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Abstract—In multi-provider 5G/6G networks, service delega-
tion enables administrative domains to federate in provisioning
NFV network services. Admission control is fundamental in se-
lecting the appropriate deployment domain to maximize average
profit without prior knowledge of service requests’ statistical
distributions. This paper analyzes a general federation contract
model for service delegation in various ways. First, under the
assumption of known system dynamics, we obtain the theoretically
optimal performance bound by formulating the admission control
problem as an infinite-horizon Markov decision process (MDP)
and solving it through dynamic programming. Second, we apply
reinforcement learning to practically tackle the problem when
the arrival and departure rates are not known. As Q-learning
maximizes the discounted rewards, we prove it is not an efficient
solution due to its sensitivity to the discount factor. Then, we
propose the average reward reinforcement learning approach (R-
Learning) to find the policy that directly maximizes the average
profit. Finally, we evaluate different solutions through extensive
simulations and experimentally using the 5Growth platform.
Results confirm that the proposed R-Learning solution always
outperforms Q-Learning and the greedy policies. Furthermore,
while there is at most 9% optimality gap in the ideal simulation
environment, it competes with the MDP solution in the experi-
mental assessment.

Index Terms—Multi-Provider Service Delegation, Admission
Control, MDP, Average Reward RL, Dynamic Programming

I. INTRODUCTION

Service provisioning in 5G/6G networks is challenging in
a context with diverse quality of service (QoS) requirements,
heterogeneity of infrastructure resources and shrinking per-
service revenues. To cope with these challenges, innovative
principles including network slicing, network softwarization
using Software Defined Networking (SDN) and Network
Function Virtualization (NFV), and multi-domain service or-
chestration have been proposed in the architecture of the net-
works [1]–[3]. In multi-domain service orchestration, multiple
providers federate/collaborate in provisioning network services
(NSs) consisting of Virtual Network Functions (VNFs) in-
terconnected by virtual links [4]–[6]. In multi-provider ser-
vice delegation, as a kind of multi-domain orchestration, the
customer of the consumer domain (CD) requests an NS that
is either deployed locally in the CD or delegated to the
peering provider domain (PD). This is done transparently to
the customer (i.e., CD decides) based on a CD-PD federation
contract specifying the technical and business agreements
between the domains [7]. In this paper, we use multi-domain
and multi-provider interchangeably.

Admission control (AC) is a key issue in multi-provider
service delegation as it determines the service deployment
domain [8]. Indeed, the AC of the CD makes the highest level
of service-orchestration decisions, which directly impacts on
the business profit of the CD domain. It decides how the local
resources of the CD and the external resources, offered by
the PD through the established federation contract, should be
used for provisioning heterogeneous services with different
revenues. The admission controller decisions get more impor-
tant as the heterogeneity of services increases, which is the
case in 5G/6G networks, and consequently, different demands
should be treated in different ways. Inappropriate decisions
by the admission controller, that do not take the heterogeneity
into account, will lead to QoS degradation and profit loss.
Therefore, AC is a powerful tool for the service provider
to aim for various objectives, like profit maximization, load
balancing, or QoS guarantees [9], by deploying each NS in
the most appropriate domain.

In this paper, we study the AC of the Multi-Provider Service
Delegation (AC-MPSD) problem, where there is a CD and
a PD. The federation contract established between domains
specifies the service catalog they share, the resource quotas
reserved in the PD for delegation purposes, and the per-
service associated cost. Upon arrival of an NS request, without
prior knowledge of future NS requests, the AC decides either
to admit or to reject the request. In case of admission, it
also determines the deployment domain. In this problem, the
objective is to find an AC policy that maximizes the long-
term average profit of the CD subject to the delegation cost.
This problem is not fully addressed in the literature. In the
last years, various approaches have been proposed for AC in
5G [10]; however, they cannot be applied directly to the AC-
MPSD problem as they consider single domain networks.

Recently, AI/ML techniques have been extensively applied
to networking problems [11]–[13]. Approaching the AC-
MPSD problem with AI/ML methods is also promising. In this
problem, the admission controller decides for each NS request
without prior knowledge of future demands, hence it is an
instance of the sequential decision making under uncertainty
problem, which can be tackled efficiently by Reinforcement
Learning (RL) [14]. While finding an optimal AC policy using
RL has been studied previously [15]–[17], they cannot be
applied to the AC-MPSD problem, as they were proposed in
contexts other than multi-provider service delegation.

Existing AC solutions were mainly evaluated in simulation
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environments that raise questions about their performance
and efficiency in real networks. In this paper, besides in
extensive simulations, the proposed solution is evaluated in
a realistic environment using the publicly available 5Growth
platform 1 [18], an NFV/SDN-based orchestration framework
with AI/ML capabilities to perform closed-loop automation
and zero-touch service and network management.

To sum up, to the best of our knowledge, despite the po-
tential of the service delegation concept in the multi-provider
5G/6G networks and the crucial role of AC in this context, the
AC-MPSD problem has not yet been studied in detail. In this
paper,we extend our two preliminary works on this problem
[8], [19] and we make the following contributions:
• Using a flexible federation contract model, and by assum-

ing known system dynamics, the problem is formulated
as a Markov Decision Process (MDP). Its solution by
the Dynamic Programming (DP) Policy Iteration (PI)
algorithm provides the theoretical optimal AC policy.

• The drawback of applying the widely-used Q-Learning
algorithm to the AC-MPSD problem, due to the sensitiv-
ity to the discount factor is analytically proved and also
numerically justified.

• A model-free average reward-based RL algorithm is
proposed as a practical solution to maximize the long-
term average profit.

• The proposed solution is implemented and evaluated in
an experimental setup using the 5Growth orchestration
platform as well as with extensive simulations that show
a near-optimal performance.

The remainder of this paper is organized as follows. In
Section II, the related works are reviewed. The system model
and problem statement are discussed in Section III. In Section
IV, the problem is formulated as an MDP and solved by PI.
The RL approaches are discussed in Section V. In Section
VI, the numerical results of the simulations, as well as the
experimental testbed results, are presented. Finally, in Section
VII, we conclude this paper.

II. RELATED WORK

In this section, we review three categories of related work,
i.e., (i) service federation in multi-domain networks, (ii) AC
in 5G networks, and (iii) RL-based AC solutions; and identify
the differences between those studies and this paper.

Multi-domain orchestration is an inherent concept in 5G/6G
network architecture [1], [2], but its realization needs resolving
research challenges and implementation issues [4], [6]. From
the theoretical point of view, the problem is formulated as op-
timization models, and due to the complexity of the problem,
heuristic algorithms are proposed to find sub-optimal solutions
in [5], [20], [21]. These preliminary works were extended later
to consider more complex objective functions, e.g., energy
efficiency [22], [23], and network service latency [24]. To
tackle the complexity of the problem, a topology aggregation
technique [25] and a deep learning-based solution [26] were

1https://github.com/5growth

also proposed recently. From the implementation point of
view, the architectural framework for multi-domain service
orchestration [27] and, more specifically, service federation
[7], [28] were also studied. In the 5G-Transformer platform
[29], [30], the service federation component was developed so
that it is capable of deploying NSs spanning multiple domains
and transport networks. While these theoretical studies and
the practical developments address some aspects of the multi-
domain service orchestration, they do not specifically consider
the AC problem; i.e., they assume that the service has already
been accepted and attempt to efficiently deploy it.

