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Abstract

Future sixth-generation (6G) networks will rely on the synergies of edge com-
puting and machine learning (ML) to build an intelligent edge, where commu-
nication and computing resources will be jointly orchestrated. In this work,
we leverage ML algorithms to judiciously orchestrate the placement of delay-
constrained computing tasks in a softwarized edge domain. A set of popular
supervised learning algorithms, i.e., Decision Tree (DT), Bagged Trees (BTSs),
Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), have been
leveraged to this purpose. They are trained off-line through the results of an
optimization problem targeting the minimization of the edge network resource
usage while respecting the tasks’ delay constraints. Extensive simulation re-
sults are reported to showcase the performance of the considered techniques in
terms of model accuracy, complexity and network-related metrics, e.g., amount
of exchanged data in the edge domain. Among the compared techniques, DT
and MLP are shown to be the most efficient solutions in terms of algorithm
execution time, by achieving almost the same performance.

Keywords: Task placement, Edge Computing, Machine Learning, In-network
computing, 6G, Intelligent Edge, Edge Al

1. Introduction

Edge computing enables data processing at the periphery of the network,
close to where data themselves are generated [1]. Compared to the traditional
cloud-based solutions, where processing is executed in remote data centers, ex-
ecuting tasks at the edge offers benefits in terms of latency and network traffic
reduction for a large variety of interactive and delay-sensitive applications, like
on-line gaming, surveillance, and Augmented Reality (AR).
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In multi-user edge domains, composed of multiple edge nodes, equipped
with heterogeneous and limited (compared to the cloud) communication and
computing capabilities, it is hard to deploy practical task placement strategies,
based on which specific data processing tasks are allocated to specific edge
nodes (playing as task ezecutors). This is even more true in the presence of
challenging sixth generation (6G) applications, with different and much stricter
requirements [2], like EXtended Reality (XR) and autonomous driving.

Regardless of the specifically targeted optimization criteria, e.g., minimiza-
tion of energy consumption, network bandwidth, latency [3], [4], traditional task
placement strategies rely on the solution of computationally expensive NP-hard
problems [5]. Near-optimal sophisticated heuristics can be conceived to achieve
a solution in a feasible amount of time, but they are not easy to derive.

The recently proposed concept of intelligent edge [6], deemed a key 6G en-
abler, aims at incorporating machine learning (ML) techniques into the edge for
the dynamic, adaptive and efficient orchestration of communication and com-
puting resources [7]. Exploiting ML allows to replace a complex mathematical
modelling of the system to derive mathematically tractable heuristics with a
data-based understanding of the system [5].

As surveyed in [8], supervised learning-based and unsupervised learning-
based solutions can be devised for the sake of deciding whether and how to
offload computing tasks. Among them, supervised learning techniques are effec-
tive to provide near-optimal heuristic-like offloading decisions in a scalable and
efficient manner [9]. This is the reason why in this paper we focus on supervised
learning techniques.

Currently, the majority of works on intelligent edge solutions focus on task
offloading in the presence either of a single edge server [10] or of a restricted
number of purpose-built edge servers, e.g., co-located with the base stations of
a Radio Access Network [8]. There is a lack of comprehensive studies that well
assess the performance of ML algorithms in 6G edge domains with multiple
network nodes characterized by heterogeneous communication and computing
capabilities, which could be selected as task executors. Indeed, according to
recent initiatives like the Internet Research Task Force (IRTF) Computing in
the Network (COIN) Research Group [11], 6G edge nodes acting as task ex-
ecutors are not only purpose-built servers. They may encompass potentially
any network edge node augmented with computing resources, such as the ones
composing a campus network, the backhaul segment of a mobile network, or a
metropolitan area network [12].

In this paper, we focus on a distributed network edge domain with multiple
heterogeneous nodes playing the role of candidate task executors, and apply
supervised learning techniques to efficiently solve an optimal computing task
placement problem. This latter has been preliminarily formulated in [13] as an
Integer Linear Programming (ILP) problem that targets the minimization of the
network edge resource usage by reducing the amount of data exchanged within
the edge domain, while ensuring that the delay constraints of each computing
task are met.

The optimal solution computed offline is leveraged to train supervised learn-



ing algorithms. The latter are feeded by the information about the task requests
and edge domain state, and target to solve a multi-class classification problem,
providing the task placement decision as output.

In so doing, optimal solutions do not require to be computed online, provid-
ing a less complex and quicker placement decision making, at the expenses of
heavy training procedures to be performed offline.

To deploy the conceived solution, we consider a softwarized network edge
infrastructure, based on Software-Defined Networking (SDN) [14]. Indeed, the
centralized view of the domain, available at the SDN controller, facilitates the
orchestration of resources available at the network edge nodes [12] and makes
easier the application of ML techniques [9].

More specifically, the paper significantly extends the work in [13] by provid-
ing the following main original contributions:

e A variety of popular supervised learning algorithms, including Decision
Tree (DT), Bagged Trees (BTs), Multi Layer Perceptron (MLP), and
Support Vector Machine (SVM), are designed and implemented aimed
at identifying the near-optimal placement of delay-constrained computing
tasks in a network edge domain. The goal is to minimize the edge domain
resource usage while satisfying the tasks’ delay constraints.

e An extensive evaluation campaign is performed to assess the efficiency (in
terms of algorithm execution time) and accuracy performance of the con-
sidered ML techniques, when compared to the formulated ILP’s optimal
solutions.

e The considered ML techniques achieving the lowest algorithm computa-
tional time complexity are then compared to assess their effectiveness and
efficiency in placing the tasks, while satisfying their deadline constraints.
In addition to the network resource usage metric, expressed in terms of
data exchanged at the edge, several task-related metrics, like the average
computation time and the task deadline missing probability, are assessed
under a wide variety of settings (e.g., rate of task requests, task delay
constraints) to validate their ability to approximate the optimal solution.

