
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Privacy-Preserving Edge Caching:
A Probabilistic Approach

Seyedeh Bahereh Hassanpour,Ahmad Khonsari, Masoumeh Moradian, and Seyed Pooya Shariatpanahi

Abstract—Edge caching (EC) decreases the average access delay of end-users through caching popular content at the edge of the
network, however, it increases the leakage probability of valuable information such as users’ preferences. Most of the existing
privacy-preserving approaches focus on adding extra layers of encryption, which confronts the network with more challenges such as
energy and computation limitations. We employ a chunk-based joint probabilistic caching (JPC) approach to mislead an adversary
eavesdropping on the communication inside an EC and maximizing the adversary’s error in estimating the requested file and the
requesting cache. In JPC, we optimize the probability of each cache placement to minimize the communication cost while guaranteeing
the desired privacy and then, formulate the optimization problem as a linear programming (LP) problem. Since JPC inherits the curse
of dimensionality, we also propose scalable JPC (SPC), which reduces the number of feasible cache placements by dividing files into
non-overlapping subsets. We also compare the JPC and SPC approach against an existing probabilistic method, referred to as disjoint
probabilistic caching (DPC) and random dummy-based approach (RDA). Results obtained through extensive numerical evaluations
confirm the validity of the analytical approach, the superiority of JPC and SPC over DPC and RDA.

Index Terms—Edge cache network, privacy, chunk-based probabilistic caching, communication cost, linear optimization.

F

1 INTRODUCTION

THE deluge of interest in using delay-critical Internet-
of-things (IoT) applications and delay-sensitive data

services, even beyond fifth-generation (B5G) communica-
tions, poses a significant challenge to the data processing
capabilities of the network. In this regard, the edge network
emerged as a pivotal key in 5G for providing computa-
tion, storage, and processing much closer to the end-users
compared to the cloud networks. Edge computing, as a
paradigm in edge networks, provides service delivery at the
edge of the network and mitigates transmitting the com-
putation to more distant servers inside the cloud through
equipping the intermediate servers with edge nodes such as
micro base stations or WiFi access points [1], [2]. Further-
more, edge caching (EC), as a promising technique to store
popular content closer to the end-users, decreases the traffic
of the backhaul links and improves the quality of experience
(QoE) by the end-users in terms of access delay [3], [4].

EC paradigm enhances security and privacy by bringing
the content closer to the end-users and eliminating the
access of multiple intermediate nodes to the data. How-
ever, this geographical proximity also brings the potential
(active/passive) attackers closer to the critical/personal in-
formation such as users’ location or personal preferences.
Therefore, the network is more vulnerable to different types
of attacks [5], [6]. For example, an attacker may interrupt
the communication between the user and the caching edge
device through a jamming attack, break down an EC server
through a distributed denial of service (DoS) attack, or get

• S. B. Hassanpour, A. Khonsari, and S. P. Shariatpanahi are with the
Department of Electrical and Computer Engineering, Tehran University,
Tehran, Iran.
E-mails: b.hassanpour, a khonsari, p.shariatpanahi@ut.ac.ir.

• M. Moradian and A. Khonsari are with School of Computer, Institute for
Research in Fundamental Sience (IPM), Tehran, Iran.
E-mails:mmoradian, ak@ipm.ir

access to the caching contents and network resources as a
fake legal user through spoofing attacks [7], [8]. Moreover,
the EC network consists of distributed edge devices con-
trolled by autonomous people or companies. These owners
may be curious about the data contents stored on their
caches and even launch insider attacks or eavesdrop to
obtain critical private information of the customers and
sell them for different purposes, e.g., to the advertisements
companies [7], [9]. Generally, the main motivation of privacy
attacks in EC networks is to derive the identity of the
requesting users, their queries, and the statistics of the
queries, e.g., the popularity of the contents.

Much of the focus of researchers in recent years has been
on studying the location [10], [11], [12] and the pattern
privacies [13], which aim to secure the location and the
usage pattern of the users, respectively. The proposed solu-
tions to tackle the privacy issues exploit cryptography and
anonymity [14], [15], [16], [17], information-theory [18], [19],
machine-learning [7], [20], and dummy transmissions [12].
In [14], the authors propose a pseudonyms-based approach
to conceal the real identity of the contents belonging to the
content providers (CPs) and users’ requests from the ISP,
which is the cache owner, in a content distribution network
(CDN). Due to the fact that over time ISP can discover
the relation between the fake and real ID of the contents,
there is a need to refresh the encrypted name. For this
purpose, the authors in [15] derived the optimal number of
encryption refreshes in a static time (e.g., a day). In [16],
the authors preserve the privacy of CPs and users from
ISP by using Shamir secret sharing (SSS), which shares the
content popularity among caches without letting the ISP
know. Despite the abundance of cryptographic solutions,
these solutions mostly suffer from computation complexity,
power consumption, and decryption delays. However, the
solutions proposed for providing security and privacy at

ar
X

iv
:2

20
8.

00
29

7v
1

 [
cs

.N
I]

 3
0

Ju
l 2

02
2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the edge should possess low complexity due to the edge
nodes’ limited computational power and memory of the
edge nodes and the energy and hardware limitations. The
authors in [18] propose a coding scheme that includes SSS
and replicated subtasks to provide information-theoretic
data privacy in the presence of untrustworthy edge servers.
In [19] the authors applied information theory to maximize
the lower bound for the best adversary’s estimation error
using Fano inequality. They mathematically formulate an
ε-constraint optimization model to find the probability of
catching each file to maximize the adversary’s error. In
the above studies, the popularity of content is known. In
the case of unknown or time-varying popularities, ma-
chine learning techniques are mostly employed to learn
popularities. However, they require sharing the requests’
information with a central node for the aim of training,
which leads to privacy leakage. Federated learning is pro-
posed to overcome the privacy issues in online learning
scenarios [20], [21]. Another general policy in preserving
privacy in the presence of eavesdroppers is the dummy-
transmission-based approach, which relies on transmitting
dummy queries by the caches or dummy information by
the server [12] in the content delivery phase in order to
obfuscate the eavesdropper. The dummy-based approaches
suffer from backhaul traffic increases due to extra unneces-
sary transmissions.