Admission control in 5G networks has been the topic of
many studies in recent years [10]. Various objectives are
aimed, including revenue maximization [13], [31] and fairness
assurance [32]. Different strategies, and techniques have been
utilized to achieve these goals. The most straightforward
approach is to greedily attempt to accept any given NS request.
However, to get closer to the optimal policy, techniques based
on optimization theory [31], and reinforcement learning [13]
have also been proposed. In [33], the authors formulated the
AC problem in the case of two inelastic and elastic traffic
models as a Semi-Markov decision problem, and then obtained
the optimal policy to maximize the revenue of the service
provider. These solutions cannot be applied directly to the AC-
MPSD problem, since they are proposed for single-domain
networks, hence without service delegation.

RL is an adequate tool to deal with the AC problem through
which the admission controller learns the appropriate policy
via the rewards gained over time. For the first time, AC in
multimedia networks was approached by RL in [34]. Later
the authors extended the problem and dealt with the joint
routing and admission control via RL in [35]. Recently, the
joint AC and routing problem in SDN has been investigated via
approximate dynamic programming [36]. In wireless networks,
RL-based AC solutions have also been proposed. In [15],
AC in cellular networks is formulated as an MDP. AC in
CDMA networks using RL was studied in [37]. Recently, in
5G networks, the network slice admission control problem
is formulated as an MDP in [16], and RL-based solutions
are proposed in [17], [38]. While these works approach the
AC problem using RL, they are not applicable to the service
delegation problem, since the contexts of those problems are
quite different from multi-domain service orchestration.

In the most closely related work, Q-Learning was applied
to a similar problem [8]. However, this paper differs from
that one by considering a more general and flexible federation
contract model, analytically investigating the limitation of Q-
Learning, proposing an average reward-based RL algorithm,
and implementing the solution using the 5Growth platform.



III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Assumptions and System Model

In this paper, we consider a multi-provider network, which
is composed of a CD and a PD2. Via the federation contract
established between the domains, the CD, in addition to its
own local resources, uses the reserved resource quotas in the
PD to satisfy service provisioning requests. In these domains,
there are R = {1, 2, . . . , R} types of resources. The total
resources of the CD are denoted by vector C̄l = [C̄l1, . . . , C̄

l
R]

where C̄lk is the total amount of resource type k in this
domain; e.g., the total number of CPU cores. According to the
federation contract, the PD also reserves C̄p = [C̄p1 , . . . , C̄

p
R]

amount of resources for the delegated NSs. Define Cl and Cp

as, respectively, the current available capacities of C̄l and C̄p.
I = {1, 2, . . . , I} types of NSs are requested to the CD;

each type i ∈ I is defined by tuple (ci, ri) in the service
catalog, where ri is the revenue of the CD if an instance of
the service is admitted; and ci = [ci,1, . . . , ci,R], where ci,k
is the total aggregated amount of resources type k required
by the VNFs of the NS, e.g., the total required CPU cores by
all the VNFs. We assume that the arrival of the requests for
NS type i as well as the departure of those NSs are Poisson
processes with average rate λi and µi respectively. Therefore,
an NS δi of type i as far as timing is concerned is specified
by (τsδ , τ

e
δ , i) where τsδ and τeδ are respectively the arrival and

departure time of the NS request that are determined by λi
and µi, and i is the type of the requested service.

In the considered model of the federation contract, even if
the reserved quota C̄p in the PD is exceeded, NS requests
can still be delegated but at an additional overcharged cost
until the resource consumption by the delegated NSs exceeds
a reject threshold. More specifically, in the federation contract,
besides the C̄p, three additional parameters are specified: (i)
delegation fees Σ = [σ1, . . . , σI ], (ii) overcharging scales
Ω = [ω1, . . . , ωI ] ≥ 1, and (iii) reject thresholds Θ =
[θ1, . . . , θR] ≥ 1. We define C̄p

θ = Θ ⊗ C̄p, which is the
element-wise multiplication of vectors Θ and C̄p, and let Cp

θ

be the current available capacity of Θ⊗ C̄p. Based on these
parameters, the cost of delegating δi is as follows where the
vectors are compared element-wise:

∆(δi) =

{
σi, if ci ≤ Cp

ωiσi, if ∃ k s.t. ci,k > Cpk and ci ≤ Cp
θ

Note that in the case of ci,k > Cpθ,k for some k, the NS
cannot be deployed in the PD. Moreover, we assume that the
delegation cost of an NS δi is determined by ∆(δi) at the
arrival time τsδ and does not change later. Finally, in general,
ωi can be a function of Cp, Cp

θ , ci without affecting the
problem formulation and the proposed solutions.

It is worth noting that this federation contract model has the
flexibility to implement various pricing strategies, for example
by setting Θ = 1, there won’t be any overcharged request, i.e.,

2The presented analyses and solutions in this paper can be extended to the
scenarios with multiple PDs without substantial modifications; it is omitted
for the sake of simplicity of presentation.

δi will be rejected if ∃ k s.t. ci,k > Cpk ; or if Θ is sufficiently
large, there won’t be any rejection, i.e., PD always accepts
delegated NSs but overcharges them.

B. Problem Statement

In this paper, we study the following on-line AC-MPSD
problem. There is a CD with capacity C̄l that provides I types
of services. It established a federation contract (C̄p,Σ,Ω,Θ)
with a PD. NS requests for each type i arrive one-by-one at
rate λi. Upon such arrival, the admission controller, without
knowledge of the future requests, decides whether to (i) accept
the NS request to be deployed in the CD, yielding profit ri,
which is possible only if ci ≤ Cl, or (ii) delegate it to the PD,
only if ci ≤ Cp

θ , that yields profit ri −∆(δi), or (iii) reject
the NS request. The admitted NSs will depart the network at
rate µi (defined per service type).

Define Dt = {δi ∀i ∈ I s.t. τsδ ≤ t} as the set of NS
requests arrived before time t. Let Lt be the set of the NSs
δi ∈ Dt deployed locally in the CD, and similarly Ft is the
set of delegated NSs to the PD. The AC-MPSD problem is

max lim
t→∞

1

|Dt|
∑
i∈I

( ∑
δi∈Lt

ri +
∑
δi∈Ft

(
ri −∆(δi)

))
, (1)

subject to: ∑
i∈I

∑
δi∈Lt

ci ≤ C̄l, ∀t, (2)

∑
i∈I

∑
δi∈Ft

ci ≤ C̄p
θ , ∀t, (3)

where (1) is the long-term average profit of the CD; and (2)
and (3) respectively satisfy the capacity constraint of the CD
and PD. This problem cannot be solved by the traditional
optimization theory techniques, e.g., integer programming,
because the NS requests arrive one-by-one and all the required
information is not available at the beginning.

IV. OPTIMAL SOLUTION

The AC-MPSD is an instance of the sequential decision
making under uncertainty problem where a decision-making
agent takes a sequence of decisions in an uncertain environ-
ment. Each decision, besides the uncertain dynamics of the
environment, changes the state of the environment and leads
to a reward. The decision maker’s objective is to maximize
a cumulative long-term reward. Assuming that the dynamics
of the environment are known in the form of transition
probabilities between the states, a Markov Decision Process
(MDP) is an efficient tool to model and solve the problem. In
this section, we formulate the AC-MPSD problem as an MDP;
then, utilize Dynamic Programming (DP) to find the optimal
solution via the Policy Iteration (PI) algorithm.