To the best of our knowledge, this is the first comprehensive study compar-
ing different ML techniques, which are typically evaluated individually in the
task offloading literature [5], [8], [15], [16], to specifically solve the formulated
task placement problem in a softwarized network edge domain made of several
heterogeneous computing nodes. The assessment of their performance is pro-
vided in terms of execution times, as well as in terms of traditional ML-related
metrics, like accuracy and precision, and in terms of meaningful network- and
task- related metrics to assess their suitability to tackle the problem at hand

The remainder of the paper is organized as follows. Section 2 scans the
closest related literature and presents the motivations of our work. The system
model and optimization problem are presented in Section 3. The proposed
ML-based framework and the dataset generation are respectively discussed in



Section 4 and Section 5. The performance assessment is reported in Section 6,
before conclusive remarks and hints on future works in Section 7.

2. Background

Several works in the recent literature have investigated the task placement
problem in edge computing environments [1], [17]. Some of them focus on single-
user edge systems, where the decision to be taken is on whether a particular
task should be (partially) offloaded to the edge for being executed or instead
computed locally on the end-device. Others target multi-user edge systems en-
compassing multiple clients that can be served by a single edge server. When
focusing on 5G and beyond environments, however, more complex scenarios are
considered, where real-time compute-intensive tasks, issued by different clients,
can be potentially executed by multiple edge servers. In this context, a variety
of challenges need to be addressed, including (i) managing the coexistence of
distributed edge computing and centralized cloud systems [18]; (4i) determining
the best executor of each computing task [17]; (iii) optimizing the communica-
tion and computational resource allocation at the edge in the presence of mobile
users [19], [20].

In particular, in optimal task placement problems, metrics like the latency, the
energy consumption, the bandwidth usage, are typically considered, either dis-
jointedly or jointly [3], [4], [21].

Besides being executed by purpose-built servers, tasks can be also placed into
network edge nodes augmented with computing capabilities [12], [20]. Treat-
ing network nodes as computing equivalents is the main pillar of the recent
in-network computing paradigm® [13], [22]. In such a context, characterized
by the presence of several candidate executors with limited and heterogeneous
computing capabilities and differently chained to the requester nodes, the task
placement decisions get dramatically complicated.

Incorrect decisions are unable to meet the user requirements and can degrade
the efficiency of the system.

2.1. ML-based task placement

Instead of devising mathematically tractable heuristics or decomposing prob-
lems with high levels of dimensionality in smaller sub-problems to reduce their
complexity, ML approaches can be applied [23] that provide near-optimal heuristic-
like decisions [8]. According to [6], by introducing edge intelligence into task
placement and resource allocation mechanisms, the performance can be opti-
mized even in highly dynamic scenarios with new users joining continuously.

The work in [24] focuses on the allocation of network resources to provide
Service Function Chains (SFCs), i.e., the so-called Virtual Network Function
Placement and Chaining (VNF-PC) problem. After proposing an ILP model,

Thttps://datatracker.ietf.org/rg/coinrg/about/



the authors develop a hybrid strategy combining the optimal approach with
(unsupervised) ML to find the adequate network resources while decreasing the
resolution time. In particular, the k-Means algorithm is applied by considering
the request history and the geographic features of the edge servers. Results
show that the hybrid strategy minimizes the runtime by up to 75% compared
to the ILP method, without degrading the acceptance rate and the provider’s
profit. However, the k-Means algorithm is not efficient in the presence of highly
dynamic scenarios, where clusters (whose number must be specified in advance)
are potentially of varying sizes and density [6].

In parallel, supervised learning approaches like DT and SVM provide near-
optimal heuristic-like offloading decisions in a scalable, flexible and computation-
efficient manner [9] [25].

For instance, a popular DT algorithm, the Classification and Regression
Tree (CART), is considered in [15] to select the best fog devices to which tasks
should be offloaded. The decision, however, does not consider the maximum
computation delay in processing the offloaded tasks. A CART algorithm is
also leveraged in [5] for the sake of predicting the best placement of VNFs.
An SVM model is applied in [26] by converting the decision of offloading sub-
tasks to edge servers from vehicles into classification problems. An ML-based
workload orchestration approach for vehicular environment is also proposed in
[16]. There, an MLP model was chosen, after testing other techniques, as an
extremely flexible classifier model which predicts whether the results of the
offloading options are successful or not for each target device.

Another well-known category of supervised learning algorithms applied in
edge intelligence contexts includes Convolutional Neural Networks (CNNs) [6].
For instance, the work in [27] focuses on automatic speech analysis (ASA) tasks
to be processed with minimum delay in a cloud-edge environment, by consider-
ing a user tolerance limit. Despite their high accuracy, CNNs still require long
training time and result more complex and computationally expensive than
other supervised learning approaches [28], [29]. Also, CNN is mainly based on
black box models and, therefore, has lower explainability compared to DT and
SVM approaches [6]. Compared to CNN, MLP has a much simpler structure
and enables easier hyperparameter tuning thus contributing to the model ex-
plainability [30]. This is why, in the following, we do not consider CNNs in our
analysis and, instead, we focus on DT, SVM and MLP approaches.