Probabilistic caching can also be employed in an EC
network to leverage the privacy degree of the network since
it increases the ambiguity of the adversaries over the caches’
contents and thus, increases the privacy degree of the net-
work. Furthermore, it takes advantage of lower complexity
compared to cryptographic methods. Probabilistic cache
placement is employed in [22] to provide physical-layer
security in a wireless cache-aided network in the presence
of eavesdroppers. They optimize the probability of caching
individual files to maximize the number of transmissions
not decoded by eavesdroppers while minimizing the com-
munication cost.

In this paper, we study probabilistic caching to preserve
the desired privacy in an EC network while minimizing the
network communication cost. In particular, our proposed
EC network consists of a single server and K distributed
edge caches, where the server is in charge of content place-
ment in the caches and delivering uncached contents to
them. Furthermore, a passive eavesdropper monitors the
amount of traffic transferred over the shared link between
the server and the caches. In the proposed scenario, we min-
imize the communication cost while satisfying a minimum
privacy degree, where the communication cost and privacy
degree are defined as the average amount of traffic over
the shared link and the error probability of the adversary,
respectively. We assume that the adversary is aware of the
content popularities and probabilistic caching protocols [23].
However, it has no access to the information of cache queries
and their corresponding responses. As such, the adversary
can only measure the amount of transferred traffic over
the shared link in the content delivery (CD) phase and
thus, exploits this information to estimate the identity of
the requests. We optimize chunk-based probabilistic caching
to increase the uncertainty of the adversary. Unlike the
previous studies [24], [25], which optimize the probability

of caching individual files in order to satisfy the desired
performance metrics, we optimize the probabilities of joint
placements of the files in the caches and highlight its advan-
tages throughout the paper. The main contributions of the
paper are as follows.

• We define joint probabilistic caching (JPC) policy
rigorously and formulate the optimization of com-
munication cost-constrained to guaranteed privacy
under the JPC approach. Then, we show that the
proposed optimization can be turned into a Linear
Programming (LP) problem. We also propose the
hit-ratio-based optimization of JPC and assert that
chunk-based optimization provides more flexibility
for achieving higher cache hit ratios.

• We solve the same optimization problem as in JPC
considering the disjoint probabilistic caching (DPC)
policy, in which the probabilities of caching individ-
ual files are optimized instead of the probabilities
of different cache placements. Also, we show that
optimal DPC has the same performance as optimized
chunk-based JPC. However, JPC outperforms DPC
when hit-ratio constraints and short-term perfor-
mances are required.

• We propose scalable JPC, in which the complexity
decreases compared to JPC through caching chunks
which are chosen from L non-overlapping subsets of
files instead of N files. The performance of scalable
JPC can be arbitrarily close to the optimal perfor-
mance in the JPC through increasing the number of
subsets L.

• Finally, we present extensive numerical and simu-
lation results to validate our analytical approach.
We also propose a Random dummy approach as
a benchmark and show that JPC and scalable JPC
outperform the dummy approach significantly. Also,
we show that by choosing proper subsets in scalable
JPC, we can shrink the feasible set in the correspond-
ing LP optimization significantly while keeping the
performance very close to the optimal performance
of JPC.

The remainder of the paper is organized as follows.
In Section 2, we describe the EC network, the adversary
model, and the performance metrics. Section 3, provides the
problem formulation and LP optimization of JPC. Section
4 is dedicated to DPC optimization and its performance
against JPC. Section 5 presents scalable JPC method. Nu-
merical results are presented in Section 6. Finally, Section 7
concludes the paper.

2 SYSTEM MODEL AND ASSUMPTIONS

In this section, we introduce our system model, an EC
network comprised of an edge server node and distributed
caches and an adversary eavesdropping on transmissions
within the caching network. Then, we introduce the related
performance metrics, including communication cost and
privacy degree, and give an example to clarify the trade-off
between these two metrics. Table 1 lists the notations used
in this paper.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1: The adversarial system model with an edge-node
which is responsible to serve the caches through a shared
link.

2.1 Edge caching model

As depicted in Fig. 1, our proposed caching network consists
of a single edge server node, referred to as the server
hereafter, and a set of distributed edge caches, denoted
by K = {1, 2, . . . ,K}, that are connected to the server
through a shared link. The server has full access to a library
consisting of N files of equal size, i.e., N = {1, 2, ..., N},
each of which is partitioned into C chunks. Moreover, each
cache k ∈ K has the capacity of M files, equivalent to
MC chunks. Furthermore, each cache serves a distinct set
of end-users. If the number of end-users at each cache is
equal to one, the model corresponds to the case where the
distributed caches are located at end-users. Otherwise, the
edge caches model the distributed caches owned by an ISP.
Nevertheless, both cases can be applied in our scenario
since as will be discussed, we focus on the privacy of
transmissions between the caches and the server, which is
independent of the number of users under the coverage of
caches.

