal behaviors of BGP and its serious conse-
quences draw the attention of every network operator. BGP
anomaly refers to harmful changes of BGP behavior that
may cause thousands of anomalous BGP updates. A single
BGP update is classified as an anomaly if it contains an
invalid AS number, invalid or reserved IP prefixes, AS-
PATH without a physical equivalent, etc [12]. In addition,
a set of BGP updates can also be classified as an anomaly
if the characteristics show a rapid change in the number of
BGP updates, or contain longest and shortest paths, etc [13].
The studies of BGP anomaly detection can help network
operators to protect their networks [14].
2.2. ML-based BGP Anomaly Detection

Machine learning-based BGP anomaly detection meth-
ods in the past two decades can be roughly divided into
two types from two different enhancement perspectives:

feature dimension (to choose appropriate features) and time
dimension (to choose appropriate models).

Feature dimension: The quantity or quality of features
directly affects the performance of anomaly detection. Tes-
tart et al. [15] extract information from network operator
mailing lists and train a machine learning model to auto-
matically identify Autonomous Systems (ASes) that exhibit
characteristics similar to serial hijackers. In addition, Urbina
Cazenave et al. [9] show the SVM performs better than
decision trees and Naive Bayes while using data mining al-
gorithms to classify BGP events. Trajkovic et al. [10] select
10 features by Fisher and minimum Redundancy Maximum
Relevance (mRMR) scoring algorithms to achieve signifi-
cant classification performance. In recent two years, Arai et
al. [16] use the popular feature selection algorithms, wrapper
as well as several filter-based algorithms for feature ranking,
and Xu et al. [17] apply neural networks to automatically ex-
tract features from large-scale data to achieve anomaly clas-
sification. Innovatively, Sanchez et al. [18] identify graph
features to detect BGP anomalies, which are arguably more
robust than traditional features. Subsequently, Hoarau et al.
[19] are also further evaluated and compared the accuracy of
machine learning models using graph features and statistical
features on both large and small scale BGP anomalies. Both
of these provide theoretical support for the BGP anomaly
detection methods using graphs.

Time dimension: Sequential models take a further step
in anomaly classification. Ding et al. [20] use the feature
selection algorithm (mRMR) to select individual features
and compares the effects of classification between SVM and
LSTM. Chauhan et al. [21] propose stacked LSTM network
models to learn higher-level temporal patterns for anomaly
detection. Cheng et al. [3] use LSTM models to identify
worm attacks such as Nimda and Code Red I. And they
propose the MSLSTM model in the following work [22]
which uses a discrete wavelet transform to obtain multi-scale
temporal information, combining attention to construct a
two-layer LSTM architecture. To reduce the impact of inac-
curate supervision, Dong et al. [23] design a self-attention-
based LSTM model to self-adaptively mine the differences
in BGP anomaly categories.

Despite the great progress, there remain many issues
to address. For example, the correlation of added feature
with the target is low, while the proportion of this feature
is quite high, and the performance of sequential models
fluctuates significantly across different anomalous events. To
overcome the above problems, in this paper, we propose a
new framework for the BGP anomaly detection task, and
further apply this method to classify unknown events.

3. Methodology
In this section, we define the problem that needs to be

discussed in detail and design our model with the idea as:
focus on the multi-perspective features of data through data
augmentation and on the multi-view relational character-
istics of events through feature relationships and temporal
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dependencies. The overall framework of the model is shown
in Figure 3, and is designed as follows:

1) The methods such as window slicing and STL decom-
position are applied to enhance the original data. After
this, a new sample with shapem×5k (m is the number
of the original samples in the window and k is the
number of the original sample features) is obtained.

2) We propose the M-GAT structure, which applies
feature-based and temporal-based GAT to process
data, focusing on the feature correlation and temporal
dependency of the data. Note that the shape of the
output matrix of GAT layer is also m × 5k.

3) To retain the important information of the output
of each layer without causing redundancy, we stitch
the multi-channel data with specified weights after
the GAT layer. Then we use LSTM to get the final
prediction result ŷ.

3.1. Problem Definition
We introduce a classification task on BGP anomaly

detection to analyze Internet anomalous events. We consider
this task as a multivariate time series anomaly detection,
which is defined as follows: The input data is denoted by
X =

{

xk1 , x
k
2 ,… , xkn

}

∈ ℝn×k, where n is the maximum
length of timestamps, and k is the number of features for
each sample. The task of anomaly detection is to produce an
output vector Y =

{

y1, y2,… , yn
}

∈ ℝn by the proposed
method, where yi ∈ {0, 1} denotes whether the itℎ times-
tamp xki is anomalous.
3.2. Data Augmentation

