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Large-scale Cyber-Physical Systems (CPSs) are information systems that involve a vast network of sensor
nodes and other devices that stream observations in real-time and typically are deployed in uncontrolled,
broad geographical terrains. Sensor node failures are inevitable and unpredictable events in large-scale
CPSs, which compromise the integrity of the sensors measurements and potentially reduce the quality of
CPSs services and raise serious concerns related to CPSs safety, reliability, performance, and security. While
many studies were conducted to tackle the challenge of sensor nodes failure detection using domain-specific
solutions, this paper proposes a novel sensor nodes failure detection approach and empirically evaluates its
validity using a real-world case study. This paper investigates time-series clustering techniques as a feasible
solution to identify sensor nodes malfunctions by detecting long-segmental outliers in their observations’ time
series. Three different time-series clustering techniques have been investigated using real-world observations
collected from two various sensor node networks, one of which consists of 275 temperature sensors distributed
around London. This study demonstrates that time-series clustering effectively detects sensor node’s continuous
(halting/repeating) and incipient faults. It also showed that the feature-based time series clustering technique
is a more efficient long-segmental outliers detection mechanism compared to shape-based time-series clustering

techniques such as DTW and K-Shape, mainly when applied to shorter time-series windows.

1. Introduction

Cyber—Physical Systems (CPSs) can be seen as networks of physical
components such as sensors and often actuators effectively incorpo-
rated using a computational and communication core [1,2]. Sensors
collect physical environment measurements and transmit them as raw
data to a computational unit. The computational unit generates feed-
back and sends it to the actuators that regulate the physical conditions
based on the received data. This cycle ultimately achieves the self-
awareness of the CPS via its ability to assess and correctly adjust its
behaviour and performance in real-time [3]. Large-scale CPS appli-
cations, such as environmental monitoring systems, typically involve
many low-cost sensor nodes deployed in broad geographical terrains,
forming a large-scale Wireless Sensor Network (WSN) [4-6]. Ecolog-
ical factors may compromise the accuracy of sensor observations, as
extreme temperature [7] or humidity [4]. Failures in sensor nodes and
sensor networks are inevitable events in large-scale CPS applications,
which may negatively affect data quality [8], producing invalid infor-
mation and potentially reducing the quality of their service [9,10]. In
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general, sensor nodes in WSNs have limited computing power, storage
capacity and transmission radius [11,12]. Therefore, wireless sensor
nodes cannot directly send observations to a remote data destination
(sink). Instead, a hub device or another sensor node works as a bridge
to transfer readings from other sensor nodes. Sensor nodes closer to
the sink consume more power because they support other sensors to
transmit their observations, and they are expected to have more power
failures causing sensor node failure issues [13,14]. Thus, sensor nodes
may determine the network lifetime based on their battery capacity and
affect the system’s quality of service [15,16].

The contribution of this research lies in the successful implemen-
tation of time-series clustering techniques as a sensor failure detection
mechanisms based on detecting long-segmental outliers associated with
sensors faults. It investigates the possibility of utilising time-series
clustering as a sensor node failure detection mechanism, focusing on
detecting long-segmental outliers associated with halting and incipient
sensor failure patterns. Dynamic Time Warping (DTW), K-Shape and
the Characteristics-based time-series clustering techniques are tested to
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Fig. 1. The ambient temperature profile of London and the effect of the Urban Heat Islands [17].
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Fig. 2. An illustration of how DTW warps one time-series into another one [18].

prove the validity of the proposed approach. The accuracy of these
methods in detecting the incipient sensor node failure pattern is em-
pirically evaluated using time series collected from a local ambient
temperature sensor node network deployed at the University of East
London, UK. The accuracy of these methods in detecting the halting
sensor node failure pattern is evaluated using time-series collected from
a large-scale sensor node network comprising 275 ambient temperature
sensors distributed around London.

This paper is organised as follows: Section 2 provides details of
the related work, Section 3 is an introduction to time-series clustering.
Section 4 describes the research data set, Section 5 presents the imple-
mentation results of the Dynamic Time Warping (DTW) and K-Shape
time-series clustering techniques, and Section 6 provides the results

of testing the Characteristics-based time-series clustering technique.
Finally, Section 7 presents the concluding remarks.