In compliance with the convention, the caching process
in our considered scenario is performed in two phases;
cache content placement (CCP) and content delivery (CD).
In the CCP phase, the server fills up the cache’s storage
with chunks chosen from different files. In our analysis,
all chunks of a file are equally important, and thus, we
only focus on the number of chunks cached from a file,
regardless of which exact chunks have been cached. More-
over, the total number of chunks in each cache does not
exceed the capacity of the cache, i.e., MC . Consequently,
let z = (z1, z2, ..., zN) denote a feasible chunk placement
at a typical edge cache, where zi denotes the number of
chunks stored from file i. Then, regarding that all caches are
identical, the set of feasible chunk placements at each edge
cache, represented by F , is written as

F ={z|0 ≤ zi ≤ C, i ∈ {1, . . . , N},
N∑
i=1

zi = MC}. (1)

We assume that a central entity decides about the con-
tents of the caches in the CCP phase. Without loss of
generality, we consider the server as a decision-maker in
our scenario, e.g., the server plays the role of a content
provider in the real world. In particular, the server chooses

TABLE 1: Notations

Notation Description
N Number of files in the library
K Number of caches
M Cache size
ζ Guaranteed value for Ψ
C Number of chunks in a file
q
(k)
i Probability that cache k stores file i
pi Popularity probability of file i
Pe Error probability of ADV
Ψ Privacy degree
Ω Total communication cost
p
(k)
g Request generation probability of cache k
I Random variable (r.v.) that shows the index of the

requested file
U R.v. that shows the index of the requesting user
î Estimated file index
k̂ Estimated cache index
Z R.v. that shows the number of stored chunks
Y R.v. that shows the number of non-cached chunks

the placement of each cache according to a probabilistic
caching policy, where the policy in fact, indicates a prob-
ability distribution over all feasible cache placements, i.e.,
F . Thus, it is evident that in the proposed probabilistic
caching, the chunk places in each cache are filled jointly
rather than independently. In this regard, we define the joint
probabilistic caching policy more rigorously as follows.

Definition 1. (Joint Probabilistic Caching Policy)
The joint probabilistic caching (JPC) policy at cache k is defined
as a probability distribution over F , denoted by P (k)(z). Let
Z(k) = (Z

(k)
1 , Z

(k)
2 , ..., Z

(k)
N) be a random vector indicating the

chunk placement at cache k, where Z(k)
i is the random variable

denoting the number of chunks cached from file i at cache k. Then,
P (k)(z) = Pr{Z(k) = z}.

We assume that one request is generated at each time
slot in the CD phase. Also, the generated request belongs
to cache k with probability p

(k)
g , where

∑K
k=1 p

(k)
g = 1. It

is worth noting that the request probabilities p(k)
g can be

used to model the influence of the number of users under
the coverage of different caches and their activities. On the
other hand, each request is related to file i with probability
pi, regardless of its generating cache. pi is referred to as the
popularity of file i and we have

∑N
i=1 pi = 1. Regarding

that the popularity of the file and the requesting cache are
independent, the probability that cache k requests file i is
written as:

P (k, i) = pi p
(k)
g . (2)

When cache k queries file i, it requests for those chunks
of file i that are not available in its cache. Then, the server,
being aware of the chunk placements at the caches, sends
the un-cached chunks of file i. As such, the server transmits
Y

(k)
i = C − Z(k)

i number of chunks back to cache k over a
shared link channel, where Y (k)

i is the random variable de-
noting the number of chunks transferred over the link given
that cache k has requested file i. The next part describes the
adversary model and its related assumptions.

2.2 Adversary Model
The adversary is assumed to be a passive attacker in our sys-
tem model, i.e., it does not decrypt or corrupt the commu-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

nication over the shared link, e.g., due to solid encryptions
applied on the transferred files. The adversary in our model
only eavesdrops on the communication between the server
and edge caches such that it counts the number of chunks
transferred in response to every request. Then, it estimates
the requested file and the requesting cache based on the
observed number of transferred chunks. Also, we assume
that the adversary is protocol-aware. More preciously, the
adversary has complete knowledge about the probabilistic
caching policies, P (k)(z), the files’ popularities, pi, and the
probability of generating requests by the caches, p(k)

g . This
assumption corresponds to practical situations where the
adversary is an authorized party in the network (honest but
curious). Thus, it has full access to the network information
broadcast by the server in the initiation phase, e.g., the
adversary can be a code running on one of the edge-caches,
which are authorized components in the network [19], [26].

Although the adversary knows the probabilistic caching
protocols of different caches, it does not know which specific
chunks are stored at each chunk. Thus, after observing the
number of chunks transferred over the link, in response to
one request, the adversary estimates the requested file and
the requesting cache through employing the best estimation
strategy, i.e., the MAP rule, with prior knowledge of P (k)(z),
pi, and p(k)

g .
Let k̂(y) and î(y) denote the adversary’s estimation of

the requesting cache and requested file, respectively, given
that y chunks are transferred over the shared link. Then,
according to the MAP rule, (k̂(y), î(y)) are derived as

(k̂(y), î(y)) = argmax
k∈K,i∈N

P (k, i|Y = y) (3)

= argmax
k∈K,i∈N

P (Y = y|k, i)pip(k)
g , (4)

where Y is the random variable denoting the number of
chunks transferred over the shared link, and P (k, i|y) is
the probability that k has requested i, given that Y = y.
Moreover, (4) is written using the Bayes’ rule and (2).