Machine learning based BGP anomaly detection meth-
ods [9, 10, 24, 25] extract the relevant feature values from
the information packets, then use the classifier for anomaly
detection. In real situations, a small portion of normal data
will inevitably be mistaken for fluctuations or noise. As
shown in Figure 2(a), the curve represents 600 consecu-
tive samples of the AS-Path Length feature in the dataset
Slammer. The normal (blue curve) and abnormal (red curve)
samples are separated by the green line. Take the green line
as the evaluation criterion, the data point A will be misclas-
sified as an anomalous sample with a high probability. Data
augmentation can reduce or even eliminate the impact of
such noisy data by increasing the size and quality of the data
[26, 8]. In our model, we use the methods such as window
slicing and STL.
3.2.1. Seasonal and Trend decomposition using Loess

(STL)
By using the STL [27], a time series can be decomposed

into seasonal, trend, and remainder (residual) terms. The
trend term shows the direction of persistent increasing or
decreasing in data, the seasonal term shows the seasonal
factors over a fixed period, and the residual term means the
noise of time-series. We denote the above three terms by Tt,
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Figure 2: (a) Initial data, (b) the process of STL decomposi-
tion, and (c) result of window slicing.

St, and Rt respectively, and the original time series by Yt(t = 1, ..., N). Thus we have
Yt = Tt + St +Rt (1)

Furthermore, we introduce a robustness weight indicatorWtat each time point t to reflect the extremity of the value of
the residual term.

The STL decomposition is chosen for three reasons:
1) The trend and seasonal terms are robust and do not

distort the data by transient anomalous behavior.
2) The residual term and robustness weight indicator

represent the anomaly-related deviations.
3) STL is simple to be implemented and can quickly

calculate long-term sequences.
The process of STL decomposition is shown in figure 2(b).
In this case, the input data can be expressed as a sequence
{

x5k1 , x
5k
2 ,… , x5kn

}

, where 5k implies the information of
five parts that three terms mentioned above, robustness
weight indicator, and original data each with k samples.
3.2.2. Window Slicing

Window slicing [28] is a subsampling method that ex-
tracts consecutive slices from the original time series, ex-
tending strongly correlated data with more feature dimen-
sions on the original time series dataset. The length of the
window slice (denoted by m) is an adjustable parameter. By
traversing the entire initial time series in step of 1, one can
get different time windows

{

xk
t−m+1, x

k
t−m+2,… , xkt

}

via
varying t. After normalization, each time window is denoted
as zm×k

t−m+1, where the label with the highest occurrence
frequency among the m samples is chosen as the new label
of zm×k

t−m+1. By averaging the previous 600 test samples, the
result is shown in Figure 2(c).
3.3. Multi-view Graph Attention Network

(M-GAT)
Graph attention network (GAT) [29] achieves advanced

performance on many classification problems [22, 30, 31]
Songtao Peng et al.: Preprint submitted to Elsevier Page 3 of 12
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Figure 3: The framework of our model.

by using the attention mechanism [32]. The input of stacking
graph attention layers in GAT is a set of node feature vectors,
h =

{

h⃗1, h⃗2,… , h⃗n
}

, h⃗i ∈ ℝF , where n is the number of
nodes, and F is the number of features in each node. The
final output is a new set of feature vectors with the number
of nodes n, h′ =

{

h⃗′1, h⃗
′
2,… , h⃗′n

}

, h⃗′i ∈ ℝF . The formula
for obtaining h⃗′i is as follows:

h⃗i = �

(

∑

j∈Ni

�ijW h⃗j

)

(2)

whereW is the weight matrix multiplied with the features,
�(⋅) is the nonlinear activation function [33], Ni representsthe set of all neighbors of node i, and �ij is attention
coefficient in GAT which is calculated as:

�ij =
exp

(

LR
(

⃖⃖⃖⃗aT
[

W h⃗i‖W h⃗j
]))

∑

k∈Ni
exp

(

LR
(

⃖⃖⃖⃗aT
[

W h⃗i‖W h⃗k
])) (3)

where (⋅)T represents transposition and || is the concate-
nation operation. ⃖⃗a ∈ ℝ2F is the weight matrix between
the connected layers. The LR (i.e. LeakyReLu) function
is applied to the output layer of the feedforward neural
networks, which resets all negative numbers of the output
to 0.2.

h⃗′i is the new feature vector of node i which highlights
the strong or weak relationships between adjacent nodes and
the importance of a node itself. In the following sections, we
will introduce feature-based GAT and temporal-based GAT,
respectively.
3.3.1. Feature-based GAT

In our dataset (in which the features are mainly divided
into V olume Features and AS-path Features), it is found
that, for some certain features, there are large differences

in values between different categories, and very similar
distributions in feature values within the same category.
Therefore, in the absence of a priori knowledge, it is nec-
essary to explore the interrelationship between features.

