
 RRH-Sector selection and load balancing 
based on MDP and Dynamic RRH-Sector-

BBU Mapping in C-RAN 
 
 
 

 by 
 

Mostafa MOUAWAD 
 
 
 
 

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
IN PARTIAL FULFILLMENT FOR THE DEGREE OF 

 DOCTOR OF PHILOSOPHY 
 Ph.D. 

 
 
 

MONTREAL,13 DECEMBER, 2021 
 
 
 
 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
UNIVERSITÉ DU QUÉBEC 

 
 
 
 

 Mostafa Mouawad, 2021



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
This Creative Commons licence allows readers to download this work and share it with others as long as the 

author is credited. The content of this work can’t be modified in any way or used commercially. 



BOARD OF EXAMINERS 
 

THIS THESIS HAS BEEN EVALUATED 
 

BY THE FOLLOWING BOARD OF EXAMINERS 
 
 
 
 
 
 
Mr. Zbigniew Dziong, Thesis Supervisor 
Department of Electrical Engineering, École de Technologie Supérieure 
 
 
Mr. Christopher Fuhrman, President of the Board of Examiners 
Department of Software and IT Engineering, École de Technologie supérieure 
 
 
Mr. Michel Kadoch, Member of the jury 
Department of Electrical Engineering, École de Technologie Supérieure 
 
 
Mr. Wessam Ajib, External Independent Evaluator 
Department D’Informatique, Universite du Quebec a Montreal 
 
 
 
 

THIS THESIS WAS PRESENTED AND DEFENDED 
 

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC 
 

MONTREAL, 24 NOVEMBER, 2021 
 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE



 
 

 

 

 

 

 

  

 



ACKNOWLEDGMENT 

 
 

Firstly, It was my pleasure to be supervised by Professor Zbigniew Dziong, I want to thank 

him for his unlimited assistance, valuable guidance, and recommendations through my Ph.D. 

research. 

 

I would like to express my most profound gratitude to my parents, my sister, and my lovely 

friends for their unconditional love, support and great patience all over my whole life.  

 

Also, I would like to thank Brunel university in London, and especially Wireless Networks 

and Communications Centre (WNCC), for allowing me to do an exchange during Ph.D. 

studies. 

 

Last, but by no means least, I would like to thank my close friends Ahmed Emam, and Khaled 

Addali for their support and help during my Ph.D. journey.



 

  



Sélection du secteur RRH et équilibrage de charge sur la base du MDP et du mappage 
dynamique RRH-Secteur-BBU dans C-RAN 
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RÉSUMÉ 
 
L'augmentation constante du trafic dans les réseaux sans fil oblige les opérateurs à améliorer 
considérablement leur infrastructure de réseau. Cependant, les dépenses prévues pour la 
construction, l'exploitation et la mise à jour du réseau d'accès radio (RAN) imposent un défi 
puisque le revenu moyen par utilisateur (ARPU) est presque constant ou diminue lentement. 
De plus, la nécessité de connecter des appareils sans fil a provoqué une augmentation du 
volume du trafic de données mobiles. Par conséquent, les opérateurs mobiles doivent chercher 
des solutions qui peuvent fournir un équilibre entre atteindre un niveau de service satisfaisant 
pour les clients et les coûts, pour optimiser les bénéfices et la croissance. Le réseau d'accès 
radio en nuage (C-RAN) est une nouvelle architecture qui prend en charge l'augmentation 
considérable du trafic du réseau mobile. Malgré des gains offertes par C-RAN, un 
environnement de trafic variable dans le temps peut provoquer des déséquilibres de charge, 
entraînant une utilisation inefficace des ressources. Par conséquent, les performances du réseau 
peuvent se dégrader en termes d'utilisateurs bloqués, de nombre de transferts inutiles et de 
consommation d'énergie. Cette thèse présente une sélection de paires RRH-secteur pour de 
nouvelles connexions et un cadre d'équilibrage de charge réseau qui optimise la qualité de 
service (QoS) et la récompense de l'opérateur dans le C-RAN. Dans la première partie de la 
thèse, nous proposons un nouvel algorithme de sélection RRH-Secteur où il sélectionne la 
meilleure paire RRH-Secteur pour chaque nouvelle demande de connexion en tenant compte 
des objectifs de l'utilisateur et de l'opérateur. Cette décision est basée sur un algorithme dérivé 
du processus décisionnel de Markov (MDP) dans le but de maximiser l'utilité intégrée 
opérateur-utilisateur. Dans la deuxième partie du cadre, le problème d'équilibrage de charge 
est abordé via l'optimisation de le mappage dynamique RRH-Secteur-BBU formulée comme 
un problème d'optimisation sous contrainte linéaire basé sur des nombres entiers. Nous 
comparons les solutions à ce problème obtenues par plusieurs algorithmes évolutionnaires tels 
que : colonie d'abeilles (BCO), recherche de Cuckoo (CUCO), algorithmes génétiques (GA) et 
essaim de particules (PSO). Enfin, nous évaluons les solutions proposées à l'aide de 
simulations approfondies. Les résultats montrent que le schéma de sélection du secteur RRH 
proposé offre des gains significatifs en termes de récompense de l'opérateur et de probabilité 
de blocage de la connexion par rapport à la méthode d'intensité du signal reçu (RSS). De plus, 
les algorithmes évolutifs sont comparés à la méthode de recherche exhaustive qui donne le 
mappage optimale RRH-Secteur-BBU. Les résultats montrent que, dans la plupart des 
scénarios considérés, les algorithmes proposés atteignent les solutions optimales en termes de 
nombre d'utilisateurs bloqués, de nombre de transferts d'utilisateurs entre les secteurs, et de 
consommation d'énergie BBU. Par conséquent, la qualité de service est maximisée et le réseau 
équilibré est obtenu. 
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ABSTRACT 

 
The ever-rising level of traffic in wireless networks is forcing operators to improve 
significantly their network infrastructure. However, the expected expenditure for building, 
operating and updating the Radio Access Network (RAN) imposes a challenge since the 
Average Revenue per User (ARPU) is almost constant or declining slowly. Consequently, 
mobile operators need to search for solutions that can provide a balance between reaching a 
satisfactory level of service to customers and costs to optimize the profit and growth. Cloud 
radio access network (C-RAN) is a novel architecture that supports the tremendous increase in 
mobile network traffic. Despite the gains that C-RAN offers, a time-varying traffic 
environment can cause load imbalances, resulting in inefficient resource utilization. 
Consequently, the network performance can degrade in terms of the blocked users, the number 
of unnecessary handovers, and the power consumption. This thesis presents an RRH-Sector 
pair selection for new connections and network load-balancing framework that optimizes the 
Quality of Service (QoS) and operator reward in C-RAN. In the first part of the framework, 
we propose a novel RRH-Sector selection algorithm that selects the best RRH-Sector pair for 
each new connection demand by considering the user and operator objectives. This decision is 
based on an algorithm derived from the Markov decision process (MDP) with the objective of 
maximizing the integrated operator-user utility. In the second part of the framework, the load-
balancing problem is addressed via optimization of the RRH-Sector-BBU dynamic mapping 
formulated as a linear integer-based constrained optimization problem. We compare solutions 
for this problem obtained by several evolutionary algorithms such as: Bee colony (BCO), 
Cuckoo search (CUCO), Genetic algorithms (GA), and Particle swarm (PSO). Finally, we 
evaluate the proposed solutions using extensive simulations. The results show that the 
proposed RRH-Sector selection scheme provides significant gains in terms of the operator 
reward and the connection blocking probability when compared to the received signal strength 
(RSS) method. Furthermore, the evolutionary algorithms are compared with the exhaustive 
search method that gives the RRH-Sector-BBU optimal mapping. The results show that, in 
most of the considered scenarios, the proposed algorithms reach the optimal solutions in terms 
of the number of blocked users, number of handovers, and BBU power consumption. 
Therefore, the proposed framework enhances the QoS and optimizes the network performance 
that balances the load across the network. 
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INTRODUCTION 

The internet of things (Tsagkaris et al.) era has changed the wireless access demands 

dramatically in recent years. The need to connect devices wirelessly caused an unwitnessed 

volume surge in mobile data traffic. By 2023, around 29.3 billion global mobile devices and 

connections are predicted to be active, and another prediction suggests reaching 50 billion 

(Cisco, 2016-2020). Consequently, mobile operators need to search for achievable solutions 

that can provide a balance between reaching a satisfactory level of service to customers and 

costs to optimize between profit and growth. It is evident that the radio access network (RAN) 

represents the most valuable asset for any mobile operator to achieve the Quality of service 

expected by the customers and yet achieve profitability. However, traditional RANs 

architecture is by far getting more expensive to keep mobile operators competing in the future. 

To grasp this dilemma, it’s crucial to shed light on the main characteristics of the traditional 

RANs architecture. Most RANs consist of three main features which are as follows: 

• Connectivity: Normally, there are a certain number of sector antennas that handle 

connectivity within a coverage area where transmission and reception are being processed. 

Each cluster of antennas is connected to a specific base station (BS). 

• System capacity: Interference is a limiting factor that affects the spectrum capacity. 

• Location: BSs need sites to be built on, and these platforms cost lots of money. 

The above characteristics pose lots of challenges, especially for expanding over the future to 

meet the explosive growth in demand. There are two components that matter for mobile 

operators: the CAPEX and OPEX. Both expenditures will face a massive rise in expanding. 

This can be justified by the enormous initial investment that each operator will have to pay to 

accommodate more BSs, whether through building costs, site rental, operating costs, 

management support and so forth (Tschofenig et al., 2010). Moreover, the utilization rate can 

be considered low over the regular operation aside from peak times. On the other side, the 

processing power of each BS can be thought of as isolated. In other words, such power can not 

be shared between each BS and thus increasing costs and limit the spectrum capacity. 
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Furthermore, to provide Quality of service and offer broadband wireless services, the operators 

have to build more BSs and hence the power consumption rises significantly. It can be implied 

that the power consumptions increase proportionally with the number of base stations 

introduced. The increase in power consumption affects the OPEX and, above all, affects the 

environment (Zhou et al., 2003). It is essential to mention that the RAN equipment uses almost 

half of the power consumed by the BS; however, the other portion is used by the site support 

equipment like the air conditioning. Figure 1 shows the power consumption components based 

on China Mobile (Mobile, 2011), and it signifies the effect of RANs on the power consumption 

level. The challenge faced is visible, and the solution may be simple, which is reducing the 

number of BSs; however, relying on decreasing the number of BSs will affect the network 

coverage and decrease the capacity. Hence, there should be a solution to reduce power 

consumption without affecting the network capacity. Several technologies are available 

whether by providing a cleaner way of harvesting power such as wind, solar or other renewable 

energy sources or the use of smart control software to save power. This can be done through 

switching off idle carriers within the low traffic times; however, these solutions will only 

address the power portion used by the site support equipment. Such solutions will not solve 

the power consumption problem resulting from the rise in the number of BSs. Consequently, 

a change in the RAN infrastructure is the solution by adopting a technique that offers 

centralized BSs to reduce the BS equipment and the site support equipment while providing a 

mechanism for resource sharing and hence increase the utilization rate. 

 

 

Figure 1 Power Consumption of Base Station  
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Not only this, but also the requirement that each mobile operator needs to include Global 

System for Mobile Communications (GSM), Wideband Code Division Multiple Access 

(WCDMA), and Long-Term Evolution (LTE) in their network requires constant upgrade aside 

from the operation cots. In brief, mobile operators will lack the flexibility in upgrading 

networks to accommodate the excess in demand in addition to the added services implied by 

the network future. Another term that puts the traditional RAN into a challenge is 

heterogeneous networks in which everything will be connected and managed by the network. 

This will increase the CAPEX and OPEX of such traditional architecture to be able to 

accommodate the new services, applications and support centralized interference management. 

Hence, it is an urgent need to find a convenient solution to enable flexibility and yet reduce 

costs. C-RAN came to be a viable solution to such a dilemma (Y. Lin et al., 2010). Figure 2 

shows the difference between the traditional RAN and the C-RAN. 

 

 

Figure 2 Different Network Architectures – Left: Traditional, Middle: Base station with 
RRH, Right: C-RAN Adapted from (Mobile, 2011) 

 

The future RAN is required to reduce costs while obtaining high spectral efficiency. Besides, 

energy consumption should be diminished, and the flexibility to be able to accommodate 

different standards is indeed an essential requirement. To meet such needs, real-time C-RAN 

with the presence of a centralized base-band pool processing and cooperative radio with 

distributed antenna equipped by Remote Ratio Head (RRH). C-RAN will enable BS 

virtualization and allow for dynamic allocation and thus reducing the power consumption. 

Also, the utilization rate will be optimized, and thus increasing the throughput. The need for 

centralized pools is necessary to target the CAPEX and OPEX reduction since it will help in 
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reducing the number of site equipment to cover the same area. Moreover, the last technology, 

which is RRH equipped distributed antennas under cooperative radio, will meet the spectral 

efficiency requirement. C-RAN represents a way of delivery rather than a replacement to 

3G/B3G standards. It provides a low cost and green way of deployment. There are other ways 

of RAN deployments rather than C-RAN. Each has its pros and cons; however, C-RAN can be 

considered a replacement for most typical RAN architectures such as Macrocell, Microcell, 

Pico cell and indoor coverage with the possible complementary deployment of other RANs for 

specific scenarios (Hwang et al., 2013). Keeping in mind the deployment of C-RAN with the 

aid of a centralized BBU pool and cooperative radio with RRH equipped distributed antennas; 

the C-RAN offers lots of advantages that can be summarized as follows: 

 

• Expenditure reduction (CAPEX and OPEX saving): 

- CAPEX: Adopting C-RAN will reduce the number of BS sites required for operation 

and providing the needed services. Virtualization is the key to such drastic change. 

- OPEX: The idea of centralized management and operation is the main advantage over 

typical RANs since the BBUs and site support devices can be added in fewer rooms and 

thus saving lots of OPEX, whether from the operating point of view or the maintenance 

point of view. The challenging aspect is that RRHs number will not be affected by 

deploying C-RAN; however, the advantage is that their functionality under the C-RAN 

umbrella will be simplified. In addition, their size and power consumption will decrease, 

and they will not require the same amount of site support and management as traditional 

RANs. 

 

1. Motivation 

The massive use of smartphones and applications for information and communications 

technologies is producing a huge growth in the demand for mobile broadband services with 

higher data rates and Quality of service (QoS). As stated by the Cisco Visual Networking, By 

2023, around 29.3 billion global mobile devices and connections are predicted to be active, 

and another prediction suggests reaching 50 billion (Cisco, 2019). Consequently, the mobile 
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network operators must consider significant actions to adjust this enormous traffic growth. C-

RAN is one of the promising solutions that offers a centralized network that can accommodate 

the expected high traffic demand. Hence, it is considered as one of the essential architectures 

that will define Mobile Networks (i.e. 5G) (Cisco, 2016-2020). Real-time C-RAN, with the 

presence of a centralized base-band processing pool and cooperative radio with (RRH) 

equipped with distributed antennas, is predicted to be a vital solution to face the challenges 

mentioned above (Alliance, 2013).  This technology has many advantages that can be 

summarized as follows: 

 

• The C-RAN is a cost-effective, low power radio-access points with small coverage service 

areas varying from tens to hundred meters connected to a centralized BBU (Forum, 2014). 

• C-RAN can improve indoor/outdoor coverage and network capacity by reducing path loss 

and reusing the whole spectrum. 

• C-RAN provides low operational cost due to its self-organization feature that self-

configures, self-optimizes, and self-heals itself automatically without human intervention. 

• C-RAN network gives a friendly network with a low transmission power environment.  

• C-RAN saves the power of the RRHs and the life of UEs batteries.  

• Better performance can be provided by balancing the load of the network.  

 

As a result, providing QoS in this technology is a vital topic that needs to be addressed. It is 

proved that the achievable data rate of any terminal depends on the users to RRH-Sector 

selection decisions. That motivates us to study the user RRH-Sector selection to assure higher 

data rates and less blocking rates.  

 

Moreover, a varying traffic environment can cause resources underutilization, and QoS as well 

as NP deterioration that is still a big challenge in C-RAN. This is because the overloaded 

RRHs-Sectors can face resource shortage that degrades NP when UEs try to connect to those 

RRHs-Sectors, although there are nearby under-loaded RRHs-Sectors that could serve these 

UEs. Therefore, this motivates us to find appropriate management and configuration methods 
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to maximize the NP of the C-RAN. This can be done through optimal RRH-Sector selection 

and dynamic allocation of BBUs resources to RRHs-Sectors.  

 

2. Problem Statement 

Despite the advantages that C-RAN offers, there are still some challenges to be addressed. The 

most important ones are Quality-of-Service (QoS  ) support and resource management. Some 

issues have been widely studied in the literature. However, many aspects have not been 

considered in those studies. The problems that need to be addressed for C-RAN are the 

following: 

 

• Service unavailability: caused by the blocking of connections due to lack of resources or 

lack of network coverage (dead zones). Service providers have tried to correct the problem 

by expanding their network coverage and increasing the ability of cells. 

• Service interruption: RRH-Sector pair selection should be optimized based on the user 

and operator utilities. The commonly used RRH-Sector selection method based solely on 

the measurement of the Received Signal Strength (RSS) does not guarantee user 

satisfaction since this satisfaction is usually based on several QoS metrics (data rate, delay, 

packet loss, etc.,). The weaknesses of this method are described in (Hashim et al., 2013), 

where the authors indicate possible underutilization of network resources, lack of fairness, 

and inappropriate load balancing in the network. The RSS metric is conventionally used 

for selection and handover (Benaatou et al., 2017; El Fachtali et al., 2016), but some authors 

(Mahardhika et al., 2015; Miyim et al., 2013) argue that it is only convenient to start the 

handover and then adding some other QoS criteria is needed for better results. Therefore, 

to maximize the utilization in the C-RAN network, a decision for RRH-Sector selection 

should consider the requirements and constraints of the user and the operator. From the 

user perspective, the application related QoS metrics and other criteria, for instance, the 

power consumption and the cost of the service of the device are of importance. Specifically, 

data rate and delay are essential for real-time applications, while low packet loss is essential 

for elastic traffic applications (web browsing, file transfer).  
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• Imbalance and network overload: a changing traffic environment can cause resource 

underutilization and network performance degradation that is still a big challenge in C-

RAN (Ahmed et al., 2016). This is when the load distribution among RRHs-Sectors is not 

uniform. Consequently, the overloaded RRHs-Sectors can face resource shortage when 

UEs try to connect to those RRHs-Sectors, although there are under-loaded RRHs-Sectors 

neighbors that could serve these UEs. Therefore, proper management and configuration 

methods should be introduced to optimize the network performance of the C-RAN.  

• Illustrative example: Figure 3 visualizes the C-RAN architecture. We are going to show 

the challenges with an example. The first challenge is RRH-Sector selection for each UE. 

We assume that each BBU serves three sectors, and each sector is defined with a specific 

color and consists of one or multiple RRHs. For example, let us assume that each sector 

can serve up to five connections coming from different RRHs that are being associated 

with that specific sector. Let us assume that UE (c) arrives at the network and wants to be 

served. Then due to its location, the network will select either RRH1-Sector6 or RRH4-

Sector1 for him. Let us assume that the network selects RRH4-Sector 1 regardless of the 

state of each sector. Then UE (b) arrives and wants to be served. Note that UE (b) can only 

connect to RRH4-Sector 1, and this sector reached its maximum capacity (i.e., five 

connections come from RRH2 and RRH4). Thus, this connection is going to be rejected in 

RRH4-Sector 1 due to the not optimal RRH-Sector selection for UE (c). However, this 

rejection could be avoided if UE (c) is allocated to RRH1-Sector 6.  

The second challenge is balancing the load among the Sectors. It is clear from Figure 3 that 

sector 4 has five connections that come from RRH 7 and RRH 8, so any new connection 

that comes to that sector will be rejected. On the other hand, sector 3 has only one 

connection that comes from RRH 5. Since the C-RAN has the dynamic ability to 

reconfigure the logical connections between RRHs and Sectors, RRH7 could be switched 

to be served by sector 3 instead of sector 4. In this case, the load is going to be balanced 

among sectors, and each considered sector can accept two new connections.  
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Figure 3 C-RAN architecture illustration 

 

3. Research Objectives 

The main objective of this thesis is to develop an RRH-Sector selection and load-balancing, 

among the sectors and BBUs, framework that aims at the optimization of the NP, QoS and 

operator revenue in C-RAN. The RRH-Sector selection maximizes the joint utility which 

includes the user and operator utilities. On the other side, the load balancing aims to optimize 
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the NP in the C-RAN. This is done based on various Key performance indicators (KPIs) such 

as the standard deviation of the sectors load, number of forced handover blocked users, number 

of handovers, and the power consumption. Each KPI has a defined weight that is chosen by 

the network operator according to its preferences. 

Generally, chapter 6 could be more explicit about how it demonstrates these problems have 

been solved and should answer the following questions: 

 

• How to maximize the number of UEs admitted into the C-RAN;  

• How to maximize user QoS in the C-RAN; 

• How to maximize total operator reward in the C-RAN; 

• How to maximize network performance (NP) in the C-RAN; and 

• How to improve the load balancing in the C-RAN. 

 

Different models will be developed to solve these issues. Then, the output of the proposed 

models will be compared to those of others found in the literature. 