2. Related work

Many sensor node failure detection methods were proposed in the
literature, which can be mainly categorised as; technical-based and data
mining-based sensor failure detection techniques.

Technical-based sensor node failure detection techniques are
domain-specific solutions designed to detect sensor failures in par-
ticular applications. For example, Togneri et al. [14] utilised signal
processing as sensor’s failure detection mechanism for monitoring the
hardware status of a large-scale weather sensor network. The Togneri
et al. [14] sensor’s failure detection approach cannot be adopted as a
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Fig. 4. Time-series decomposition of a single time-series collected from a real-world temperature sensor node of the large-scale sensor network distributed around London.

generic solution for detecting sensor failures. Thus, it does not present
a systematic or generic approach for detecting sensor node failures in
large-scale CPS applications. Furthermore, this approach requires direct
access to the sensor management network to check their status, and
such access may not be guaranteed in large-scale CPS applications.

Data mining-based sensor failure detection techniques utilise data
analysis models to detect abnormal data patterns (outliers) in sensor
observations associated with sensor node failures, mainly categorised
into the anomaly and predictive analysis models [19,20]. Where an
outlier is an extreme sensor node’s measurement, it is “an observation
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Fig. 6. Time-series of the local sensor node network do not show significant differences in the shape of their trend. However, they show differences in the value attribute, especially
with the indoors sensor (Sensor ID = 493361) which streamed a time-series with a consistent offset of 10-15 C° from other sensors.

which deviates so much from other observations as to arouse suspicions
that a different mechanism generated it” [21].

investigated using statistical and machine-learning based out-
lier detection techniques. For example, Deep Neural Networks
(DNN) [24], K-Nearest Neighbours algorithm (KNN) [24], K-
means clustering algorithm are machine-learning-based outlier
detection methods [25]. In contrast, standard deviation, corre-
lation coefficient [26] and the density-based spatial clustering
of applications with noise (DBSCAN) are statistical-based outlier
detection methods [27-29]. Outlier detection techniques rely on

1. Anomaly analysis, also known as outlier detection, identifies
unusual data patterns that do not comply with well-established
normal behaviour [22]. Suppose the absolute value of a sensor
observation deviation is significantly diverted from observa-
tions of other neighbouring (spatially correlated) sensors at the

same point in time. In that case, this observation is an outlier
and potentially streamed from a faulty sensor node [19,23].
Anomaly analysis is a significant research field that is mainly

the assumption that the value of sensor nodes’ observations is
correlated spatially, temporally, or both spatially and tempo-
rally. However, these assumptions are not necessarily always
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valid, especially in large-scale CPS applications where the corre-
lations between sensor nodes may be violated by many external
effects, such as the size of the deployment environment and the
geographical distribution of sensor nodes [30]. For example, out-
lier detection cannot be applied directly to ambient temperature
observations collected from the sensor nodes distributed around
London because of a phenomenon known as the Urban Heat
Islands (UHI), as shown in the heat profile map of London in
Fig. 1 [17,31]. UHI causes up to 6 degrees C° of unexpected

FS £3 £ CIG)

Fig. 8. DTW successfully separated time-series with the long-segmental outliers (Cluster 1) from other (typical) time-series (Cluster 2) when applied to seven-day window real-world

divergence among ambient temperature sensors observations,
violating the spatial continuity constraints among these sensors
and undermining the effectiveness of anomaly analysis methods
in identifying unusual data patterns that do not comply with
typical ambient temperature sensors observations in comparison
with nearby ambient temperature sensors.