As shown in Figure 3 (a), we construct a fully connected
graph of time-series samples in each window, where each
feature is taken as a node and the interrelationship between
features is taken as an edge. Then we calculate the corre-
sponding attention coefficient according to formula (2) and
update the node vector. Specifically, we create a sequence for
each window slice, {x⃗1∶m,1, x⃗1∶m,2,… , x⃗1∶m,5k

}, where 5k
is the number of features, and m is the number of samples
in the window. Note that each unit in the sequence is a
vector of shape 1 × m. Figure 3 (b) shows how the attention
coefficient and the output h⃗Feati of the specific node i can be
obtained through the attention mechanism. Here v⃗i denotes
x⃗1∶m,i, i ∈ (1, 5k). The final output is a matrix of shape
m × 5k.
3.3.2. Temporal-based GAT

Considering that in real time series, previous states may
have an impact on the current state, existing methods gen-
erally use models with memory capabilities (RNN, LSTM)
to process the time series data. Based on this, we establish a
temporal-based GAT layer.

We focus on the relationship of each pair of timestamps
in the window and construct a fully connected graph of
timestamps (treating as nodes). Full connectivity reflects
the short-term and long-term relationships in all pairs of
timestamps. As shown in Figure 3 (c), the input is time
series {x⃗1,1∶5k, x⃗2,1∶5k,… , x⃗m,1∶5k

}, and the output h⃗T imeiis a matrix of m × 5k.
3.4. Long short-term memory (LSTM)

We use the LSTM model [34] to predict the sample
categories. LSTM solves the gradient disappearance and
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Table 1
Details of the abnormal event datasets

Event Total/Anomaly(AS1,...,ASn) Time collector AS Number No.

Code Red I 7136 * 3 / 526, 472, 526 2001.07.19 - 2001.07.20 rrc04 (Geneva) 513, 559, 6893 1

Nimda 10336 / 3535 2001.09.15 - 2001.09.23 rrc04 (Geneva) 513 2

Slammer 7200 / 1130 2003.01.23 - 2003.01.27 rrc04 (Geneva) 513 3

Moscow Blackout 7200 * 2 / 171, 171 2005.05.23 - 2005.05.27 rrc05 (Vienna) 1853,12793 4

Japan Earthquake 7200 / 387 2011.03.09 - 2011.03.13 rrc06 (Japan) 2497 5

Malaysian Telecom 7200 * 4 / 103, 154, 185, 107 2015.06.10 - 2015.06.14 rrc04 (Geneva) 513,20923,25091,34781 6

gradient explosion problems in long sequence training by
replacing a single neural network layer of RNNwithmultiple
neural network layers. It is composed of a cell, an input gate,
an output gate and a forget gate. The three gates are used to
control the flow of information into or out of the cell c. The
whole process can be described by the following formulas:

ft = �g
(

Wfxt + Ufht−1 + bf
) (4)

it = �g
(

Wixt + Uiht−1 + bi
) (5)

ot = �g
(

Woxt + Uoht−1 + bo
) (6)

c̃t = �c
(

Wcxt + Ucht−1 + bc
) (7)

ct = ft ∗ ct−1 + it ∗ c̃t (8)
ht = ot ∗ �h

(

ct
) (9)

whereW� , U� , b� (� ∈ {f, i, o, c}) represent trainable input
weights, recurrent connections weights and bias vectors,
respectively. �g is sigmoid function, �c is hyperbolic tangentfunction, �h is hyperbolic tangent function or �h(x) = x.
xt is input vector to the LSTM unit at time t, ft is forgetgate’s activation vector, it is input gate’s activation vector,
ot is output gate’s activation vector, ht is hidden state vectoralso know as output vector of the LSTM unit, c̃t is cell inputactivation vector, and ct is cell state vector.Finally, the vector of prediction results ŷ can be obtained
from ht[−1]. We use cross entropy as a loss function to
estimate the difference between the predicted and true label
values, then optimize the model and determine the parame-
ters of each layer. The formula is as follows:

L(ŷ, y)=Wm[y]
(

−ŷ[y]+log
(

n
∑

j=0
eŷ[j]

))

(10)

where y is the true label, and we increase the heterogeneity
of different categories by presetting the weight matrix Wm.To reduce the influence of hFeat and hT ime, we set Wm as
[0.5, 1, 0.5].

4. Experimental Evaluation and Discussion
To demonstrate the effectiveness and universality of our

model for the BGP anomaly detection problem, in this sec-
tion, we evaluate the detection metrics for different anoma-
lous events, the effectiveness of module and parameter se-
lection in the model, and the performance of the model in

unbalanced samples. We also evaluate the interpretability of
the model and its performance on multi-classification task.
4.1. Datasets

BGP anomaly detection technology uses BGP update
packets to detect BGP anomalies. Route Views [35] and
RIPE NCC [36] are the most well-known repositories that
provide free downloads of historical BGP update data. By
parsing and preliminary pre-processing [37] of the data
downloaded from the platforms, we obtain the anomaly
event dataset, as shown in Table 1.