2.2. SDN-based task placement

In parallel, to optimize the usage of communication and computing resources
of an edge domain, SDN-based solutions have been also proposed in the liter-
ature [31], [32]. Indeed, the information available at the SDN control plane,
including the status of computing resources and communication links, as well
as the resource requirements from users, can be leveraged to optimize the task
offloading decisions.

In [33] a software-defined vehicular edge computing is proposed that employs
edge computation to enable ultra-low latency vehicular services. In [20], SDN is
leveraged to monitor the users’ mobility over time. Based on this information,



a centralized Multi-access Edge Orchestrator applies a Dynamic Programming
approach to optimize the anticipatory allocation of communication and com-
putational resources at the network edge, while not exceeding the maximum
latency tolerated by the users.

In our previous work in [12], we considered a distributed edge domain man-
aged by an SDN controller and designed a placement strategy for minimizing
the task execution latency, without however targeting the reduction of the net-
work resource usage. With focus on delay-constrained task placement in a
softwarized edge domain, in [13], instead, we targeted the minimization of the
network resources usage by reducing the amount of data exchanged within the
edge domain. There, the problem has been only formulated as an Integer Linear
Programming (ILP) model and it is referred to as Delay-constrained Minimum
data Edge task Placement (DMEP).

In this paper, we make a step forward by considering supervised ML-based
solutions to solve the same problem in a time efficient and scalable fashion.

The possibility of enforcing ML-based task placement through a centralized
SDN controller [9], as we targeted in this work, has been investigated also in
[34], [35], [36]. However, unlike the related literature, we consider a more chal-
lenging scenario, i.e., a softwarized edge domain with ubiquitous in-network
computing capabilities [11]. Also, we perform a comprehensive assessment cov-
ering both complexity and accuracy performance of ML approaches and net-
work/computing performance at the edge.

3. System model and problem formulation

8.1. Reference scenario and main assumptions

The reference scenario of our study is a network edge domain, supervised
by an SDN controller, and composed of a set of network edge nodes equipped
with computing capabilities, see Fig. 1. Like in vanilla SDN implementations,
the controller and the edge nodes interact through a southbound interface [14].
In particular, the edge nodes transmit information about the status of their
resources and requests for task execution, while the controller injects forwarding
and task allocation rules.

Edge nodes are connected with each other through wired links and may act
as executors of tasks requested by a variable number of clients. Focus is on delay-
constrained computing tasks over certain input content(s), e.g., images, videos,
environmental data. Therefore, the executor needs to collect the content(s) first,
and then process them within a certain time limit.

A subset of edge nodes act as ingress nodes for clients and input data sources,
while an egress node connects the edge domain with a remote cloud, where tasks
can be offloaded when the edge domain is not able to process them, e.g., because
the latency constraint cannot be met.

Input data producers can be: (%) the clients themselves that offload their own
data; (ii) different nearby sources, e.g., cameras, sensors; (4ii) a combination of



both. Therefore, in principle, the input data for each computing task may be
heterogeneous and retrieved by multiple producers.

Fach edge node, i € N, is provided with computing capabilities y;, expressed
in terms of CPU cycles per seconds. For the sake of simplicity, we consider the
remote cloud as a unique computing node ¢ with large (potentially unlimited)
computing capabilities.

Clients request the execution of a computing task, j, belonging to a catalog
of size |J|. A computing task is atomic, i.e., it cannot be split in multiple
sub-tasks and , similarly to other task models in the literature, e.g., [25], [37],

it is characterized by three parameters, j = {l;, s;, Dj"***}, where:

e [; is the required amount of the computing resources, expressed in terms
of CPU cycles, to execute the task j;

e s5; is the size of the input data for computing task j;
e D" is the maximum delay constraint to execute the task j.

When task j needs to process distinct input data, the overall input data size,
s;, is equal to the sum of the size of K; distinct input data, i.e., s; = ngzl Sk
being sy, the size of data k;.

Task placement is orchestrated by the SDN controller as a network appli-
cation (Task placement policy in Fig. 1). More specifically, an ingress node,
receiving a new task request, forwards it to the controller. This latter chooses
the best executor among the available edge nodes, if available, according to the
policy described in Section 3.2 and implemented through ML techniques as de-
scribed in Section 4. Thereafter, the executor retrieves the input data from the
origin sources, performs the computation and returns the output to the client.

The forwarding paths to be followed by input data, from the origin sources
to the task executor, and by the result of the computation, from the executor to
the requesting node, are built by the SDN controller, according to the deployed
Routing policy.

8.2. Optimization problem formulation

The target of the task placement problem is twofold: (i) limiting the net-
work usage, expressed in terms of intra-domain traffic, (#) ensuring that the
maximum delay constraint of each computing task is met.

The formulation of the optimization problem targeting the above mentioned
objectives has been proposed in our previous work [13]. For the sake of com-
pleteness, we report it in the following, while the main notation is summarized
in Table 1.

Computation delay. The total computation time of task j at node i can
be calculated as the sum of two contributions: (i) the execution time, i.e., the
time needed to actually execute a task, and (ii) the queuing time, i.e., the time
that a task has to wait before being executed because of the presence of other
already running tasks. In our design, the execution time is calculated as the
fraction between the amount of processing resources (CPU cycles) needed to



Table 1: Summary of the main notations in the optimization problem formulation.