 

4. Methodology Overview 

For the RRH-Sector selection we propose a model based on the integration of the operator 

utility and the user utility. This model can be also considered as a short-term load balancing 

method between sectors since the users located at the boundary of two sectors can be allocated 

to either of them. The operator objective is to maximize the utility defined as the mean value 

of reward from the network being a sum of rewards from admitted connections. The 

maximization of the operator utility is based on sector shadow price and node net-gain concepts 

derived from Markov Decision Process (MDP) theory. Then, we introduce user utility, which 

is the satisfaction of the user with respect to several QoS criteria. The user utility is calculated 

using the sigmoid function taking into account several criteria (e.g., price, data rate, delay, 

etc.).  It is used to calculate the user utility penalty that is used to reduce the operator utility by 

integration of the user utility penalty within the Markov Decision Process that optimizes the 

average operator reward which represents the operator utility.  
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The load balancing among sectors and among BBUs is optimized by finding the best RRH-

Sector-BBU mapping. The objective of this optimization is formulated using various NP KPIs 

such as the standard deviation of the sectors load, number of forced handovers blocked users, 

number of handovers, and the power consumption. Each KPI has a defined weight that is 

chosen by the network operator according to its preferences. To solve this optimization 

problem with unknown structure, very little information, and limited computational capacity, 

we selected four evolutionary algorithms: Bee colony (BCO), Cuckoo search (CUCO), Genetic 

algorithms (GA), and Particle swarm (PSO). 

Finally, we use MATLAB software to simulate selected scenarios in order to evaluate the 

proposed framework and its performance. 

 

5. Thesis Contribution 

There are three main contributions of the presented work. The first one is using the MDP for 

the RRH-Sector selection model that allows the dynamic nature of user activities as well as 

variations in data transmission conditions to be considered. We use a decomposed form of 

MDP with the concepts of shadow price and net gains applied to reduce the complexity of 

calculations due to a large number of states that allows its implementation in practical 

networks.  

 

The second contribution consists of designing a simpler utility-based RRH-Sector selection 

model that considers both the user utility and the operator utility jointly. The main reason for 

selecting the utility functions is that it indicates the level of satisfaction for any metric through 

a numerical value. Thus, it is simpler to assess these numerical values at the same time to 

achieve the optimum decision throughout the selection process compared to the heuristic 

algorithms used in (Fedrizzi et al., 2016).  

 

The third contribution is introducing a power-efficient load balancing algorithm through 

dynamic RRH-Sector-BBU mapping in the C-RAN. In contrast to the existing works which 
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did not consider the power consumption during the load balancing process, our algorithm 

balances the load in the C-RAN with the minimum required power to operate the network by 

switching off the underutilized BBUs. The RRH-Sector-BBU load balancing optimization 

objective is formulated using various NP KPIs such as sector load standard deviation, number 

of blocked users, number of handovers, and the power consumption.  

 

 

6. Thesis Outline 

The chapters of the thesis are structured as follows:  

 

Chapter 1 (LITERATURE REVIEW) introduces information about C-RAN architectures, 

resource management, and the UE and RRH selection process from the literature. Also, the 

related work on load balancing techniques proposed by other researchers is presented. 

 

Chapter 2 (C-RAN SYSTEM MODEL) introduces the C-RAN system model when LTE is 

applied. All the necessary parameters and assumptions to operate the C-RAN are presented. 

 

Chapter 3 (RRH-SECTOR SELECTION MODEL BASED ON MDP WITH PENALTY) 

presents the proposed RRH-sector selection in the downlink LTE C-RAN network. The model 

employs the user utility as well as the operator utility that jointly take users’ QoS demands and 

network profit into account. The proposed model uses the concepts of RRH-Sector shadow 

prices and RRH-Sector net gains derived from MDP decomposition with the objective of 

maximizing the integrated operator-user utility. 

 

Chapter 4 (DYNAMIC RRH- SECTOR-BBU MAPPING AND RELATED KPIs) introduces 

development of the load-balancing algorithm. The algorithm balances the load among the 

sectors and BBUs. Its objective is to optimize the NP in the C-RAN, which is done based on 

various KPIs. Those KPIs are the standard deviation of the sectors load, number of forced 
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handover blocked users, number of handovers, and the power consumption. Each KPI has a 

defined weight that is chosen by the network operator according to its preferences. 

 

Chapter 5 (EVOLUTIONARY ALGORITHMS FOR RRH-SECTOR-BBU MAPPING) 

presents the selected four evolutionary algorithms:  Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), Bee Colony Optimization (BCO) and Cuckoo search (CUCO). All 

of them belong to the group of swarm-based optimization algorithms and are used to find the 

optimum RRH-Sector-BBU mapping to balance the load across the network. 

 

Chapter 6 (PERFORMANCE EVALUATION OF THE PROPOSED MODELS) presents the 

simulation results for the RRH-Sector selection and load balancing framework using 

MATLAB software. The simulation results for the RRH-Sector algorithm are compared with 

commonly used network selection techniques based on the received signal strength (RSS). The 

metrics used to evaluate the performance are the operator reward, the users blocking 

probabilities and the users’ average data rates. Also in this chapter, the numerical results for 

the proposed power efficient load balancing approach, using the BCO, PSO, CUCO, and GA 

algorithms, are presented. These results are compared with the exhaustive search method, 

which finds the optimal RRH-Sector-BBU mapping.



 

  

LITERATURE REVIEW 

1.1 Introduction 

The first part of this chapter describes in more details possible C-RAN architectures including 

the one treated in this thesis. Then some background concepts regarding the different existing 

resource management techniques, and the literature review on RRH-Sector selection and load 

balancing in C-RAN are introduced as well. 

1.2 C-RAN architecture 

C-RAN is going to provide a drastic amount of saving on the operation, management and site 

rental. Moreover, as an extra advantage, the RRH will only require the installation of auxiliary 

antenna feeder systems and thus enabling a speed up in network establishment. 

• Green Infrastructure and Energy efficient: 
- Site reduction: It is acknowledged that the number of sites in C-RAN deployment will 

be reduced. Moreover, the C-RAN is alleged to be an eco-friendly infrastructure for 

this reason. BSs sites reduction through centralized operation will offer a decrease in 

using power-based equipment such as air conditioning and other site support devices 

and hence reduce the consumed power (CLI et al., 2014). 
- Interference reduction: The cooperative radio with RRHs will help to reduce the 

interference and thus allow for a reduced distance between the RRHs and EUs and 

hence higher density of RRHs (Hoydis et al., 2011). 

- Power consumption reduction: The power required for signal transmission will be 

lowered, which will have an impact on the power consumption of the RAN while giving 

a longer battery lifetime for the UE. This will allow for utilizing smaller cells while not 

affecting the network coverage quality. Besides, virtualization is a fundamental aspect 

of power consumption. In C-RAN, the BBU pool can be thought of as a shared resource 
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among the virtual BSs and hence optimization through resource allocation can be 

achieved. Consequently, the utilization rate can be enhanced while lowering the power 

consumption requirements.  For example, when a virtual BS went idle at night, the 

processing power can be turned off or reduced without affecting its capability of 

performing the required services (Mobile, 2011). 

• Capacity Enhancement: 
- This can be achieved through joint processing and scheduling, where the effect of inter-

cell interference (ICI) will be reduced and thus enhancing the spectral efficiency. In fact, 

virtualization assisted in forming a framework for virtual BSs to work under where they 

can share a large physical BBU pool allowing for signalling, traffic data and channel 

state information (CSI) of active UE’s sharing across the system (Hoydis et al., 2011). 

- Such enhancements allow for some technologies to operate in conjunction with C-RAN, 

such as cooperative multi-point processing technology (CoMP in LTE-Advanced). 

• Traffic management: 
- Non-uniform traffic handling: C-RAN can handle non-uniform traffic load through 

load-balancing functionality in the distributed BBU pool. Usually, the BBU pool offers 

broader coverage than the traditional BS; hence, the non-uniform traffic from UEs will 

still be within the same BBU pool and thus can be distributed within a virtual BS. 

Moreover, the increased radius of the BBU pool will allow serving the RRH despite its 

dynamic change due to the movement of the UEs. 
-  Smart Internet Traffic offload: This intelligent technology provides a gateway to 

offload the core network of operators from the ever-increasing internet traffic from 

smartphones and portable devices. This will be advantageous in many aspects since it 

will reduce the core network traffic, decrease the latency for the users and providing 

them with a better experience, decrease the back-haul traffic and cost and thus 

enhancing the core network operation. 

 

Although C-RAN is regarded as a solution for several challenges based on the advantages 

stated above, however, the C-RAN must optimize the performance metrics that define the QoS 

as following: 
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• Data rate: the number of packets received per time unit represents the data rate, which 

might be normalized by dividing the rates of the received packet over the sent packet.  

• Blocking probability: it is defined as the probability that some UEs cannot achieve the 

minimum required data rate in the network. The objective is to minimize the blocking 

probability as much as possible. 

• The number of handovers: handovers may cause packet losses and delays and consequently 

lead to a poor UE’s Quality of experience (QoE). The objective is to minimize the number 

of handovers as much as possible when realizing a balanced-load network. 

• Standard deviation: The range of Standard deviation is in the interval [0, 1], with a smaller 

value indicating an extremely load balanced distribution between all active base stations. 

Therefore, standard deviation minimization is one of the objectives to reach a very well-

load balanced network. 

 

Optimization of all or some of the factors depends on the required QoS. For instance, the delay 

must be optimized for delay-sensitive traffics as the case for voice/video applications while 

some packet loss is tolerated. However, the data traffic can tolerate delay, but the packet loss 

rate is sub-optimized. 

 

• C-RAN architecture based on RRH and BBU functions 

Based on the different splitting functions between RRH and BBU, there are two types of C-

RAN architectures: the first solution is named “full centralization,” where the BBU integrates 

layer 1 (base-band), layer two and layer three functions. 

This type has several benefits as it can be upgraded easily, and it can increase network capacity; 

it also supports multi-standard operation and sharing of the resources. Also, it is more suitable 

for multi-cell collaborative signal processing. Its drawback that it needs high bandwidth 

between the BBU and to carry base-band signal.  

The second solution is named” partial centralization,” where the RRH has the base station 

functions besides the radio functions, while the BBU still having the other higher layer 

function. The advantage of this type is “small centralization,” with partial BBU functions 
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centralized into a single central point that is linked with the remained remote BBU via dark 

fibre. With such design, the central point can control the wireless resources in every cell on a 

global level and even recognize the joint transmission or joint reception on the Physical layer 

to enhance cell edge performance. The main drawback of this architecture is that it still needs 

remote equipment rooms. One-body type base station is not desired from the viewpoint of 

system management and future upgrade. Moreover, the system improvement can be affected 

due to the delay in the information exchange (Y. Lin et al., 2010).  

As shown in Figure 1.1 below the different function splitting scheme: 

 

 
Figure 1.1 C-RAN architecture based on RRH and BBU functions 

 

Brief description of the function of each element on the C-RAN system: 

• RRH (Radio resource head): it transmits and receives wireless signals, provides the 

interface to fibre connections, and it changes the digital base-band signals that sent from 

the BBU into radio frequency signals (RF). Then it amplifies the power of the signal and 

sends it to the UE. On the opposite side, when UE sends RF signals to the RRH, those 

signals are amplified and transformed into digital base-band signals, and then they send to 

the BBU. Also, each RRH is equipped with a specific number of antennas that may be 

different from one to another.  

• Buffer: it is a physical memory storage area, and its function is to temporarily store data 

when it is being transferred from the RRHs to the mobile user. 

• BBU (Baseband units): works as virtual base stations for base-band signal processing and 

network resource allocation optimization, as it provides connectivity to RRHs and core 

network, where it is responsible for digital base-band signal processing, monitoring control 

RRH BBU 



17 

 

processing. When the core network sends IP packets, those packets are modulated into 

digital base-band signals and then transferred to the RRHs. Still, when the RRHs send 

digital base-band signals, those signals are demodulated, and IP packets are sent to the core 

network.  

• Fronthaul links: they are the fibre cables that connect the RRHs with the BBUs. 

• Power consumption:  

- In case several RRHs are used to transmit data, the power participated for a cooperative 

transmission of a shared stream from several RRHs to specific a UE can be represented 

by two factors. The first one is the total power to transmit the shared stream to this 

particular user, and the other element represents the contribution of this specific RRH. 

- In case only one RRH is used to transmit data: the power used by a specific RRH is used 

to send data to a particular mobile user. 

• Total power: is the summation of the power used to transmit the data through the first 

case, which uses several RRHs at the same time to transfer the data, plus the summation of 

the power used in the second case to transmit data to a mobile user through only one RRH. 

• Load balancer: it flexibly manages the admission to the shared radio resources based on 

the NP parameters, and it determines some or all of these functions: 

- Determining which UE should be served in each time interval of the transmission. 

- Allocating the physical resource blocks for each UE. 

- Determining which coding and modulation type should be used during the transmission 

for each UE. 

- Combining signals from and divide signals to the RRHs by linking the electrical and 

logical signals between the servers and RRHs. 

- Regaining and synchronizing the clocks between the RRHs. 

- Working as a “smart router” between the servers to balances and distribute the load. 

- Reducing the latency on the system (offload time crucial control functions from servers). 

- Processing signals received from multiple RRHs. 

• Scheduler: Map the packets to the BBU and take the decision about whether to accept the 

packets or not. 

 



18 

 

 

• The topology of the connection in C-RAN 

The topology of the connections in the C-RAN system depends on the number of available 

fibre cables installed. Therefore C-RAN can be constructed for macro networks with either a 

star or tree topology if the operators have numerous access fibre resources and enough 

aggregative level fibre resources. Note that the reliability of the network can be enhanced when 

a star topology is used. It is usually appropriate for single-radio access technology cloud and 

multi-radio access technology cloud. On the other, when fibre resources are limited, fibre ring 

topology is used for single- radio access technology sites. For areas without any fibre resources, 

microwave transmission could be an alternative (Y. Lin et al., 2010). Figure 1.2 below 

represents fibre topologies for C-RAN; the first one is the star, while the other is ring topology.  

 

  

Figure 1.2  Left: C-RAN star topology, Right: C-RAN ring topology (Mobile, 2011) 
 

• Types of connections between BBU and RRH 

There are two types of connections between BBU and RRH, the first one named as distributed 

while the second one is centralized, the type is chosen relying on different resource 

management in the BBU pool.  

 

For the first type, which is the distributed type, each RRH is directly connected to a dedicated 

BBU. This type is realized easily and simple, also it is named as “one to one” mapping. It needs 

several BBUs to be operating and generating frames that use a lot of power in the BBU pool. 

DU cloud  
DU cloud  
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It is not useful to achieve the benefits of the joint signal processing and C-RAN central 

controlling. The second one, which is a centralized type, all the RRHs could be connected to a 

central device or a switch, which can manage the processing resources in the BBU pool either 

for a group of RRHs or an individual RRH. This type has many benefits in terms of the sharing 

of resources and power efficiency using joint scheduling. In addition to that, the execution of 

efficient interference prevention and avoidance methods within multiple cells could be 

implemented in this type. Also, it offers the capability to manage the operation of RRHs, for 

example, turn RRHs on and off depending on the traffic variations in different cases. 

The front haul connections and links are recognized by different technologies, such as wireless 

or fibre, and classified into two types, the first one is ideal without bandwidth constraints, and 

the second one is non-ideal (Y. Lin et al., 2010). 

 

Optical fibre is considered an ideal front haul for C-RAN since it offers a high data rate and 

large bandwidth. For example, the performance specifications for the “next-generation passive 

optical network 2” is indicating that it has 40 GHz bandwidth for downstream and 10 Gbps for 

upstream, and can extend up to 40 km. “Very-high-bit-rate digital subscriber line 2” uses up to 

30 MHz of bandwidth to deliver 100 Mbps speed for both upstream and downstream within 

range of 300 to 400 m.  Also, wireless backhaul can be deployed as they are less expensive 

and quicker than fibre. They generally work on the licenced band using ruses methods such as 

a relay. They could also utilize microwave technology with a carrier frequency range between 

5 and 40 GHz. However, because those frequencies have limited available bandwidth, data 

rates of only a hundred Mbps can be provided (Mobile, 2011). 

 

• Selected C-RAN architecture 

In this thesis, we are going to study the C-RAN architecture where the type of connections 

between BBU and RRH is star, the link between them is going to be optical fiber cable, and 

the selected C-RAN architecture follows “full centralization” solution. Moreover, each group 

of RRHs are forming a sector where this concept helps to increase the capacity in the C-RAN. 

As shown in Figure 3 each BBU serves three sectors, and each sector is defined with a specific 

color and consists of one or multiple RRHs. 
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1.3 Related work on resource management and load balancing  

In this section, we will present some existing techniques in the literature for resource 

management for C-RAN. 

1.3.1 Resource management 

The resources in the wireless systems are represented by the channels in terms of frequency, 

time intervals (time slots), transmission power and battery power represent. Proper resource 

management can help service providers reduce costs, increase revenues while ensuring a better 

QoS. Resource management can improve outcomes in terms of blocking probability and ensure 

continuity of service. An overview of C-RAN, its advancements, initial prototypes and field 

trials, and overview of practical deployment of C-RAN can be found in (Checko et al., 2015; 

Mugen Peng et al., 2016). The works of (He et al., 2016; Simeone et al., 2016; C. Yang et al., 

2015) provided a research initiative to establish Software Defined Network (SDN) and 

Function Virtualization (NFV) Software for C-RAN. 

The main issue which mainly affects the handover is admission control, bandwidth reservation, 

and the scheduling policy (Van Quang et al., 2010). Figure 1.3 shows these important 

components. 

 

 

Figure 1.3 Resource management in connection with the handover 
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More comprehensive reviews on C-RAN from the resource management point of view, 

physical layer and the challenges faced by the network, alongside possible solutions, can be 

found in (Quek et al., 2017; Tohidi et al., 2020; Venkataraman et al., 2017).  

1.3.1.1 Admission Control 

The admission control (AC) creates the conditions of acceptance of the various call categories 

in the network to guarantee a low rate of blocking and an optimal call acceptance. Therefore, 

the purpose of admission control is to determine the possibility of admitting a call in the 

network without affecting the required QoS by the call context. A call is banned if the above 

condition is not fulfilled. 

 

To do this, Admission Control establishes a priority between new calls (lowest priority) and 

active calls (highest priority). From the UE perspective, the call interruption rate is more 

critical because it is less pleasant to lose a call that is in progress. Various policies have been 

proposed in the literature for the admission control in homogeneous networks. These policies 

can also be applied in the case of a heterogeneous network. In these works, the AC mechanisms 

have been based on the Quality of the received signal, the available bandwidth, the impact on 

ongoing QoS, priority of UEs, revenue, etc. The research was done in (F. Yu et al., 2002) has 

presented an admission control policy based on mobility. The idea is to rely on the mobility-

related information to estimate future resource needs that the UE will need in each of the 

neighbouring cells. Similar policies have demonstrated better results by combining mobility 

with the estimation of resource usage according to the duration of the call (Nicopolitidis et al., 

2003). 

 

Other policies based on revenue have been proposed to maximize the new call acceptance, 

which means maximizing the revenue since each new call is a potential source of income. In 

(Nelakuditi et al., 1999), a resource allocation strategy was presented to minimize the call 

blocking rate when receiving a new call in a saturated cell (with no available resources). The 



22 

 

strategy is to move a current call to a neighbouring cell to release resources currently used and 

reallocate it to the new demand. In the LTE standard (Access, 2009), the user association 

algorithm depends only on the Received Signal Strength Metric (RSS). Though, that algorithm 

was not intended for a heterogeneous network. In (NTT, 2010), a bias is included to the 

Reference Signal Received Power (RSRP) to expand the small cell coverage. In (Qualcomm, 

2010), the user is going to select the base station which ensures the minimum path loss values. 

In (Saad et al., 2014), based on matching game theory, the uplink user association method is 

introduced to solve the association problem for small cell networks. Though, this method 

considers the fixed small cell networks and only the access link between users and various 

eNBs.  

 

More specifically, in C-RAN, the issue of the selection between UEs and RRHs is under 

extensive research. The authors in (You et al., 2019) aimed to improve the UEs’ capacity 

performance through a framework that mutually optimizes UEs to RRHs association (i.e. 

CoMP selection) as well as resource allocation in time-frequency, in terms of user-centric 

demand scaling.  

 

Moreover, the authors in (C. Pan et al., 2017) targeted a User-centric C-RAN in a MIMO 

layout. They aimed to minimize the possible power consumption within the network through 

solving a precoding and RRH optimization challenge jointly.  

 

Furthermore, the authors in (Wang et al., 2017) targeted the RRH-UE clustering through 

solving a beamforming vector optimization problem. In (M.-M. Zhao et al., 2019), the goal 

was to achieve a balance between the minimization of the transmission power and the reduction 

of the front haul traffic by mutually optimizing the downlink beamforming vector, user 

association, and the caching placement for every RRH.  

 

On the other hand, in (Kaiwei et al., 2017), they used the weighted minimum mean square error 

(WMMSE) method and studied the BBU scheduling to provide an energy-efficient approach. 

In (L. Liu et al., 2017), the authors worked on a cross-layer framework to enhance the 
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throughput of the network by jointly optimizing the network and physical layer resources. 

Moreover, they provided an overall design that is optimized from different aspects such as user 

RRH association, RRHs beamforming vectors and network coding-based routing. 