To avoid excessive disparity in sample size between dif-
ferent categories, we narrow the event scope of the data with-
out affecting the anomalies, at the mean time, we incorporate
the traffic of different AS in the same event. We extract
relevant information from BGP update packets and count
them at intervals of one minute to obtain several relevant
feature values. In general, these features can be divided into
volume features and AS-PATH features [14, 38], such as the
number of Network Layer Reachability Information (NLRI)
prefixes announced or withdrawn, the average AS-PATH
length, etc. In total, we select 46 features [37] which are
listed in Table 2.
4.2. Experimental Setup

Model evaluation consists of model comparison, model
index calculation and model parameter selection.
4.2.1. Comparative Method

For comparison, we select SVM [10], NB [39], DT, RF,
Ada.Boost [11] methods from traditional machine learning,
and thesemethods are still widely used in the current [18, 19,
20] due to the features of high amount and high correlation.
Meanwhile, theMLP [40], RNN, LSTM,MSLSTMmethods
from neural network models are also chosen as baselines.
MSLSTM combines DWT and two-layer LSTM architec-
tures, improves performance by focusing on the multi-time
scale features of anomalous samples.
4.2.2. Evaluation Metric

We view the BGP anomaly detection as a classification
problem, thus chooseAccuracy, Precision,Recall, and F1
as the evaluation metrics. The sample dataset of real anoma-
lous events is extremely imbalanced. For better comparison,
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Table 2
46 features from BGP update message.

Index Definitions Category
1 Number of announcements volume
2 Number of withdrawals volume
3 Number of duplicate announcements volume
4 37 Number of NLRI announcements volume

5
Number of non-duplicate

announcements
volume

6 Number of flaps volume

7
Number of new announcements

after withdraw
volume

8 Number of plain new announcements volume

9
Number of implicit withdrawals

with same path
volume

10
Number of implicit withdrawals

with different path
volume

11 Number of IGP messages volume
12 Number of EGP messages volume
13 Number of INCOMPLETE messages volume
14 Number of ORIGIN changes volume
15 Announcements to longer paths AS-path
16 Announcements to shorter paths AS-path
17 Average AS path length AS-path
18 Maximum AS path length AS-path
19 Average AS path length(unique) AS-path
20 Maximum AS path length(unique) AS-path
21 Average edit distance AS-path
22 Maximum edit distance AS-path

23-33
Maximum edit distance=n;

where(0,...,10)
AS-path

34-44
Maximum edit distance(unique)=n;

where(0,...,10)
AS-path

45 Number of rare ASes AS-path
46 Maximum number of rare ASes AS-path

Table 3
Confusion matrix

True Value
Predicted Value

Positive Negative

Positive TP(11) FN(10)

Negative FP(01) TN(00)

we treat the abnormal samples as the positive class and the
normal samples as the negative one. In this way, we can
construct the confusion matrix as shown in Table 3.

According to Table 3, we can calculate each performance
metric as following:

Accuracy = TP + TN
TP + TN + FP + FN

(11)
Precision = TP

TP + FP
(12)

Recall = TP
TP + FN

(13)
F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(14)

4.2.3. Parameter Setting
The performance of a model is sensitive to the vari-

able parameters. We split the dataset into a training set, a
validation set and a testing set with a ratio of 6:1:3, with
the same proportion of positive and negative samples in
each subset. The training parameters are chosen as follows:
learning rate 1e − 4, dropout 0.2, and maximum epoch
number 100. This selection can make the model achieve an
excellent and stable result on many datasets. Our model and
all experiments are implemented on Python, relying on the
PyTorch [41] framework, the sklearn library [42] and other
related libraries and functions.
4.3. Binary Classification
4.3.1. Basic Experiment

To verify the effectiveness of our model, experiments
are first conducted on a balanced sample set of six different
BGP anomalous events. The details of the experiments and
data are shown in Table 4. We keep the ratio of positive and
negative samples of the experimental dataset to be smaller
than 2:1. The duration of the Moscow and the Malaysian
events is short, so multiple ASes in the event area are merged
into the same dataset for training and testing.

Table 4 shows the anomaly detection results of balanced
datasets for different methods. It can be seen that the evalua-
tion indicators in our model are all above 90% for all datasets
(performs the best), and the F1 metrics are improved at most
14 percentage points compared with the baseline, which
demonstrate the superiority of our model. In details, among
the traditional machine learning methods, the 1NN method
performs well in four classifiers (SVM, NB, 1NN, and
DT), indicating that computing feature similarity on datasets
which have distinct features is efficient in classification task.
The results of DT, RF, and Ada.Boost show that based on
ensemble learning which integrates the weak classifiers into
strong classifiers is generally better than the single classifier.
The performance of time series models RNN, LSTM and
MSLSTM have obvious improvement on several datasets.
These methods take into account the temporal dependencies
in data, which are suitable for time-series datasets. Note that
LSTM outperforms RNN, and the MSLSTM model with a
two-layer LSTM structure performs the best.
4.3.2. Ablation Experiment

To study the rigor of parameter setting and the Ratio-
nality of model design, we conduct ablation experiments to
answer the following questions:

∙ Q1: Can the period of STL and the size of the window
be set arbitrarily?