Symbol Description

J catalog of tasks

N set of SDN edge nodes

c cloud node

N set of candidate executors N Ud

i generic edge node

i computing capabilities of node i (CPU cycles/s)

J generic computing task

l; required computing resources to execute task j (CPU cycles)

55 overall size of input data of task j

k; generic input data of task j

K; number of input data of task j

Sk, size of the k;-th input data of task j

Dy maximum delay constraint for task j

Aj arrival rate of requests for task j

Xij binary decision variable: 1 if task j is executed by node i, 0
otherwise

execute the task (I;) and the processing capability (CPU cycles/s) of the edge
node which executes it (u;).

As commonly assumed in the related literature [4], [38] and justified by
empirical studies [39], [40], we assume that the arrival rate of requests for task
J at node i follows a Poisson distribution with parameter A;. The amount of
computing resources per task, [/, is exponentially distributed with average value

I. Therefore, each edge node can form an M/M/1 queuing model [41] to process

its corresponding computing tasks [4]. Moreover, the service time of the queuing

model is exponentially distributed with parameter .

The total request arrival rate at node ¢, that still follows a Poisson distribu-
tion, can be defined as:
Z XijAj, (1)

jeJ
where X;; is the binary decision variable. It is equal to 1 if the task j is executed
by edge node ¢ and equal to 0 otherwise.
Thus, exploiting the queueing theory, the average computation time for a generic
task at a node i can be derived as:

— 1
Di=g———— i€eN (2)
i ) )
P Y
i 37

jeJ

with N being equal to N Ueg, i.e., the set of potential executors, including all
edge nodes and the cloud. To keep the queue stable, the average arrival rate,
A;, should be smaller than the average service rate (i.e., i;/1), as described by



the following equation:

pi/l =Y XijA; >0, i€N. (3)

jeJ

policy

Task placement Routing 2
[{3}{3} H@] [ policy ] Application plane
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Figure 1: Reference Scenario.

Network usage. We denote by Q;”,gj" the minimum number of hops be-

tween the candidate executor, ¢, with =1, ..., N and each content producer k;
feeding computing task j. We then define the network usage as a measure of

the exchanged intra-domain traffic and derive it as:
NU =X Y s, Q. ieN;jel (4)

The higher the hop number between the producer and the candidate execu-
tor, the higher the generated intra-domain traffic and, therefore, the network



usage.
Optimization problem. Given the above mentioned parameters, the op-
timization problem can be formulated as follows:

K,
mil’lz Z Xij)\j Z Skj T];n (5)

iGN jGJ k’j:l
s.t.

ZXU:L ]EJ, (6)

ieN
XD < Xy D7, i€ N; j € J; (7)
%—ZXU’/\]'>O, iGN; (8)

JjeJ
X;;€{0,1}, i€ N;jelJ (9)

Constraints in Egs. (6) and (7), respectively, ensure that each task j is placed
in one and only one edge node and is executed within its maximum tolerable
delay, D7***. Considering Eq. (2), it is worth to note that constraint in Eq. (7)
is described by nonlinear inequalities. Constraint (8) forces the average service
rate of the edge node to be greater than the average task arrival rate, in order
to keep the M/M/1 queue of the edge node stable. The constraint in Eq. (9)
bounds the values of the optimization variable to be binary.

4. Supervised learning algorithms for task placement

The formulated ILP problem in Eq. (5) is equivalent to the Generalized
Assignment Problem (GAP) [42], which is a well known NP-hard problem in
the combinatorial optimization literature. In a realistic setting, its resolution
through a standard optimization solver is not feasible due to the long time
needed to find the optimal placement of the computing tasks.

Hence, a strategy is needed to efficiently solve the problem even if at the
expenses of a sub-optimal solution. For this purpose, in alignment with the re-
cent literature [8], we propose to leverage ML algorithms and, in particular, we
choose to trace back the task placement problem to a multi-class classification
problem. In this work, the scope of the ML-based technique is to predict the
output, i.e., to select the task executor node, in response to a task request. The
ML-based technique is implemented as a network application at the SDN con-
troller. Indeed, thanks to its view of the edge domain (i.e., network topology,
status of links, available computing resources of nodes) obtained by interacting
with overseen nodes through the southbound interface [12], the SDN controller
records various features that can be used as input to the classification models.
Then, in response to a request for a computing task (with relevant demands)
forwarded by an ingress node, the SDN controller leverages the ML-based tech-
nique to choose the edge node in charge of executing it.
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More formally, we can define the input and output of our classification prob-
lem as follows.

Input. We associate to the m-th task request an input vector, j,,. For a
network with |N| potential executors, each input vector is characterized by a
vector of F features j, = (Jm,1,Jm,2, - jm,F). After a long selection process,
during which multiple choices have been tested, we set the number of features
F:2-|N| + 1, where:

® jm,1: is the maximum computation delay of the task j,,.

® (jm.is1) withi =[1,...,|N|]: represents the |N| costs, expressed in terms
of network usage, to execute the m — th task on the ¢ — th node computed
as follows:
K,
Jmi+1 = Am Z Sk S 2k (10)
k=1
® (it N)41) With @ = [1,...,|N]|]: is a boolean vector of |N| elements

which capture the constraints of the stated problem. Specifically, if con-
straints expressed by Eqgs. (7) and (8) will be satisfied for node 4, the value
of the i-th position of the vector will be 1, otherwise it will be 0.

Output: in response to the m-th input, each ML algorithm produces as
output a value y € N that corresponds to the potential executor selected to
serve the requested task. Once the executor is selected, the SDN controller
notifies it about the computing task duty and builds the required routing paths
for the task provisioning.