1.3.1.2 Bandwidth Reservation 

Bandwidth in a wireless network is a valuable and important resource. The handover is 

successfully executed if the bandwidth is available/reserved in the target network/cell. For this, 

the simplest solution is to reserve a fraction of the bandwidth in each network (Forum) for the 

handover calls only. However, the difficulty is to find how much bandwidth should be reserved 

to minimize the handover block rate while maximizing the use of overall network bandwidth. 

Much research has been proposed to dynamically manage the resource allocation in terms of 

bandwidth, such as: sharing the total bandwidth by all traffic classes or dividing the bandwidth 

into separate parts for each traffic class (Diederich et al., 2005). 

1.3.1.3 Scheduling 

The scheduling algorithm provides a resource-multiplexing mechanism among UEs at every 

time instant. It allows the packet switching mode support on the radio interface. Sharing these 

radio resources is mainly based on the channel state, the packet delay and throughput required 

for each UE. However, an optimal scheduling strategy must share resources among UEs in a 

way that provides an equitable level of QoS while optimizing resource usage. 
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Figure 1.4 Three Conventional Scheduling Algorithms 
Taken from NSN: LTE MAC/RLC/PDCP/RRC (2011) 

 

The best-known scheduling algorithms in the literature depicted in Figure 1.4 are as follows 

(Dahlman et al., 2013): 

 

• Round Robin Algorithm (also known as Fair Time scheduler): also called “Fair Time 

scheduler” that share resources equitably among UEs without considering the radio channel 

state. 

• C/I scheduler: this one considers the radio channel state and primarily seeks to maximize 

the radio resource efficiency without considering fairness among UEs. 

• The Fair Throughput algorithm: it provides a fair rate for all UEs even if the resource usage 

is far from optimal. 

 

The introduction of the C-RAN certainly may involve new scheduling algorithms. Also, the 

scheduling strategy is closely related to other functions of resource management, such as 

admission control and bandwidth reservation. 
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1.3.2 Handover Management  

The main objective of Handover Management in C-RAN is to assure the continuity of the 

service during the handover process. Handover is the most sensitive point in the convergence 

of any two adjacent RRHs-Sectors. This transition is assumed homogeneous and transparent 

to UEs, which implies that the mobile UE must be auto-configured with the new settings 

without user intervention. Figure 1.5 shows the types of handover: horizontal and vertical 

handovers. 

 

• Horizontal Handover 

When the network changes, but not the technology, such as a transfer from WLAN 1 to 2.  

 

 

Figure 1.5 Horizontal and Vertical Handovers 
 

A novel technique to avoid handover problems in LTE has been proposed by authors in (X. 

Zhang et al., 2014), which is based on collaboration among macro-femtocells grouped 

according to nearby base stations. Each group pre-fetches higher layer packets to reduce the 

latency in the handover process. 

WLAN 1 WLAN 2
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Another study (H. Zhao et al., 2011) introduced a new handover algorithm for mobile relay 

stations to improve the handover success rate. The algorithm is based on the relative speeds of 

the UEs to the serving eNB and the target eNB. 

 

Several Handover methods were presented to overcome the challenge associated with the 

frequent handover of mobile equipment. One of the optimized handover processes for the LTE 

network is designed based on the coordinated multiple point (ComP) transmission technology 

and dual-vehicle station coordination mechanisms (Luo et al., 2012).  

 

• Vertical Handover 

In the case when the UE moves from a network to another one with different technology, for 

example, a transfer from LTE cell to Wi-Fi access–supported Relay Cell and vice versa. Several 

pieces of research have been done in this area to achieve an optimal vertical handoff algorithm that 

allows an inter-cell transfer between any two heterogeneous networks, e.g. LTE and Wi-Fi, in 

minimal delay and without service interruption. Not only the IP address is changed by 

switching the network connection, but the network interface also changes. Mechanisms such 

as mobile Ipv6 and Ipv4 have been proposed to solve the IP address changing problem (Nasser 

et al., 2006). 

 

Executing handover may consider two main techniques that are inherent to handover (Cho et 

al., 2005): 

• Hard Handover: the mobile UE first disconnects from the first cell and then reconnects 

to the target eNB. 

• Soft Handover: the mobile UE connects to the target DeNB first and then disconnects 

from the old eNB. 

 

The main parameters used in the literature for the vertical HO decisions and solutions are:  
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• Availability (RSS, SNR, SINR ...)  

• The available bandwidth. 

• Latency. 

• Reliability. 

• Power consumption. 

• Application Type (real-time or non-real-time). 

•  Security.  

 

In fact, several ways of research have been developed only for the static scenario with a focus 

on maximizing throughput across both networks while minimizing the number of handovers. 

 

We present below some vertical handover algorithms which characterized by the decision 

based on different metrics such as user preference, cost, resources of both networks, signal 

strength, and finally moving speed of the mobile. 

 

Many Vertical handover (HO) algorithms have been proposed in the literature. In (Van Quang 

et al., 2010), authors proposed an algorithm for HO decision using the metric of Received 

Signal Strength (RSS); however, using RSS in heterogeneous networks does not give good 

results. Furthermore, articles (Bing et al., 2003; Lv et al., 2008) combined other metrics with 

RSS, such as distance between UE and eNB antennas, and the service cost. But the algorithm 

becomes more complex as well as excessive delay and high power (K. Yang et al., 2007). 

Similarly, in (Zhu et al., 2006), cost and speed of movement of mobile users have been used 

as the main indicators and RSS algorithm as a secondary metric. This approach brings better 

results in terms of rates, cost and blocking probability. 

 

Work in (Chou et al., 2006) used the signal-to-noise ratio (SNR) and traffic type as the metrics 

for the HO decision. Its goal was to maximize the throughput of the network and minimize the 

ping-pong effect. Lin, H et al. proposed a QoS-Based Vertical HO. Besides, reference (K. Yang 

et al., 2007) uses the combined effects mentioned above, including signal-to-interference-noise 

Ratio (SINR) to make HO decisions for multi-attribute QoS considerations. Still, all the above-



28 

 

mentioned proposed techniques were studied from the core network point of view; however, 

integrating Wi-Fi in RAN makes it a different issue that needs to be investigated in terms of 

mobility and resource management. 

1.3.3 Load Balancing 

The network parameters can be self-optimized to the cell current load and in the neighbouring 

cells to enhance the capacity of the system. Also, human intervention is significantly 

minimized. The QoS experienced by UEs with load balancing should not be worse than that 

without load balancing. The main objective is to deal with the uneven traffic load by optimizing 

the network parameters. Nonetheless, the number of handovers required to do the load 

balancing should be kept as minimum as possible.  

 

The definition of the load has many aspects. Some models consider the radio load, transport 

network load or the processing load. The radio load might be split between uplink load and 

downlink load or split between different QoS Class Identifiers (QCIs). Based on the defined 

load, the algorithm distributes the load across the network. An algorithm is found to determine 

when and how the load is balanced. In other words, how the overload status is detected and 

handled.  

 

Load balancing modifies the handover parameters to control the overload situation. The two 

main parameters that might be used are the Hysteresis and Cell Individual Offset (CIO). For 

the sake of load balancing, cells should use the CIOs if they want to steer traffic to certain 

neighbours and not all of them. When a cell modifies the CIO, only one neighbour cell would 

have to adjust its corresponding CIO. Adjusting hysteresis requires to require a modified 

hysteresis in all neighbour cells, thereby causing these changes to ripple through a large part 

of the network. Moreover, to avoid ping pongs, it is necessary to adjust the handover 

parameters in both the source and target cells.  
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Information exchanged among cells over the X2 interface to make the two-sided change when 

balancing the load. The change of CIO must be within a specific range defined by the cell 

coverage overlap of the two cells. If the change is made out of this range, HO failures and call 

drops occur. 

 

Researchers in (Huang et al., 2015), a multi-traffic load balance (MTLB) scheme is introduced 

for traffic load balancing and improving the capacity of the network with a proper handover 

technique. A new cell selection is adapted to improve the UEs Quality of service. Moreover, 

the TTT (time to triggering) and handover threshold is adaptively changed to decrease the rate 

of call drop with a more balanced-load network. Two conditions are accounted for the 

handover procedure: The signal strength condition and the RB condition. That helps in 

avoiding the wrong eNB or unnecessary handovers. 

 

Not only UEs mobility could be used in balancing the load among the network cells, but also 

various types such as coverage and capacity optimization could be considered (Yamamoto et 

al., 2012). Once a small cell is discovered to be overloaded, the self-organizing network (SON) 

owns a role that reduces the power and consequently forces some edge-UEs to be offloaded to 

the lightly loaded cells of the network. 

 

In regard to the load balancing in the C-RAN, the mapping between BBU and RRH is not 

highly considered in research. Some of the limited work on this issue can be found in (Y.-S. 

Chen et al., 2018; K. Lin et al., 2017; Namba et al., 2012; Sundaresan et al., 2016; Z. Yu et al., 

2016). A mapping technique between the BBU and RRH, which is dynamic in nature, has been 

proposed by the authors of (Y.-S. Chen et al., 2018). They used a borrow-and-lend approach 

to provide a network load balancing while improving the throughput. The approach switched 

the RRHs from the overloaded BBUs to the underutilized ones.  

 

In (Namba et al., 2012), they aimed at adjusting the BBU-RRH configuration using an adaptive 

switching and semi-static methods. They considered the traffic loads at peak hours for the 

RRHs in the system through a specific time interval.  
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The need to accommodate user traffic profiles dynamically led the authors of (Sundaresan et 

al., 2016) to propose a scalable algorithm that relied on ideal transmission methods through 

reconfiguring BBUs and RRHs.  

 

In (Z. Yu et al., 2016), the authors worked on TDD-based heterogeneous C-RAN. They studied 

its energy-saving capabilities and its traffic adaptation and tried to enhance that by modifying 

the BBU-RRH logical connections.  

 

The authors in (K. Lin et al., 2017) worked on the clustering problem where they proposed a 

spectrum allocation genetic algorithm (SAGA) to enhance the NP of the network through 

efficiently utilizing the available resources.  

 

In (L. Chen et al., 2020), the authors proposed a deep-learning-based Multivariate Long Short-

Term Memory (MuLSTM) method to gather the space-time types of mobility and traffic for 

precise estimation. Also, they defined the RRH-BBU mapping as a set separating problem and 

introduced a Resource-Constrained Label-Propagation (RCLP) algorithm as a solution.  

 

The authors in (Han et al., 2019) considered the RRH-BBU Mapping in C-RAN for high-speed 

railway (HSR) scenarios. They used the graph theory as they abstracted the C-RAN into a 

graph so they could allocate the resources dynamically. 

 

The clustering problem was addressed in (X. Chen et al., 2014), where a dynamic algorithm 

was proposed based on a greedy multi-objective optimization scheme, which is non-linear. 

This optimization problem was solved using the scalarization technique alongside a linear 

model. In this paper, the RRHs capacity was increasing in joint conjunction with enhancing 

the energy-efficient through utilizing this dynamic clustering technique in the downlink.  

 

In the same line of work, the authors of (Shi et al., 2015) proposed a greedy algorithm to 

minimize the power consumption used by RRHs and the transport network. They used on and 
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off switching mechanism to enable joint selection of RRHs and thus minimize the power 

consumption. Furthermore, they utilized two group sparse beamforming methods, which are 

the bisection and iterative, to turn the RRHs off. 

 

The idea of self-organizing C-RAN was exploited in (Khan et al., 2017), where the authors 

worked on decreasing the number of blockages to improve the QoS of the users. They relied 

on a third-party server called “Host Manager” that was located inside the BBU pool to modify 

the resource mapping between BBUs and RRHs dynamically. This server tries to select the 

best configurations using a genetic algorithm to minimize the load conditions.  

 

The authors of (Mishra et al., 2016) relied on the well-known First Fit Decreasing (FFD) 

algorithm to provide a lightweight load-aware technique that can meet the RRHS 

computational resource demands with a reduced number of active BBUs. They followed the 

many-to-one mapping approach as a mapping scheme between the RRHs and BBUs.  

 

The work of (Q. Liu et al., 2016; M. Peng et al., 2015) studied the energy-efficient resource 

assignment allocation in heterogeneous C-RANs. Finally, the work of (Dhifallah et al., 2015) 

aimed at reducing power consumption through a two-stage iterative heuristic algorithm by 

considering the hybrid backhaul, which relies on wireline and wireless connections. The first 

stage works on optimizing the selection of the BS and the beamforming jointly, while the 

second stage targeted the wireless links and the transmitted power consumption problem. But 

such a study failed at considering the power consumption of the BBU pool and the cloud 

physical resources. 

1.4 Chapter Summary 

This chapter presents and explains the most relevant work related to C-RAN. It shows that the 

existing work did not consider the RRH selection for the UEs and the load balancing between 

BBUs and RRHs jointly. However, the effect of wrong RRH-Sector selection could lead to the 

loss of operator revenues and lower the QoS of the UEs. Moreover, the inappropriate mapping 

between the BBUs and RRHs incurs load imbalances in the C-RAN, which could lead to the 
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degradation of the NP. Therefore, in this chapter we introduced a framework that considers the 

RRH-Sector selection for the UEs as well as load balancing between BBUs and RRHs. This 

framework can better utilize the C-RAN resources from the operator and UE perspectives, 

which is not considered before up to our knowledge. Furthermore, it integrates the concept of 

SON and C-RAN towards a more centralized managed network. The next chapter presents the 

considered C-RAN system model with all the parameters needed to operate the network.



 

  

C-RAN SYSTEM MODEL 

2.1 Introduction 

This chapter presents the considered C-RAN network model, its parameters and assumptions. 

First, it shows how the C-RAN topology is formed and what practical elements are used in the 

presented model, such as the technology used, etc. Moreover, it illustrates how users are 

distributed and which parameters are considered during the selection and load balancing steps. 

Finally, the most critical system constraints are determined. 

2.2 System model 

C-RAN architecture consists of three main components named BBUs, RRHs, and the front 

haul links. Figure 3 shows that each BBU serves a cluster of adjacent RRHs which represented 

by a specific sector, where each sector is defined by a different color that has its own set of 

resource blocks (RBs). The RB takes 180 kHz bandwidth in the frequency domain and 6 or 7 

orthogonal frequency-division multiplexing (OFDM) symbols (i.e., one slot) in the time 

domain. The frequency section is comprised of 12 consecutive sub-carriers of 15 kHz. The 

front haul link between the BBUs and RRHs relies on switch fabric and optic links to form 

what is known as an optical transport network. The switch fabric is a network that consists of 

switches, multiplexers and optical splitters, while the optic links should be with low latency 

and high bandwidth. The SON server/controller realizes the self-organizing allocation of RRHs 

to sectors. 

 

The considered C-RAN model consists of 𝑁 RRHs that are assigned to 𝐾 sectors. Each sector 

has total bandwidth 𝐵෠ . We assume that  𝐵෠  is equals to 100 RBs since the C-RAN is operating 

with 20 MHZ. The sectors are served by 𝐵 BBUs where each BBU can serve one or more 

sectors. RRH௜  serves a set UM௜  of M௜ connected users, where 𝑖 ൌ 1, … . ,𝑁. The users are 
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divided into J classes differentiated by set of 𝑛ො criteria (e.g. data rate, delay, etc.),  𝑍 =ሼ 𝑧ଵ, 𝑧ଶ, … , 𝑧௡ොሽ, with corresponding weights 𝑊 = ሼ 𝑤ଵ, 𝑤ଶ, … , 𝑤௡ොሽ that are considered in 

RRH-Sector selection. Also, 𝑆𝑜𝑆௕ denotes the set of sectors served by 𝐵𝐵𝑈௕. Equally, 𝑆𝑜𝑅௞ 

represents the set of RRHs constituting sector 𝑘. Assignment of RRHs to sector k at time period 

t is expressed as 𝑅௞௧ = ሼ𝑅ଵ௞௧ ,𝑅ଶ௞௧ , … … ,𝑅ே௞௧ ሽ, 𝑘 where 𝑅௡௞௧ = 1 if 𝑅𝑅𝐻௡  has been assigned to 

sector k at time period t.  New assignment for each RRH at time period t+1 is denoted as 𝑅௞௧ାଵ.  

We assume that the considered C-RAN is owned by one operator. Moreover, we assume that 

the RRHs and Sectors collect statistics of the connection parameters such as the number of 

resource blocks (RBs) assigned for each UE that depends on the scheduler used, connection 

arrival rates, connection duration, and the respective QoS metrics (data rate, delay, etc.). The 

general model considers that the connections can demand different number of RBs. 

Nevertheless, in this thesis, to simplify the presentation, we assume in the following that each 

connection associated to a specific sector requires the same number of RBs, but the presented 

methodology is not limited to this case as explained in CHAPTER 3. As shown in Figure 2.1, 

we model each sector with multiple servers which can serve m maximum number of UEs 

simultaneously with maximum amount of used bandwidth 𝐵෠  (i.e., RBs). Class 𝑗 UEs 

connection requests are characterized by requested QoS metrics (data rate and delay, etc.), 

connection arrival rate 𝜆௝, service rates 𝜇௝, and reward parameter 𝑟௝. A class 𝑗 connection served 

in the RRH-Sector provides a reward 𝑟௝ to the operator. This parameter can have monetary 

interpretation or can be treated as a control parameter used to establish the connection priority. 
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Figure 2.1 Sector with multiple servers 
 

In LTE, each UE monitors two types of synchronization signals for sector search: primary 

synchronization signals (PSS) and secondary synchronization signals (SSS). First, each UE 

monitors the PSS to accurately acquire slot synchronization within 5 ms and identify the sector 

number. Second, each UE monitors the SSS to acquire frame synchronization and identify the 

sector group number (Sriharsha et al., 2017). Therefore, we assume that the RRH-Sector 

selection process takes place over a frame of 10 ms, as shown in Figure 2.2. Each BBU has a 

scheduler that allocates the resource blocks (RBs) to the UEs in each sector. In the considered 

C-RAN users can have different numbers of RBs depending on the type of the scheduler. There 

are different types of schedulers that could or could not consider the channel state information 

before the scheduling decisions. In this thesis, we use the Frequency Domain Round Robin 

(FD-RR) scheduler to schedule the resources (i.e.,𝐵෠ோ஻௦) among the number of connections (i.e., 

UEs) in each sector. Since the RRH-Sector selection model is based on the MDP, which 

represents the state of each sector by the number of connections, we selected the FD-RR 

scheduler since it relates the number of connections to the number of RBs in the system in a 

simple way. However, the proposed approach could be used if a different type of scheduler is 

used that assigs different number of RBs to the users associated to a specific sector. This is 

presented in (Dziong et al., 1990) where an adaptive bandwidth allocation scheme is 

considered. Each sector has its own set of equal bandwidth blocks that are referred to as 
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resource blocks (RBs). The scheduler allocates the RBs to the UEs cyclically regardless of the 

traffic requirements and the channel conditions while handling all connections with the same 

priority. As a result, each connection that comes to a specific sector is going to obtain the same 

number of resources as all current connections (i.e., UEs) allocated to that specific sector. Since 

we assume that FD-RR uses Resource Allocation Type 0 and the system bandwidth is 20 MHZ, 

the resource blocks are divided into multiple groups. Each group is called the Resource Block 

Group (RBG) and consists of 4 RBs (LTE; Evolved Universal Terrestrial Radio Access (E-

UTRA); Physical layer procedures). Note that the maximum number of users that could be 

scheduled simultaneously depends on the number of the Physical Downlink Control Channels 

(PDCCHs) that carry downlink control and scheduling assignments information (Holma et al., 

2009; Love et al., 2008; LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical 

layer procedures). For simplicity, we did not consider the number of PDCCHs in this thesis 

because it is a parameter configured by the network operator. Therefore, each sector could 

schedule up to 250 concurrent UEs during a given frame that is calculated by multiplying the 

100 RBs by 10 subframes divided by the RBG size, which is 4. Hence, this indicates that each 

UE is going to get a minimum of 4 RBs when the sector reaches its maximum capacity.   

In our approach, the RRH-Sector selection for a new connection depends on the MDP model. 

The selection process is completed for all UEs during each frame (i.e., 20 time slots, each of 

them is 0.5 ms). Then, the focus is to determine the suitable mapping for logical connections 

between BBUs, RRHs, and Sectors. The server/controller balances the load and improve the 

NP at time period t+1 under a given network condition represented by connected UEs at time 

period t based on selected KPIs. The server/controller is responsible for identifying the KPIs’ 

status by compiling the desired information from the UEs. Each UE performs Channel Quality 

Indicator (CQI), Pre-coding Matrix Indicator (PMI), and Rank Indicator (RI) measurements 

and reports them on a periodic or aperiodic basis. Detailed information about the CQI report is 

discussed in (LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer 

procedures). Here, we assume that a periodic CQI reporting is used. The CQI reporting can be 

configured according to the operator preference (e.g., every 40 subframes which is 40 ms) as 

shown in Figure 2.2. Therefore, the load balancing algorithm's execution by the SON 
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server/controller takes place in each time period t, which has to be bigger than the CQI 

reporting.  

 

Figure 2.2 Cycle and frame structure   
 

The proposed framework optimizes the RRH-Sector selection and network load balancing 

based on the centralized SON controller. Such an architecture introduces some challenges 

related to possible failures of the controller, time constraints for changing the RRH-Sector-

BBU mapping, and constraints on the processing delay of sub-frame between the connection 

of BBUs and RRHs (Checko et al., 2015). Possible solutions for these challenges are presented 

in (Arslan et al., 2015; Tsagkaris et al., 2015) . 

 

2.3 C-RAN constraints 

This thesis introduces a C-RAN architecture with a centralized-SON feature. The proposed 

framework provides optimization of the RRH-Sector selection and network load balancing. 