A. MDP Formulation

A finite MDP is defined by the tuple (S,A,P,R, γ). S =
{1, 2, . . . , S} is the set of the states of the environment. As for
the action set, A = {A(1),A(2), . . . ,A(S)}, where A(s) is
the set of the actions that the decision-making agent is allowed



to take in state s. R(s, a): S×A(s)→ R is the reward function
that determines the reward of each action a ∈ A(s) in state
s. Function P(s, a, s′): S ×A(s)×S → [0, 1] determines the
probability of transition from state s to state s′ when taking
action a in state s. Finally, γ is the reward discount factor
that is discussed in the following. To formulate the AC-MPSD
problem as an MDP, the sets S and A, the functions R and
P, and the parameter γ are specified as follows.

1) States: The state of the environment is defined as

s = (Cl,Cp
θ , l,f ,d). (4)

In this definition, l = [l1, l2, . . . , lI ] and f = [f1, f2, . . . , fI ]
are, respectively, the numbers of currently deployed NSs in the
CD and PD for each type of service. Borrowing ideas from
[15], d is the vector [d1, d2, . . . , dI ], where arrival (departure)
of an NS of type i is indicated by di = +1 (di = −1).
Note that since no simultaneous events occur at the same
time, only one entry of d is non-zero. The reason behind
definition (4) is to maintain the Markov property and, also, to
include sufficient details of the environment for computing the
transition probabilities, which are discussed in the following.

2) Actions and Rewards: Four actions/decisions are defined
in the AC-MPSD problem. Action accept corresponds to the
local deployment of the requested NS in the CD. To deploy the
NS in the PD, the admission controller takes action delegate.
The NS request is rejected with no profit or penalty and no
resource consumption, if the action reject is taken. Moreover,
a dummy action none is also defined, which is only taken
when an NS is departing the network. This is an artificial
action used to derive the transition probabilities in a tractable
way as explained in the following subsection.

All actions are not allowed in every state. Let S+
i = {s ∈

S s.t. di = +1}, i.e., the set of states with an NS request
arrival of type i, and S−i = {s ∈ S s.t. di = −1}, i.e., the
set of states with an NS departure of type i. The set A(s)
determines the valid actions in state s as follows:

A(s) includes


reject if s ∈ S+

i

accept if s ∈ S+
i and ci ≤ Cl

delegate if s ∈ S+
i and ci ≤ Cp

θ

none if s ∈ S−i
reject is always in A(s) for S+

i , but accept (delegate) is
included only if the CD (PD) has available resources.

In the AC-MPSD problem, the reward is the profit obtained
by deploying each NS request δi; so, it is independent of the
next state and only determined by the action taken in the state.
More specifically, the rewards of actions reject and none are
R(s, none) = R(s, reject) = 0; if the action accept is taken,
the reward is R(s, accept) = ri and in the case of delegate,
it is R(s, delegate) = ri −∆(δi).

3) Transition Probabilities: In AC-MPSD, the state transi-
tion probabilities are determined by the arrival and departure
rates of NS requests. In this section, under the assumption of
known λi and µi ∀i ∈ I, we obtain the transition probabilities
P(s, a, s′) ∀s, s′ ∈ S and ∀a ∈ A(s).

Algorithm 1 P(s, a, s′)

1: if a ∈ {reject, accept, delegate} then
2: Pr(s̃ | s, a)← 1

3: else
4: if ∃ i s.t. l′ = l− ei then . Departure from CD
5: Pr(s̃ | s, a)← li

li+fi

6: else ∃ i s.t. f ′ = f − ei . Departure from PD
7: Pr(s̃ | s, a)← fi

li+fi

8: Λ(s̃)←
∑
i∈I λi . Total arrival rate in s̃

9: M(s̃)←
∑
i∈I(l′i + f ′i)µi . Total departure rate in s̃

10: if ∃ j s.t. s′ ∈ S+
j then . Arrival of type j; d′j = +1

11: Pr(d′ | s̃)← λj

Λ(s̃)+M(s̃)

12: else ∃ j s.t. s′ ∈ S−j . Departure of type j; d′j = −1

13: Pr(d′ | s̃)← (l′j+f ′j)µj

Λ(s̃)+M(s̃)

14: return Pr(s̃ | s, a)× Pr(d′ | s̃)

The transition from s to s′ takes place in two stages.
First, the action a taken in state s is immediately applied
to the environment that changes domain resources Cl or
Cp
θ as well as l or f ; now, we say the system is in

the transient state s̃ = (Cl′,Cp
θ
′
, l′,f ′,−). Then, in the

second stage, an arrival or departure event d′ occurs that
leads to the new state s′ = (s̃,d′). These transitions are
independent; therefore, the transition probability from s to
s′ is P(s, a, s′) = Pr(s̃ | s, a) × Pr(d′ | s̃). Pr(s̃ | s, a) is the
probability of transition to state s̃ if action a is taken in s
and it equals 1 for the reject, accept, and delegate actions,
as the changes in the environment due to these actions are
deterministic. However, for the none action, the departing NS
δi can be from the CD or the PD. The probability of the former
event is li/(li + fi), while the latter happens with probability
fi/(li + fi). Pr(d′ | s̃) is the probability that the environment
generates events d′, i.e., arrival or departure of a new NS δj
while in state s̃. Due to the Poisson assumption for the arrival
and departure rates of the events, this probability is computed
according to the competing exponentials theorem, hence the
probability of an event is equal to the rate of the event divided
by the total rates of all possible events. In our case, the total
rate of events in state s̃ is Λ(s̃)+M(s̃) which are, respectively,
the total arrival and departure rates. The details of function
P(s, a, s′) are explained in Algorithm 1, where ei is a vector
with 1 in entry i and 0 elsewhere.

4) Discount Factor: Solving an MDP means finding a pol-
icy π(s) that determines the action a ∈ A(s) ∀s ∈ S in order
to maximize the cumulative reward obtained over time, which
is called the expected return. In infinite horizon MDPs, as it is
the case in AC-MPSD, every policy π with R(s, a = π(s)) >
0 will lead to the total return

∑∞
t=0 R(st, at = π(st)) = ∞

regardless of the action taken in each state; hence, it does
not make sense to compare the goodness of policies in this
case.For this reason, commonly, the reward is discounted [14],



[39]; and the expected discounted return for each time t̄,

Gt̄ =

∞∑
t=t̄

γtR(st, at = π(st)), (5)

is optimized, where γ ∈ [0, 1) is the discount factor. This
discounting not only makes sure Gt̄=0 � ∞, but also it
determines the importance of the immediate rewards compared
to future rewards. For example, γ = 0 means that only
the immediate reward R(st̄, at̄) is taken into account, which
corresponds to the greedy policy that does not consider the
future rewards in making decisions.

The objective of the AC-MPSD problem, defined in (1),
is indeed maximizing the average reward, not the discounted
expected return. However, it is known that by setting γ → 1,
maximizing (5) approximates the average reward [39]; so, in
the MDP formulation of AC-MPSD, we set γ ≈ 1.