Several supervised ML techniques can be leveraged to address the formerly
defined classification problems as extensively surveyed in [43]. After testing
their performances, we selected a subset of them in alignment with related
work on task offloading in the edge computing domain [5], [8], [10], [15], [16] to
further assess their suitability to specifically tackle the problem at hand: (i) DT,
(#i) BTs (ensemble method), (4i) MLP, (iv) SVM. Such techniques are shortly
introduced in the following, whereas the main hyperparameters used for each of
them are summarized in Table 2. The dataset generation, which is common to
all of them, is instead described in the next Section.

4.1. Decision Tree

The DT method [44] exploits a binary tree-structured classifier to predict
the response in front of an input. Each node of the tree corresponds to checking
whether the value of a feature in the input vector satisfies a certain condition.
If the condition is met, the method goes down to the right child, otherwise, it
goes down to the left one. Each leaf node is associated with a response. It
means that, given an input, if sequential decisions led to a particular leaf node,
the response will be the class associated with that leaf node (the executor node
for a given computing task in our case).

11



Table 2: Main hyperparameters and settings for the training of considered ML techniques in
MATLAB®).

ML algorithm Setting

Decision Tree e Decision Tree algorithm: CART [44]

e Maximum number of split: 500

e Split criterion: Maximum deviance reduction
e Surrogate decision splits: Off

e Optimizer: Bayesian Optimization [45]

e Acquisition function: Expected improvement
per second plus

Bagged Trees e Ensemble method: Bag [46]

e Learner type: Decision Tree

e Maximum Number of splits: 488000

e Number of learners: 30

e Learner rate: 0.1

e Number of predictors to sample: all

MLP e Number of features: 61

e Number of input layer neurons: 61

e Number of output layer neurons: 30

e Activation function: Softmax function

e Loss function: Crossentropy

o Optimizer: Scaled conjugate gradient
[47] with: sigma=5x10"% lambda=5x10"",
mu=5x10"3

Linear, Quadratic, Cubic | e Kernel function: linear, quadratic, cubic
SVM e Box constraint level (C): 1

e Kernel scale mode () : Auto

e Multiclass method: One-vs-One

e Standardize Data: yes

e Optimizer: Bayesian Optimization [45]

e Acquisition function: Expected improvement
per second plus

4.2. Bagged Trees (ensemble method)

BTs have been designed for improving the performance of a single DT. The
basic idea is to consider multiple decision trees at the same time and to get the
output by aggregating the output of each tree. To obtain multiple DTs, multiple
training sub-sets are created by choosing random and repeatable samples from
the original dataset. Each subset is then used to train a different DT [48].

4.3. Multi Layer Perceptron

MLP is a class of feed-forward Artificial Neural Network (ANN) [49] that
consists of three or more layers of neurons: the input layer, the output layer
and one or more hidden layers. Each neuron is characterized by a nonlinear

12



activation function; the softmax activation function is commonly used in classi-
fication problems. When dealing with these kinds of problems, as in our study,
the purpose of an MLP is to classify an object starting from a particular set of
features which characterize the object. The number of features to be considered
corresponds to the number of neurons in the input layer, while each neuron
in the output layer corresponds to one of the possible classes an object may
belong to. During the training phase the connections between the neurons are
tuned so to respond to each input set of features by activating a single output
neuron corresponding to the predicted class of the object characterized by those
features.

4.4. Support Vector Machine

Given a set of objects characterized by F features, an SVM [50] classifies
them by finding the best hyperplane, in the F-dimensional features space, that
separates all data points of one class from those of another class. It is referred to
as the best hyperplane the one which has the greatest distance between the two
classes (or between each couple of classes if it deals with a multi-class classifica-
tion problem). Support Vectors are the nearest samples of two different classes.
They are used to calculate the distance between classes and the consequent
hyperplane. In addition to perform linear classification, as formerly described,
SVMs can efficiently perform a non-linear classification by mapping the original
features to a higher-dimensional space by means of a non-linear kernel function.
In our study, besides linear SVM, we considered SVM algorithms with quadratic
and cubic kernel functions.

5. Dataset generation

The dataset used to carry out our experiment with each of the aforemen-
tioned supervised learning methods is generated by exploiting the optimal so-
lution of the algorithm in Section 3, achieved through a standard optimization
solver. In particular, the dataset generation was made by executing 10,000
runs, which resulted in 487,997 samples (task requests).

The generated database has been splitted into the training and validation
sets according to the k-fold cross validation method, with k& = 10 [51], [52].
According to this approach, the dataset is divided in 10-folds of equal size
employing random sampling excluding repetition. Therefore, the models are
trained 10 times. For each training session, a different 1 fold is used as validation
set and the remaining ones as training sets. At the end of the process, the
prediction error is estimated as the mean average of the 10 individual errors
achieved during each training session. Thus, the above procedure allows to
obtain a performance evaluation of the observed model unbiased by any specific
partitioning of the dataset into training and validation subsets
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Table 3: Main simulation settings.
Parameter Setting
Processing capability (1;) | ® Leaf nodes: 250 - 10° CPU cycles/s
e Intermediate nodes: 500 - 10° CPU cycles/s
e Upper-layer /egress nodes: 10° CPU cycles/s
e Cloud: 10 -10? CPU cycles/s [53]
Maximum  computation | uniformly distributed in [10, 100] ms [54], [55],
delay (D7***) [56]
Average task computing | 10-10° CPU cycles [57]

workload (1)

Input data size (' s; ) 10 MB [58], [59], [60]
Arrival rate of requests for | 10 requests/s [61]
task (\;)

6. Performance Evaluation

6.1. Main objectives

The conducted analysis aims to assess the performance of the proposed ML-
based task placement strategies against the solution of the ILP problem (i.e.,
DMEP) achieved through a standard optimization solver. All the compared
schemes have the objective to choose the best edge nodes in which the tasks
have to be placed in order to minimize the exchanged intra-domain traffic, while
satisfying the delay constraint.