. Predictive analysis is the process of mining current and his-

torical data to identify patterns and forecast the future values
of time series [32,33]. Predictive analysis can be conducted
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Fig. 9. K-Shape successfully separated time-series with the long-segmental outliers (Cluster 2) from the other (typical) time-series (Cluster 1) when applied to seven-day window
real-world dataset.
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Fig. 10. DTW is not able to differentiate time-series with long-segmental outliers from other typical time-series when it was applied to a shorter two day time-window of real-world
time-series.

using statistical or machine-learning-based techniques [34]. For of the Autoregressive Moving Average (ARMA) model, to tackle

example, a machine learning model based on the Random Forest
Prediction (Random Forest Regression) technique is adopted
by Faroogi et al. [35] for developing an anomaly detection
mechanism for weather data. Another example is based on sta-
tistical predictive analysis, using the one step-forward approach

the inevitable challenge of sensors and sensor network failures
in power terminals [9]. Some applications require a mixed-
methods approach, where both machine-learning and statistical
methods are used to tackle a particular data quality challenge.
For example, Okafor et al. [4] investigated the use of artificial
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Fig. 11. K-Shape is less able to differentiate time-series with long-segmental outliers from other typical time-series when it was applied to a shorter, two day time-window, of

real-world time-series.

neural networks and linear regression for calibrating low-cost
environmental monitoring sensors to improve their service life
by reducing the probability of their failure due to battery failure.
Predictive analysis methods rely on models developed using his-
torical data as a training data set. Therefore, predictive analysis
is most suitable for detecting measurement errors that appear
for a short time interval (short outliers). Measurement errors
that occur for a relatively long time affect the ability of the
predictive models to render accurate predictions. The pattern of
time series with long outliers will be distorted to a certain extent,
reflecting the wrong measurement as the standard pattern, lead-
ing to higher forecast errors and limiting the ability of predictive
analysis modes to detect data accuracy issues correctly [36].

Outliers in sensor node networks are mainly categorised into short,
simple and long-segmental outliers [37]. Long-segmental outliers, also
known as shape outliers, are irregular observations that emerge for a
relatively long time [38] and change the time-series pattern (set of
observations) [39]. Long-segmental outliers occur in particular cases
where a phenomenon has a long-term impact, such as forest fires or oil
spills or due to sensor nodes failure [40]. Long-segmental outliers asso-
ciated with sensor failures are categorised according to the behaviour
of faulty sensor nodes [41] into:

+ Continuous halting faults: long outliers that show no or minimal
variation in the value attribute of their data stream for a relatively
long interval of time.

+ Abrupt (emerging) and incipient faults: a constant or linear
increase offset to the measurement values that occur over a longer
time interval than expected.

As long-segmental outliers occur for a relatively long time and change
data patterns, they break the temporal correlation of observations after
and before the anomaly and violate the possibility of using predictive
outlier detection techniques to detect this type of anomalies [36].

This paper investigates time-series clustering as a novel solution that
addresses the limitations of both anomaly and predictive analysis ap-
proaches in detecting long outliers associated with sensor node failures
in the context of large-scale CPSs.

3. Time-series clustering

Time-series similarity measures define outliers in time-series win-
dows by comparing them with other non-overlapping windows using
a measurement metric, such as the Euclidean distance, which mea-
sures the distance between different time series [39,42,43]. Therefore,
time-series similarity measures were utilised in time-series clustering
methods to compare the pattern of an entire or a substantial time
series window with another based on their long-term temporal cor-
relation [42,44]. The purpose of time-series clustering is to identify
faulty sensor nodes by comparing the shape or features of their time
series with the time-series of other properly functioning sensor nodes.
In this paper, Dynamic Time Wrapping (DTW) time-series clustering
technique is tested as an anomaly detection mechanism. The DTW
test has been extended to include K-Shape and Characteristic-Based
Clustering techniques to find a higher performance clustering technique
that can render accurate results while examining shorter time series.

3.1. Dynamic time warping

Dynamic Time Warping (DTW) is a time-series clustering technique
that finds corresponding regions of similarity between time-series. DTW
can stretch or shrink (warp) time-series non-linearly along its time axis
to find the optimal correlation between different time-series [18], as
shown in Fig. 2.