B. Policy Iteration Algorithm

In this section, the optimal policy π∗ is obtained by solving
the MDP using dynamic programming. For policy π, we define
state-value vπ(s) = Eπ[G0|s0 = s], which is the expected
discounted return starting from state s. The Bellman optimality
equation [14] states that for the optimal policy π∗, we have

vπ∗(s) = max
a∈A(s)

∑
s′∈N (s,a)

P(s, a, s′)
(
R(s, a) + γvπ∗(s

′)
)

;

where N (s, a) is the set of the possible next states in case of
taking action a in state s. Having the optimal state values, the
optimal policy is π∗ = argmaxa vπ∗ .

The recursive equation vπ∗(s) can be solved by iterative
dynamic programming methods such as the Policy Iteration
algorithm [14]. The main loop of this algorithm is composed
of two other loops. In the policy evaluation loop, it evaluates
the given policy π by updating the state values v(s) as

v(s) =
∑

s′∈N (s,a)

P(s, a, s′)
(
R(s, a) + γv(s′)

)
,

until the values converge. In the policy improvement loop, for
all the states, it updates the policy as

π(s) = argmax
a

∑
s′∈N (s,a)

P(s, a, s′)
(
R(s, a) + γv(s′)

)
.

The main loop terminates when there is not any change in
the policy that implies the current policy is the optimal policy
satisfying the Bellman equation.

To apply the PI algorithm on the AC-MPSD problem,
besides the transition probabilities given by Algorithm 1, the
set N (s, a) is also needed for each action in each state, which
is obtained by Algorithm 2. It first finds the possible transient
states s̃1 (and s̃2) according to the action a, then arrival (and
departure) events are included to generate the next state s′.

Although the PI algorithm achieves the optimal solution, it
can only be used for theoretical performance analysis rather
than as a practical solution, because of the following unre-
alistic assumptions. First, it needs the transition probabilities

Algorithm 2 NextState(s, a)

1: i← the index of d which is not zero
2: if a = reject then . No update in the domains
3: s̃1 ← (Cl,Cp

θ , l,f ,−)

4: else if a = accept then . Update the CD
5: s̃1 ← (Cl − ci,C

p
θ , l + ei,f ,−)

6: else if a = delegate then . Update the PD
7: s̃1 ← (Cl,Cp

θ − ci, l,f + ei,−)

8: else if a = none then . Either CD or PD can be updated
9: s̃1 ← (Cl + ci,C

p
θ , l− ei,f ,−)

10: s̃2 ← (Cl,Cp
θ + ci, l,f − ei,−)

11: for s̃ ∈ {s̃1, s̃2} do
12: for j ∈ I do
13: d′ ← ej . Arrival event per-service type
14: s′1 ← (s̃,d′)

15: if l′j + f ′j > 0 then
16: d′ ← −ej . Departure only if any deployed NS
17: s′2 ← (s̃,d′)

18: N ← N ∪ {s′1, s′2}
19: return N

P(s, a, s′). However, the exact statistical information of the
arrival/departure rates of the NS requests is typically not
known. Second, it needs all the states of the MDP, but this is
impractical, as the number of the states grows exponentially
with the size of the problem including I , C̄lk/ci,k, C̄pk/ci,k
and θk. Third, it assumes the environment immediately transits
from s to s̃ before the next event occurs, i.e., the instantiation
and termination of NSs take zero time; but, in practice, as elab-
orated in the experimental implementation in Section VI-E,
the actual time is not zero. Therefore, the real system is not
exactly the MDP and, consequently, PI does not necessarily
provide the optimal policy. In the next section, we present the
RL-based solution that does not require these assumptions.

V. REINFORCEMENT LEARNING-BASED SOLUTIONS

Reinforcement Learning (RL) is an alternative approach to
solve MDPs where the decision-making agent learns the opti-
mal policy via interaction with the environment. In this section,
first, we analyze the problem of applying the commonly-used
Q-Learning algorithm for the AC-MPSD problem, and then,
we present the R-Learning algorithm.

A. Q-Learning Drawback

Q-Learning is a widely used RL technique to solve sequen-
tial decision making problems. It works based on action-value
function qπ(s, a), which is the expected discounted return
starting from state s, performing action a, and then following
policy π [14]. The Bellman optimality equation states that

q∗(s, a) =
∑

s′∈N (s,a)

P(s, a, s′)
(
R(s, a)+γ max

a′∈A(s′)
q∗(s′, a′)

)
,

and, consequently, the optimal policy is

π∗(s) = argmax
a∈A(s)

q∗(s, a). (6)



To iteratively solve this equation, Q-Learning maintains a
table Q[s, a] that estimates the action value and is updated by
interacting with the environment as follows [14]:

Q[s, a]← Q[s, a]+α
(
R(s, a)+γ max

a′∈A(s′)
Q[s′, a′]−Q[s, a]

)
.

This update is based on the bootstrapping and temporal
difference concepts. By bootstrapping, the agent assumes that
the expected return in the next state s′ is maxa′∈A(s′)Q[s′, a′].
Thus, it obtains a new estimate of Q[s, a] as R(s, a) +
γmaxQ[s′, a′]. Then, the temporal difference between the
current value of Q[s, a] and the new estimate is used to update
the Q table by the learning rate α.

While Q-Learning is a popular RL algorithm and it has
been applied successfully in a wide range of finite horizon
episodic problems, it was shown that the algorithm cannot find
the optimal solution in (some kinds of) infinite horizon MDPs
due to maximizing the discounted reward [40]. The AC-MPSD
problem is also an infinite horizon MDP, and the following
theorem pinpoints the drawback of using Q-Learning for the
problem. To the best of our knowledge, it is the first time of
such a proof is provided for a non-artificial MDP.

Theorem 1. Let Pr(a | s) be the probability of taking action
a in state s; define f(γ) = Pr(delegate | s) − Pr(accept | s).
First, f(0) ≤ 0; second, ∃S ′ ⊂ S where {delegate, accept}
∈ A(s) ∀s ∈ S ′ and f(γ) is an increasing function of γ.

Proof. The proof is given in the Appendix.

We have the following corollaries from the theorem, which
are also justified by the simulation results in Section VI:
• If γ = 0 then Pr(delegate | s) ≯ Pr(accept | s), so the

agent always prefers to deploy NSs in the CD rather than
in the PD; i.e., it follows the sub-optimal greedy policy.

• When the CD has sufficient resources, obviously the op-
timal policy is π(s) = accept ∀s ∈ S, but γ ≈ 1 implies
the existence of S ′ ⊂ S such that Pr(delegate | s) >
Pr(accept | s) ∀s ∈ S ′, leading to a sub-optimal policy.

Therefore, neither γ → 0 nor γ → 1 is the optimal
setting for all configurations. In fact, as seen in the simulation
results, the optimal value of γ depends on the C̄l, C̄p as
well as on λi and µi which are not known beforehand. As
mentioned, the root of the problem is that Q-Learning finds
the policy to maximize the discounted reward instead of the
true objective of the AC-MPSD problem stated in Equation
(1), that is average reward maximization. In the next section,
we use another reinforcement learning algorithm that directly
optimizes the average reward.