Simulations have been conducted by using the Neural Net Pattern Recog-
nition Tool of MATLAB®) for MLP solution. In addition, the solver provided
by the integration of MATLAB®) and IBM CPLEX Optimization Studio was
used to derive the optimal DMEP solution.

6.2. Settings and metrics

As reference edge topology, we considered a metropolitan area network [62],
[63] with 29 SDN edge nodes placed as shown in Fig. 1. Four upper-layer
nodes, linked in a full meshed topology, are the roots of four binary trees, each
one composed of three layers. Leaf nodes at the bottom behave as ingress nodes
to which producers/clients are linked. The node in the middle of the mesh
topology acts as the egress node that links the cloud with the edge domain.
Nodes have different processing capabilities, as reported in Table 3, where the
settings of the requested computing tasks are also indicated.

Four main classes of metrics are derived to comprehensively assess the per-
formance of the considered supervised learning techniques.

Time complexity. It is aimed at estimating the efficiency and scalability of
the considered supervised learning techniques.

ML-related metrics. After extracting the confusion matrices [64], starting
from traditional binary classification metrics, a set of multi-class metrics are
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Figure 2: Comparison of the considered supervised learning approaches against the optimal
solution (DMEP) in terms of computation time (D}*** € [10, 100] ms

).

derived through common averaging techniques in the literature, including ac-
curacy, macro average precision, macro average recall, and macro average F1
score? [65], [66].

Network usage metric. It is expressed in terms of data exchanged in the
domain and computed as the overall amount of input data (in bytes) transmit-
ted by producers to the selected executors multiplied by the number of hops
traversed by such data in the network. This metric reflects the effectiveness of
the proposal in minimizing the network usage.

Task-related metrics. They are specifically designed to assess how the re-
quested tasks are treated by the softwarized intelligent edge and include:

o Tuask offloading to the cloud: it represents the percentage of requested
computing tasks offloaded to the cloud.

e Task deadline missing probability: it represents the probability that the
computation time of executed tasks exceeds their maximum computation
delay.

o Average queuing time: it represents the average queuing time experienced
by tasks before their execution at the selected edge node.

o Average execution time: it represents the average time needed for the
execution of the requested tasks.

2Tt is worth noting that micro average precision, micro average recall and micro average
F1 score are equal to the accuracy metric, thus they are not explicitly inserted in Table 4 for
the sake of clarity.
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o Average computation time: it is the sum of the average queuing time and
the average execution time.

Among them, task offloading to the cloud and task deadline missing probability
reflect the effectiveness of the compared approaches in offloading the tasks, while
satisfying their deadline.

Values of the measured metrics are averaged over 200 runs and reported with
95% confidence intervals.

6.3. Time complezity analysis

The first set of results, reported in Fig. 2, aims to analyze the time complex-
ity of the considered supervised learning techniques against the DMEP solution
under high load conditions, versus the task requests rate. Fig. 2 gives also hints
on the scalability of the algorithms, whose execution time unavoidably increases
with the rate of requests. All simulation campaigns have been run on an Intel
Xeon Gold 6240, 2.6 GHz-18 cores (CPU), 32 GB (RAM), 1 TB (HD).

As expected, the computation time of the DMEP solution dramatically in-
creases with the rate of requests due to the enforced exhaustive search to find
the optimal solution. It can be clearly observed that, among supervised learning
techniques, DT and MLP are the most efficient solutions and well scale with
the number of task requests, being both significantly below 1s. The other ML-
based solutions provide too high algorithm computation time values which are
all above 10s. Hence, their usage is not practically viable.

6.4. ML-related performance

In the following, DT and MLP algorithms are only considered given their
lower time complexities w.r.t. the other supervised learning approaches, as the
problem instance size increases.

Table 4 shows the ML-related performance metrics. It can be observed
that the two compared techniques exhibit almost the same behaviour, with DT
slightly outperforming MLP.

In particular, for both models, the accuracy, which measures the ratio of
the number of correct task executor predictions to the total number of samples,
is close to 0.6. Interestingly, all other metrics are above 0.6. Specifically, the
macro average precision, which is computed as the arithmetic mean of all the
precision values for the different classes (i.e., edge nodes), is 0.66 and 0.62 for
DT and MLP, respectively. The macro average recall, derived as the arithmetic
mean of all recall scores for different classes, is equal to 0.63 for both techniques.
Macro average F1 score, measuring the harmonic mean of the macro average
precision and recall, is higher than 0.63 for both models.

To better understand the performance results and their impact on task of-
floading, starting from the confusion matrices, we derived in Tables 5 and 6 the
following probabilities for DT and MLP, respectively:

e P.: is the probability that a given task is effectively placed by DT/MLP
in the correct node (i.e., the one foreseen by the optimal solution).
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e P,..t: is the probability that a task, which should have been allocated
in a given node according to the optimal solution, is actually placed by
DT/MLP in an adjacent node in the same layer of the hierarchical topol-

ogy.

e P,,: is the probability that a task, which should have been allocated
in a given node according to the optimal solution, is actually placed by
DT/MLP in an adjacent node in the immediately upper layer (excluding
the cloud) of the hierarchical topology.

e Pi,uwn: is the probability that a task, which should have been allocated
in a given node according to the optimal solution, is actually placed by
DT/MLP in an adjacent node in the immediately lower layer of the hier-
archical topology.