∙ Q2: Is every item decomposed by STL useful or
redundant?

∙ Q3: How does each module impact performance of
our framework?
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Table 4
Anomaly BGP events detection results of balanced datasets

Datasets
Number
(test)

Evaluation
indicator

Machine Learning Neural Network
Our

ModelSVM NB 1NN DT RF
Ada
Boost

MLP RNN LSTM MSLSTM

Code
Red
I

1261

Accuracy 79.3 74.3 80.1 76.7 86.7 83.6 85.7 94.8 92.4 99.7 98.0
Precision 89.1 68.5 77.3 73.8 89.1 85.7 87.1 97.9 94.5 100.0 100.0
Recall 57.3 70.7 73.9 68.2 77.7 72.6 77.1 89.8 87.3 99.4 95.2
F1 69.8 69.6 75.6 70.9 83.0 78.6 81.8 93.7 90.7 99.7 97.5

Nimda 7200

Accuracy 63.0 62.5 63.5 66.3 68.0 69.0 70.3 81.7 79.4 88.5 93.9
Precision 64.7 62.4 63.7 68.9 72.7 70.3 70.3 80.8 75.7 89.2 91.8
Recall 54.2 59.5 59.7 57.1 55.8 63.7 68.3 82.2 85.5 87.0 96.1
F1 59.0 60.9 61.6 62.4 63.1 66.8 69.3 81.5 80.3 88.1 93.9

Slammer 2881

Accuracy 68.9 67.8 70.9 72.1 69.4 74.6 78.3 69.9 66.7 89.7 98.4
Precision 77.3 69.7 76.7 83.4 91.1 84.8 87.2 96.6 58.9 100.0 96.2
Recall 29.3 31.4 37.0 35.8 24.3 42.9 52.4 24.9 53.0 74.0 100.0
F1 42.5 43.3 49.9 50.1 38.3 57.0 65.4 39.5 55.8 85.0 98.0

Moscow
Blackout

719

Accuracy 48.4 50.7 73.0 67.9 76.7 69.8 82.8 68.0 70.9 95.6 98.5
Precision 33.3 48.7 66.7 64.1 71.0 63.7 80.4 68.4 68.4 91.9 100.0
Recall 8.8 76.5 86.3 73.5 86.3 84.3 84.3 65.7 76.5 100.0 96.7
F1 14.0 59.5 75.2 68.5 77.9 72.6 82.3 67.0 72.2 95.8 98.3

Japan
Earthquake

800

Accuracy 62.3 59.4 55.2 60.7 60.7 57.7 54.8 85.2 87.3 93.2 96.3
Precision 63.5 57.0 53.1 58.5 59.6 56.2 52.6 78.0 83.3 93.7 100.0
Recall 52.6 66.4 67.2 65.5 58.6 58.6 69.0 96.5 92.1 92.1 92.4
F1 57.5 61.4 59.3 61.8 59.1 57.4 59.7 86.3 87.5 92.9 96.0

Malaysian
Telecom

1924

Accuracy 62.8 74.3 88.5 81.2 90.5 88.0 81.9 88.5 93.0 91.9 96.8
Precision 22.8 53.6 79.9 61.5 83.0 77.1 92.9 74.0 82.6 82.4 95.9
Recall 12.8 72.6 79.9 91.5 83.5 82.3 39.6 92.1 95.7 91.5 92.2
F1 16.4 61.7 79.9 73.5 83.3 79.6 55.6 82.1 88.7 86.7 94.0

All Dataset
Average

Accuracy 64.1 64.8 71.9 70.8 75.3 73.8 75.6 81.4 81.6 93.1 97.0
Precision 58.5 60.0 69.6 68.4 77.8 73.0 78.4 82.6 77.2 92.9 97.3
Recall 35.8 62.9 67.3 65.3 64.4 67.4 65.1 75.2 81.7 90.7 95.4
F1 43.2 59.4 66.9 64.5 67.5 68.7 69.0 75.0 79.2 91.4 96.3

ForQ1, it is found that the period preset value of the STL
decomposition method and the size of the window slice have
a significant influence on the experimental performance.
Figure 4 presents the result of the parameter analysis exper-
iment, where the red dashed line shows the variation trend
of the model accuracy. It can be seen that as the parameter
values (the period value of STL and the size of window slice)
increase, the accuracy gradually reaches to a stable state.
In our experiment, the window size and the period value
are finally chosen to be 25 and 35(which can be fine-tuned
according to the specific situation).