2.3 Communication Cost

Communication cost denoted by Ω, is defined as the average
number of files transferred over the shared link in response
to one request at the CD phase, i.e., Ω = 1

CE[Y]. Therefore,
using (2), Ω is formulated as

Ω =
1

C

K∑
k=1

N∑
i=1

P (k, i)E[Y
(k)
i] =

1

C

K∑
k=1

N∑
i=1

p(k)
g piE[Y

(k)
i],

(5)
where as noted before Y (k)

i is the random variable denot-
ing the number of transferred chunks, given that cache k
requests file i. Moreover, E[.] is the expectation operator.

2.4 Privacy Degree

As discussed in Section 2.2, upon observing the number of
chunks transferred over the shared link, the adversary uses
MAP rule, as expressed in (3), to estimate the requesting
cache and the requested file indices, i.e., k̂(y) and î(y),
respectively. The error happens when the adversary does
not correctly detect the requested cache or the requested file.

Let us define Pe|y as the error probability of the adversary
given that y chunks are observed. Then, Pe|y is written as

Pe|y = Pr{U 6= k̂(y) or I 6= î(y)|Y = y}, (6)

where U and I are random variables denoting the real
requesting cache and requested file, respectively. Now, the
privacy degree, denoted by Ψ, is defined as the error proba-
bility of the adversary and is derived as

Ψ =
C∑
y=0

Pe|y Pr{Y = y}. (7)

2.5 Example

Here, we bring a simple example in order to clarify the
motivation behind using probabilistic caching for the aim
of privacy-preserving. We compare two deterministic and
probabilistic caching policies in our proposed scenario with
the following parameters; the library contains two files A
and B with popularities pA = 0.8 and pB = 0.2, there is
one cache with capacity one file, i.e., k = 1 and M = 1, and
the files are not divided in smaller portions, i.e., C = 1. The
deterministic caching scenario caches file A with probability
one. According to the assumptions in Section 2.2, the adver-
sary is aware of the caching protocol, thus, knows that file
A is cached. Consequently, it infers that files A and B are
requested upon observing zero and one transferred file over
the shared link. This leads to an error-free detection at the
adversary. On the other hand, in the probabilistic caching
scenario, files A and B are chosen to be cached with prob-
abilities 0.7 and 0.3, respectively. Then, it can be seen that
Pr(Y = 0|A)pA = 0.7× 0.8 > Pr(Y = 0|B)pB = 0.3× 0.2
and Pr(Y = 1|A)pA = 0.3 × 0.8 > Pr(Y = 1|B)pB =
0.7 × 0.2, which regarding (4), implies that the adversary
always estimates file A as the requested file upon observing
either zero or one file, over the shared link. Thus, the error
happens when file B is requested, with probability 0.3.
Therefore, through applying probabilistic caching, privacy
degree increases. However, this is at the cost of increasing
the communication cost. As such, in deterministic policy the
communication cost Ω is equal to Ω = pB = 0.2, while in
the deterministic case, we have Ω = 0.3pA + 0.7pB = 0.35.

Thus, when applying the probabilistic caching, a trade-
off exists between the communication cost and the privacy
degree. In this paper, we characterize this trade-off. In par-
ticular, in the next section, we minimize the communication
cost over all probabilistic caching policies such that the
privacy degree exceeds a desired threshold and show that
the formulated optimization can be written as a Linear
Programming (LP) optimization.

3 PROBLEM FORMULATION

In this section, we optimize the probabilistic caching policies
at different caches in order to minimize the communica-
tion cost while keeping the privacy degree greater than a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

predefined threshold. Our goal is to solve the following
optimization problem

min
P (k)(z),

z∈F,k∈K

Ω

s.t. Ψ ≥ ζ,∑
z∈F

P (k)(z) = 1, k ∈ K,

0 ≤ P (k)(z) ≤ 1, z ∈ F , k ∈ K,

(8)

where Ω and Ψ are derived in (5) and (7), respectively. Also,
ζ denotes the threshold associated with the privacy degree.
Moreover, the second and third constraints in (8) assures
P (k)(z) be a probability mass function. In the following,
we first rewrite Ω and then Ψ in terms of the probabilistic
caching policies, i.e., P (k)(z)’s. E

[
Y

(k)
i

]
in (5) can be written

as

E
[
Y

(k)
i

]
=

C∑
y=0

yPr{Y (k)
i = y} =

C∑
y=0

yPr{Z(k)
i = C − y}.

(9)

In order to calculate Pr{Z(k)
i = C − y}, we need to

consider any placement z ∈ F that contain exactly C − y
chunks of i. Thus, Pr{Z(k)

i = C − y} is written as

Pr{Z(k)
i = C − y} =

∑
z∈F,

zi=C−y

P (k)(z). (10)

Using (9) and (10) in (5), the communication cost is derived
in terms of P (k)(z)’s as

Ω =
1

C

K∑
k=1

N∑
i=1

C∑
y=0

p(k)
g pi y

∑
z∈F,

zi=C−y

P (k)(z). (11)

Next we derive the privacy degree in terms of P (k)(z)’s.
From (6) and (7), Ψ is written as

Ψ =
C∑
y=0

Pr{U 6= k̂(y) or I 6= î(y)|Y = y}Pr{Y = y}

(12a)

=
C∑
y=0

(1− Pr{U = k̂(y), I = î(y)|Y = y}) Pr{Y = y}

(12b)

=
C∑
y=0

(1−max
k,i

P (k, i|Y = y)) Pr{Y = y} (12c)

= 1−
C∑
y=0

max
k,i

pi p
(k)
g P (Y = y|k, i), (12d)

where (12b) is replaced with (12c) using the MAP rule in
(3). Moreover, the argument of the maximization in (12d)
is written using the Bayes’ rule. Using Pr{Y (k)

i = y} =

Pr{Z(y)
i = C − y} and (10), P (Y = y|k, i) in (12d), can be

written as P (Y = y|k, i) =
∑
z∈F,

zi=C−y

P (k)(z).
(13)

Finally, by applying (13) in (12d), Ψ is written in terms of
probabilistic caching policies as

Ψ = 1−
C∑
y=0

max
k,i

pi.p
(k)
g .