B. Average Reward RL

An alternative solution to tackle the infinite accumulated
reward issue is to maximize the average reward (7) instead of
the discounted reward (5):

Gt̄ = lim
T→∞

1

T

T∑
t=t̄

R(st, at). (7)

To this end, define T -step state-value function for policy π as

ṽTπ (s) = Eπ
[ T∑
t=0

R(st, π(st))
∣∣∣ s0 = s

]
, (8)

and the average return of the policy π as

ρπ(s) = lim
T→∞

ṽTπ (s)

T
. (9)

It is proved that in ergodic unichain MDPs, which is the
case for the AC-MPSD problem, the average return for a
given policy π is independent of the state [39], i.e., ρπ(s1) =
ρπ(s2) = ρπ ∀s1, s2 ∈ S where ρπ is the average return by
policy π. This is the key observation in the development of the
iterative algorithm, named R-Learning [40], to find the optimal
policy for maximizing the average reward.

Define ρ∗ as the maximum value of the average return of the
MDP, which is not known in advance, and let ρ be the current
estimate of ρ∗ by the algorithm. In the R-Learning algorithm,
through interactions with the environment in a number of
episodes, the objective is to find a policy π such that ρπ ≈ ρ∗.
However, the problem of using (8) to find the optimal policy
is that it is possible to have two policies π1 and π2 such
that ṽTπ1

(s) > ṽTπ2
(s) for a T � ∞ and some s. In this

case, naturally, π1 should be preferred over π2, but because of
limT→∞

1
T in definition (9), we have ρπ1

= ρπ2
that implies

no preference between the policies [39], [40]. To solve this
problem, in this context, the relative (or bias) action-value
function is defined as follows:

qπ(s, a) = Eπ
[

lim
T→∞

T∑
t=0

(
R(st, π(st))−ρπ

)∣∣∣ s0 = s, a0 = a

]
which can be seen as the relative gain of action a in state
s compared to the average reward of the policy. By these
definitions, for the bias-optimal policy π∗ where ρ∗ ≥ ρπ ,
we have qπ∗(s, a) ≥ qπ(s, a) ∀s ∈ S ∀a ∈ A(s) [39].

The R-Learning algorithm approximates the bias-optimal
policy as follows. The algorithm starts from initial estimates
of the average reward ρ and the Q table. Then, in n episodes,
each one composed of m NS requests, it interacts with the
environment and computes how much the reward of the
action can be better than the estimated average return. More
specifically, the agent, using an exploration strategy, such as
ε-greedy [14], takes action a in state s and observes reward
R(s, a), then it computes an estimate of the action gain as

(R(s, a)− ρ) + max
a′∈A(s′)

Q[s′, a′],

where the first term is the relative immediate gain of the action,
and the second term, by bootstrapping, is the expected relative
gain obtained in the future states following the same policy.
Finally, similar to Q-Learning, the R-Learning algorithm also
utilizes the temporal difference concept and updates the action
value by a learning rate α as follows

Q[s, a]← Q[s, a]+α
(

(R(s, a)−ρ)+ max
a′∈A(s′)

Q[s′, a′]−Q[s, a]
)
.



Algorithm 3 R-Learning(n, m, ᾱ, β̄, ε̄, φ)
1: Arbitrary initialize Q[s, a] ∈ R ∀s ∈ S, ∀a ∈ A(s)
2: ρ← 0
3: for n episodes do
4: α← D(ᾱ, φ), ε← D(ε̄, φ), β ← D(β̄, φ)
5: Reinitialize the environment
6: s← environment state (C̄l, C̄p

θ ,0,0,d)
7: for m NS requests do
8: a← action by an exploration strategy with parameter ε
9: Send action a and the NS request to the environment

10: Observe the outcome s′ and R(s, a)

11: Q[s, a]← Q[s, a]+α
((

R(s, a)−ρ
)

+max
a′

Q[s′, a′]−Q[s, a]
)

12: if Q[s, a] = max
ā

Q(s, ā) then

13: ρ← ρ+ β
(
R(s, a)−max

ā
Q[s, ā] + max

a′
Q[s′, a′]− ρ

)
14: s← s′

15: return π ← argmax
a

Q[s, a] ∀s ∈ S

Having Q[s, a], the policy will be π(s) ← argmaxaQ[s, a]
∀s ∈ S . But the ρ used in this equation is not known in
advance. Different approaches have been considered to learn
it over time [41]. Here, we use the following rule proposed in
[40] to update ρ as

ρ← ρ+ β
(
R(s, a)−max

ā
Q[s, ā] + max

a′
Q[s′, a′]− ρ

)
,

where β is the learning rate and R(s, a) − maxāQ[s, ā] +
maxa′ Q[s′, a′] is the new estimate of ρ in case of taking action
a in state s. As explained in [40], to avoid the influence of
the random actions by the exploration strategy, this update is
only applied if action a agrees with the policy. The details of
the R-Learning algorithm are presented in Algorithm 3, where
the hyperparameters α, ε, and β are decayed with rate φ by
the decaying function D(x̄, φ) = x̄

1+φ×i at the beginning of
episode i, and Q[s, a] and ρ are updated as discussed.

VI. NUMERICAL RESULTS

In this section, after explaining the simulation setup, we
investigate the performance of the dynamic programming, RL,
and greedy algorithms via extensive simulations as well as
through experimental assessment using the 5Growth platform.

A. Simulation Setup

The default settings of the simulation parameters are sum-
marized in Table I, where to make the simulation scenarios
more generic, we use term “unit” instead of specific metrics
like CPU core, or $. Moreover, in these simulations, we set
ωi = ω ∀i ∈ I and θk = θ ∀k ∈ R. The performance of five
practical algorithms are evaluated in comparison to the theoret-
ical optimal solution obtained through dynamic programming
(PI). These algorithms are the R-Learning, labeled as RL, Q-
Learning with γ = 0.20, γ = 0.55, and γ = 0.95, which are
respectively labeled as QL-20, QL-55, and QL-95; and also the
greedy policy, labeled as Greedy. The greedy AC takes the
delegate action only if there are not sufficient resources in
the CD, and rejects NS requests only if there are not sufficient
resources in the CD and PD.

TABLE I
SIMULATION PARAMETER SETTINGS

Parameters Values (unit)
Number of resource and NS types: R, I 3, 3

Consumer domain resources: C̄l [30, 25, 30]
Provider domain resources: C̄p [10, 15, 25]

NS type 1: c1, r1, σ1 [4, 2, 1], 95, 80
NS type 2: c2, r2, σ2 [2, 3, 2], 85, 40
NS type 3: c3, r3, σ3 [2, 2, 4], 50, 5

NS 1 traffic rates: λ1, µ1 10, 4
NS 2 traffic rates: λ2, µ2 11, 2
NS 3 traffic rates: λ3, µ3 12, 0.75

Overcharging settings: θ, ω 2, 2
Q-Learning hyperparameters: ε̄, ᾱ, φ 1.0, 1.0, 0.025

R-Learning hyperparameters: ε̄, ᾱ, β̄, φ 1.0, 1.0, 1.0, 0.025
Learning parameters: n,m 2500, 4000

The overall evaluation procedure is as follows. In each
experiment, the optimal policy is found through the PI al-
gorithm. Then, Q-Learning and R-Learning are trained in n
episodes with m random NS requests and the final policy is
saved. Finally, a set D of m NS requests is generated and the
algorithms are applied to the set. This procedure is repeated
20 times for each setting and the average results are reported.

In the following, two graphs are presented for each sim-
ulation. The first one is the optimality gap of each algo-
rithm Alg, which is defined as: Gap(Alg) =

(
AP (PI) −

AP (Alg)
)
/AP (PI), where AP (Alg) is the average profit in

Equation (1) obtained by algorithm Alg. Moreover, to provide
deeper insights on the operation of the algorithms, in each
simulation, either the request acceptance rate AR(Alg) =
|LAlg|/|D| or the Delegation rate DR(Alg) = |FAlg|/|D| is
also reported, where LAlg and FAlg are the sets of the NSs
deployed in the CD and the PD by algorithm Alg, respectively.