For Q2, we perform quantitative analysis of each com-
ponent of the STL decomposition method in our experiment.
The results are shown in Table 5, which demonstrate that
to achieve the optimal value of F1, each component is
indispensable. It can be seen that, the most obvious impact
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Figure 4: The parameter evaluation of window size and period.

on the performance is the trend term, since this term can no-
tably reflect the difference between the positive and negative
samples, as shown in Figure 2 (b).

For Q3, we verify our model by performing ablation
experiment on each module. Table 6 shows the result on the
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Figure 5: (a) The weighted undirected graph of the feature relationships of Nimda uses features’ attention weights as edge
weights; (b) the situation of temporal dependence.

Table 5
Analysis of each decomposition term of STL.

Model
F1

Observed Resid Seasonal Trend Weight

✓ ✓ ✓ ✓ ✓ 95.88

✓ ✓ ✓ ✓ 94.36

✓ ✓ ✓ 80.59

✓ ✓ 78.65

✓ 77.34

Table 6
Ablation experiment of each module.

No.
Model Modules

Acc. F1Temporal

GAT

Feature

GAT
STL

Sliding

Window

1 ✓ ✓ ✓ ✓ 93.86 93.88

2 ✓ ✓ ✓ 92.64 92.75

3 ✓ ✓ ✓ 92.78 92.90

4 ✓ ✓ 88.60 89.13

5 ✓ 78.89 81.77

6 64.13 68.89

dataset Nimda, which has the most abnormal data. It can
be seen that, the F1 score increases from less than 70% to
nearly 90% through STL decomposition and window slicing,
surpassing most of the baseline. It is worth mentioning that
the application of the time-based and feature-based GAT can

further increase the F1 score to 94%, implying that each part
of our model is indispensable.
4.3.3. Interpretability Experiment

The Principle Component Analysis (PCA) [43] dimen-
sionality reduction method is used to visualize and analyze
the output vectors in two-dimensional space. Experiments
(a), (b), (c), and (d) in Figure 6 correspond to the experiments
6, 5, 4, and 1 in Table 6, respectively. It can be seen that
from (a) to (d), the positive and negative samples become
increasingly discriminable, which is consistent with the re-
sults as shown in Table 6. Figure 6 also demonstrates that
the classification errors usually occur at the boundary of the
positive and negative samples, where the data fluctuations
are obvious.

(a) (b)

(c) (d)

Regular
Anomaly

Regular
Anomaly

Regular
Anomaly

Regular
Anomaly

Figure 6: The t-SNE plot of the output vectors of our trained
model on the Nimda dataset.
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(a) (b)

Figure 7: Comparing the F1-score of our models with machine learning models (a) and neural network models (b) on 12 imbalance
datasets.

In the feature-based GAT module, we construct a fully
connected graph with nodes represent features and links
represent the relationship between adjacent nodes. To make
the visualization more significant, we plot the edges with
weights great than 0.3 only and apply the community al-
gorithm [44] to obtain Figure 5 (a). It can be seen that in
the same community, the weight between nodes is relatively
large, corresponding to the strong coupling between fea-
tures as observed in the time series. This strong coupling
relationship of similar features is confirmed in the graph.
In Figure 5 (b), the threshold value of the edge weight be
set as 0.2 directly and demonstrates a time dependence on
the time dimension generally favoring the medium or long
term. These experiments explain the effectiveness to focus
on intrinsic associations of data through GAT.
4.4. Imbalance Dataset Classification

In real situations, the dataset of the Internet events is gen-
erally imbalanced. In this section, we conduct experiments
on different AS data for each event spanning five days. The
maximum ratio of positive and negative samples on the test
set can reach 100:1, considering that the time of some real
events can only last for one or two hours. In this case, the
accuracy rate can not illustrate the effectiveness of a model,
one needs to consider the F1 value. Figure 7(a) shows the
F1 value on the imbalanced dataset for different methods
based on machine learning. Figure 7(b) presents the same
results for different methods based on neural network model.
It is shown that neural networkmethods outperformmachine
learning methods, and our model performs the best.

Table 8 provides the detailed value of each metric on
12 datasets for all methods mentioned above. The second
column specifies the total number of samples and the number
of abnormal samples contained in each event. The F1 values
of our model are higher than 80% for all datasets, even up to
99%. Despite the good performance of MSLSTM on some
datasets, means for each metric calculated from the results
of 12 datasets, and our model is optimal at all metrics, and
the mean of F1 metric is outstanding with nearly 10 percent
higher than the best baseline. Thus the severe bias caused by
sample imbalance can be mitigated effectively.