However, there are still some constraints related to the model that must be considered: 

• Since the server or controller acts as a focal point and is responsible for managing of the 

BBU pool, the network may break down if the Host manager malfunctions. 

• The switching components used in configuring the RRH-Sector-BBU mapping should not 

influence the time scale of the sub-frames (i.e., 1ms). 

• The processing delay of the sub-frame between the connection of BBUs and RRHs should 

be less than 1 ms, to satisfy the Hybrid automatic repeat request (HARQ) constraint 

(Checko et al., 2015). 
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Authors in (Arslan et al., 2015; Tsagkaris et al., 2015) present possible solutions for the 

introduced limitations and challenges above. 

2.4 Chapter Summary 

This chapter introduced the C-RAN system model when LTE is applied. We assume that in 

the area served by the C-RAN the RRHs are clustered into several sectors. The sectors are 

further handled by several BBUs, where each BBU can serve one or more sectors. Each sector 

serves a set of connected users that are further differentiated according to their class. All the 

necessary parameters and assumptions to operate the C-RAN are presented and discussed. The 

next chapter introduces the first part of the framework that addresses the RRH-Sector selection 

for the UEs.



 

  

RRH-SECTOR SELECTION MODEL BASED ON MDP WITH PENALTY 

3.1 Introduction 

In this chapter, we propose an RRH-Sector selection model based on operator and user utilities. 

This model also can be considered as a short-term load balancing based on the current state of 

the sectors since the users located at the boundary of two sectors can be allocated to either of 

them. The operator utility is the average reward from the network and its maximization is based 

on sector shadow price and sector net-gain concepts derived from the MDP decomposition 

approach presented in (Dziong et al., 1990). Then, we introduce the user utility defined as the 

users' satisfaction from obtained QoS metrics. The user utility is calculated using the sigmoid 

function. Then, we introduce the operator reward penalty that is a function of the user utility. 

By adding this penalty to the MDP based model that maximizes the operator utility, we 

integrate the operator and user utilities in the MDP-P model.  

3.2 Operator utility calculation 

The operator objective is to find the optimal RRH-Sector selection policy 𝜋 that maximizes 

the operator utility defined as the average reward from the network: 

 

 𝑅́(𝜋) = ෍𝜆̅௝ 𝑟௝௝∈௃ = ෍෍𝜆̅௝௞௝∈௃௞∈௄ 𝑟௝      (3.1) 

 

where 𝜆̅௝  is the rate of class 𝑗 accepted connections in the network, 𝑟௝ is the average operator 

reward from carrying a class 𝑗 connection, and 𝜆̅௝௞ is the rate of class 𝑗 accepted connections in 

sector 𝑘. 
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3.2.1 Sector shadow price concept and net gain 

The sector shadow price can be defined as the expected loss of future reward from connections 

rejected due to the acceptance of a new connection demand in a given Sector in the current 

network state. Let 𝑝௝௞(𝑧,𝜋) denote the shadow price in our system for a class j connection 

accepted in Sector k in network state 𝑧 = ൣ𝑧௝௞൧ under sector selection policy 𝜋, where 𝑧௝௞ 

denotes the number of class 𝑗 connections in sector 𝑘 ∈ 𝐾. Then we can define the net-gain 

from accepting a class 𝑗 connection in sector 𝑘 in state 𝑧 as: 

 

 𝑔௝௞(𝑧,𝜋) = 𝑟௝ − 𝑝௝௞(𝑧,𝜋)      (3.2) 

 

The advantage of expressing the net-gain as the function of shadow price is that the shadow 

price values are independent of the new connection’s reward, and therefore the policy storage 

memory can be reduced if there are several connection classes differentiated only by the reward 

parameter. Note that by assuming a Poisson arrival process, the system can be modeled as a 

Markov Decision Process. Then, it can be shown that the optimal RRH-Sector selection policy, 

which maximizes the average reward from the network, can be obtained by the following 

algorithm corresponding to the policy iteration algorithm (Dziong et al., 1990)  

 

1. In the network operating under the given RRH-Sector selection policy π, defined by p୨୩(z,π), estimate the Markov process parameters and, using these values, compute the 
improved values of sector shadow prices p୨୩(z,πᇱ). 
 

2. For each connection demand of class j, implement the improved policy by selecting the 
RRH-Sector pair that offers the maximum sector net-gain over all possible sectors:  

 

 𝑔௠௔௫ = 𝑚𝑎𝑥௞∈௄ 𝑔௝௞(𝑧,𝜋ᇱ) = 𝑚𝑎𝑥௞∈௄ ൣ𝑟௝ − 𝑝௝௞(𝑧,𝜋ᇱ)൧      (3.3) 

 
      If the net-gain is negative, reject the demand. 
      Go back to step 1. 
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Note that the number of network states 𝑧 is a product of numbers of possible states in each 

sector, so the number of states 𝑧 can be very large. Therefore, the calculation of shadow prices 𝑝௝௞(𝑧,𝜋) from the exact MDP model is not practical for a realistic network. To cope with this 

issue, we propose to decompose the network Markov process into a set of independent Sector 

Markov processes by assuming that connection demands form an independent Poisson process 

in each sector. In this case, the Markov process in sector 𝑘 is defined by the state-dependent 

arrival rate 𝜆௝௞(𝑥,𝜋) and departure rate 𝜇௝, where 𝑥 = ൣ𝑥௝൧ denotes the sector state and 𝑥௝ is the 

number of class 𝑗 users connected to the sector. This approach is analogous to the framework 

presented in (Dziong et al., 1990) for wired mesh networks, where it is shown that for realistic 

networks, the independence assumption error is negligible. After decomposition of the Markov 

process, the sector shadow prices 𝑝௝௞(𝑥,𝜋) can be calculated independently for each sector, 

and the policy iteration algorithm is modified as follows: 

 

1. In the network operating under given sector   selection policy π, defined by p୨୩(x,π), 
estimate the Markov process parameters, λ୨୩(x,π) and μ୨, and using these values compute 
the improved values of sector shadow prices p୨୩(x,πᇱ). 

 

2. For each class j connection demand, implement the improved policy by selecting the RRH-

Sector pair that offers the maximum sector net-gain over all possible sectors: 
 

 𝑔௠௔௫ = 𝑚𝑎𝑥௞∈௄ 𝑔௝௞(𝑥,𝜋ᇱ) = 𝑚𝑎𝑥௞∈௄ ൣ𝑟௝ − 𝑝௝௞(𝑥,𝜋ᇱ)൧      (3.4) 

 

        If the net-gain is negative, reject the demand. 

        Go back to step 1. 

3.2.2 Sector shadow price calculation in the decomposed model  

In the decomposed model, for a given RRH-Sector selection policy 𝜋, sector 𝑘 reward process 

can be described independently by the set ൛𝑟௝ , 𝜆௝௞(𝑥,𝜋), 𝜇௝ൟ so that one can define sector 𝑘 net-

gain 𝑔௝௞(𝑥,𝜋) as the expected reward from accepting class 𝑗 connection at sector 𝑘 in state 𝑥. 
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The reward rate from all connections in the sector   at state 𝑥 is given by: 

 

 𝑞(𝑥) = ෍𝑟௝𝑥௝𝜇௝௝∈௃       (3.5) 

 

Then, for given values of 𝜆௝௞(𝑥,𝜋) and 𝜇௝, the net-gains 𝑔௝௞(𝑥,𝜋) and corresponding shadow 

prices 𝑝௝௞(𝑥,𝜋) can be obtained by applying the value iteration algorithm (Schweitzer et al., 

1979). Since the value iteration algorithm is developed for discrete-time Markov processes, its 

application to our continuous-time Markov process requires a uniformization of the state 

sojourn times to an average time 𝜏 (Grassmann, 1977). After the uniformization, the value 

functions 𝑉௜௞(𝑥,𝜋) for our system can be computed from the following recurrence relation: 

 

 

𝑉௜௞(𝑥,𝜋) = 𝑞(𝑥)𝜏 + ෍ 𝜆௝௞(𝑥,𝜋)𝜏௝∈௃ೖ ൣ𝑉௜ିଵ௞ ൫𝑥 + 𝛿௝ ,𝜋൯ − 𝑉௜ିଵ௞ (𝑥,𝜋)൧
+ ෍𝑥௝𝜇௝𝜏௝∈௃ ൣ𝑉௜ିଵ௞ ൫𝑥 − 𝛿௝ ,𝜋൯ − 𝑉௜ିଵ௞ (𝑥,𝜋)൧
+ 𝑉௜ିଵ௞ (𝑥,𝜋),𝑘 ∈ 𝐾 

     (3.6) 

 

where 𝑖 is the iteration index and 𝛿௝ is a J-dimension vector with 1 at 𝑗 position and 0 in all 

other positions, +𝛿௝ represents the arrival of class 𝑗 user at the considered sector and −𝛿௝ 
represents the departure of class 𝑗 users from the considered sector. Once the value iteration 

algorithm converges, the sector net-gain values are given by: 

 

 

 𝑔௝௞(𝑥,𝜋) = 𝑙𝑖𝑚௜→ஶൣ𝑉௜௞൫𝑥 + 𝛿௝ ,𝜋൯ − 𝑉௜௞(𝑥,𝜋)൧      (3.7) 

 

and the corresponding sector shadow price values are given by: 

 

 𝑝௝௞(𝑥,𝜋) = 𝑟௝ − 𝑔௝௞(𝑥,𝜋)      (3.8) 
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As mentioned before, the net-gain values are used to maximize the operator utility in the RRH-

Sector selection model. Note that, as mentioned before in this paper the shadow price 

calculation assumes that that the connections associated with a specific sector require the same 

amount of bandwidth (RBs). However, the proposed methodology is valid also for the cases 

where the connections demand different number of RBs. In this case, the calculation of the 

shadow prices for connections with variable number of RBs can be done by using models 

similar to the ones presented in (Dziong et al., 1990). 

3.3 User utility calculation 

For each RRH-Sector pair candidate, the user utilities for each criterion is evaluated. The utility 

for a given criterion is a normalized numeric value in the range of [0, 1] which indicates the 

user’s satisfaction with respect to the criterion value provided by the RRH-Sector pair.  

In the RRH-Sector selection context, to compute the user utilities, we use the sigmoid function 

presented in (Nguyen-Vuong et al., 2008) and illustrated in Figure 3.1. The sigmoid function 

has several good features such as twice differentiability, increasing function, concavity, and 

convexity conditions (Nguyen-Vuong et al., 2008). 

 

 
Figure 3.1 Sigmoid function for user utility calculation 
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The following equation, corresponding to the sigmoid function, expresses the utility value 

calculation for a given criterion 𝜒: 

 

 𝑢(𝜒) =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 0,𝜒௡ < 𝜒௟ቀ𝜒௡ − 𝜒௟𝜒௠ − 𝜒௟ቁ఍1 + ቀ𝜒௡ − 𝜒௟𝜒௠ − 𝜒௟ቁ఍ ,𝜒௟ ≤ 𝜒௡ ≤ 𝜒௠

1 − ቀ𝜒௛ − 𝜒௡𝜒௛ − 𝜒௠ቁఊ1 + ቀ𝜒௛ − 𝜒௡𝜒௛ − 𝜒௠ቁఊ ,𝜒௠ ≤ 𝜒௡ ≤ 𝜒௛1,  𝜒௡ > 𝜒௛
      (3.9) 

 

 

where the parameters are defined as follows: 𝜁 ≥ 𝑚𝑎𝑥 ቄଶ(ఞ೘ିఞ೗)ఞ೓ିఞ೘ , 2ቅ: tuning coefficient for the shape steepness parameter, 𝛾 = ఍(ఞ೓ିఞ೘)ఞ೘ିఞ೗  : shape steepness parameter, 𝜒௡ : value obtained for criterion 𝜒, 𝜒௟ : minimum acceptable value for criterion 𝜒, 𝜒௛: maximum desired value for criterion 𝜒, 𝜒௠: satisfaction and non-satisfaction frontier. 

 

Equation (3.9) is for an upward criterion. For downward criteria, we use 1 − 𝑢(𝜒). An upward 

criterion gives greater utility for greater metric value (e.g., data rate) while a downward 

criterion gives greater utility for lower metric value (e.g., delay). To obtain the aggregated class 𝑗 user utility connected to sector k through RRH n, for all the considered criteria we use the 

multiplicative aggregation expressed by: 

 

 

 𝑈௝௞,௡(𝐶,𝑊) = ෑൣ𝑢௝௞,௡(𝑐௜)൧௪೔௡ො
௜ୀଵ , 𝑗 ∈ 𝐽,𝑘 ∈ 𝐾,𝑛 ∈ 𝑁,෍𝑤௜ = 1௜       (3.10) 
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The multiplicative aggregation is well suited for our multi-criteria decision because, as noted 

in (Nguyen-Vuong et al., 2008), it takes care of the interdependence of the criteria. Moreover, 

it conserves against ignoring completely specific criteria with lower weights. 

 

3.4 Criteria considered for RRH-sector selection in the user utility 

3.4.1 RSS 

We use the free space propagation model, a derivative of the Friis free space equation (Shaw, 

2013), to compute the RSS. The RSS depends on the distance between UE and the RRH and 

the user transmission powers. Then the RSS is expressed by: 

  

 𝑃ோ(ఌ,௡,௞) = 𝑃௧ × 𝐺௧ × 𝐺௥ × 𝛾ଶ(4 × 𝜋)ଶ × 𝑑ఈ × 𝜔      (3.11) 

where 𝑃ோ(ఌ,௡,௞) ,𝑃௧ : received and transmitted powers, 𝐺௧ ,𝐺௥: transmitter and receiver antenna gains, 𝛾: signal wavelength, 𝑑: the distance between transmitter and receiver, 𝛼,𝜔: path loss coefficient and system loss factor. 

3.4.2 Data rate 

The data rate offered by sector 𝑘 through RRH 𝑛 depends on the user location (i.e., signal-to-

interference-plus-noise ratio (SINR)). Therefore, it is very important to select the best RRH-

Sector pair that can satisfy the user requirement and efficiently utilize the resources in the 

network at the same time. 

The SINR can be represented as: 
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 𝑆𝐼𝑁𝑅ఌ,௡,௞ = 10 𝑥 log𝑃ோ(ఌ,௡,௞)𝑁෩ + 𝐼ሚ       (3.12) 

 

where 𝑃ோ(ఌ,௡,௞) is the RSS for user 𝜀 connected to sector k through RRH n,  𝐼ሚ  is the interfering 

power comes from all RRHs not belonging to sector k, and 𝑁෩ is the average noise power. 

It is assumed that the best modulation coding scheme (MCS) could be adopted for a given 

SINR, that offers the highest data rate. Therefore, the offered data rate for user 𝜀  connected to 

sector k through RRH n can be represented by the Shannon formula: 

 𝑑መఌ,௡,௞ = 𝐵෠ఌ,௡,௞. 𝑙𝑜𝑔ଶ(1 + 𝑆𝐼𝑁𝑅ఌ,௡,௞)      (3.13) 

 

where 𝐵෠ఌ,௡,௞ is the total bandwidth of allocated RBGs to UE 𝜀 connected to sector k through 

RRH n from the FD-RR scheduler during a specific frame (i.e., 𝐵෠ఌ,௡,௞ = ∑𝑅𝐵𝐺ఌ,௡,௞).  

3.4.3 Service cost for the user 

The cost of the service is calculated according to the total bandwidth of allocated RBGs during 

a specific frame by the FD-RR scheduler at a given sector and is expressed by: 

 

 𝐶஻ = 𝐵෠ఌ,௡,௞ 𝑥 𝑐ோ஻ீ      (3.14) 

 

where 𝑐ோ஻ீ is the price per one RBG. 

3.5 Operator reward penalty calculation 

In the hardware implementation, the computation of a sigmoid function is considered as one 

of the constraint factors. Therefore, for reducing the complexity in the implementation, the 

Piecewise Linear Approximation function which represents the operator reward penalty is 

widely being used for realizing the sigmoid function into hardware (Ngah et al., 2017). The 

operator reward penalty rate, 𝑐௝௞,௡൫𝑈௝௞,௡൯ is introduced here which is a function of the user 

utility 𝑈௝௞ defined in subsection 3.2. To design the 𝑐௝௞,௡൫𝑈௝௞,௡൯ function, we divide the user 



47 

 

utility values into zones, as suggested in (Sevcik, 2002). These are the frustration zone, 

tolerance zone, and satisfaction zone, as illustrated in Figure 3.2. The thresholds delimiting the 

zones denoted as 𝒯ଵ and 𝒯ଶ, can be set according to the parameter for which the utility is 

considered. In the frustration zone, we consider that the penalty decreases slowly, as the user 

utility increases, to express that the user remains unsatisfied below a certain threshold, here 𝒯ଵ. 

In the tolerance zone, the slope of penalty decrease is high to express the user's willingness to 

pay for service as he now has the minimum requirement. In the satisfaction zone, the penalty 

decrease has a small slope again because the user’s satisfaction does not increase much after 

reached a certain satisfaction level delimited by a threshold 𝒯ଶ. We also introduce 

constants 𝑘෠, 𝑘෠ଵ and 𝑘෠ଶ , in range [0, 1], that allow us to express the penalty as a reasonable 

fraction of the reward parameter.  𝑘෠ ensures that the operator receives an amount of reward 

even if user utility is equal to zero since the user has used the network. 𝑘෠ଵ and 𝑘෠ଶ delimit the 

proportion of 𝑟௝𝜇௝ for the tolerance and satisfaction zones. According to the above remarks, 𝑐௝௞,௡൫𝑈௝௞,௡൯ is represented by a piecewise function shown in Figure 3.2 that is defined as 

follows: 

 

 
Figure 3.2 Variation of penalty as a function of user utility 
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 c௝௞,௡൫𝑈௝௞,௡൯ =
⎩⎪⎪
⎨⎪
⎪⎧ 𝑟௝𝜇௝൫𝑘෠ଵ −  𝑘෠൯𝒯ଵ 𝑈௝௞,௡ +  𝑘෠𝑟௝𝜇௝  ,        𝑈௝௞,௡ ∈ ሾ0,𝒯ଵሾ
𝑟௝𝜇௝ ൥൫𝑘෠ଵ − 𝑘෠ଶ൯൫𝑈௝௞,௡ − 𝒯ଵ൯𝒯ଵ − 𝒯ଶ + 𝑘෠ଵ൩ ,𝑈௝௞,௡ ∈ ሾ𝒯ଵ,𝒯ଶሾ𝑘෠ଶ𝑟௝𝜇௝𝒯ଶ − 1 ൫𝑈௝௞,௡ − 1൯,        𝑈௝௞,௡ ∈ ሾ𝒯ଶ, 1ሾ

      (3.15) 

 

3.6 Policy iteration with added user utility penalty 

The integration of both user and operator utilities within MDP is done by reducing the reward 

rate from the connection by a penalty rate that is a function of the user utility value related to 

the selected RRH-Sector pair. Therefore, the higher the value of the user’s utility, the smaller 

the penalty will be. In this case, the class 𝑗 connection reward rate for connections accepted at 

the RRH located in sector 𝑘 is defined as:  

 𝑞௝ = 𝑟௝𝜇௝ − 𝑐௝௞,௡൫𝑈௝௞,௡൯      (3.16) 

 

where 𝑐௝௞,௡൫𝑈௝௞,௡൯ is the user reward penalty rate being a function of the class 𝑗 user utility for 

sector 𝑘.  

The RRH-Sector selection objective is to find the optimal policy 𝜋  that maximizes the mean 

value of reward from the network defined as: 

 

 𝑅ത(𝜋) = ෍൫𝑟௝ − 𝑐ఫഥ 𝜇௝⁄ ൯𝜆̅௝௝∈௃       (3.17) 

 

where 𝑐ఫഥ   and 𝜆̅௝  are the average reward penalty rate and the average arrival rate for accepted 

class 𝑗 connections, respectively. Note that the mean value of reward from the network can be 

presented as a sum of average rewards from the sectors. 
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 𝑅ത(𝜋) = ෍෍൫𝑟௝ − 𝑐ఫഥ௞ 𝜇௝ൗ ൯𝜆̅௝௞௝∈௃௞∈௄       (3.18) 

 

where 𝑐ఫഥ௞  and 𝜆̅௝௞ are the average reward penalty rate and the average arrival rate for accepted 

class 𝑗 connections in sector 𝑘, respectively. 

Then the sector shadow price can be defined as the expected loss of future reward from 

connections rejected due to the acceptance of a new connection demand in a given sector in 

the current network state. Let 𝑝௝௞(𝑧,𝜋) represents the shadow price for class 𝑗 connection 

accepted in sector 𝑘 in network state 𝑧 = ൣ𝑧௝௞൧ under RRH-Sector selection policy 𝜋. Then we 

can define the RRH-Sector pair net-gain from accepting a class 𝑗 connection at RRH located 

in sector 𝑘 in state 𝑧 as follows: 

 

 𝑔௝௞,௡(𝑧,𝜋) = 𝑟௝ − 𝑐௝௞,௡൫𝑈௝௞,௡൯ 𝜇௝ൗ − 𝑝௝௞(𝑧,𝜋)      (3.19) 

 

It is important to underline that while 𝑐௝௞,௡൫𝑈௝௞,௡൯ depends on the new connection’s location 

(RSS in the user’s utility), the value of 𝑝௝௞(𝑧,𝜋) does not since this is an expectation related to 

future connections. Then, assuming a Poisson arrival process, the system can be modeled as a 

Markov Decision Process and the optimal RRH-Sector selection policy, which maximizes the 

mean value of reward from the network defined by equation (18), is obtained from the 

following policy iteration algorithm: 

1. In the network operating under the given RRH-Sector selection policy π, defined 
by p୨୩(z,π), estimate the Markov process parameters and the expected average reward 
penalty rates (being a function of z). Then using these values compute the improved values 
of sector shadow prices p୨୩(z,π∗). 
 