B. Learning Capability

In this section, we evaluate the performance of the RL
algorithms to learn the optimal policy. To this end, Figure
1 compares the performance of the algorithms against the
optimal solution with respect to the number of episodes n.
The optimality gap shows that the RL algorithms are capable
of learning the optimal policy, as they approximate the optimal
solution by increasing the number of episodes. However, the
learning capability is different. R-Learning not only learns a
better policy, but also achieves it sooner. Moreover, it can
exploit the information more efficiently, i.e., while the gap of
Q-Learning does not improve after 2000 episodes, the gap of
RL continues to decrease when increasing n.

The acceptance rates in Figure 1 show how the algorithms
learn the policy. For small values of n, the algorithms do
not explore the state space sufficiently, and consequently,
there are a significant number of states for which the optimal
decision is not found. By increasing the number of episodes,
the algorithms discover more states wherein accepting the NS
requests yields higher long-term profit.

C. Resource Management Efficiency
As discussed, AC is responsible for the management of do-

mains’ resources, as it determines the deployment domain for
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Fig. 1. Optimality gap and acceptance rate of the reinforcement learning
algorithms with respect to the number of learning episodes.
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Fig. 2. Optimality gap and acceptance rate of the algorithms with respect to
the scaling factor of CD’s capacity.

each NS request. In this section, we evaluate the performance
of the algorithms in this respect. More specifically, the default
values of the parameters C̄l and θ in Table I are respectively
replaced by ηCl×C̄l and 1+ηθ, and the performance metrics
are reported with respect to ηCl and ηθ3.

The optimality gap in Figure 2a shows that R-Learning can
efficiently utilize the resources; however, the performance of
Q-Learning depends on the discount factor γ, and not a single
value is the best setting for all the cases, which justifies the
corollaries of Theorem 1. The optimality gap curves (except
QL-95) are concave because in the case of very small ηCl ,
the resources of the CD are scarce, so even the optimal policy
by PI does not provide a considerably larger profit than other
policies, i.e., all the policies are almost the same. In the case
of very large ηCl , there are sufficient resources in the CD,
so sub-optimal decisions by the practical algorithms do not
yield a significant loss of average profit. Note that increasing
the CD capacity by making ηCl bigger provides increases
NS deployment opportunities in the consumer domain, which
entails an increasing AR, as shown in Figure 2b. QL-95 does
not use this opportunity because as stated by Theorem 1, it
prefers delegate over accept due to the large γ.

The performance of the algorithms with respect to ηθ is
shown in Figure 3. Increasing ηθ represents more available
resources in the PD, and consequently leads to a higher dele-
gation rate, as shown in Figure 3b. The (almost) constant op-
timality gap of RL shows that the algorithm skillfully manages
PD resources considering the delegation (overcharged) costs.
The greedy policy cannot exploit the resources efficiently to

3In our simulations, the results of scaling C̄p are similar to the results of
scaling the parameter θ, which are omitted due to space limit.
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Fig. 3. The optimality gap and the delegation rate of the algorithms with
respect to the reject threshold (θk = 1 + ηθ).
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Fig. 4. Optimality gap and delegation rate of the algorithms with respect to
the overcharging scaling factor (ωi = ηω × ω).

improve the average profit. Again, the performance of Q-
Learning depends on the discount factor γ.
D. Cost-Effectiveness

In the AC-MPSD problem, the service delegation cost,
which is determined by Σ and Ω, directly influences the
average profit. In this section, we investigate the performance
of the algorithms in this respect. To this end, the default value
of Ω in Table I is scaled as ηω × Ω and the algorithms are
evaluated with respect to it4. The results are shown in Figure
4. Increasing ηω incurs in higher service delegation costs, and
consequently, decreases the delegation rate, as seen in Figure
4b. Similar to the previous results, the optimality gap shows
the superiority of R-Learning in taking the cost into account,
as well as the dependency of Q-Learning performance on γ.

The results presented in this section, show that R-Learning
is a near-optimal solution that surpasses the other considered
approaches; and also that there is not a fixed optimal value of
γ in the Q-Learning algorithm as stated by Theorem 1.
E. Experimental Evaluation Results

This subsection presents a quantitative evaluation of the
performance of the presented AC algorithms in a realistic
testbed environment (EXTREME Testbed) using the 5Growth
platform [18]. The modular and flexible architecture of the
5Growth platform allows the straightforward integration of
various AC techniques. Each AC policy, which is obtained by
offline training (for RL) or computing (for PI and Greedy),
is embedded as an external (containerized) module in the
platform. It interacts through a well-defined REST API with
the Service Orchestrator (5Gr-SO) of the platform, which is

4In our simulations, the results of scaling the delegation fee Σ are similar
to the scaling of Ω; they are omitted due to space limit.



TABLE II
SERVICE TYPES FOR EXPERIMENTAL TESTBED EVALUATIONS

i ci λi (req/s) µi (req/s) ri σi
1 [2, 2, 20] 1/300 1/800 95 90
2 [1, 1, 15] 1/345 1/3000 40 10

the architectural entity in charge of coordinating the end-to-
end orchestration and lifecycle management of NSs in single-
and multi-administrative domain scenarios. During the NS
instantiation process, the Service Orchestration Engine (SOE)
block of the 5Gr-SO contacts the AC module to determine the
most suitable domain according to the AC policy (e.g., PI, RL,
or Greedy). For that, according to the definition of the state
in Equation (4), the SOE provides the resource characteristics
of the NS to be instantiated, the number of active instances
of each NS type in each domain, and the amount of available
resources in each domain. It is worth mentioning that when
establishing the federation contract, the CD and PD domains
agree on the type of NSs they can delegate and the amount of
reserved federation quota; and so, the SOE can easily derive
the information required by the AC module from the 5Gr-SO
ETSI NFV databases keeping track of the system status.

The setup used in this experimentation is composed of
two interconnected domains running their own instance of
the 5Growth platform and each domain having an underlying
infrastructure consisting of an NFVI-Point of Presence (PoP).
The NFVI-PoP of the CD has 12 CPU cores, 32GB of RAM,
and 1TB of Storage, and the PD agrees to federate 6 CPU
cores, 12 GB of RAM, and 500GB of storage with the
CD. Due to the resource limitations in the testbed, for the
experimental evaluations, we set Θ = 1, and we use two
types of services, as shown in Table II, where ci = [#CPU,
RAM (GB), Storage (GB)].

Figure 5 represents the total profit,
∑
i∈I
(∑

δi∈L ri +∑
δi∈F (ri − ∆(δi))

)
, obtained by the PI, RL, and Greedy

solutions in ten independent experiments, each one covering
the arrival and departure of NS requests during a period of
5 hours, and also the average results. These results are con-
sistent with the simulation results and show that the proposed
average reward RL solution outperforms the greedy policy and
provides near-optimal performance; i.e., in all the experiments,
RL obtains a higher total profit than the greedy approach.
Thus, it shows that RL can efficiently learn the heterogeneity
in network service types and select the appropriate deployment
domain accordingly.