DTW has many implementations in different disciples, such as ges-
ture recognition, robotics, and manufacturing. However, it was mainly
used for data mining as a distance measure between time-series data
points [18]. DTW is not sensitive to time-shifting, and it does not
require the time-series to be on the same length as a condition to
compare among them [45]. To compare time-series T1, T2 of lengths
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Fig. 12. The process diagram of the technical steps implemented to fit all available time-series as a 3D array into the Dynamic Time Warping (DTW) and K-Shape time-series

clustering models.
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n and m, DTW is going to measure the distance (T1, T2) with time
complexity of (n * m). Thus, DTW is a computationally expensive
method for simultaneously clustering long time-series or numerous
time-series [46].

3.2. K-Shape
K-Shape and Dynamic Time Warping (DTW) are shape-based time-

series clustering methods. K-Shape is a time-series clustering algorithm
that uses cross-correlation measures to measure the distance and the

centroids for time-series clusters. K-Shape analyses the shape of the
time series while clustering them. The theory behind K-Shape is similar
to the one used by the K-means algorithm. K-means is a distance-based
clustering algorithm that divides the unlabelled dataset into several k
non-overlapping subsets (clusters), each of which is represented by the
mean of the distance between its data points [47]. Both K-Shape and K-
means rely on the iterative refinement procedure, which scales linearly
and produces equivalent and sufficiently separated clusters. K-Shape is
considered a highly efficient and more domain-independent time-series
clustering method than the DTW method. DTW considers the shape
similarity between time series regardless of differences in amplitude
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and phase. At the same time, K-Shape relies on the time-series cross-
correlation measures, which are significantly faster than the time-series
distance measures method adopted by DTW [48].

3.3. Characteristic-based time-series clustering

Characteristic-based time-series clustering is also known as features
extraction-based or statistical characteristics-based time-series cluster-
ing. Unlike the shape-based time-series clustering methods, such as
DTW or K-Shape, the characteristic-based clustering does not use the
distance measure or the cross-correlation measures methods. Alterna-
tively, this method clusters time-series based on their captured global
characteristics using classical statistical methods. The features extracted
from each time series can be fitted into any arbitrary clustering algo-
rithm. The extracted features describe a time series’ statistical charac-
teristics (global measures). These features can be extended to over 100
different features, such as the absolute sum of changes, autocorrelation,
standard deviation and partial autocorrelation. Characteristic-based
clustering reduces time-series dimensions, making it much less sensi-
tive to the effect of missing values or noisy data. The advantage of
characteristic-based clustering is its high performance, even if used
to perform similarity searches or clustering amongst very long time
series [49].

4. Experimental settings and London case study

Time-series clustering techniques are used in this study to detect
continuous (halting), abrupt (emerging) and incipient faults using real-
world datasets collected from two different sensor node networks, as
follows:

4.1. Large-scale sensor node network

Large-scale sensor node network is the primary data source of this
study. It consists of 275 temperature sensor nodes distributed around
London and managed by different providers, such as the Meteoro-
logical Office (Met Office) [50], Open Weather Map [51] and Smart

10

Citizen [52]. The geographical distribution of these sensors is shown in
Fig. 3.

Data streams from these sensor nodes were coordinated by an
Internet of Things (IoT) search engine called Thingful [53]. Thing-
ful is owned by a U.K. based company named Umbrellium.Ltd [54]
specialises in IoT projects associated with smart cities, connected ve-
hicles, machine learning and big data analytics. These sensor nodes
data streams collected through the Thingful network will be utilised
to test the ability of the time-series clustering techniques to detect
continuous (halting) and abrupt (emerging) long-outliers. Thus, these
types of long-outliers have been detected in some time series of this
large-scale dataset while focusing on temperature time series. Typically,
temperature time-series show daily seasonality and a trend, as shown
in Fig. 4.

Therefore, temperature time series with a constant value attribute
or a very low seasonality for a relatively long-time (long-outlier) are
highly likely to encompass data quality issues related to observations
accuracy. This behaviour can be related to a sensor node’s hardware
failure that affects their detection ability, or it may indicate that these
time-series were streamed from sensor nodes that are down, and the
system compensates for their missing observations by repeating the last
observation received from these faulty sensors. An example of long-
segmental outliers is shown in Fig. 5. Fig. 5 shows the time-series of two
sensors which displays constant readings (Fig. 5 Sensor ID= kt3m3nw5
and rw4egmaw/Smart Citizen) for a relatively long time, compared to
another time-series (Fig. 5 Sensor ID=47qwbfba/Meteorological Office)
generated by a functional sensor node managed by the Meteorological
Office during the same time window.