∑
z∈F,

zi=C−y

P (k)(z). (14)

In the next part, we use the derived equations for Ω and Ψ to
formulate the optimization problem as an LP optimization.

3.1 Linear Programming Optimization

Using (11) and (14) in (8), the optimization problem is
rewritten as

min
P (k)(z),

z∈F,k∈K

K∑
k=1

N∑
i=1

C∑
y=0

pi p
(k)
g y

∑
z∈F,

zi=C−y

P (k)(z)

s.t 1−
C∑
y=0

max
k,i

pip
(k)
g

∑
z∈F,

zi=C−y

P (k)(z) ≥ ζ,

∑
z∈F

P (k)(z) = 1, k ∈ K,

0 ≤ P (k)(z) ≤ 1, z ∈ F , k ∈ K.

(15)

Note that in (15), the objective function and all con-
straints except the first one are linear in terms of P (k)(z).
In this regard, we use additional variables, Γy (y ∈
{0, 1, . . . , C}), to change the optimization problem into a
linear one. In particular, the first constraint in (15) is replaced
with the following inequality

1−
C∑
y=0

Γy ≥ ζ. (16)

Moreover, the following constraints on Γy’s are added to the
optimization problem

Γy ≥ pi p(k)
g

∑
z∈F,

zi=C−y

P (k)(z) ∀k, i, y. (17)

Note that the inequalities (17) imply that Γy ≥
maxk,i pi p

(k)
g

∑
z∈F,

zi=C−y
P (k)(z), ∀y.

Using (16) and (17), the optimization problem turns into

P1 : min
Γy,P (k)(z),

0≤y≤C,z∈F,k∈K

K∑
k=1

N∑
i=1

C∑
y=0

p(k)
g pi y

∑
z∈F,

zi=C−y

P (k)(z)

s.t. 1−
C∑
y=0

Γy ≥ ζ

Γy ≥ pi p(k)
g

∑
z∈F,

zi=C−y

P (k)(z) ∀k, i, y,

∑
z∈F

P (k)(z) = 1, k ∈ K

0 ≤ P (k)(z) ≤ 1, z ∈ F , k ∈ K.
(18)

Note that two optimization problems (15) and (18) are
equivalent and thus, any optimal P (k)(z) in (18) is the
solution of the optimization problem (15). As can be seen,
the optimization P1 in (18) is linear in terms of P (k)(z)’s
and Γy’s, and thus, is an LP optimization. Moreover, it
is worth noting that in symmetric scenarios where caches
generate the requests with almost the same probabilities,
i.e., p(k)

g = pg , all caches have the same optimal probabilistic
caching policies, and it suffices to optimize P (z).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 2: Cache Placement in DPC approach, with filling order
of files a) (1, 2, 3, 4) b) (1, 4, 2, 3).

3.2 Hit Ratio Constrained JPC

One advantage of chunk-based caching in JPC is to increase
the cache hit ratio, where the hit ratio of a specific file at
cache k is defined as the probability that at least one of its
chunks exists in the cache. In practice, especially in the case
of video-type contents, once the end-user is enjoying the
directly received chunks from the cache, the cache requests
the un-cached chunks, leading to less experienced delay at
end-users. In this regard, we incorporate the average cache
hit ratio constraint into the optimization problem P1, as in
the following. ∑

k

p(k)
g h(k) ≤ β, (19)

where β is a constant threshold and h(k) denotes
the hit-ratio of cache k. h(k) is written as h(k) =∑
i pi
∑

z∈F,

zi 6=0
P (k)(z),

where it is assumed that the request for a file hits the
cache if at least one chunk of the requested file exists
in the cache. It is worth noting that if we do not apply
chunk-based caching in JPC, i.e., zi ∈ {0, C} instead of
zi ∈ {0, 1, 2, · · · , C}, from (11), it can be seen that the
constraint

∑
k p

(k)
g h(k) ≥ β is equivalent to Ω ≤ 1− β.

The number of variables in the LP optimization (18) is
equal to (C + 1)KX , where X is the size of F , i.e., the
set of all possible chunk placements at caches. A bottleneck
in solving (18) is the derivation of the set of all feasible
placements, which grows explosively with the number of
files, chunks, and cache sizes. Although large-scale LP
optimization techniques, such as CVX, can handle large-
scale problems, the complexity remains in the derivation
of the set F , mainly when the edge servers have limited
energy and processing power. In this regard, we propose

two probabilistic caching policies with less complexity in the
rest of the paper. As such, in the next section, we optimize a
non-chunk-based probabilistic caching policy introduced in
[24], which reduces the number of variables to NK . Then,
in Section 5, we introduce the scalable version of SPC and
compare its results against the optimal JPC in Section 6.

4 DISJOINT PROBABILISTIC CACHING (DPC)

In this section, we optimize the probabilistic caching pro-
tocol proposed in [24]. In this method, the files are cached
completely, thus, the set of feasible placements is

F̃ ={z̃|z̃i ∈ {0, C}, i ∈ {1, ..., N},
N∑
i=1

z̃i = MC}. (20)

Moreover, in DPC, rather than indicating a distribution
over F̃ , the probability of caching each file is determined.
Then, it is shown that under some conditions, there exists a
distribution over F̃ that yields the indicated probabilities. In
this regard, to be consistent with JPC, we refer to this policy
as disjoint probabilistic caching (DPC). More precisely, DPC
is defined as follows.