2. For each class j connection demand, implement the improved policy by selecting the RRH-

Sector pair that offers the maximum RRH-Sector net-gain over all possible sectors. 

 

 𝑔௠௔௫ = 𝑚𝑎𝑥௞,௡∈௄,ேൣ𝑟௝ − 𝑐௝௞,௡൫𝑈௝௞,௡൯ 𝜇௝ൗ − 𝑝௝௞(𝑧,𝜋∗)൧      (3.20) 
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If the net-gain is negative, reject the demand. 

     Go back to step 1. 

3.6.1.1 Sector shadow price calculation in the decomposed model with added user utility 
penalty 

Figure 3.3 illustrates the state transition diagram in the decomposed model for a sector that can 

admit five users, which are divided into two classes. 
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Figure 3.3 State transition diagram for a sector 

 𝑥 → 𝑥 +  𝛿௝ ∶  admission of class 𝑗 user 𝑥 → 𝑥 −  𝛿௝ ∶  the departure of class 𝑗 user 

Note that the number of network states 𝑧 is a product of numbers of possible states in each 

sector so the number of states 𝑧 can be very large. Therefore, the calculation of shadow prices 𝑝௝௞(𝑧,𝜋) from the exact MDP model is not practical for any realistic network. To cope with 

this issue, we propose to decompose the network Markov process into a set of independent 
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sector Markov processes by assuming that connection demands form an independent Poisson 

process in each sector. In this case, the Markov process of sector 𝑘 is defined by the state-

dependent arrival rate 𝜆௝௞(𝑥,𝜋), the departure rate 𝜇௝, and the sector state denoted by 𝑥 = ൣ𝑥௝൧, 
where 𝑥௝ is the number of class 𝑗 users connected to the sector. This approach is analogous to 

the framework presented in (Dziong et al., 1990) for wired mesh networks, where it is shown 

that for realistic networks, the independence assumption error is negligible. Figure 3.3 

illustrates the state transition diagram in the decomposed model for a sector that can admit 5 

users, which are divided into 2 classes. In the decomposed model, for a given RRH-Sector 

selection policy 𝜋, sector 𝑘 reward process can be described independently by the set ൛𝑟௝ , 𝜆௝௞(𝑥,𝜋), 𝜇௝ , 𝑐ఫഥ௞ൟ so that one can define the sector 𝑘 net-gain 𝑔௝௞(𝑥,𝜋) as the expected 

reward from accepting class 𝑗 connection at sector 𝑘 in state 𝑥. The rate of reward from all 

connections in the sector when in state 𝑥 is now given by: 

 

 𝑞(𝑥) = ෍൫𝑟௝𝜇௝ − 𝑐ఫഥ௞൯௝∈௃ 𝑥௝      (3.21) 

 

Then, for given values of 𝜆௝௞(𝑥,𝜋) and 𝜇௝, the sector net-gains 𝑔௝௞(𝑥,𝜋) and the corresponding 

sector shadow prices 𝑝௝௞(𝑥,𝜋) can be obtained by applying the value iteration algorithm 

(Schweitzer & Federgruen, 1979). Since the value iteration algorithm is developed for discrete-

time Markov processes, its application to our continuous-time Markov process requires a 

uniformization of the state sojourn times to an average time 𝜏 (Grassmann, 1977). After the 

uniformization, the value functions 𝑉௡௞(𝑥,𝜋) for our system can be computed from the 

following recurrence relation: 

 

 

𝑉௜௞(𝑥,𝜋) = 𝑞(𝑥)𝜏 + ෍ 𝜆௝௞(𝑥,𝜋)𝜏௝∈௃ೖ ൣ𝑉௜ିଵ௞ ൫𝑥 + 𝛿௝ ,𝜋൯ − 𝑉௜ିଵ௞ (𝑥,𝜋)൧
+ ෍𝑥௝𝜇௝𝜏௝∈௃ ൣ𝑉௜ିଵ௞ ൫𝑥 − 𝛿௝ ,𝜋൯ − 𝑉௜ିଵ௞ (𝑥,𝜋)൧
+ 𝑉௜ିଵ௞ (𝑥,𝜋),𝑘 ∈ 𝐾 

     (3.22) 
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where 𝑖 is the iteration index and 𝛿௝ is a J-dimension vector with 1 at 𝑗 position and 0 in all 

other positions, +𝛿௝ represents the arrival of class 𝑗 user at the considered sector and −𝛿௝ 
represents the departure of class 𝑗 users from the considered sector.  

Finally, the sector shadow prices 𝑝௝௞(𝑥,𝜋) can be calculated independently for each sector, and 

the policy iteration algorithm is modified as follows:  

 

1. In the network operating under the given RRH-Sector selection policy π, defined by p୨୩(x,π), estimate the Markov process parameters, λ୨୩(x,π) and μ୨, and the average reward 
penalty rates for accepted class j connections, c఩ഥ୩. Then using these values compute the 
improved values of sector shadow prices p୨୩(x,π∗). 

 

2. For each class j connection demand, implement the improved policy by selecting the RRH-

Sector pair that offers the maximum RRH-Sector net-gain over all possible RRH-Sector 

pairs set ℜ. 

 𝑔௠௔௫ = 𝑚𝑎𝑥(௞,௡)∈ℜൣ𝑟௝ − 𝑐௝௞,௡൫𝑈௝௞,௡൯ 𝜇௝ൗ − 𝑝௝௞(𝑥,𝜋∗)൧      (3.23) 

 

      If the net-gain is negative, reject the demand. 

      Go back to step 1. 

3.7 Chapter Summary  

This chapter presents a model for the RRH-sector selection for a user demanding a new 

connection. The proposed RRH-sector selection model is based on the user utility as well as 

the operator utility, which represents the users’ QoS and network profit, respectively. The 

proposed model uses the concepts of RRH-Sector shadow prices and RRH-Sector net gains 

derived from MDP decomposition with the objective of maximizing the operator-user utility. 

Then, we introduce the operator reward penalty that is a function of the user utility. By adding 

this penalty to the MDP based model that maximizes the operator utility, we integrate the 

operator and user utilities in the MDP-P model. In the next chapter, the second part of the 

framework dealing with RRH-Sector-BBU load balancing is addressed. 



 

  

DYNAMIC RRH- SECTOR-BBU MAPPING AND RELATED KPIs 

4.1 Introduction 

As mentioned in the previous chapter, the MDP model can be also considered as a short-term 

load balancing based on the current state of the sectors since the users at the boundary of two 

sectors can be allocated to either of them. However, it does not address long term imbalances 

in the sector loads. To address this issue, in this chapter, we introduce RRH-Sector-BBU 

mapping for load balancing approach based on the network performance (NP) optimization 

where the considered NP term is a function of several KPIs. Specifically, the focus is to 

determine the suitable mapping for logical connections between RRHs, Sectors and BBUs, that 

balances the sector loads and improves the NP at time period t+1 under a given network 

condition at time period t based on selected KPIs. The considered KPIs are a function of the 

standard deviation of the sector loads, number of forced handover blocked users, number of 

handovers, and the power consumption. These KPIs are used by the SON server to optimize 

the RRH-Sector-BBU mapping.  

4.2 Load standard deviation KPI 

The load offered to a sector k is defined as: 

 

 𝐴௞ = ෍𝜆௝𝜇௝௝∈௃       (4.1) 

 

where 𝜆௝ is the connection demand arrival rate of class j and 𝜇௝ is the service rate of class j, 

where 𝑗 ∈ 𝐽. Note that all the sectors have the same maximum capacity. 
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We adopt this KPI for the standard deviation minimization, ψ, of the load level among the C-

RAN sectors. It is calculated by using all active sectors' load distribution. The load standard 

deviation at time t+1 is expressed by: 

 

  = ඨ ∑ (𝐴௞௧ାଵ − 𝐴௞തതതത௧ାଵ௄௞ୀଵ )ଶ𝐾௧ାଵ − 1       (4.2) 

 

where 𝐴௞௧ାଵ is the load of sector 𝑘 and 𝐴௞തതതത is the average sector load over 𝐾௧ାଵactive sectors. 

Then, one of the objectives of our approach is to minimize ψ to reach a well-balanced C-RAN 

network, and the KPI for standard deviation ψ is defined by: 

 

 𝐾𝑃𝐼 = ቐ 1                      𝑖𝑓  = 011 + 
               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (4.3) 

 

 

4.3 Handovers KPIs 

To formulate the KPIs for handovers, let 𝜌௜௝ represent the handover probability of users from 𝑅𝑅𝐻௜ to 𝑅𝑅𝐻௝, where 𝑖, 𝑗𝜖𝑁, and 𝐻௜௝ denotes the handovers from 𝑅𝑅𝐻௜ to 𝑅𝑅𝐻௝ defined as 𝐻௜௝ = 𝜌௜௝𝑈𝑀௜. Several methods for real-time estimation of 𝜌௜௝ can be found in (Ge et al., 2016; 

Vu et al., 2014). In this thesis, we assume that the user distribution in every RRH coverage 

area is uniform, thus 𝜌௜௝ can be modeled to be inversely proportional to the distance between  𝑅𝑅𝐻௜ and 𝑅𝑅𝐻௝ i.e.,(𝜌௜௝ = ଵ஽೔ೕ). For example, as shown in Figure 4.1, the distance between the 

centers of two adjacent RRHs is assumed to be “d” (e.g., the distance between RRH 1 and 

RRH 2). Therefore, the distance between RRH 1 and RRH 9 (i.e., 𝑥ଵ,ଽ) can be calculated as: 

 

 𝑥ଵ,ଽ = ට(2𝑑)ଶ + ൫√3𝑑൯ଶ = √7𝑑      (4.4) 



55 

 

 

 
Figure 4.1 Distance calculation for RRH-Sector-BBU mapping  

 

 

In the following we define three handover KPI types considered in this paper: inter-BBU 

handovers, intra-BBU handovers, forced handovers, and forced handover blocked users due to 

the mapping changes. 

 

4.3.1 Inter-BBU handover KPI 

The inter-BBU and intra-BBU handovers in C-RAN are corresponding to inter-eNodeB and 

intra-eNodeB handovers in LTE, respectively. Let 𝑌௜௝௕௧ାଵt be a binary variable where  𝑌௜௝௕௧ାଵ = 1 

in case  𝑅𝑅𝐻௜ and 𝑅𝑅𝐻௝ are linked with the same 𝐵𝐵𝑈௕ at t+1 time period, i.e., 𝑌௜௕௧ାଵ = 𝑌௝௕௧ାଵ =1, and  𝑌௜௕௧ାଵ = ∑ 𝑅௜௞௧ାଵ௞∈ௌைௌ್ . 𝑌௜௝௕௧ାଵis used to evaluate the number of inter-BBU handovers 

where 𝑌௜௝௕௧ାଵ = 1 − ∑ 𝑌௜௝௕௧ାଵ.𝑌௜௝௧ାଵ௕ = 1 in case 𝑅𝑅𝐻௜ and 𝑅𝑅𝐻௝ are linked to different 𝐵𝐵𝑈𝑠 at 
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t+1 time period. Then, the number of inter-BBU handovers at t+1 time period is represented 

by: 

 

 𝑖𝑛𝑡𝑒𝑟𝐵𝐵𝑈ுை = ෍෍𝐻௜௝𝑌௜௝௧ାଵ௝ஷ௜௜       (4.5) 

 

where 𝐻௜௝ = 𝜌௜௝𝑈𝑀௜ indicates handovers from 𝑅𝑅𝐻௜ to 𝑅𝑅𝐻௝ and 𝜌௜௝ = ଵ஽೔ೕ, and since  𝑌௜௝௧ାଵ =𝑓ଵ(𝑌௜௝௕௧ାଵ), therefore equation (4.6) can be rewritten as: 

 

 𝑖𝑛𝑡𝑒𝑟𝐵𝐵𝑈ுை = ෍෍𝜌௜௝𝑈𝑀௜(1 −෍𝑌௜௝௕௧ାଵ௕௝ஷ௜ ) ௜       (4.7) 

 

Given that 𝑌௜௝௕௧ାଵ = 𝑓ଶ(𝑌௜௕௧ାଵ.𝑌௝௕௧ାଵ), where the dot (.) express the AND logical operation, thus: 

 

 𝑖𝑛𝑡𝑒𝑟𝐵𝐵𝑈ுை = ෍෍𝜌௜௝𝑈𝑀௜(1 −෍(𝑌௜௕௧ାଵ.𝑌௝௕௧ାଵ)௕௝ஷ௜ ) ௜       (4.8) 

 

since 𝑌௜௕௧ାଵ = 𝑓ଷ(𝑅௜௞௧ାଵ), and 𝑌௝௕௧ାଵ = 𝑓ସ(𝑅௝௞௧ାଵ), therefore, the term 𝑌௝௕௧ାଵ is a function on the key 

binary term 𝑅௜௄௧ାଵ, 𝑖 = 1, … . . ,𝑁 i.e., 𝑌௜௝௧ାଵ = 𝑓ଵ ቆ𝑓ଶ ൬𝑓ଷ ቀ𝑓ସ(𝑅௜௞௧ାଵ)ቁ൰ቇ. Then the interBBUୌ୓ is 

defined as: 

 𝑖𝑛𝑡𝑒𝑟𝐵𝐵𝑈ுை = ෍෍𝑈𝑀௜𝐷௜௝ (1 − (෍ ෍ (𝑅௜௞௧ାଵ.௞∈ௌைௌ್௕௝ஷ௜ 𝑅௝௞௧ାଵ))) ௜       (4.9) 

where the dot (.) expresses the AND logical operation. Finally, the interBBU handovers KPI 

(𝐾𝑃𝐼௜௡௧௘௥) is defined as: 

 

 𝐾𝑃𝐼௜௡௧௘௥ = ቐ1                                𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝐵𝐵𝑈ுை = 011 + 𝑖𝑛𝑡𝑒𝑟𝐵𝐵𝑈ுை                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (4.10) 
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4.3.2 Intra-BBU handovers KPI 

When users must change from one sector to another one within one BBU, intra-eNodeB 

handovers take place. Let  𝑍௜௝௞௧ାଵbe a binary variable such that  𝑍௜௝௞௧ାଵ = 1 in case sector 𝑘 

contains  𝑅𝑅𝐻௜ and 𝑅𝑅𝐻௝ at t+1 time period (i.e., 𝑅௜௞௧ାଵ = 𝑅௝௞௧ାଵ=1). The intra-BBU handovers 

is specified by using two different binary terms:  𝑍௜௝௧ାଵand 𝑌௜௝௧ାଵ. 𝑍௜௝௧ାଵ = 1 in case 𝑅𝑅𝐻௜ and 𝑅𝑅𝐻௝ are linked to two different sectors at t+1 time period and is defined as 𝑍௜௝௧ାଵ = 1 −∑ 𝑍௜௝௞௧ାଵ௞ . 𝑌௜௝௧ାଵ = 0 if the same BBU is serving 𝑅𝑅𝐻௜ and 𝑅𝑅𝐻௝. Thus, at t+1 time period the 

number of intra-BBU handovers (𝑖𝑛𝑡𝑟𝑎𝐵𝐵𝑈ுை) is represented by: 

 

 𝑖𝑛𝑡𝑟𝑎𝐵𝐵𝑈ுை = ෍෍𝐻௜௝(𝑍௜௝௧ାଵ −௝ஷ௜  𝑌௜௝௧ାଵ) ௜       (4.11) 

 

Since 𝑍௜௝௧ାଵ = 𝑓ହ(𝑍௜௝௞௧ାଵ), thus: 

 

 𝑖𝑛𝑡𝑟𝑎𝐵𝐵𝑈ுை = ෍෍𝜌௜௝𝑈𝑀௜௝ஷ௜ [(1 −෍𝑍௜௝௞௧ାଵ)௦ − (1 −෍𝑌௜௝௕௧ାଵ)௡ ]  ௜       (4.12) 

 

Then knowing that 𝑍௜௝௞௧ାଵ = 𝑓଺(𝑅௜௞௧ାଵ,𝑅௝௞௧ାଵ), intra-BBU handovers can be rewritten as: 

 𝑖𝑛𝑡𝑟𝑎𝐵𝐵𝑈ுை = ෍෍𝑈𝑀௜𝐷௜௝ [(1 −෍(𝑅௜௞௧ାଵ.𝑅௝௞௧ାଵ))௞ − (1௝ஷ௜௜−෍ ෍ (𝑅௜௞௧ାଵ.௞∈ௌைௌ ௕ 𝑅௝௞௧ାଵ))]  
     (4.13) 

 

Since the binary term 𝑍௜௝௧ାଵ depends on the principal binary term 𝑅௜௞௧ାଵ, 𝑖 = 1, 2, … ,𝑁. i.e., (𝑍௜௝௧ାଵ = 𝑓ହ(𝑓଺൫𝑅௜௞௧ାଵ,𝑅௝௞௧ାଵ൯)), then we have: 

 

 𝑖𝑛𝑡𝑟𝑎𝐵𝐵𝑈ுை = ෍෍𝑈𝑀௜𝐷௜௝ [෍ ෍ (𝑅௜௞௧ାଵ.௞∈ௌைௌ ௕௝ஷ௜ 𝑅௝௞௧ାଵ) −෍(𝑅௜௞௧ାଵ.𝑅௝௞௧ାଵ)௞ ] ௜       (4.14) 
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Note that a critical constraint is that only one BBU should serve an RRH at t+1 time period, 

i.e., ∑ 𝑅௜௕௧ାଵ = 1஻௕ୀଵ . Consequently, the KPI of intraBBU handovers is given by: 

 

 

 𝐾𝑃𝐼௜௡௧௥௔ = ቐ1                                       𝑖𝑓 𝑖𝑛𝑡𝑟𝑎𝐵𝐵𝑈ுை = 011 + 𝑖𝑛𝑡𝑟𝑎𝐵𝐵𝑈ுை                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (4.15) 

 

4.3.3 Forced handovers KPI 

When a new RRH-Sector-BBU mapping is implemented to optimize the network performance, 

each RRH can change its sector mapping. When an RRH changes its sector mapping, its users 

need also to follow this change of sector association. Let 𝑉௜௞ be a binary variable with value 𝑉௜௞ = 1 in case 𝑅𝑅𝐻௜  changed its existing sector to a new sector when the mapping is updated 

between time period t and time period t+1 (i.e., 𝑉௜௞ = 1, 𝑖𝑓𝑅௜௞௧ = 0 𝑎𝑛𝑑 𝑅௜௞௧ାଵ = 1). Then, the 

forced handover number is given by: 

 

 𝑓ுை = ෍෍𝑉௜௞ 𝑈𝑀௜௜  ௞       (4.16) 

 

where the binary term 𝑉௜௞ depends on the binary term 𝑅௜௞௧  and 𝑅௜௞௧ାଵ , ∀𝑖 = 1,2, … . . ,𝑁, i.e., (𝑉௜௞ = 𝑓଻(𝑅௜௞௧ ,𝑅௜௞௧ାଵ)). Therefore the 𝑓ுை expression can be rewritten as: 

 

 𝑓ுை = ෍෍(𝑅௜௞௧ + 𝑅௜௞௧ାଵ)𝑈𝑀௜௜  ௞       (4.17) 

 

where the (+) operator is the OR logical operation. Thus, the KPI of the forced handover (𝐾𝑃𝐼௙) is defined as: 
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 𝐾𝑃𝐼௙ = ቐ 1                                𝑖𝑓 𝑓ுை = 011 + 𝑓ுை                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (4.18) 

 

4.3.4 Key Performance Indicator for blocked Users 

Blocked users are the users that are deprived of network services because of the maximum 

capacity when Forced handover blocking occurs when the number of users connected to a 

specific sector exceeds the maximum capacity of that sector due to forced handovers resulting 

from the RRH-Sector-BBU mapping change. The number of forced handover blocked users at 

time period t+1 can be defined by: 

 

 𝐵𝐶 = ෍𝑚𝑎𝑥 ௞ ቎ቌ൭෍𝑈𝑀௜𝑅௜௞௧ାଵ௜ ൱ − 𝐻𝐶௞ቍ , 0቏      (4.19) 

 

where 𝑖 = 1, … . ,𝑁,  𝑘 = 1, … . ,𝐾, 𝑅௜௞௧ାଵ = 1 if 𝑅𝑅𝐻௜ is assigned to sector k, 𝑈𝑀௜ represents 

the number of active users being handled by 𝑅𝑅𝐻௜ and 𝐻𝐶௞ is the sector k maximum capacity. 

The KPI୆େ is assumed to be 1 if there is no forced handover blocked users. Then the KPI for 

Forced handover blocking UEs can be expressed as: 

 

 𝐾𝑃𝐼஻஼ = ൝ 1                      𝑖𝑓 𝐵𝐶 = 011 + 𝐵𝐶                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (4.20) 

 

 

4.4 Key Performance Indicator for Power consumption 

This subsection introduces the essential features required to determine C-RAN power 

consumption. There are two models to calculate the power model in the C-RAN. The first one 
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is the components power model while the second one is the Parameterized and linear power 

model (PM). The components power model is very complex because it has many details which 

might not have a big effect, but the Parameterized and linear power model is simple and 

applicable because it covers important aspects such as transmission bandwidth and the number 

of radio chains. More details regarding the involved factors to calculate the power model in C-

RAN are explained in (Alhumaima et al., 2016).   