However, contrarily to the simulation results, the gap be-
tween RL and PI is negligible, and in some experiments RL
even outperforms PI. The detailed analysis of the traces of
the experiments compared with the simulations, showed that
the main reason is the non-zero service instantiation and
termination times. The MDP, the PI algorithm, and also the
simulation environment are based on the assumption that the
action taken by the agent is effective immediately, i.e., before
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the next arrival/departure event is applied in the environment5.
This assumption is translated into zero service instantiation and
termination times, which does not correspond to real systems.
For instance, in our experimental evaluations the time required
to perform such lifecycle management operations ranges from
27 to 40 seconds. This implies that the states visited by the
agent may not follow the probability distribution P(s, a, s′)
obtained by Algorithm 1; so, the policy by PI, which is based
on the probabilities, is not necessarily optimal in the practice.
Figure 6 shows the difference between the total profit of each
policy in the experimental tests vs. the simulations using the
same set of NS requests. As seen, the profit of PI in the
testbed is always lower than the corresponding simulation,
hence confirming the above analysis. Furthermore, the average
performance loss of RL is less than that of PI, which represents
another advantage of RL as a practical solution for AC-MPSD.

VII. CONCLUSIONS

We studied admission control for the multi-provider NFV
service delegation problem, where the consumer domain can
delegate provisioning of a service completely to the provider
domain subject to the federation contract. AC determines the
deployment domain for each NS request, if it accepts the
request. The theoretical optimal solution under ideal assump-
tions is obtained by modeling the problem as an MDP solved
through the Policy Iteration algorithm. To tackle the prob-
lem in practice, where transition probabilities are not known
and service lifecycle management operations take non-zero
time, we utilized RL. We showed, both analytically and via
simulations, that the well-known Q-Learning algorithm, that
optimizes the expected discounted return, is susceptible to the
discount factor, whose optimal value cannot be determined in
advance. We proposed the R-Learning algorithm that directly
optimizes the average reward. Experimental evaluations using

5Without this assumption, deriving the transition probabilities is not
tractable, as it needs to consider (theoretically) infinite arrival/departure events
while the environment is transiting from s to s̃.



the 5Growth platform as well as the simulation results showed
R-Learning efficiently manages the resources of the domains,
and skillfully considers the cost of delegation that leads to a
near-optimal solution (with an optimality gap lower than 9%)
outperforming the Q-Learning and the greedy policies.

APPENDIX

In the exploration strategies used in Q-Learning, e.g.,
ε-greedy, Pr(a | s) is an increasing function of Q[s, a];
therefore, to prove the theorem, we need to show that
Pr(Q[s, delegate] > Q[s, accept]) ∝ γ. By the Q-Learning
update equation, we have

Q[s, a] = Q̄[s, a] + α
(
R(s, a) + γmax

a′
Q̄[s′, a′]− Q̄[s, a]

)
,

where for the sake of simplicity of discussion, the Q values
before updating are denoted by Q̄ in the right hand side.

Without loss of generality, assume that Q̄[s, delegate] =
Q̄[s, accept]; and define Q′[s, a] = maxa′ Q̄[s′, a′], and

g(γ) = Q[s, delegate]−Q[s, accept].

For the first part of the theorem where γ = 0, we have

g(0) = α
(
R(s, delegate)−R(s, accept)

)
= −α∆(δ) < 0,

that implies Q[s, delegate] < Q[s, accept]; and consequently
f(0) ≤ 0 that proves the first part.

For the second part, where γ > 0, we need to show g(γ) > 0
and g(γ) ∝ γ. As it is seen,

g(γ) = α
(
R(s, delegate)−R(s, accept)+

γ(Q′[s, delegate]−Q′[s, accept])
)

so if Q′[s, delegate] � Q′[s, accept], then the second term
of g(γ) is a large positive value, and consequently both
conditions hold. It is easy to show that there are such states.
Let s = (Cl,Cp

θ , l,f , ei), so Q′[s, delegate] and Q′[s, accept]
are respectively the expected discounted return starting from
s′delegate and s′accept where

s′delegate = (Cl,Cp
θ − ci, l,f + ei,d)

s′accept = (Cl − ci,C
p
θ , l + ei,f ,d)

Now, assume there are a number of requests of type δj
where cj > Cl − ci with very short life-time. None of them
can be deployed in the CD in state s′accept (and must be
delegated) while they can be deployed in CD in state s′delegate.
Therefore, we have

Q′[s, accept] =
∑
t=0

γt(rj −∆(δj))

Q′[s, delegate] =
∑
t=0

γtrj

This implies that Q′[s, delegate] � Q′[s, accept]; and conse-
quently g(γ) > 0 and g(γ) ∝ γ, which proves the theorem.

REFERENCES

[1] NGMN Alliance, “5g end-to-end architecture framework, v3.0.8,” Tech.
Rep., 2019.

[2] ETSI NFV ISG, “Network function virtualisation (nfv): Management
and orchestration: Report on architecture options to support multiple
administrative domains,” ETSI GR NFV-IFA, vol. 28, 2018.

[3] ITU-T FG-NET2030, “Network 2030 architecture framework,” Tech.
Spec., 2020.

[4] R. V. Rosa, M. A. S. Santos, and C. E. Rothenberg, “Md2-nfv: The
case for multi-domain distributed network functions virtualization,” in
International Conference and Workshops on Networked Systems, 2015,
pp. 1–5.

[5] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Elsevier Computer Communications,
vol. 102, pp. 1–16, 2017.

[6] J. Baranda, J. Mangues-Bafalluy, R. Martinez, L. Vettori, K. Antevski,
C. J. Bernardos, and X. Li, “Realizing the network service federation
vision: Enabling automated multidomain orchestration of network ser-
vices,” IEEE Vehicular Technology Magazine, vol. 15, no. 2, pp. 48–57,
2020.

[7] L. Valcarenghi, B. Martini, K. Antevski, C. Bernardos, G. Landi,
M. Capitani, J. Mangues-Bafalluy, R. Martínez, J. Baranda, I. Pascual
et al., “A framework for orchestration and federation of 5g services in
a multi-domain scenario,” in Proceedings of the Workshop on Experi-
mentation and Measurements in 5G, 2018, pp. 19–24.

[8] K. Antevski, J. Martín-Pérez, A. Garcia-Saavedra, C. J. Bernardos, X. Li,
J. Baranda, J. Mangues-Bafalluy, R. Martínez, and L. Vettori, “A q-
learning strategy for federation of 5g services,” in IEEE ICC, 2020, pp.
1–6.

[9] J. Baranda, J. Mangues-Bafalluy, L. Vettori, R. Martínez, K. Antevski,
L. Girletti, C. Bernardos, K. Tomakh, D. Kucherenko, G. Landi et al.,
“Nfv service federation: enabling multi-provider ehealth emergency
services,” in IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2020, pp. 1322–1323.

[10] M. O. Ojijo and O. E. Falowo, “A survey on slice admission control
strategies and optimization schemes in 5g network,” IEEE Access, vol. 8,
pp. 14 977–14 990, 2020.

[11] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey
of machine learning techniques applied to software defined networking
(sdn): Research issues and challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 393–430, 2018.

[12] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Machine learning for
5g/b5g mobile and wireless communications: Potential, limitations, and
future directions,” IEEE Access, vol. 7, pp. 137 184–137 206, 2019.