Definition 2. In DPC, the probability of storing file i at cache
k, denoted by α(k)

i , is indicated for ∀i ∈ N ,∀k ∈ K. In order to
ensure that there exists a distribution Q(k)(z̃) over F̃ that yields
caching probabilities α(k)

i , it is required that
∑N
i=1 α

(k)
i = M .

Note that in the above definition, Q(k)(z̃) yields α(k)
i

if the equality
∑

z̃∈F̃,

z̃i=C
Q(k)(z̃) = α

(k)
i holds. In order to

clarify the DPC method and its placement strategy, we bring
a simple example here. Assume a scenario with N = 4
library files and one cache with capacity of two files, i.e.,
K = 1 and M = 2. Also, the caching probabilities of the
files are chosen to be α(1)

1 = 0.7, α(1)
2 = 0.6, α(1)

3 = 0.4,
and α

(1)
4 = 0.3, satisfying the equality

∑N
i=1 α

(1)
i = 2. The

placement strategy in DPC works as follows. The cache
is divided into M (2 in our example) intervals of length
one, which these intervals are placed vertically under each
other, as shown in figure 2.a. Then, the intervals are filled
with α(k)

i ’s (at any desired order) one after another, without
replacement. Note that since

∑
i α

(k)
i = M , all intervals

are completely covered. Afterwards, a random number is
chosen uniformly in the interval [0, 1], and then, according
to the chosen number, a vertical line passes through all M
intervals, which indicates the set of M files to be cached.
The indicated files are definitely distinct since α(k)

i ≤ 1. For
more detail please refer to [24]. The aforementioned strategy
is illustrated in figure 2.a, where the intervals are filled with
α

(1)
i ’s in ascending order of their indexes. Consequently,

the distribution Q(k)(z̃) will be Q(k)(z̃ = (1, 2)) = 0.3,
Q(k)(z̃ = (1, 3)) = 0.4 and Q(k)(z̃ = (2, 4)) = 0.3, and
zero, otherwise.

When optimizing DPC, we optimize the probability of
caching individual files, i.e., α(k)

i . Then, we find a corre-
sponding distribution over F̃ , using the DPC caching strat-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

egy explained above. In particular, the DPC optimization is
written as

min
α

(k)
i :k∈K,i∈N

Ω

s.t. Ψ ≥ ζ,
0 ≤ α(k)

i ≤ 1 ∀k, i,
N∑
i=1

α
(k)
i = M,

(21)

where the last constraint ensures that a distribution over F̃
can be found to satisfy the file caching probabilities α(k)

i .
Moreover, the communication cost (Ω) is written in terms of
α

(k)
i ’s as follows:

Ω = 1−
K∑
k=1

N∑
i=1

p(k)
g piα

(k)
i , (22)

where the second term in the above equation indicates the
probability that no file is transferred as the response to a typ-
ical request. Also, the privacy degree is derived from (12d),
except that the summation has two terms, corresponding to
values y = 0 and y = C , respectively. Thus, the privacy
degree is written as:

Ψ = 1−max
i,k

p(k)
g piα

(k)
i −max

i,k
p(k)
g pi(1− α(k)

i) (23)

where the first and second maximizations correspond to y =
0 and y = C , respectively. Using the same procedure as in
Section 3.1, we can turn the optimization problem in (21)
into an LP as follow.

P2 : min
α

(k)
i :k∈K,i∈N

K∑
k=1

N∑
i=1

p(k)
g pi(1− α(k)

i)

s.t. 1− γ0 − γ1 ≥ ζ,
γ0 ≥ p(k)

g piα
(k)
i ∀k, i

γ1 ≥ p(k)
g pi(1− α(k)

i)∀k, i

0 ≤ α(k)
i ≤ 1 ∀k, i,

N∑
i=1

α
(k)
i = M.

(24)

In the following, we compare the performance of JPC
against the DPC approach and clarify its benefits over the
DPC.

4.1 DPC versus JPC
In this part, we first prove the following Lemma.

Lemma 1. The chunk-based optimization of the JPC in (18) has
the same performance as the DPC optimization in (21).

Proof. In order to prove that optimizing JPC and DPC re-
sult in the same optimum communication cost, in the first
step, we prove that any feasible point of optimization P1

corresponds to a feasible point of optimization P2, with
the same communication cost. Suppose that P (k)(z) and
{Γ0,Γ1, ...,ΓC} indicate a feasible point of P1 in (18). Also,
let q(k)

i,x be the probability that x chunks of file i are cached
at cache k in the JPC method, i.e., q(k)

i,x =
∑

z:zi=x
P (k)(z).

Now we show that {α(k)
i , γ0, γ1}, defined as

α
(k)
i = 1− 1

C

C∑
y=0

yq
(k)
i,C−y. (25)

γ0 =
1

C

C∑
y=0

(C − y)Γy, γ1 =
1

C

C∑
y=0

yΓy, (26)

is a feasible solution of optimization P2, with the same
communication cost as that of P (k)(z) in P1. The lat-
ter is obvious through observing that the communication
costs in P1 and P2 are written as