4.4.1 Components PM 

In general, the components power model in C-RAN is affected by three main parts and 

described below. 

4.4.1.1 A power model for RRH 

Each RRH in C-RAN consists of antenna arrays and RF transceivers where each one of them 

has its own power amplifier (𝑃௉஺). The power efficiency (𝜂௉஺) of the amplifier is the main 

element to affect the PA power consumption. Then the power consumed by the PA can be 

represented as: 

 

 𝑃௉஺ = 𝑃்௑𝜂௉஺(𝜎௙௘௘ௗ)      (4.21) 

 

where 𝑃்௑ is the PA output power that relies on the bandwidth share (i.e. the real transmitted 

number of symbols) and the antenna output power. 𝜎௙௘௘ௗ  indicates the losses of the feeder. 

Also, each RRH has RF transceiver units that are responsible for modulation and demodulation 

of the signals, AC-DC and DC-ac conversions, and amplification of the gain. Then the RRH 

power consumption can be represented by: 

 

 𝑃ோோு = ෍(𝑃௉஺ + 𝑃ோி)௅
௟ୀଵ       (4.22) 
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where 𝐿 indicates the number of antenna/RF arrays, here we assume that each RRH is equipped 

with one antenna. 

4.4.1.2 BBU power model. 

Various functions are performed by the BBU which comprises of RBs Scheduling, forward 

error correction, filtering, fast Fourier transform (FFT) and OFDM specific processing, 

modulation and demodulation, and functions related to transport link, etc. These components 

can be measured in Giga operation per second (GPOS) and, after that, converted into power 

figures. The estimated power cost of a very large BBU is approximately 40 GOPS per watt (L. 

Liu & Yu, 2017). Then the BBU power can be represented as 

  

 𝑃஻஻௎ = ෍ 𝑃௜,஻஻௎௥௘௙  𝐿௫೔ಽ𝑊෡ ௫೔ೢෝ௜∈ூಳಳ       (4.23) 

 

where 𝑃௜,஻஻௎௥௘௙ in watts indicates the BBU power consumption with reference to the functions of 

the BBU. L is the number of antenna chains associated with RF transceivers with 𝑥௜௅ scaling 

indicator. 𝑊෡  is the total bandwidth share used during the transmission with scaling 

indicator 𝑥௜௪ෝ . The author in (Cunhua et al., 2017) model BBU operations with exact scaling 

components and reference values to calculate BBU power consumption. 

 

4.4.1.3 Optical transceiver power model. 

The C-RAN network architecture has some challenges, and one of these is the front haul 

requires low latency with high bandwidth for transport networks. Many criteria affect the 

operation of the optical transceivers like the conditions of operations, the used technology, and 

the required output power, which consequently influence the consumed power. 
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Mainly the optical transceivers might be divided into two components. The first one is the 

optical transmitter component, where optical carriers are used to modulate the OFDM electrical 

signals by using direct or external modulated lasers. The second one is the receiver component 

that discovers the optical OFDM signals, whether through coherent or direct detection. Then 

the optical transceiver power consumption as introduced in (Wang et al., 2017) can be 

expressed as: 

 

 𝑃்ோ஺ேௌ = ൫𝑃௟௔௦௘௥ + 𝑃ௗ௥௜௩௘௥ + 𝑃ூ/ை൯்௑ + ൫𝑃௉஽ + 𝑃௔௠௣ + 𝑃ூ/ை൯ோ௑      (4.24) 

 

where 𝑃௟௔௦௘௥,𝑃ௗ௥௜௩௘௥,𝑃ூ/ை,𝑃௉஽,𝑎𝑛𝑑 𝑃௔௠௣are the consumed power by direct-modulated laser, 

electronics driving the laser, the electrical input/output interface, photodetector, and the trans-

impedance and limiting amplifiers, respectively. This thesis assumes using of point to point 

transceivers (PtP) instead of point to multipoint since the loss of the PtP is a function of the 

distance and operating wavelength, i.e. the link losses in the PtP case is approximately as low 

as 6dB through a 20km network range (Yuh-Shyan et al., 2018). Therefore, the total consumed 

power in the C-RAN (𝑃஼ோ஺ே) is evaluated by integrating the consumed power of the three main 

components of the network with consumed power through other functions (𝑃௢௧௛௘௥௦) like AC-

DC, DC-AC and cooling: 

 

 𝑃஼ோ஺ே = ෍൫𝑃஻஻௎ + 𝑃்ோ஺ேௌಳ൯ +෍൫𝑃ோோு + 𝑃்ோ஺ேௌೃ൯ + 𝑃௢௧௛௘௥௦      (4.25) 

 

where 𝑃்ோ஺ேௌಳ and 𝑃்ோ஺ேௌೃ exploits the consumed power of PtP transceivers connected at 

each BBU and RRH, respectively. 
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4.4.2 Parameterized and linear PM 
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Figure 4.2 load-dependent power 

 

According to (Alhumaima et al., 2016), if a base station consists of a BBU and  a single RRH, 

the power used by the base station could be estimated as an affine function of the transmitted 

power. Then the consumed power consists of a load-dependent part, which increases linearly 

with the normalized traffic load of RRH n, 𝑥௡;  0 ≤ 𝑥௡ ≤ 1, from zero till the maximum value, 𝑃௡,௠௔௫, and a static load-independent part,  𝑃௡,௦௧௔௧௜௖ . On the other hand, when base station n is 

not transmitting any signals, it is in an idle mode (sleep mode) with minimum power 

consumption (𝑃௡,௦௟௘௘௣). Then, the power consumed by a single BBU, serving a single RRH can 

be defined as:  

 

 𝑃஼(𝑥௡) = ൜𝑃௡,௦௧௔௧௜௖ + 𝑥௡ 𝑃௡,௠௔௫   𝑓𝑜𝑟 0 < 𝑥௡𝑃௡,௦௟௘௘௣            𝑓𝑜𝑟 𝑥௡ = 0       (4.26) 

 

where  𝑥௡ is normalized traffic load in the RRH. Then, the total consumed power in C-RAN is 

equivalent to the power consumed for all active BBUs and RRHs in the network: 



64 

 

 𝑃஼(𝒙) = ⎩⎪⎨
⎪⎧෍(𝑃௡,௦௧௔௧௜௖ + 𝑥௡𝑃௡,௠௔௫௡ )   𝑓𝑜𝑟       𝑛 ∶ 0 < 𝑥௡෍𝑃௡,௦௟௘௘௣௡             𝑓𝑜𝑟      𝑛 ∶ 𝑥௡ = 0       (4.27) 

 

where x is a vector of normalized traffic loads for active RRHs. The fundamental power model 

which presented in equation (4.26) is parameterized to discover the contribution of the different 

parameters. Moreover, Parameters that are supposed to be constant or having negligible effects 

are highlighted as well. The next approximations are introduced: 

• The power consumption of the BBU, as well as the Radio Frequency (RF), are scaling 

linearly with the amount of bandwidth and the numbers of antennas (A). 

 

 𝑃஻஻௎ = 𝐿 ቆ 𝑊෡  𝐵𝑊்ை்஺௅ቇ𝑃஻஻௎௉ெ       (4.28) 

 𝑃ோி = 𝐿 ቆ 𝑊෡  𝐵𝑊்ை்஺௅ቇ𝑃ோி௉ெ 
     (4.29) 

 

Where 𝑃஻஻௎௉ெ  𝑎𝑛𝑑 𝑃ோி௉ெ are power consumption parameterized of BBU and RF, respectively 

• In each RRH antenna unit, there is a power amplifier (PA), where its consumed power 

relies on the maximum transmission power for each antenna unit ( ௉೘ೌೣ௅  ) and its efficiency 

(𝜂௉஺). The feeder losses (𝜎௙௘௘ௗ) between the PA and the antenna can be neglected because 

PAs can be located near the antennas. 

• The loss factors of DC-DC, AC-DC conversions, main supply units (Cho et al.), and 

cooling power consumption for the BBU pool are represented by 𝜎஽஼,௉ைை௅ , 𝜎ெௌ,௉ைை௅ , and 𝜎஼ைை௅,௉ைை௅ . For the RRHs, the factors of loss are interpreted by 𝜎஽஼,ோ and 𝜎ெௌ,ோ. 

Furthermore, the losses of the optical fibre between BBUs and RRHs are approximated by 

a loss factor 𝜎ை௣௧௜௖௔௟. 
• The optical transceivers power consumption scales linearly with the BBUs and RRHs 

number. If a single BBU consumed power that serving an RRH is:  

 



65 

 

 
𝑃஼(𝑥௡) = 𝐿 ൬ 𝑊෡  𝐵𝑊்ை்஺௅൰𝑃஻஻௎௉ெ + 𝑃்ோ஺ேௌಳ(1 − 𝜎஽஼,௉ைை௅)(1 − 𝜎ெௌ,௉ைை௅)(1 − 𝜎஼ைை௅,௉ைை௅)

+ 𝐿 ൬ 𝑊෡  𝐵𝑊்ை்஺௅൰ 𝑃ோி௉ெ + ( 𝑃௠௔௫𝐿. 𝜂௉஺) + 𝑃்ோ஺ேௌೃ(1 − 𝜎஽஼,ோ)(1 − 𝜎ெௌ,ோ)(1 − 𝜎ை௣௧௜௖௔௟)  

     (4.30) 

 

Thus, the last KPI to be considered is the power consumption in C-RAN. As introduced 

previously, the power consumption depends on the load in the network, as well as the number 

of active BBUs needed to accommodate this load. Therefore, it is necessary to run the network 

with efficient power usage without activating more BBUs than needed or without deactivating 

BBUs that consequently leads to increasing the number of blocking events and degrading the 

NP. 

The KPI power consumption in C-RAN can be represented as: 

 

 𝐾𝑃𝐼௉ = ቐ 1                                       𝑖𝑓 𝑃𝐶(𝒙) = 𝑃௦௟௘௘௣11 + 𝑃𝐶(𝒙)                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (4.31) 

 

The 𝐾𝑃𝐼௉ is assumed to be one if the system is operating with minimum possible power 

consumption. 

4.5 Objective function formulation 

For NP maximization in the C-RAN, the whole KPIs presented in the previous sections are 

weighted individually to express the function of the NP. Then the main objective is to optimize 

the NP function (𝐹୒୔) defined by the following equation: 

 

 
𝑀𝑎𝑥 𝐹୒୔ = 𝐾𝑃𝐼஻஼௪భ ∗ 𝐾𝑃𝐼ௌ்஽௪మ ∗ 𝐾𝑃𝐼௜௡௧௘௥ுை௪య ∗ 𝐾𝑃𝐼௜௡௧௥௔ுை௪ర ∗ 𝐾𝑃𝐼ிுை௪ఱ∗ 𝐾𝑃𝐼௉௪ల 

     (4.32) 

 

Subject to: 
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෍ 𝑅௜௞௧ାଵ = 1௄  ∀𝑖 
෍ 𝑅௜௕௧ାଵ = 1஻  ∀𝑖 ෍ 𝐵௎ெ೔,௞ ≥ 𝐵ோ஻௦ௌ௢ோೖ  ∀𝑖      (4.33) 

 

where 𝑤ଵ,𝑤ଶ,𝑤ଷ,𝑤ସ,𝑤ହ and 𝑤଺ express the predefined KPIs priority levels. The first 

constraint indicates that each RRH should be assigned to only one sector at a given time. 

Furthermore, the second constraint specifies that each sector should be linked to one BBU at a 

given time. Finally, the last constraint shows that the number of scheduled RBs for the UEs 

served by a given sector should not exceed the total number of RBs defined by the network to 

that sector. After introducing the definition of the first and second constraints, the size of the 

search space is reduced from  2ே௄ into 𝐾ே. The best RRH-Sector-BBU mapping can be 

identified by searching the whole search space regarding all applicable RRH exhaustively to 

sector association. When the RRHs and sectors number increases, the possible RRH-Sector-

BBU mapping solutions exponentially increase as well. Hence, the execution time of the 

algorithm exponentially increases too. Therefore, several algorithms are introduced in the 

following chapter for solving the RRH-Sector-BBU mapping as an optimization problem. 

 

4.6 Illustrative example  

Figure 4.3 and Table 4.1 shows how the proposed KPIs are calculated. Let us assume 10 RRHs, 

and each RRH is serving a specific number of users represented by the number inside each 

RRH hexagonal cell. Furthermore, let us assume that the maximum capacity of each sector is 

25 users. For the sake of simplicity, let us assume that the KPI for the power equals to 0.01 

and the weights for standard deviation, number of forced handover blocked UEs, number of 

inter handovers, number of intra handovers, number of forced handovers, and power 

consumption are 0.2, 0.4, 0.1, 0.1, 0.1, and 0.1, respectively. Note that the KPI for forced 

handover is one because it depends on the difference between the configuration at time t and 

t+1, and in this scenario, there is no configuration at time t+1. 
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Figure 4.3 illustrative scenario for KPIs calculation 
 

 

Table 4.1 KPIs calculation 𝐾𝑃𝐼 ቎ඨ (30 − 22.5)ଶ + (30 − 22.5)ଶ + (10 − 22.5)ଶ + (20 − 22.5)ଶ4 − 1 ቏ௗୀଵ
ିଵ  

= [1 + 9.5743]ௗୀଵିଵ = 0.09457 𝐾𝑃𝐼஻஼ [1 + (30 - 25) + (30 - 25) + (10 - 25) + (20 - 25)]ௗୀଵିଵ  

=[1 + (5) + (5) + (-5) + (-25)]ௗୀଵିଵ = [1 + 10]ௗୀଵିଵ = 0.0909 
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Table 4.1 KPIs calculation (continued) 𝐾𝑃𝐼௜௡௧௘௥ ൤(1) + 0 + 0 + 5 ∗ 12 + 0 + 5 ∗ 12 + 5 ∗ 13 + 0 + 0 + 5 ∗ 13 + 0 + 0 + 15
∗ 1 + 0 + 15 ∗ 1√3 + 15 ∗ 12 + 0 + 0 + 15 ∗ 1√7 + 0 + 0
+ 10 ∗ 1√3 + 0 + 10 ∗ 1 + 10 ∗ 1√7 + 0 + 0 + 10 ∗ 12 + ⋯൨ௗୀଵିଵ
= [1 + 275.32]ௗୀଵିଵ = 0.003621 𝐾𝑃𝐼௜௡௧௥௔ ቈ(1) + 0 + 5 ∗ (1 − 0) + 0 + 5 ∗ (1 − 0)√3 + 0 + 0 + 5 ∗ (1 − 0)√7 + 0 + 0+ 0 + 15 ∗ (1 − 0) + 0 + 15 ∗ (1 − 0) + 0 + 0+ 15 ∗ (1 − 0)√3 + 0 + 0 + 10 ∗ (1 − 0) + 10 ∗ (1 − 0) + 0
+ 0 + 0 + 0 + 0 + 10 ∗ (1 − 0)√3 + 0 + 0 + 0 + 0 + 0
+ 5 ∗ (1 − 0)2 + 0 + 0 + 0 + 5 ∗ (1 − 0)√7 + ⋯቉ௗୀଵିଵ

 = [1 + 153.32]ௗୀଵିଵ = 0.006522 𝐾𝑃𝐼௙ಹೀ 1 𝐾𝑃𝐼௉ Calculated from subsection 4.5 𝐹୒୔ 0.09457଴.ଶ ∗ 0.0909଴.ସ ∗ 0.0036213଴.ଵ *0.006522଴.ଵ *1 ଴.ଵ ∗ 0.01଴.ଵ= 

0.085 

 

 

4.7 Chapter Summary 

This chapter addresses the issue of inappropriate mapping between the RRH-Sector-BBU that 

can cause load imbalances in the C-RAN. This is because the overloaded Sectors can face 

resource shortage that degrades QoS when UEs try to connect to those Sectors, although there 

are nearby under-loaded Sectors that could serve these UEs. 
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The approach aims also to maximize other network performance metrics, which is done based 

on various KPIs. The proposed method introduces novel KPIs which are the standard deviation 

of the sector loads, number of blocked users, number of handovers, and the power 

consumption. The next chapter introduces the evolutionary optimization algorithms that are 

used to find the optimum RRH-Sector-BBU mapping.





 

  

EVOLUTIONARY ALGORITHMS FOR RRH-SECTOR-BBU MAPPING 

5.1 Introduction 

In this chapter, we presented four selected optimization algorithms for finding the optimal 

RRH-Sector-BBU mappings: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), 

Bee Colony Optimization (BCO) and Cuckoo search (CUCO). All of them belong to the group 

of swarm-based optimization algorithms, defining feature being that they use a population of 

solutions for each iteration, rather than using one. If there is one optimal solution, it is expected 

that the members of the population will converge to it. If more than one local minimum is 

there, the population can capture them and keep them in the final result. All the algorithms 

mentioned above are loosely based on nature’s methods to conduct the search and achieve an 

optimal solution. 

5.2 Bee colony (BCO) 

Bee Colony Optimization algorithm is also a swarm-based technique since it uses several 

points (bees) 𝑁஻௘௘ simultaneously to search for the optimal solution. Each point here 

represents a realization of the RRH-Sector-BBU association vector 𝑅. When the number of 

RRHs is N, each such solution is a point in an N-dimensional space. The algorithm seeks to 

maximize the NP function by finding the optimal location in this N-dimensional space. Here 

we are going to outline the steps that the algorithm takes to perform the optimization. 

 

Step 1: The algorithm generates a random initial population of solutions 𝑅଴(the upper index 

indicates the iteration number; zero for the initial conditions), consisting of 𝑁஻௘௘ (number of 

bees) points, each represented by the N-dimensional vector 𝑅௜. The elements of the set are 𝑅௜଴ = 𝑅௜, where 1 ≤ 𝑖 ≤ N୆ୣୣ. 
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Step 2: NP values are calculated for each point using the supplied fitness function F: 𝑓଴ =𝐹(𝑅଴) and the solution set 𝑅଴ is sorted accordingly to the solution fitness 𝑓௜଴ = 𝐹(𝑅௜ ).  

 

Step 3: Number 𝑁௘௟௜௧௘ of best solutions from 𝑅଴ form the elite set 𝐸଴ of iteration “0”: 𝐸଴௜ =𝑅௜, if 1 ≤ 𝑖 ≤ 𝑁௘௟௜௧௘.  Next, the number 𝑁௦௘௟ form the set of the selected sites 𝑆଴: 𝑆଴௜ = 𝑅௜, 
where 𝑁௘௟௜௧௘ + 1 ≤ 𝑖 ≤ 𝑁௘௟௜௧௘ + 𝑁௦௘௟  . 
 

Step 4: The points which do not belong to either the elite set or the selected site set are 

discarded and reassigned for the local search near the solutions of the elite set and selected site 

set. For the elite set, we pick 𝑅௝௡௘௪(𝐸௜), where 1 ≤ 𝑗 ≤ 𝑛௘௟௜௧௘, 1 ≤ 𝑖 ≤ 𝑁௘௟௜௧௘, and condition 𝑑൫𝐸௜ ,𝑅௝൯ < 𝑑௠௔௫ is held. Here d is the distance between two points 𝑅௜ and 𝑅௝; 𝑑൫𝑅௜ ,𝑅௝൯ is 

defined as the number of non-coinciding vector components. That means for each solution 

from the elite set 𝐸௜, 𝑛௘௟௜௧௘ of random solutions are placed in its vicinity 𝑑 < 𝑑௠௔௫. 

 

Step 5:  Similarly to step 4, 𝑛௦௘௟ of solutions are placed within a certain distance of each 

solution in the selected site set 𝑆଴(here 𝑛௘௟௜௧௘ > 𝑛௦௘௟).  
 

Step 6: NP is calculated for each newly assigned point of 𝑅௝௡௘௪(𝐸௜) and 𝑅௝௡௘௪(𝑆௜): 𝑓 ௡௘௪(𝐸௜) =𝐹 ቀ𝑅௝௡௘௪(𝐸௜)ቁ and 𝑓 ௡௘௪(𝑆௜) = 𝐹 ቀ𝑅௝௡௘௪(𝑆௜)ቁ respectively. 

 

Step 7: For each 𝐸௜ and 𝑆௜, one best solution from the set 𝑅௝௡௘௪(𝐸௜), 𝑅௝௡௘௪(𝑆௜) respectively is 

selected. For all j values:  

 

 𝐸௜ = ቊ𝑅௝௡௘௪(𝐸௜)           if  𝐹(𝐸௜) < 𝐹(𝑅௝௡௘௪(𝐸௜))𝐸௜                        if 𝐹(𝐸௜) > 𝐹(𝑅௝௡௘௪(𝐸௜))       (5.1) 

 

The same goes for all 𝑆௜: 
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 𝑆௜ = ቊ𝑅௝௡௘௪(𝑆௜)           if  𝐹(𝑆௜) < 𝐹(𝑅௝௡௘௪(𝑆௜))𝑆௜                       if 𝐹(𝑆௜) > 𝐹(𝑅௝௡௘௪(𝑆௜))       (5.2) 

 

Step 8: 𝑁௘௟௜௧௘ of the best solutions form the final sets 𝐸௢and 𝑆௢are assigned to the elite set 𝐸଴. 