® P inhers: is the probability that a task, which should have been allocated
in a given node according to the optimal solution, is actually placed by
DT/MLP in any other node except for those which are adjacent, in the
immediately lower and upper layers.

o P.,.q: is the probability that a task, which should have been allocated in
a given edge node according to the optimal solution, is actually placed by
DT/MLP in the cloud.

Results are calculated for each level, from the cloud to the ingress nodes
(level 4) of the considered hierarchical edge topology®. They clearly show that
DT and MLP techniques sometimes may fail to select the same node as the
optimal solution for the execution of a given task (the best one), as shown
by the values of P. columns in Tables 5 and 6. Notwithstanding, the executor
selected by ML techniques is most likely adjacent to the best one (as captured by
the values of Pyext, Pup, Paown, columns in Tables 5 and 6) Seldom, the selected
executor is more than one-hop far from the best one for each task request (as
shown by the low values of Pypers columns in Tables 5 and 6). Placing the
task in an adjacent node does not significantly affect the metrics of interest, i.e.,
amount of exchanged data, computation time, by still well approximating the
optimal solution (as it would be clearer in the following). This is because, in
our scenario, adjacent nodes have the same computing capabilities and they are
expected to provide similar computation times.

6.5. Supervised learning techniques Vs. the optimal solution

Fig. 3 reports the effectiveness metrics, when varying the rate of computing
task requests for the following schemes: DMEP, DT, MLP. In addition, to better
assess the impact of the delay constraint expressed in Eq. (7), curves labeled

3The probabilities Pujoud, Pup, and Pgown are not defined for tasks which are expected to
be placed into the cloud, into level 1 nodes and level 4 nodes, respectively.
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Table 4: ML-related performance metrics.

Metrics DT | MLP
Accuracy 0.59 | 0.58

Macro Average Precision | 0.66 | 0.62
Macro Average Recall 0.63 | 0.63
Macro Average F1 Score | 0.64 | 0.63

[

Table 5: Topology-aggregated confusion matrix for the DT (
ability).

stands for an ineligible prob-

Pc Pne:tt Pup Pdown Pothers Pcloud
Cloud | 0.924 0 0 0.049 0.027 -
Level 1 | 0.371 0 - 0.485 0.015 0.129
Level 2 | 0.570 | 0.236 | 0.058 | 0.113 0.022 0.005
Level 3 | 0.551 | 0.083 | 0.200 | 0.116 0.050 0
Level 4 | 0.691 0 0.194 - 0.114 0

as MEP are reported, which are representative of the formulated ILP problem
without considering the maximum tolerable delay for task execution.

In particular, Fig. 3(a) shows that the amount of data exchanged into the
edge domain reasonably increases as the rate of task requests increases, for all
the compared schemes, because more input data need to traverse the network
in order to reach the selected executors.

The proposed edge-based task placement solution, both in its optimal for-
mulation, DMEP, as well as when solved through DT and MLP, achieves a
significantly lower amount of exchanged data compared to a baseline scheme,
the CloudP approach, which foresees to transfer input data for each task to the
remote cloud, where tasks are all executed.

Interestingly, both DT and MLP satisfactorily well approximate the perfor-
mance of the optimal DMEP solution.

To meet computing delay constraints of tasks which cannot be allocated to
the edge, all the schemes, except for MEP, offload a percentage of tasks to the
cloud (up to a maximum of about 3% for MLP), as shown in Fig. 3(b). This
is because, if not offloaded remotely, tasks could be queued for a too long time
before being executed by edge nodes which exhibit significantly lower computing
capabilities compared to the cloud.

Contrarily to what happens with DMEP, where the delay bounds are as-
sured by hard constraints in the mathematical formulation of the optimization
model (Eq. (7)), when it comes to MLP and DT meeting such delay constraints
depends solely on the ability of the pursued approach to infer the correct place-
ment for each task. Therefore, although both DT and MLP achieve a quite
satisfactory precision, they may fail to predict the optimal placement for each
task also incurring in occasional violation of the delay bounds (see Fig. 3(c)).
Nonetheless such misclassification errors, the task deadline missing probabil-
ity values are in the order of 0.1, in the worst case, and well below the values
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[13%})

Table 6: Topology-aggregated confusion matrix for the MLP (
probability).

stands for an ineligible

Pc Pne:tt Pup Pdown Pothers Pcloud
Cloud | 0.962 0 0 0.027 0.011 -
Level 1 | 0.347 0 - 0.434 0.030 0.189
Level 2 | 0.550 | 0.186 | 0.068 | 0.150 0.045 0.007
Level 3 | 0.539 | 0.089 | 0.164 | 0.132 0.076 0
Level 4 | 0.695 0 0.163 - 0.141 0

achieved by MEP, which does not consider delay constraints in its formulation.
In doing so, MEP prioritizes task execution at the edge - no tasks are offloaded
to the cloud (Fig. 3(b)) - and, hence, it achieves the lowest amount of exchanged
data (Fig. 3(a)).