∑
k

∑
i p

(k)
g pi(1 − α

(k)
i)

and
∑
k

∑
i p

(k)
g pi

∑C
y=0 yq

(k)
i,C−y , respectively, and thus, are

equal according to (25). Now to show that {α(k)
i , γ0, γ1} is

a feasible solution of P2, note that the first inequality in P2

is equivalent to the first inequality in P1 since from (26),
we have γ0 + γ1 =

∑C
y=0 Γy . Moreover, from the second

constraint in P2, which is rewritten in terms of q(k)
i,x as

Γy ≥ p
(k)
g piq

(k)
i,C−y , and definitions of γ0 and γ1 in (25), we

conclude that γ0 ≥ p
(k)
g pi

∑C
y=0

C−y
C q

(k)
i,C−y = p

(k)
g piα

(k)
i ,

and γ1 ≥ p
(k)
g pi

∑C
y=0

1
C q

(k)
i,C−y = p

(k)
g pi(1 − α

(k)
i), i.e.,

the second and third constraints in P2 also hold. Finally,
it remains to prove the last inequality in P2. Since each
placement z ∈ F has exactly MC chunks, the average num-
ber of chunks saved in cache k under policy P (k)(z) equals
MC , i.e.,

∑N
i=1

∑C
x=0 xq

(k)
i,x = MC . Using this equality and

definition of α(k)
i in (25), we conclude

∑N
i=1 α

(k)
i = M . This

completes the proof of the first step.
In the second step, we need to show that any feasible

solution of P2, {α(k)
i , γ0, γ1}, corresponds to a feasible so-

lution of P1, {P (k)(z), {Γy}Ny=0}, with the same commu-
nication cost. To show this, we define P (k)(z) as follows.
We set P (k)(z) equal to zero for any placement z ∈ F that
caches at least one file partially, i.e., P (k)(z) = 0 if there
exists i such that zi /∈ {0, C}. Moreover, using the DPC
placement strategy and caching probabilities α(k)

i , we derive
a distribution over F̃ and assign it to P (k)(z). Moreover,
we set Γ0 = γ0, ΓC = γ1, Γy = 0 for y /∈ {0, C}. Then,
it is observed the constraint and objective functions in P1

and P2 are the same. In fact, the communication cost and
constraints in P1 are written in terms of q(k)

i,0 and q(k)
i,C , which

are equivalent to parameters 1 − α(k)
i and α

(k)
i , in P2. This

completes the proof.

The above lemma shows that caching chunks of files
does not help in decreasing the communication cost while
keeping the privacy degree above a specific threshold. The
intuition behind the above lemma is that the privacy degree
improves whenever the adversary can infer less information
from the number of transferred chunks. Thus, if we cache
the same number of chunks for any file that will be cached,
then the number of observed chunks gives no information
to the adversary if one of the cached files is requested.
Therefore, it is efficient to cache either the entire chunks
of a file or none, leading to the following corollary.

Corollary 1. The feasible set F in optimization (18) can be
changed to F̃ . We refer to this optimization as non-chunk-based
JPC.

Although both optimized non-chunk-based JPC and
DPC result in the exact average communication cost, the
difference is between the chosen distributions over F̃ . In

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

fact, in the DPC, the cache distribution is restricted by the
caching strategy introduced in [24], i.e., in what order q(k)

i ’s
are filled in cache intervals. As an example, in Figure 2, two
different fillings of cache intervals result in two different
cache placement distributions. The placement with the most
popular files is selected with a higher probability in the sec-
ond distribution, implying a better short-term performance.
Thus, if we aim to choose a distribution that allocates greater
probabilities to the placements with more popular files, this
requires investigating different filling orders of the intervals
in the caching strategy of the DPC approach to find the
desired one. This task becomes highly complex, especially
when the number of files and cache sizes increase. However,
in optimizing JPC, the LP solver, i.e., CVX, automatically
chooses the distribution, and our numerical results show
that the chosen distribution allocates higher probabilities to
the placements that include more popular files.

Another advantage of the JPC over the DPC is that
it provides the possibility of chunk-based caching, and
chunk-based placement, on the other hand, could be used
to increase the cache-hit ratio, as discussed in Section 3.2.
Caching a few chunks of a less popular file in JPC leads to
the hit-ratio of that file to be equal to one, while a hit-ratio
equal to one is obtained in DPC only by caching the file
entirely, which in turn increases the communication cost.
Also, the feasible set F in JPC can be refined in order to
include the desirable placements. For example, assume that
we need to cache at least x chunks of a specific file(s) to
satisfy its strict end-user delay constraints. Then, we can
refine the feasible set F such that it includes only the place-
ments that have at least x chunk of the specified file. Overall,
it can be seen that whenever the short-term performance
or the role of chunks becomes more important, the JPC
approach is superior to the DPC, since it provides the cache
placement directly. However, the number of optimization
parameters in the DPC approach is lower, and thus, is
preferable once the average performance of communication
cost and the privacy degree is solely important. To benefit
from the advantages of SPC and cope with its complexity, in
the next section, we propose a scalable version of the JPC.

5 SCALABLE JPC
As mentioned in Section 3.2, deriving optimal JPC may be
a complex and time-consuming task, especially when the
number of chunks is greater than one, since it requires
the computation of all feasible chunk placements. In this
section, we propose a scalable version of the JPC, in which
the complexity of deriving the feasible placements decreases
through grouping the files into disjoint subsets. Moreover,
the performance of the proposed approach can become
arbitrary close to optimal JPC by increasing the number of
subsets. We refer to this new version as Scalable Probabilistic
Caching (SPC).

Suppose that S = {S1, S2, . . . , SL} is a partition of N ,
i.e., ∀l, Sl 6= ∅, ∩Nl=1Sl = N , and Sl ∩ Sk = ∅, ∀l, k.
Moreover, any file in Sl is more popular than any file in
Sk, given that l < k, i.e., pi > pj , ∀i ∈ Sk, ∀j ∈ Sl. Then,
assuming that the popularity of files decreases with their
index, we have Sl = {

∑l−1
k=1 |Sk| + 1, ...,

∑l−1
k=1 |Sk| + |Sl|}.