 

Step 9: The solutions that don’t belong to 𝐸଴ are randomly assigned, and, together with the 𝐸଴ 

set they form the population of solutions for the next iteration 𝑅ଵ.  

 

The procedure is repeated until the desired result is reached. As we can see, the algorithm 

combines global search, when new random RRH-Sector-BBU mappings are generated with 

subsequent local search. The local search takes place when the best mappings are mutated, 

assigning only a few RRHs to different sectors of the BBUs, thus placing the solution in the 

vicinity of the elite and selected solutions. 

5.3 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) also uses a set of particles called ‘swarm’ to engage 

optimization problems. Similarly to BCO, it performs both local and global optimization; 

however, with a different approach. In PSO, each particle ‘remembers’ its best-encountered 

position RPbest, and also the global best position encountered by the swarm RGbest. Apart from 

its position, the particle also has velocity, consisting of three components. Two components 

point to RGbest and RGbest from the current particle position, respectively. Their amplitudes are 

random so that the particle can be accelerated either more towards RPbest, or RGbest.  The third 

velocity component retains the direction of the particle velocity from the previous iteration.  

 

The search space of the C-RAN optimization is 𝑁 × K, where  𝑁 is the number of RRHs, and 𝐾 is the number of sectors available. The solution 𝑅௜ is a realization of the RRH-Sector-BBU 

association vector and has 𝑁 components. 

 

Here we will outline the steps that the algorithm takes to initialize and perform the 

optimization. 
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Step 1: The algorithm generates a random initial population of solutions 𝑅଴(the upper index 

indicates the iteration number; zero for the initial conditions), consisting of 𝑁௦௪௔௥௠ (swarm 

size) points, each represented by the N-dimensional vector 𝑅௜. The elements of the set are 𝑅௜଴ =𝑅௜, where 1 ≤ 𝑖 ≤ 𝑁௦௪௔௥௠. Correspondingly, for each particle i a random velocity 𝑉௜଴ is 

assigned, comprising the set of velocities 𝑉଴. Similarly to 𝑅௜଴, 𝑉௜଴ is the N-dimensional vector. 

 

Step 2: NP values are calculated for each point using the supplied fitness function F: 𝑓଴ =𝐹(𝑅଴) and the solution set 𝑅଴ is sorted accordingly to the solution fitness 𝑓௜଴ = 𝐹(𝑅௜ ).  

Each particle’s best position is set equal to the particle position 𝑥௉௕௘௦௧,௜଴ = 𝑅௜ on the 0-th 

iteration. In all following iterations the best position of a particle is: 

 

 𝑅௉௕௘௦௧,௜ூ = ቊ𝑅௉௕௘௦௧,௜ூିଵ       if  𝐹(𝑅௜ூ) < 𝐹൫𝑥௉௕௘௦௧,௜ூିଵ ൯𝑅௜ூ                if 𝐹(𝑅௜ூ) > 𝐹൫𝑥௉௕௘௦௧,௜ூିଵ ൯       (5.3) 

 

Step 3: The global best position RGbest is updated with the 𝑅௜ಾಲ೉଴  corresponding to the maximal 𝑓௜ಾಲ೉଴  value on the 0-th iteration. On the next iterations: 

 

 𝑅ீ௕௘௦௧ூ = ቊ𝑅ீ௕௘௦௧ூିଵ       if  𝐹൫𝑅௜ಾಲ೉ூ ൯ < 𝐹(𝑥௉௕௘௦௧ூିଵ )𝑅௜ಾಲ೉ூ       if 𝐹൫𝑅௜ಾಲ೉ூ ൯ > 𝐹(𝑥௉௕௘௦௧ூିଵ )       (5.4) 

 

Step 4: Velocity is updated according to: 

 

 𝑉௜ଵ = 𝛿𝑉௜଴ + 𝜏ଵρଵ൫𝑅௉௕௘௦௧,௜଴ − 𝑅௜଴൯+𝜏ଶρଶ(𝑅ீ௕௘௦௧଴ − 𝑅௜଴)      (5.5) 

      
where 𝜏ଵ, 𝜏ଶ and 𝛿 are free parameters, and 𝜌ଵand 𝜌ଶ are random numbers in the interval [0..1]. 

The first term retains particle velocity from the previous iteration, the second term represents 

acceleration towards the best position of the particle, and the third represents the acceleration 

towards the global maximum. As the acceleration is proportional to the particle distance from 
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the respective best positions, the particle essentially experiences an elastic force, drawing it 

towards the best positions. 

 

Step 5: Particle position is updated according to its velocity:  

 

 𝑅௜ଵ = 𝑅௜଴ + 𝑉௜ଵ      (5.6) 

       

Steps 2-5 are repeated until the desired NP function value is reached. 

5.4 Genetic algorithm (GA) 

The genetic algorithm also uses a set of solutions simultaneously to perform optimization. Its 

idea is based on the rules of genetic heritage, mutation and natural selection. Due to the discrete 

nature of the genome, the GA is useful for discrete-valued optimization problems.  

Let us assume that an N-dimensional vector represents each solution. In each new iteration, 

several vectors from the set, corresponding to the best cost function estimates, are retained as 

an elite group. Part of the vectors are the result of the crossover of the previous generation, i.e., 

each vector of the new generation contains parts of the vectors from the previous generation. 

Finally, a fraction of vectors is mutated, randomly changing their components. 

 

In our case each solution 𝑅௜ is a realization of a RRH-Sector-BBU association vector and has 𝑁 components. Each component is a natural number spanning the number of sectors available 𝐾. We will outline the steps that the algorithm takes to initialize and perform the optimization. 

 

Step 1: The algorithm generates the initial population of solutions 𝑅଴(the upper index indicates 

the iteration number; zero for the initial conditions), consisting of 𝑁௣௢௣ elements 𝑅௜଴ = 𝑅௜, 
where 1 ≤ 𝑖 ≤ 𝑁௣௢௣. 

 

Step 2: NP values are calculated for each point using the supplied fitness function F: 𝑓଴ =𝐹(𝑅଴) and the solution set 𝑅଴ is sorted accordingly to the solution fitness 𝑓௜଴ = 𝐹(𝑅௜ ).  
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Step 3: Number 𝑁ୣ୪୧୲ୣ of best solutions from 𝑅଴ form the elite set 𝐸ଵ of iteration “1”: 𝐸௜ଵ =𝑅௜, if 1 ≤ 𝑖 ≤ 𝑁ୣ୪୧୲ୣ, and, as such, they are assigned to the solution set of the next iteration 𝑅ଵ 

without modification.  

 

Step 4: A selected fraction 𝛾 of the solution set 𝑅ଵ is generated by crossovers of the vectors 

from the solution set 𝑅଴. A vector for the new iteration is generated by concatenating parts of 

the vectors from the previous iteration. 

 

Step 5: The rest of the vectors of the solution set 𝑅ଵ are generating by applying ‘mutations,’ 

i.e., adding variables with random distribution to the components of vectors from the set 𝑅଴. 

Usually, Gaussian distribution random variables are added; the standard deviation is usually 

changed in the process of optimization. 

 

Steps 2-5 are repeated until the desired result is reached. 
 

5.5 Cuckoo optimization algorithm (CUCO) 

The cuckoo optimization algorithm is another type of nature-based optimization strategies. It 

attempts to mimic the behaviour of cuckoo birds, also known as brood parasites. 

Cuckoos lay their eggs into the nests of other birds and thus minimize their effort in raising 

their offspring. Here we will list the main steps of the cuckoo optimization. 

We start by introducing two sets of R-vectors, the positions of the cuckoo birds and the 

positions of their eggs, and for i-th iteration denote them 𝑅஼௜  and 𝑅ா௜  respectively. 

 

Step 1: The initial distribution of the cuckoo positions 𝑅஼଴ is generated randomly, it contains 𝑁஼ை elements. 

 

Step 2: The number of eggs 𝑛௝ா௚௚ for each cuckoo 𝑗 is generated randomly from a uniform 

distribution, allowed range is from 𝑛௠௜௡ா௚௚ = 5 to 𝑛௠௔௫ா௚௚ = 20 eggs per cuckoo. 
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Step 3: Each cuckoo 𝑗 (𝑗 = 1. . .𝑁஼ை) lays eggs within a certain radius (egg-laying radius 

ELR). The radius depends on the number of eggs produced 𝑛௝:  
 

 𝐸𝐿𝑅௝ = 𝛼 𝑛௝𝑛௠௔௫ (𝑢 − 𝑙)      (5.7) 

 

where 𝑢 and 𝑙 are upper and lower bounds of the parameter space, and 𝛼 determines the radius 

scaling. We define the distance between two R-vectors as a number of different components 

between them. 

 

Step 4: For each cuckoo 𝑗 a number 𝑛௝ா௚௚ solutions are randomly placed within its 𝐸𝐿𝑅௝; they 

comprise the set 𝑅ா௜ . 

 

Step 5: NP values are calculated for each solution of the set 𝑅ா௜  by use of the supplied fitness 

function F: 𝑓௜ = 𝐹(𝑅ா௜ ), and the solution set 𝑅ா௜  is sorted accordingly to the solution fitness 𝑓௜଴ = 𝐹൫𝑅ா௜ ൯.  
 

Step 6: To maintain the number of solutions stable, 𝑁஼ை first solutions of the sorted set 𝑅ா௜  are 

retained, and the rest are discarded. 

 

Step 7: The points of the updated set 𝑅ா௜  are clustered into 3 clusters 𝐶𝑙 using a k-means 

algorithm according to the distance. 

 

Step 8: The average fitness values of the solutions of each cluster 𝐶𝑙 are evaluated: 

 

 𝑓஼௟തതതത = 1𝑛஼௟෍𝑓௜⊂஼௟௜       (5.8) 

 

where 𝑛஼௟  is the total number of cluster elements. The cluster with the highest fitness value is 

selected as the best. The centroid of the best cluster 𝑐஻௘௦௧ is established. 
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Step 9: For all solutions 𝑅௜ which do not belong to the best cluster, the distance 𝑑௜ to the 

centroid 𝑐஻௘௦௧ is determined accordingly to the chosen distance metric. 

 

Step 10: The migration vector 𝑀𝑉௜ is determined by multiplying respective 𝑑௜ with a randomly 

generated 𝜆 ⊂ 0. . .1 to randomize the migration distance, and by randomizing the angle of 

migration. The angle 𝜔 between 𝜆𝑑௜ and 𝑀𝑉௜ is restricted to గ଺. The migration vector is added 

to the respective position of the cuckoo, thus the starting population of the next iteration 𝑅஼ଵ is 

determined. 

 

The steps 2-10 are repeated until the desired outcome is reached or the maximum number of 

repetitions takes place. 

 

5.6 Chapter Summary  

In this chapter, we presented four evolutionary algorithms: Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), Bee Colony Optimization (BCO) and Cuckoo search 

(CUCO). All of them belong to the group of swarm-based optimization algorithms, and they 

are used to find the optimum RRH-Sector-BBU mapping to balance the load across the 

network. All the algorithms are explained by steps to show how they can search for the 

optimum solution. The next chapter presents the performance evaluation of the models 

proposed in this thesis. The first part presents and analysis the RRH-Sector selection results, 

while the second part presents and analysis the RRH-Sector-BBU load balancing results.



 

 

  

PERFORMANCE EVALUATION OF THE PROPOSED MODELS 

6.1 Introduction 

The main contributions in our work are to overcome the high complexity limitation of the 

previous works and develop the RRH-Sector selection MDP based model which considers the 

user and operator utilities together that is implementable in real systems. And, to present power 

efficient load balancing through dynamic RRH-Sector-BBU mapping. In this chapter, we 

introduce how we reach these contributions by firstly presenting the tested C-RAN network 

scenarios used in the simulations. Then, we compare the RRH-Sector selection models' 

performance in terms of operator’s reward, users’ average data rate, and users’ connection 

demands blocking probability. The comparison is between the MDP based model with reward 

penalty (MDP-P), the MDP based model without the penalty (MDP-N), and the benchmark 

RSS model. Then we compare solutions for the RRH-Sector-BBU mapping optimization 

obtained by the evolutionary algorithms (BCO, CUCO, GA, and PSO) with the optimal 

solution obtained by exhaustive search (Ahmed et al.). The comparison includes performance 

sensitivity to the weights associated with the considered KPIs: load standard deviation, forced 

handover blocked users, handovers, and BBU power consumption. 

6.2 Tested scenarios 

The network parameters used in the simulated scenarios are presented in Table 6.1. The 

network is composed of 37 RRHs, where each RRH is serving a group of UEs.  The user 

locations are generated independently for each connection and the connection arrivals form the 

Poisson process while the holding times are exponentially distributed. The 37 RRHS are 

grouped in 9 sectors, which are served by 3 BBUs. In general, C-RAN could operate with 1.5, 

5, 10, 15, or 20 MHZ bandwidth. Here we assume that the considered C-RAN operates with 
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20 MHZ bandwidth, divided into 100 RBs according to the standard where each UE is going 

to get a minimum of 4 RBs when the sector reaches its maximum capacity. 

Assume the hexagonal cell layouts for ease of result analysis and presentation, as shown in 

Figure 6.9 Initial mapping at time period t and mapping solutions at t+1. Table 6.2 shows the 

selected user data connection parameters.  

 

Table 6.1 Network parameters 

Parameters Values 

Number of RRHs   37 

Number of Sectors 9 

Number of BBUs 3 

System bandwidth 20 MHz 

Transmission power  36 dBm 

Scheduler   FD-RR 

Antenna mode  Isotropic 

Inter-site distance (ISD)  500m 

Transmission scheme SISO 𝑐ோ஻ீ 3  

Fading    Standard deviation 4 dB, log-normal 

Noise spectral density per Hz -174dBm 

 

 

Table 6.2 User data parameters 

Parameter Value 

Packet request interval 5ms 

Packet length 536 Bytes 

Data size 2680 Bytes per request 

 

The load offered to a sector k as defined earlier is:  
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 𝐴௞ = ෍𝜆௝𝜇௝௝∈௃       (6.1) 

where 𝜆௝ is the connection demand arrival rate of class j and 𝜇௝ is the service rate of class j, 

where 𝑗 ∈ 𝐽. Note that each sector has the same maximum capacity. Moreover, the sector 

nominal load (𝐴መ௞) is defined as the load which gives QoS with approximately 2% of blocking 

probability. Then, the normalized sector load (𝜚௞) is defined as the ratio between the offered 

load to a sector (𝐴௞) to the nominal sector load (𝐴መ௞): 

 

 𝜚௞ =  𝐴௞𝐴መ௞      (6.2) 

 

Thus, the normalized network load 𝜚 could be defined as: 

 𝜚 =  ∑ 𝐴௞௞∑ 𝐴መ௞௞       (6.3) 

 

The user utility calculation for the selected criteria is based on parameter values presented in 

Table 6.3 that indicates the minimum, mean, and maximum values demanded by the user and 

the associated weights for each criterion. The calculations of criteria values offered by the 

sectors are based on models presented in subsection 3.6. Then, the calculation of the utility for 

each criterion uses values from Table 6.3 and equation (3.9) from subsection 3.3. To assign the 

weights to each criterion, assume the following order of decreasing criteria importance: data 

rate, RSS, and the Service cost for the user. Also, to avoid neglecting some criteria, assume 

that the weight for any criterion must be below 0.5. The resulted constraints are as follows: 

 

 

𝑤ௗ௥ + 𝑤ோௌௌ + 𝑤௖௦ = 1 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑤ௗ௥ > 𝑤ோௌௌ > 𝑤௖௦ 𝑤௜ < 0.5,𝑤௜ ∈ ሼ𝑤ௗ௥ ,𝑤ோௌௌ,𝑤௖௦ሽ      (6.4) 
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where 𝑤ௗ௥ ,𝑤ோௌௌ 𝑎𝑛𝑑 𝑤௖௦ are the weights for data rate, RSS, and Service cost for the user, 

respectively. 

 

Table 6.3 User requested criteria values and weights 

Criterion Requested values from user: min, mean, max/weight 

 Class 1 user Class 2 user 

Data rate (Mbps) 2, 3, 4 / 0.4 0.512, 1, 2 /0.5 

RSS (dBm) -80, -70, -60/0.35 -100, -95, -90/ 0.3 

Service cost for 

the user 
0, 3, 6/ 0.25 0, 2, 4 / 0.2 

 

For the MDP-P model, the chosen values of  𝑘෠, 𝑘෠ଵ, 𝑘෠ଶ, 𝒯ଵ and 𝒯ଶ parameters for the reward 

penalty calculation are listed in Table 6.4. The values of arrival, service, and reward rates are 

listed in Table 6.5. Note that the parameters for sectors in Table 6.5 are used for MDP model 

verification, where initially the sectors have the same coverage area which means that each 

sector consists of the same number of RRHs. 

 

Table 6.4 Constant values for utility calculation 

Constant Value Description 𝑘෠ 0.6 Reward coefficient for zero utility. 𝑘෠ଵ 0.5 Reward coefficient for tolerance zone. 𝑘෠ଶ 0.2 Reward coefficient for satisfaction zone. 𝒯ଵ 0.5 Utility threshold for tolerance zone. 𝒯ଶ 0.8 Utility threshold for satisfaction zone. 

 



83 

 

Table 6.5 Traffic parameters for sectors 

Parameters Values 

Sector capacity 250 

Arrival rate for class 1 user 𝜆ଵ 16 to 285 

Service rate for class 1 user 𝜇ଵ  2 

Reward rate for class 1 user 𝑟ଵ  7 

Arrival rate for class 2 user 𝜆ଶ 130 to 900 

Service rate for class 2 user 𝜇ଶ 5 

Reward rate for class 2 user 𝑟ଶ 5 

Nominal load 240 

 

6.3 Performance analysis of the RRH-sector selection algorithm 

Figure 6.1 presents the network operator average reward as a function of the network load. The 

average reward of MDP based model with penalty can be represented in two ways. The first 

one is the average reward which is achieved only from the reward parameters (that can be 

interpreted as the revenue) of the connections and indicated as MDP-P(r). And the second one 

is the average reward which presents the reward from the connection reduced by the penalty 

and indicates as MDP-P. In general, the reward parameter can be interpreted as a control 

parameter or as a monetary revenue. However, the average reward from the MDP-P model can 

be interpreted only as a reward and not revenue since the penalty does not have revenue 

meaning in this case and may be treated as a node selection optimization parameter. The 

operator reward is the same for all the models when the network is underloaded with 𝜚 = 0.14, 

since the network has sufficient resources to accept the connections regardless of the different 

selection algorithms. MDP-P(r) gives the  highest average operator reward (that can be 

interpreted as the revenue) compared to the other algorithms. Morover, the operator reward 

increases when using MDP-P instead of RSS for each network load value. Note that the MDP-

P reward decreases in the overload conditions (i.e., network load exceeds 1), this is caused by 

the degradation of QoS parameters that increases the penalty applied to the reward rate. On the 
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other hand the reward for the MDP-N model (that can be interpreted as the revenue) keeps 

increasing with the network load increase.  

     

 
Figure 6.1 Operator revenue vs. Network load 

 

The blocking probability is an important metric for communication networks since its high 

values can lead to user frustration. Morover, if the network blocks less connections, that means 

it is going to get more rewards. We estimate the blocking probability as the ratio of the number 

of rejected connection demands to the total number of demands. Figure 6.2 shows the estimated 

blocking probabilities as a function of the network load level. We can notice that the blocking 

probability increases slowly with the network load until the network load reaches values 

around 1, after which the increase becomes more significant. Both the MDP-P and MDP-N 

models have lower blocking probabilities than the RSS since the RSS model does not consider 

the sector loadings and depends only on the users' distances from the RRHs. Moreover, the 

MDP-P model provides smaller blocking probabilities compared to the MDP-N model. This is 

because the MDP-P algorithm tends to avoid already crowded sectors by considering the 
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penalty, while in the case of the MDP-N, the sector's choice is related to the average reward 

only. In addition, due to the MDP-P capability of getting the lowest blocking probability, it 

obtains the highest rewards compared to the MDP-N and RSS as shown in Figure 6.1. 

 

 
Figure 6.2 Users’ blocking probability vs. Network load 

 

InFigure 6.3, the average users’ data rate vs. network load is shown. Since the data rate depends 

on the assigned number of RBs by the scheduler, therefore UE might obtain a different number 

of RBs depending on the number  of connected UEs at a certain time. Thus, each UE is going 

to get a minimum of 4 RBs when the sector reaches its maximum capacity otherwise it could 

get more RBs. Here, the results indicate that when the network load increases, the average 

users’ data rate decreases due to the network capacity limit and sharing the same amount of 

resources among more UEs. While the average users’ data rate for the MDP-P, MDP-N, and 

RSS have the same value for the low load,  for larger loads the MDP-P and MDP-N models 

provide larger average user’ data rates when compared to the RSS model. This is because the 

selection in the RSS model depends on the users' distances from the RRHs. Hence, the UEs 
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are more likely to chose overloaded sectors that can provide fewer resources per UE.  

Furthermore, the MDP-P model provides higher users average data rate compared to the MDP-

N. This is beacuse the MDP-P model considers the  data rate in the user reward penalty as well 

as the average reward of the operator,  while the MDP-N cares only about maximizing the 

average reward of the operator.  