Table 7
Results of multi-classification experiments

Method RNN LSTM MSLSTM Our Model

Accuracy 93.5 88.3 88.8 93.5

F1 55.0 53.6 89.6 93.5

4.5. Multi-class Detection
Finally, we apply our model to multi-class task which

is more critical in reality. We choose six datasets from
the balanced samples. For each dataset, 600 consecutive
samples around the anomalous event (300 normal samples
and 300 abnormal samples) are selected, forming a multi-
classification dataset. The parameters are kept the same as
before, and the comparison methods are chosen to be RNN,
LSTM, and MSLSTM. The results in Table 7 show that our
method can increase the F1 value of positive and negative

Predict Value

T
ru

e 
V

a
lu

e

Figure 8: Heat map of multi-classification experimental results.
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Table 8
Anomaly BGP events detection results of imbalanced datasets

Datasets
Number
(Total)

(Anomaly)

Evaluation
indicator

Machine Learning Neural Network Our
ModelSVM NB 1NN DT RF Ada

Boost MLP RNN LSTM MSLSTM

Code
Red
I

(513)

7136
(526)

Accuracy 93.0 93.7 95.1 95.1 95.6 96.1 95.6 98.5 99.0 100.0 99.6
Precision 83.3 57.8 75.0 73.0 89.7 90.1 85.2 97.7 96.6 100.0 100.0
Recall 6.4 54.1 49.7 53.5 44.6 52.2 47.8 80.9 89.8 100.0 94.6
F1 11.8 55.9 59.8 61.8 59.6 66.1 61.2 88.5 93.1 100.0 97.2

Code
Red
I

(559)

7136
(472)

Accuracy 93.4 93.1 94.3 93.8 94.4 95.2 95.2 97.7 97.4 99.7 100.0
Precision 0.0 47.5 62.9 55.6 86.7 78.8 79.7 96.0 98.9 100.0 100.0
Recall 0.0 41.1 31.2 31.9 18.4 36.9 36.2 68.1 61.7 95.7 100.0
F1 0.0 44.1 41.7 40.5 30.4 50.2 49.8 79.7 76.0 97.8 100.0

Code
Red
I

(6893)

7136
(526)

Accuracy 93.4 93.1 94.3 93.8 94.4 95.2 95.2 97.7 95.6 99.2 99.5
Precision 0.0 47.5 62.9 55.6 86.7 78.8 79.7 96.0 89.7 100.0 100.0
Recall 0.0 41.1 31.2 31.9 18.4 36.9 36.2 68.1 36.9 89.2 92.5
F1 0.0 44.1 41.7 40.5 30.4 50.2 49.8 79.7 52.3 94.3 96.1

Japan
Earthquake
(2497)

7200
(387)

Accuracy 95.0 94.7 92.9 92.8 95.6 95.3 95.5 98.2 98.3 99.9 99.4
Precision 83.3 53.1 33.6 31.8 86.2 66.7 80.6 81.5 85.7 99.1 100.0
Recall 8.6 14.7 32.8 29.3 21.6 25.9 21.6 87.1 82.8 98.3 88.7
F1 15.6 23.0 33.2 30.5 34.5 37.3 34.0 84.2 84.2 98.7 94.0

Malaysian
Telecom
(513)

7200
(103)

Accuracy 98.6 98.6 99.3 98.3 99.3 99.3 99.3 99.5 99.8 99.2 99.9
Precision 0.0 50.0 79.2 40.5 100.0 100.0 89.5 81.2 96.3 100.0 90.9
Recall 0.0 3.3 63.3 50.0 46.7 50.0 56.7 86.7 86.7 40.0 100.0
F1 0.0 6.2 70.4 44.8 63.6 66.7 69.4 83.9 91.2 57.1 95.2

Malaysian
Telecom
(20932)

7200
(154)

Accuracy 97.5 97.4 98.8 98.4 98.7 98.4 98.4 98.9 99.2 99.3 99.8
Precision 16.7 37.8 83.9 66.7 84.6 71.4 87.5 87.1 100.0 79.6 100.0
Recall 4.3 37.0 56.5 47.8 47.8 43.5 30.4 58.7 60.9 93.5 86.1
F1 6.9 37.4 67.5 55.7 61.1 54.1 45.2 70.1 75.7 86.0 92.5

Malaysian
Telecom
(25091)

7200
(185)

Accuracy 97.0 94.8 99.3 99.4 99.4 99.3 99.4 99.3 99.5 99.3 99.7
Precision 0.0 14.8 88.5 90.2 93.6 91.7 95.7 86.8 89.5 100.0 100.0
Recall 0.0 21.8 83.6 83.6 80.0 80.0 80.0 83.6 92.7 70.9 86.0
F1 0.0 17.6 86.0 86.8 86.3 85.4 87.1 85.2 91.1 83.0 92.5

Malaysian
Telecom
(34781)

7200
(107)