The accuracy and performance of the three time-series clustering
methods, DTW and K-Shape and the characteristics-based time-series
clustering technique, examined in this study are evaluated based on
their ability to identify time-series with halting or emerging long-
segmental outliers and the time required to render the clustering re-
sults. The evaluation was conducted using two different time-series
windows. The first is a seven-day time-series window. The second is a
two-day time-series window used to evaluate the accuracy and perfor-
mance of time-series clustering techniques compared to the seven-day
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time window. The time series were collected from a local network
of four sensor nodes and a large-scale network of 275 sensor nodes
distributed around London.

4.2. Local sensor node network

This time series was used as a benchmark dataset to test the ability
of the time series clustering techniques to detect incipient faults with
consistent offset (long-outlier). The local sensor node network consists
of four high-quality sensor nodes deployed at The University of East
London. One of these network sensor nodes is installed indoors, and the
other three are deployed outdoors. Since all the local sensor nodes were
distributed in a relatively small geographical area, their time-series do
not show significant differences in the shape of their trend. However,
they show some differences in the value attribute, especially with the
indoors sensor, which streamed a time series with a consistent offset
of 10-15 C° from other sensors. Thus, the indoors sensor node, in this
case, represented a sensor with an incipient fault pattern, as shown in
Fig. 6. Furthermore, since this time series is a high-quality dataset with
no missing values or outliers, it was used as a benchmark to test and
calibrate the time-series clustering techniques before applying them to
the large-scale sensor node network time series.

5. Dynamic Time Warping (DTW) and K-Shape

The Dynamic Time Warping (DTW) and K-Shape time-series cluster-
ing were applied using the Python package tslearn.clustering provided
by Scikit-learn [55]. The outcome from applying the DTW and K-Shape
time-series clustering techniques to the local sensor node network
dataset is shown in Fig. 7 (identical outcome).

Both DTW and K-Shape time-series clustering techniques success-
fully identified the time series of the indoor sensor node (the incipient
fault pattern Sensor ID = 493361) from the other time series of the
outdoor sensor nodes. This result is significant because both DTW and
K-Shape are shape-based time series clustering techniques, and all the
time series used in this test exhibit a significant similarity in the shape
pattern, as shown in Fig. 6. The top graph line in Fig. 7 is the indoors
sensor (Sensor ID = 493361) time series in the first cluster (incipient),
while Cluster 2 (the bottom graph lines) presents the other (normal)
time-series.

The time series used in the second test were collected from the
large-scale sensor network. The dataset of this test is much larger than
the dataset of the local sensor node network. Both DTW and K-Shape
rendered identical clustering results when applied to the seven-day time
series, as shown in Figs. 8 and 9.

Both DTW and K-Shape successfully separated time-series with
long-segmental outliers from the other time-series that exhibit typical
variation in the trend and seasonality when applied to the seven-
day time window. The temperature axis (y-axes) in Figs. 8 and 9
do not reflect the actual value attribute of the observations, since
all time-series were normalised using the Python package
“tslearn.preprocessing. TimeSeriesScalerMeanVariance” [55] so that each
output time series had zero mean and unit variance before being fitted
to the time-series clustering models, as shown in Fig. 12. Applying
DTW and K-Shape to the two-day time series showed that DTW is more
sensitive to the window length of the clustered time series than the
K-Shape. The ability of the DTW to differentiate the faulty time-series
from other (typical) ones was more significantly affected compared to
K-Shape, as shown in Figs. 10 and 11.