 

 

 
Figure 6.3 average users’ data rate vs. network load 

 

6.4 Performance analysis of the RRH-Sector-BBU allocation low load scenario  

In this section, the performance of the proposed solutions for mapping between BBUs, RRHs, 

and Sectors, that balances the load and improves the NP at time period t+1 under a given 

network condition at time period t, is analyzed. In the first part of this section, we assume that 

network load 𝜚 = 0.4  and the weight for the forced handover blocking KPI is 0.5 and 0.1 for 
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each of the remaining KPIs. Other KPI weight value combinations are analyzed in the second 

part of this section. 

We tested the BCO, PSO, CUCO, and GA algorithms for 20 scenarios with different initial 

RRH-Sector-BBU mappings. The solutions obtained from the evolutionary algorithms are also 

compared with optimal values obtained by exhaustive search (Ahmed et al.). 

Figure 6.4 shows the NP function values (averages over 20 scenarios) as a function of the 

iteration number and the NP function value from the optimal EX solution. PSO, GA, BCO, 

and CUCO obtained 0.754, 0.754, 0.756, and 0.757, respectively, while the optimum value 

obtained from the optimal EX solution is 0.7574. The analysis of individual scenarios show 

that the optimum solution is reached by each evolutionary algorithm 18 times out of 20 

scenarios. Note that the not optimal solutions can be obtained for different set of scenarios for 

each of the evolutionary algorithms. 

 

 

Figure 6.4 Average NP vs. Iterations for 37 RRH 
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Figure 6.5 represents the average number of forced handover blocked users over the 20 

scenarios as a function of the iteration number. Note that all the evolutionary algorithms 

succeeded in reaching zero forced handover blocked users, as is the case in EX, in all the 20 

scenarios. 

 

 

Figure 6.5 Average BC for 37 RRH 
 

Figure 6.6 represents the average number of intra handovers as a function of the iteration 

number. BCO achieves the smallest value of average number of intra handovers equals to 3111. 

GA and PSO reach 3357 and 3445, respectively and CUCO obtains 3482, which is close to the 

average optimum solution provided by the EX that equals 3650. Note that the BCO, GA, and 

PSO algorithms provide a smaller number of average intra handovers compared to the EX; 

however, the KPIs of EX and CUCO indicate better values of the average NP function. 
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Figure 6.6 Average number of intra-handovers for 37 RRH 
 

Figure 6.7 shows the average number of inter handovers as a function of the iteration number. 

CUCO achieves the smallest number of average inter handovers equals to 6441. Both GA and 

PSO reach 6674, and BCO obtains 6653. None of the evolutionary algorithms succeed to 

achieve the optimum average number of inter handovers provided by EX that equals to 6119. 
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Figure 6.7 Average number of inter-handovers for 37 RRH 
 

Figure 6.8 represents the average number of forced handovers as a function of the iteration 

number. CUCO achieves the smallest average number of forced handovers equal to 488 which 

is close to the average optimum solution provided by the EX that equals to 463, while BCO 

and PSO reach 520, and GA obtains 606. 
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Figure 6.8 Average number of forced handovers for 37 RRH 
 

Note that the difference between the average solutions numbers of the EX and the evolutionary 

algorithms presented in Figure 6.4Figure 6.8 comes from only 2 different scenarios out of the 

20 scenarios for each evolutionary algorithm. 

To give a better illustration and more details of the solutions provided by the BCO, PSO, 

CUCO, and GA algorithms, Figure 6.9 illustrates the solution topologies obtained by the EX 

and evolutionary algorithms in one selected scenario from the 20 scenarios. The selected 

scenario is the one that gives the maximum NP function value obtained by the EX out of the 

20 scenarios. Figure 6.9 shows that in this scenario CUCO and BCO obtained the optimal 

RRH-Sector-BBU mapping, as given by EX, while the GA and PSO algorithms obtained 

suboptimal solutions. These GA and PSO results correspond to one of the two scenarios, out 

of the 20 scenarios, in which they failed to provide the optimum solution. Note that, some 

sectors are not fully continuous because as mentioned earlier the assigned weight for this case 

is 0.5 for the forced handover blocking KPI and 0.1 for each of the remaining KPIs. Thus, the 

evolutionary algorithms give the priority to optimise the forced handover blocking which in 
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return maximizes the NP function value. It should be noted that some other combinations of 

KPIs give a continuous sectors when the inter and intra handovers are assigned very high 

weights. Table 6.6 shows the performance metric values obtained for the selected scenario. 

The CUCO and BCO algorithms maximized the NP function as did the EX.  PSO and GA 

succeed in reaching near optimum value, which constitutes approximately 98% of the optimum 

solution. Also note that the PSO and GA might reach the optimum solution in this selected run 

if we increase the population and swarm size (Srinivas et al., 1994; Y. Zhang et al., 2015). 

Note that, both PSO and GA are the first and second to converge, but they did not reach the 

optimum solution. On the other hand, BCO is the fastest one to converge and reach the 

optimum solution, while the CUCO search took more time to converge to the optimum 

solution.  

 

Table 6.6 Computational results for a selected scenario out of the 20 scenarios (37 RRH) 

KPIs 
vs. 

algo. 

NP 
Function 

value 

Load 
standard 
deviation 

Number 
of 

active 
BBUs 

Number 
of forced 
handover 
blocked 

users 

Number 
of Inter 

handovers 
 

Number 
of Intra 

handovers 

Number 
of Forced 
handovers 

Initial 0.109 70.1536 3 30 6119 3650 463 

PSO 0.787 2.8868 2 0 6908 3535 560 

GA 0.784 4.1833 2 0 6995 3757 505 

BCO 0.799 2.2361 2 0 6895 2810 505 

CUCO 0.799 2.2361 2 0 6895 2810 505 

EX 0.799 2.2361 2 0 6895 2810 505 

 
 

 



93 

 

Table 6.7 Convergence results for a selected scenario out of the 20 scenarios (37 RRH) 

KPIs vs. algo. Convergence (iterations) Convergence (time in CPU 
sec.) 

Initial NA NA 

PSO 754 25 

GA 758 28 

BCO 768 35 

CUCO 1525 43 

EX 9ଷ଻ 43200 

 

 

 

 

 

 

 

 

 

 

 



94 

 

  

 

 

 

 

 
Figure 6.9 Initial mapping at time period t and mapping solutions at t+1 

 

Figure 6.10 shows the load distribution among the sectors for the selected scenario. The load 

is fairly shared among the active sectors, reflecting the minimization of the load standard 

deviation by all the evolutionary algorithms compared to the initial mapping. The CUCO and 

BCO reach the optimum standard deviation obtained by the EX whereas the PSO provides 

standard deviation close to the optimum. Note that PSO is not allocating to sector 8 at all while 

allocating more UEs to the other sectors. On the other hand, the GA provides standard 

deviation better than the initial mapping but not close to the optimum obtained by the EX. 

Consequently, more UEs could be admitted in different sectors because the standard deviation 
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has been decreased by all the evolutionary algorithms.  Figure 6.11 shows the BBU load for 

the optimized RRH-Sector-BBU mappings for the selected scenario. Note that the number of 

active BBUs required to support the current load of the network has been reduced to 2 (from 

3) and that can save a considerable amount of power.  

 

 

Figure 6.10 Sectors load for 37 RRH 
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Figure 6.11 BBUs load for 37 RRH 
 

Figure 6.12 shows the BBUs’ utilization rates for each BBU for the selected scenario. BBU 2 

is switched off by all the evolutionary algorithms in contrast to the initial configuration that 

uses three BBUs to operate the network. Moreover, the BBU utilization rate of the operating 

BBU 1, and BBU 3 for the GA, BCO, and CUCO reaches the optimum value obtained by the 

EX solution. On the other hand, the PSO BBU utilization rate of the operating BBU 1 is higher 

than the solution obtained by the EX; however, it gives smaller BBU utilization rate for the 

operating BBU 3. 
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Figure 6.12 BBU resource utilization rate 
 

Figure 6.13 shows the total power consumption comparison of all algorithms and the initial 

configuration for the selected scenario. Note that the total power consumption of the 

evolutionary algorithms (3000W) is reduced by 40% compared to the initial configuration 

(5000W). 
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Figure 6.13 Total power consumption (W) 
 

6.5 KPI scenario for weight sensitivity analysis 

The previous results are calculated when the weight for forced handover blocking KPI is 0.5 

and 0.1 for all remaining KPIs: the load standard deviation, power, forced handover, inter-

handover, and intra-handover. In Table 6.8, we present the NP metrics sensitivity to changes 

in the KPIs' weight values. In particular, in each considered KPI scenario we set the weight of 

a specific KPI to 0.5 to dominate the other KPIs which are assigned weight of 0.1 each.  

Table 6.8 shows the values of metrics related to each KPI and the NP function value for each 

KPI scenario obtained by the EX algorithm. When the BC weight is dominant, the number of 

forced handover blocked users and the standard deviation are minimized. In addition, the 

power consumption is minimized, which indicates that the number of operating BBUs equals 

to 2 instead of 3. However, there are large number of inter, intra and forced handovers because 

they are assigned low weights. On the other hand, the same result for the NP function value is 

reached in each of the following cases when one of the standard deviation, the inter handover, 
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intra handover, or power consumption has a dominant weight. This is because the EX solution 

favours increasing the number of forced handover blocked users and the number of forced 

handovers but it minimizes the other KPIs which in return gives the maximum NP function 

value. Finally, in case the forced handovers haves the dominant weight, the KPI of the number 

of forced handovers is minimized to 0. This is because the algorithms at time t+1 aim to keep 

the mapping of the RRH-Sector-BBU as the initial configuration at time t without changing it. 

Figure 6.14 demonstrate the NP function values obtain by all the evolutionary algorithms for 

each KPI scenario. The NP function value obtain by all the evolutionary algorithms is equal to 

the optimum value when one of the following KPIs which are; the standard deviation, the inter 

handover, intra handover, or power consumption has a dominant weight. Moreover, when the 

BC weight is dominant, the NP function values obtain by all the evolutionary algorithms are 

found to be equal. Furthermore, in case the forced handover has the dominant weight, the NP 

function values obtain by the CUCO and the BCO are equal to the optimum value. On the other 

hand, the PSO and GA obtain near optimum values. 

 

 

Figure 6.14 NP values for different weights combinations of the KPIs 
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In summary, the presented numerical results show that each evolutionary algorithm reaches 

the optimum solution in 18 out of 20 different initial mappings. In all the runs, the evolutionary 

algorithms succeeded to minimize the number of forced handover blocked users to 0 similar 

to the EX because it has the highest weight. Furthermore, the evolutionary algorithms give 

near optimum values for the other KPI matric (i.e., average number of intra handovers, average 

number of inter handovers, average number of forced handovers). Note that the CUCO, BCO, 

PSO gives closer values to the EX compared to the GA. This is due to that in PSO, the particles 

(RRH-Sector-BBU mappings) behaves as semiautonomous agents which are aware of each 

other’s position status and decides to change their states (at each iteration) with respect to the 

best-observed particle position in the population. Similarly, the BCO uses a number of points 

(bees) simultaneously to search for the optimal solution. Each point represents a realization of 

the RRH-Sector-BBU mapping vector. On the other side, the chromosomes (RRH-Sector-BBU 

allocations) in GA are not agent-like and lacks the ability to sense the neighboring 

environment. Moreover, the results in the selected scenario indicate that both CUCO and BCO 

succeed to obtain the optimum NP function value while the PSO and GA reach 98% of the 

optimal value. Furthermore, the BCO is the fastest one to converge and reach the optimum 

solution, while the CUCO search took more time to converge to the optimum solution achieved 

by the EX. On the other hand, both PSO and GA converged quickly, but they did not reach the 

optimum solution. Finally, the results show that the KPIs are quite sensitive to the related 

weights so their choice should be considered carefully by the network operator according to 

its preferences. 
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Table 6.8 Optimum KPIs values for different combinations of KPIs' weight for the KPI 
scenario (37 RRH) 

Weight 
0.5 
for 

KPI: 

Number 
of BC 

Standard 
deviation 

Number 
Inter 
HO 

Number 
Intra 
HO 

Number 
Forced 

HO 

Power 
in (w) 

Optimum 
NP 

function 
value 

BC 0 0 6745 3194 555 3000 0.7788 

STD 645 0 0 0 615 3000 0.8003 

interHO 645 0 0 0 615 3000 0.8003 

intraHO 645 0 0 0 615 3000 0.8003 

FHO 30 69.8 8000 3254 0 5000 0.5811 

P 645 0 0 0 615 3000 0.8003 

 
 

6.6 Performance analysis of the RRH-Sector-BBU mapping high load scenario 

We consider a scenario with 61 RRHs and 4 BBUs. The network load is equal to 𝜚 = 0.83, 

and the KPI weights are assumed to be 0.6 for the blocked users, 0.1 for standard deviation, 

0.1 for power, 0.1 for forced handover, and 0.05 for both inter-handover and intra-handover.  

The BCO, PSO, CUCO, and GA algorithms are repeated 20 times, with 20 different initial 

configurations. The solutions obtained from the evolutionary algorithms are compared with 

optimal values obtained by exhaustive search (ES). 
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Figure 6.15 shows the average NP for the evolutionary algorithms vs. the iteration number. 

The average NP value obtained by the ES solution, which represents the optimal solution, is 

0.7918, while the PSO, GA, BCO, and CUCO obtained 0.711, 0.704, 0.707, and 0.727, 

respectively. Therefore, the evolutionary algorithms reach the optimum solution 18 times out 

of 20 runs. 

 

 

Figure 6.15 Average NP vs. Iterations for 61 RRH 
 

Figure 6.16 represents the average number of forced handover blocked users during the 20 

runs. All the evolutionary algorithms succeed to reach 0 blocked users similar to the ES. The 

only difference is the number of iterations that each algorithm takes to reach the 0 blocked 

users. 
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Figure 6.16 Average BC for 61 RRH 
 

Figure 6.17, Figure 6.18 and Figure 6.19 represent the number of intra-BBU handovers, inter-

BBU handovers, and forced handovers, respectively. The BCO, PSO, CUCO, and GA 

algorithms decrease the number of handovers required for the next RRH-Sector-BBU 

mapping; however, there is a small difference between their solution and the solution provided 

by the exhaustive search. This is due to the two runs that failed to reach the optimum solution 

throughout the 20 runs, as explained in Figure 6.15. It is clear that the CUCO algorithm is the 

one with the least number of intra handovers and forced handovers compared to the BCO, PSO, 

and GA algorithms. Furthermore, the BCO, PSO, and GA almost reach the same range for the 

intra and forced handovers. Moreover, the PSO algorithm is the one with the least number of 

inter handovers when compared to the BCO, CUCO, and GA algorithms. 
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Figure 6.17 Average number of intra-handovers for 61 RRH 
 

 
Figure 6.18 Average number of inter-handovers for 61 RRH 
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Figure 6.19 Average number of forced handovers for 61 RRH 
 

To give a better clarification regarding the solution provided by BCO, PSO, CUCO, and GA 

algorithms. Table 6.9 indicates the solution from the best run obtained by the ES when 

compared to the evolutionary algorithms. It is clear from Figure 6.21 Sectors load that the 

CUCO succeeds in obtaining the optimum solution similar to the ES while the GA, BCO and 

PSO reach a very close solution to the optimum. The presented GA and PSO results that are 

different from the ES solution, correspond to one of the two runs, out of the 20 runs, that failed 

to provide the optimum solution. However, they still get almost 97% of the optimum solution 

provided by ES. Moreover, Table 6.9 shows the exact values obtained from this run. The 

CUCO maximizes the NP in the network by obtaining the optimum RRH-Sector-BBU 

allocation while GA and PSO succeed in reaching near optimum value during this specific run. 

Furthermore, the convergence of the BCO, PSO, CUCO, and GA algorithms is compared to 

the ES.  ES reached the optimum solution after searching the whole space which is equivalent 

to 9଺ଵ iterations. On the other hand, the PSO, GA, BCO, and CUCO require only 683, 97, 188, 

and 700 iterations to converge, respectively. Therefore, it is clear how fast and accurate the 

solutions provided by the evolutionary algorithms are. 
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Table 6.9 Computational results for the best run out of the 20 runs for 61 RRH 

KPIs vs algo. 
NP 

Function 
value 

Standard 
deviation 

Convergence 
(iterations) 

Number of 
active BBUs BC 

Initial 0.1045 87.3689 NA 4 210 

BCO 0.7184 4.4381 188 4 0 

GA 0.7142 20.3753 97 4 0 

PSO 0.7207 10.0755 683 4 0 

CUCO 0.7389 2.4618 700 4 0 

Exhaustive 0.7389 2.4618 9଺ଵ 4 0 

 

 

 

Figure 6.20 Initial map topology for 61 RRH at time t 
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Figure 6.21 shows that the load is fairly shared among the active sectors, which also reflects 

the minimization of the standard deviation by the CUCO, BCO, GA, and PSO to become 

2.4618, 4.4381, 20.3753, and 10.0755 respectively, instead of 87.3689 obtained from the initial 

configuration. Consequently, more UEs could be admitted in different sectors in the future. 

Furthermore, Figure 6.22 shows the BBU load after obtaining the optimal RRH-Sector-BBU 

allocation. The number of used BBU is still 4, that is because the network load is 83% and the 

operation of all the BBUs are necessary to serve the current users in the network. 

 

 

Figure 6.21 Sectors load for 61 RRH 
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Figure 6.22 BBU load for 61 RRH 
 

6.7 Chapter Summary 

This chapter presents the simulation results for the RRH-Sector selection and load balancing 

framework using MATLAB software. The simulation results show that the MDP-P algorithm 

provides notably increased operator revenue when compared to commonly used network 

selection techniques based on the received signal strength (RSS). At the same time, the users 

blocking probabilities and the data rate are also notably improved. 

Regarding the results for RRH-Sector-BBU mapping, it is observed that in the low load 

scenario the evolutionary algorithms succeed in decreasing the number of operating BBUs to 

two instead of three during the load balancing. Furthermore, for the low and high load 

scenarios, the optimum solution is reached 18 times out of 20 when the BCO, PSO, CUCO, 

and GA algorithms converge. Consequently, the NP is maximized, and a well-balanced 

network is achieved. 



 

CONCLUSIONS AND FUTURE WORKS 

Conclusions 
In this thesis, C-RAN is introduced as a novel architecture that supports the tremendous 

increase in mobile network traffic. Despite the novel advancements that C-RAN offers, a time-

varying traffic environment can cause load imbalances, resulting in inefficient resource 

utilization. Consequently, the network performance (NP) can degrade in terms of the blocked 

users, the number of unnecessary handovers, and the power consumption. Thus, the thesis 

objective was to present an RRH-Sector pair selection for new connections and network load-

balancing framework that enhances the Quality of Service (QoS), the NP, and operator reward 

in C-RAN. In the first part of the framework, the RRH-Sector pair selection model provided 

several performance advantages for users and better utilization of the networks’ resources. 

These benefits were achieved by developing the RRH-Sector pair selection model with the 

objective of maximizing the integrated operator-user utility. The decomposed Markov 

Decision Process (MDP) approach is used in the selection model. In particular, we use the 

sector shadow price, sector net gain, and RRH-sector net gain concepts to cope with complexity 

of the exact MDP model. The model integrates the objectives of the users and the networks’ 

operators by combining their utilities. For users, we use a utility being a function of relevant 

QoS metrics. For the network operator, the utility is defined as the reward that can be also 

interpreted as the revenue. The integration of the user and operator utilities is achieved by 

introducing the operator reward penalty being a function of the user utility. In the second part 

of the framework, the load-balancing problem is addressed via optimization of the RRH-

Sector-BBU dynamic mapping which formulated as a linear integer-based constrained 

optimization problem. The objective of this optimization is formulated using various NP KPIs 

such as the standard deviation of the sectors load, number of forced handovers blocked users, 

number of handovers, and the power consumption. And each KPI has a defined weight that 

could be chosen by the network operator according to its preferences. The solutions of the 

RRH-Sector-BBU dynamic mapping were obtained by using several evolutionary algorithms: 

BCO, CUCO, GA, and PSO.  
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The simulation results showed that the MDP based algorithm provided notably increased 

operator reward compared to commonly used network selection techniques based on the RSS. 

At the same time, the users blocking probabilities and the data rate are also notably improved. 

Regarding the dynamic RRH-Sector-BBU mapping optimization the numerical results showed 

that in the considered scenarios all evolutionary algorithms reached the optimum solution 18 

times out of 20 cases. Moreover, the results in the selected scenario indicate that both CUCO 

and BCO succeed to obtain the optimum NP function value while the PSO and GA succeed in 

reaching near optimum value. Furthermore, the BCO is the fastest one to converge and reach 

the optimum solution, while the CUCO search took more time to converge to the optimum 

solution. On the other hand, both PSO and GA converged quickly, but they did not reach the 

optimum solution. Finally, the results show that the network performance is quite sensitive to 

the KPIs weights so their choice should be considered carefully by the network operator 

according to its preferences.  

 

 
Future Work 
 
Several possible future research directions are listed below:  

• More power saving could be considered if the underutilized RRHs turned off; however, 

switching On/Off RRHs needs the cooperation from all RRHs in the network to guarantee 

UEs the required QoS and connectivity.  

• The addition of the users’ mobility to the proposed framework is going to make the model 

more practical, however, it will increase the complexity.  

• Considering different types of schedulers to check how the resources are distributed 

differently and evaluate the performance of the framework in C-RAN. 

• Finally, a comparison between the MDP based approach with an approach based on deep 

reinforcement learning (DRL). While both approaches (MDP and DRL) belong to the same 

dynamic programming family, the DRL based approach requires less information about 

the system dynamics. Still, its performance and adaptiveness to variable traffic conditions 

need to be verified. 
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