Accuracy 98.3 96.7 99.2 98.3 99.6 99.4 99.4 99.3 99.5 98.7 99.9
Precision 22.2 25.0 71.4 45.6 100.0 85.2 100.0 80.8 82.4 54.2 100.0
Recall 6.2 62.5 78.1 81.2 75.0 71.9 62.5 65.6 87.5 100.0 86.4
F1 9.8 35.7 74.6 58.4 85.7 78.0 76.9 72.4 84.8 70.3 92.7

Moscow
Blackout
(1853)

7200
(171)

Accuracy 97.6 97.5 99.0 99.1 99.0 98.9 99.2 98.9 99.5 99.3 99.8
Precision 0.0 0.0 91.7 92.1 96.9 90.9 92.5 84.6 100.0 100.0 93.0
Recall 0.0 0.0 64.7 68.6 60.8 58.8 72.5 64.7 80.4 68.6 97.6
F1 0.0 0.0 75.9 78.7 74.7 71.4 81.3 73.3 89.1 81.4 95.2

Moscow
Blackout
(12793)

7200
(171)

Accuracy 97.4 96.9 98.9 98.9 98.8 98.9 99.0 98.7 98.4 98.9 99.6
Precision 37.5 40.7 81.4 82.9 79.1 81.4 87.2 76.2 62.9 71.9 83.3
Recall 17.6 68.6 68.6 66.7 66.7 68.6 66.7 62.7 76.5 90.2 97.6
F1 24.0 51.1 74.5 73.9 72.3 74.5 75.6 68.8 69.0 80.0 89.9

Nimda
(513)

10336
(3535)

Accuracy 67.0 63.7 66.4 64.7 69.6 67.3 67.2 64.2 69.0 90.8 88.1
Precision 53.2 46.9 51.0 48.4 58.0 52.5 52.7 48.0 55.4 95.0 86.2
Recall 28.5 45.6 45.1 47.3 40.6 45.6 38.9 55.8 47.8 77.3 77.7
F1 37.1 46.2 47.9 47.8 47.8 48.8 44.7 51.6 51.3 85.2 81.7

Slammer
(513)

7200
(1130)

Accuracy 83.9 84.0 86.7 86.3 85.7 87.4 87.5 76.4 84.5 93.5 97.2
Precision 41.4 47.2 76.6 81.2 93.9 88.4 86.3 31.2 50.8 100.0 84.9
Recall 7.1 19.8 21.3 16.6 9.2 22.5 24.3 41.7 26.9 58.9 99.7
F1 12.1 27.9 33.3 27.5 16.7 35.8 37.9 35.7 35.2 74.1 91.7

All Dataset
Average

Accuracy 92.7 92.0 93.7 93.2 94.2 94.2 94.2 93.9 95.0 98.2 98.5
Precision 28.1 39.0 71.5 63.6 88.0 81.3 84.7 78.9 84.0 91.7 94.9
Recall 6.6 34.1 52.2 50.7 44.2 49.4 47.8 68.6 69.2 81.9 92.2
F1 9.8 32.4 58.9 53.9 55.3 59.9 59.4 72.8 74.4 84.0 93.2
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Table 9
Experiments of multi-class prediction.

Train

Data

Test

Data

F1

RNN LSTM MSLSTM
Our

Model

(2,3,4,5,6) 1 81.5 83.2 90.3 98.1

(1,3,4,5,6) 2 55.2 67.5 70.7 92.2

(1,2,4,5,6) 3 89.3 87.5 99.7 96.2

(1,2,3,5,6) 4 79.5 81.0 85.7 81.1

(1,2,3,4,6) 5 58.9 74.9 80.5 97.0

(1,2,3,4,5) 6 58.9 74.9 80.5 97.0

Average 72.6 76.7 85.7 93.6

samples from 89.6% to 93.5%. The classification results on
the test set are presented in Figure 8, which reflect that our
model is applicable to a wide range of known anomalous
events.

In real scenarios, however, the events for prediction are
usually unknown. To explore this problem, we separately
select a dataset from the whole six as the testing set with
unknown states while the other five datasets constitute the
training set with known states, to find anomalous samples
from the testing set. From the experimental results shown
in Table 9, the average of F1 can reach 93.6% in anomaly
detection for different unknown events, which demonstrates
the perfect prediction ability of our model.

5. Conclusion
In this paper, we treat the BGP anomaly detection as a

classification task on a multivariate time series. Considering
that the raw data are generally noisy, we enhance the data
quality by employing the methods like STL decomposition
and window slicing. Then we apply GAT to capture the
relationship between features and the temporal dependencies
in data. After that, we multiply the output of the GAT
layer by a weight matrix to increase the heterogeneity of
different categories, and use LSTM classifier to implement
anomaly classification. The experimental results show that
our model has extremely high accuracy and very low false
alarm rates than other baselinemethods on different datasets,
implying that taking into account the inherent association in
data is necessary. Furthermore, we apply our model to tasks
such as multi-class anomalous event detection and unknown
anomalous event classification and verify the effectiveness
of our model.
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