There are no remarkable differences between DMEP, MLP and DT in terms
of queueing delay (Fig. 4(a)), execution delay (Fig. 4(b)) and computation
delay (Fig. 4(c)). Moreover, the metrics are not significantly affected by the
task request rate.

Contrarily, in MEP, there is a faster increase in the average queuing delay
compared to the other solutions, when the rate of requests increases (Fig. 4(a)).
The average execution delay, instead, decreases when varying the rate of task
requests (Fig. 4(b)). This trend is due to the fact that MEP is agnostic of delay
constraints, thus it loads the nodes from the less capable to the more powerful
ones, and task requests may be queued for a long time before being executed by
edge nodes. Such trends are jointly captured by the computation delay shown
in Fig. 4(c).

Curves for the CloudP approach are also reported for the execution delay
and computation delay metrics (Fig. 4(b) and Fig. 4(c), respectively) with
values which approach 0, given the virtually unlimited computing capability of
the cloud and no queuing delay experienced before task execution.

Furthermore, results for all the measured metrics report trends without any
statistically meaningful variation with the increasing number of task requests,
as shown by the small confidence intervals.

6.6. Impact of delay constraints

Misclassification issues of DT and MLP can get critical when tasks exhibit
strict delay constraints. If tasks are not executed within their deadline, their
output may be meaningless for the requesting users and their execution may
uselessly waste resources. To fix them, we improved the conceived algorithms
through a post-processing procedure to be performed by the Task placement pol-
icy deployed at the SDN controller. In front of a temporary allocation provided
by the implemented ML-based strategy for a given task request, the network
application in charge of task placement checks if the delay constraints are met
for it. If it is not the case, the SDN controller decides to directly place that
task into the cloud in order to satisfy the delay constraint, although at the
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cost of a larger data exchange into the edge domain. We refer to the resulting
enhanced schemes as Constrained-MLP and Constrained-DT for the MLP and
DT strategies, respectively.

The last set of results compares the enhanced schemes against the basic ap-
proaches under different delay settings. In particular, without loss of generality,
values of the maximum delay constraints are uniformly distributed in two dif-
ferent ranges [10, 50] ms and [50, 150] ms, with bound values aligned with those
commonly considered in the literature, [67], [68], [69], to cover a wide set of
vertical application scenarios [70], with different requirements, spanning from
factory automation to automotive.

Figure 5(a) shows that the enhanced schemes (solid lines) exhibit a larger
amount of exchanged data compared to the basic ones (dashed lines). This is
because they offload a higher percentage of tasks to the cloud (about 35% for
MLP and DT with 500 requests/s as shown in Fig. 5(b)) to better satisfy delay
constraints. Figure 5(c) shows that the task deadline missing probability is close
to 0 whereas it approaches 0.45 and 0.4 with 500 requests/s, respectively for the
basic MLP and DT strategies.

Fig. 6 reports delay values for the compared schemes. It can be observed
that the benefits in meeting the delay constraints of the conceived enhanced
schemes get more remarkable as these constraints get stricter and the rate of
task requests increases (Fig. 6(a) and Fig. 6(c)). Indeed, higher differences
can be observed between the basic and the constrained approaches. This is
because as delay constraints get stricter, the basic approaches may experience
more misclassification issues.

7. Conclusions and future works

Allocating computing tasks with strict performance demands to heteroge-
neous edge nodes with limited capabilities is very challenging. Since task alloca-
tion is an online problem, it cannot be efficiently solved by standard optimization
solvers. In this work, we implemented a set of supervised learning techniques,
typically leveraged in the literature to address multi-class classification prob-
lems and, more specifically, task offloading at the edge. We customized these
techniques to solve the formulated task placement optimization problem.

Although such techniques require heavy training procedures, the latter ones
can be performed offline and hence, they do not affect the task placement de-
cision time. In particular, among tested techniques, MLP and DT prove to be
the most efficient solutions in terms of execution time for the task allocation
decision, with DT achieving slightly lower execution time values than MLP

Results collected under a wide variety of settings showcase that, besides
being computationally-efficient, MLP and DT provide a good approximation of
the solution achieved through a standard optimization solver. Indeed, they are
both satisfactorily successful in minimizing the amount of data exchanged in
the edge domain which is the objective of the formulated optimization problem.
MLP is slightly better performing in satisfying the task deadline compared to
DT.
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Furthermore, enhanced versions of the aforementioned techniques have been
devised to face possible misclassification issues due to the inability to meet the
task delay constraints, which get particularly critical for tasks with stricter de-
mands. Whenever the task placement network application at the SDN controller
realizes that the placement decision from the ML technique does not meet the
task delay constraint, regardless of the suggested executor, the task is offloaded
to the cloud. With the conceived enhancements, the two techniques perform
almost equally.

The work has room for further improvements. Under highly dynamic edge
environments, task offloading decisions may face unseen scenarios, e.g., in terms
of tasks requests rate, for which relevant labeled data may be difficult to obtain.
Semi-supervised learning (SSL) techniques can help solve this issue, thus com-
plementing our solution. Among the many SSL techniques, extensively surveyed
for instance in [71], wrapper methods can be coupled with the ML techniques
proven to be the best performing in our study, i.e., DT and MLP. Of course, the
applicability in our context of such SSL techniques, which can be used with vir-
tually any supervised base learner, requires further investigation to understand
the performance improvements and the price to pay to achieve them. For in-
stance, self-training, the most basic of pseudo-labelling approaches, would take
a longer time, since it requires additional iterations to obtain predictions for the
unlabelled data points in addition to the training of the model on labelled data.
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