[13] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, and X. Costa-
Pérez, “A machine learning approach to 5g infrastructure market opti-
mization,” IEEE Transactions on Mobile Computing, vol. 19, no. 3, pp.
498–512, 2019.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[15] C. C. Wu and D. P. Bertsekas, “Admission control for wireless net-
works,” IEEE Transactions on Vehicular Technology, vol. 50, pp. 504–
514, 2001.

[16] B. Han, D. Feng, and H. D. Schotten, “A markov model of slice
admission control,” IEEE Networking Letters, vol. 1, no. 1, pp. 2–5,
2018.

[17] M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska, and P. Monti, “A slice
admission policy based on reinforcement learning for a 5g flexible ran,”
in European Conference on Optical Communication, 2018, pp. 1–3.

[18] X. Li, A. Garcia-Saavedra, X. P. Costa, C. J. Bernardos, C. Guimarães,
K. Antevski, J. Mangues-Bafalluy, J. Baranda, E. Zeydan, D. Corujo,
P. Iovanna, G. Landi, J. Alonso-Zárate, P. Paixão, H. Martins,
M. Lorenzo, J. Ordonez-Lucena, and D. R. López, “5growth: An end-
to-end service platform for automated deployment and management of
vertical services over 5g networks,” IEEE communications magazine,
vol. 59, no. 3, pp. 84–90, 2021.

[19] B. Bakhshi and J. Mangues-Bafalluy, “R-learning based admission
control for service federation in multi-domain 5g networks,” arXiv
preprint arXiv:2103.02964, 2021.

[20] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-provider
service chain embedding with nestor,” IEEE Transactions on Network
and Service Management, vol. 14, no. 1, pp. 91–105, 2017.



[21] G. Sun, Y. Li, D. Liao, and V. Chang, “Service function chain orchestra-
tion across multiple domains: A full mesh aggregation approach,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp.
1175–1191, 2018.

[22] G. Sun, Y. Li, H. Yu, A. V. Vasilakos, X. Du, and M. Guizani, “Energy-
efficient and traffic-aware service function chaining orchestration in
multi-domain networks,” Future Generation Computer Systems, vol. 91,
pp. 347–360, 2019.

[23] K. Kaur, S. Garg, G. Kaddoum, F. Gagnon, N. Kumar, and S. H.
Ahmed, “An energy-driven network function virtualization for multi-
domain software defined networks,” in IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2019, pp. 121–126.

[24] C. Zhang, X. Wang, Y. Zhao, A. Dong, F. Li, and M. Huang, “Cost
efficient and low-latency network service chain deployment across
multiple domains for sdn,” IEEE Access, vol. 7, pp. 143 454–143 470,
2019.

[25] B. Yan, Y. Zhao, X. Yu, Y. Li, S. Rahman, Y. He, X. Xin, and J. Zhang,
“Service function path provisioning with topology aggregation in multi-
domain optical networks,” IEEE/ACM Transactions on Networking,
vol. 28, no. 6, pp. 2755–2767, 2020.

[26] C. Zhang, X. Wang, A. Dong, Y. Zhao, F. Li, and M. Huang, “The
intelligent multi-domain service function chain deployment: Architec-
ture, challenges and solutions,” International Journal of Communication
Systems, vol. 34, no. 1, 2021.

[27] N. Toumi, O. Bernier, D.-E. Meddour, and A. Ksentini, “On cross-
domain service function chain orchestration: An architectural frame-
work,” Elsevier Computer Networks, vol. 187, no. 1, 2021.

[28] X. Li, J. Mangues-Bafalluy, I. Pascual, G. Landi, F. Moscatelli, K. An-
tevski, C. J. Bernardos, L. Valcarenghi, B. Martini, C. F. Chiasserini
et al., “Service orchestration and federation for verticals,” in IEEE
Wireless Communications and Networking Conference Workshops, 2018,
pp. 260–265.

[29] H2020 5G-TRANSFORMER, “5g mobile transport platform for verti-
cals,” http://5g-transformer.eu/, accessed: 2021-07-20.

[30] J. Baranda, J. Mangues-Bafalluy, R. Martínez, L. Vettori, K. Antevski,
C. J. Bernardos, and X. Li, “5g-transformer meets network service
federation: design, implementation and evaluation,” in IEEE NetSoft,
2020, pp. 175–179.

[31] M. A. T. Nejad, S. Parsaeefard, M. A. Maddah-Ali, T. Mahmoodi, and
B. H. Khalaj, “vspace: Vnf simultaneous placement, admission control
and embedding,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 3, pp. 542–557, 2018.

[32] B. Han, V. Sciancalepore, D. Feng, X. Costa-Perez, and H. D. Schotten,
“A utility-driven multi-queue admission control solution for network
slicing,” in IEEE INFOCOM, 2019, pp. 55–63.

[33] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, “Optimising 5g infrastructure markets: The business of
network slicing,” in IEEE INFOCOM, 2017, pp. 1–9.

[34] H. Tong and T. X. Brown, “Adaptive call admission control under quality
of service constraints: a reinforcement learning solution,” IEEE Journal
on selected Areas in Communications, vol. 18, no. 2, pp. 209–221, 2000.

[35] ——, “Reinforcement learning for call admission control and routing
under quality of service constraints in multimedia networks,” Machine
Learning, vol. 49, no. 2-3, pp. 111–139, 2002.

[36] J. Yang, K. Zhu, Y. Ran, W. Cai, and E. Yang, “Joint admission control
and routing via approximate dynamic programming for streaming video
over software-defined networking,” IEEE Transactions on Multimedia,
vol. 19, no. 3, pp. 619–631, 2016.

[37] D. Liu, Y. Zhang, and H. Zhang, “A self-learning call admission
control scheme for cdma cellular networks,” IEEE transactions on neural
networks, vol. 16, no. 5, pp. 1219–1228, 2005.

[38] P. Caballero, A. Banchs, G. De Veciana, X. Costa-Pérez, and A. Azcorra,
“Network slicing for guaranteed rate services: Admission control and
resource allocation games,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 10, pp. 6419–6432, 2018.

[39] S. Mahadevan, “Average reward reinforcement learning: Foundations,
algorithms, and empirical results,” Machine learning, vol. 22, no. 1, pp.
159–195, 1996.

[40] A. Schwartz, “A reinforcement learning method for maximizing undis-
counted rewards,” in International conference on machine learning,
1993, pp. 298–305.

[41] V. Dewanto, G. Dunn, A. Eshragh, M. Gallagher, and F. Roosta,
“Average-reward model-free reinforcement learning: a systematic review
and literature mapping,” arXiv preprint arXiv:2010.08920, 2020.

http://5g-transformer.eu/

	I Introduction
	II Related Work
	III System Model and Problem Statement
	III-A Assumptions and System Model
	III-B Problem Statement

	IV Optimal Solution
	IV-A MDP Formulation
	IV-A1 States
	IV-A2 Actions and Rewards
	IV-A3 Transition Probabilities
	IV-A4 Discount Factor

	IV-B Policy Iteration Algorithm

	V Reinforcement Learning-Based Solutions
	V-A Q-Learning Drawback
	V-B Average Reward RL

	VI Numerical Results
	VI-A Simulation Setup
	VI-B Learning Capability
	VI-C Resource Management Efficiency
	VI-D Cost-Effectiveness
	VI-E Experimental Evaluation Results

	VII Conclusions
	Appendix
	References