In general, both shape-based time-series clustering techniques re-
quire relatively long time series to enhance their clustering results,
especially the DTW. Figs. 10 and 11 illustrate that K-Shape can main-
tain its clustering accuracy when applied to a relatively shorter time
series than DTW. Both techniques were able to differentiate time-series
that showed the patterns of the continuous and abrupt long-segmental
outliers with 100% accurate detection ratio when applied to seven days,
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Fig. 16. The process diagram of the technical steps implemented to fit time-series to
the characteristic-based time-series clustering model.

or longer time-series, as shown in Figs. 8 and 9. The main technical
steps required to fit all available time series from all sensor nodes as
a three-dimensional data array to the DTW and K-Shape models are
illustrated in the process flowchart diagram shown in Fig. 12.

6. Characteristics-based time-series clustering

The characteristics (features) based time-series clustering technique
was implemented using [56]’s Python tsfresh package and the time
series collected from the local sensor node network as a benchmark test.
The characteristic-based time-series clustering technique successfully
separated the time-series of the indoors sensor node (incipient faults
pattern) from the rest of the time series, as shown in Fig. 13.

The characteristics based time series clustering model relies on
using arbitrary clustering algorithms, such as K-means, for clustering
the set of features extracted from the examined time series. The se-
lected features may vary from one application to another based on
the characteristics of the time series chosen to be used as clustering
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Fig. 17. The performance of the CPU cores and the time required to perform the same task by DTW comparing to K-Shape, each graph line represents the performance of a single

CPU core.

reference. In this case study, the “absolute sum of changes” was the
main parameter used and fitted to the K-means clustering model to
detect continuous (halting/repeating) faults of sensors time series that
show no or minimal variation in their observations value attributes. The
outcome of applying the feature-based time-series clustering technique
to the time series of the large-scale sensor node network is shown in
Figs. 14 and 15.

The feature-based time series clustering technique successfully cat-
egorised time series with long-segmental outliers even when applied to
the relatively short two-day time-series window, as shown in Fig. 15.
The technical aspects required to fit all available time series to the
characteristic-based time-series clustering models are illustrated in the
flowchart diagram in Fig. 16.

Since all the used time-series clustering techniques (DTW, K-Shape
and Characteristics-Based Time-Series Clustering) were applied to the
same dataset, it was possible to evaluate the performance of each of
these methods based on the time spent to render their clustering results.
DTW required a significant amount of time to render the results, around
360 s compared to the feature-based and K-Shape time-series clustering
techniques which required around 30 s when applied to the seven-day
time window. It is essential to highlight that these results may vary
according to the number and the type of the extracted features and
the selected clustering algorithm. Although DTW demanded more time
than K-Shape to render the clustering results, it seems that the K-Shape
Python package managed the processing resources of the CPU cores
more efficiently than DTW, as shown in Fig. 17.

Note : All tests of this study were conducted using Python 3.7 64
bits installed over a Linux (Fedora 64 bits) workstation. The processor
of the workstation is an Intel(R) Core (TM) i7-7920HQ CPU @ 3.10 GHz
(4 CPUs), 3.1 GHz with 32 GB of RAM.

7. Conclusion

The novelty of this research lies in the successful implementation of
time-series clustering techniques as a sensors failure detection mecha-
nism via detecting long-segmental outliers associated with time-series
of faulty sensors. The purpose of this study is to test Dynamic Time
Warping (DTW), K-Shape, and the Characteristics-based time series
clustering technique as long-segmental outlier detection methods for
sensor node fault detection in large-scale CPSs. The study focused on
detecting the failures of continuous (halting/repeating) and incipient
sensor nodes. The time series clustering techniques were evaluated us-
ing real-world observations collected from two real-world sensor node
networks. All of the examined time series clustering techniques proved
their ability to detect sensor node faults associated with long-outliers
in their time series with some differences in accuracy and complexity.
The feature-based time series clustering technique maintained its de-
tection accuracy even when applied to a relatively short time series
compared with the shape-based (DTW and K-Shape) time series clus-
tering techniques. Furthermore, the empirical tests of these techniques
showed that feature-based time-series clustering could be a more effi-
cient long-segmental outlier detection mechanism than the shape-based
time-series clustering techniques, such as DTW and K-Shape, mainly
when applied to shorter time-series windows.
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