Also, let ẑ = (ẑ1, ẑ2, ..., ẑL) be a vector of length L, where ẑl

indicates the number of chunks cached from subset Sl. Then,
the set of feasible placements, denoted by F̂ , is written as

F̂ = {ẑ = (ẑ1, . . . , ẑl)|0 ≤ ẑl ≤ |Sl|C,
L∑
l=1

ẑl = MC}.

(27)
It is worth noting that in order to choose ẑl chunks from

Sl, the chunks are chosen in a uniformly random manner,
one after another without replacement.

Definition 3. (SPC)
The scalable JPC (SPC) policy at cache k is defined as a prob-
ability distribution over F̂ , denoted by O(k)(ẑ). Let Ẑ(k) =

(Ẑ
(k)
1 , Ẑ

(k)
2 , ..., Ẑ

(k)
N) be a random vector indicating the chunk

placement at cache k, where Ẑ(k)
i is the random variable denoting

the number of chunks cached from subset i at cache k. Then,
P (k)(ẑ) = Pr{Ẑ(k) = ẑ}.

5.1 Communication Cost and PD in SPC

Let al =
∑
i∈Sl

pi be the probability that one of the files in
subset Sl is requested. Then, the communication cost of SPC
is derived as

Ω =
1

C

K∑
k=1

L∑
l=1

|Sl|C∑
x=0

p(k)
g al q

(k)
l,x (C − x

|Sl|
), (28)

where q(k)
l,x denotes the probability of caching x chunks from

subset Sl at cache k, and thus, is written as
q

(k)
l,x =

∑
ẑ:ẑl=x

O(k)(ẑ). (29)

Moreover, regarding the chunk selection method in SPC,
each chunk in the subset Sl is chosen with probability x

|Sl|C ,
given that x chunks is selected from subset Sl. Thus, the
average number of un-cached chunks of any file in subset
Sl is equal to C − x

|Sl| , i.e., the last multiplicative term in
(28).

In order to derive privacy degree, we first derive Pr(Y =
y|i ∈ Sl, k) as

P (Y = y|i ∈ Sl, k) =

|Sl|C∑
x=C−y

q
(k)
l,x Px,C−y, (30)

where Px,C−y denotes the probability that C − y chunks
out of x selected chunks from Sl belong to the requested
file i. Note that this probability is the same for any i ∈ Sl,
since as mentioned before, all chunks are chosen uniformly
at random. In fact, Px,C−y is derived as

Px,C−y =

(C
C−y

)(|Sl|C−C
x−(C−y)

)(|Sl|C
x

) , (31)

where the nominator indicates the number of ways to
choose C − y chunks from the requested file and the rest
x− (C − y) chunks from other files. Also, the denominator
shows the total number of ways of choosing x chunks
from |Sl|C available ones. Since P (Y = y|i ∈ Sl, k) is
independent of i, we denote it by P (Y = y|l, k) hereafter,
where P (Y = y|l, k) denotes the probability that y chunks
are transferred over the shared link given that a file from
subset Sl is requested. Using this fact and (12d), the privacy
degree can be written as

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Ψ = 1−
C∑
y=0

max
l,k

p(k)
g max

i∈Sl

Pr(Y = y|i, k)pi, (32a)

= 1−
C∑
y=0

max
l,k

p(k)
g p∗l Pr(Y = y|l, k) (32b)

where p∗l indicates the popularity of the most popular file in
subset Sl.

Since Ω in (28) and the arguments of maximization in
Ψ in (32b) are linear functions of probability distributions
O(k)(ẑ), we use the same procedure as in Section 3.1 to
change the optimization problem of SPC to an LP optimiza-
tion as follows (0 ≤ y ≤ C, z ∈ F̂ , k ∈ K)

P3 : min
Γy,O(k)(ẑ)

1

C

K∑
k=1

L∑
l=1

|Sl|C∑
x=0

p(k)
g al q

(k)
l,x (C − x

|Sl|
)

(33a)

s.t. 1−
C∑
y=0

Γy ≥ ζ, (33b)

Γy ≥ p∗l p(k)
g

|Sl|C∑
x=C−y

q
(k)
l,x Px,C−y, ∀k, l, y, (33c)∑

ẑ∈F̂

O(k)(ẑ) = 1, k ∈ K (33d)

0 ≤ O(k)(ẑ) ≤ 1, ẑ ∈ F̂ , k ∈ K, (33e)

where q(k)
l,x is written in terms of O(k)(ẑ) as in (29). The

above optimization can be solved through convex optimiza-
tion tools, where its complexity depends on the number of
subsets, i.e., L. As L increases the performance becomes
closer to the optimal JPC, where at L = N , each subset
contains exactly one file and both methods result in the
same optimal caching policies.Similar to the JPC approach
the following lemma is proved.

Lemma 2. Suppose that there exists a constant value h such that
for any l ∈ {1, · · · , L}, 1 ≤ h ≤ |Sl| and hL ≥ M , then the
performance of optimization P3 does not improve with C .

Proof. Please see Appendix A.

Examples of the above lemma are when L ≥ M and
h = 1, and when L < M and the sizes of all subsets are
the same, i.e., NL . In the latter case, it is enough to choose
h ≥ M

L , which is possible since N > M . Although the value
ofC does not affect the optimal communication cost, but hit-
ratio increases as a result of increasing C since the average
number of files, cached partially from each subset, increases.

The hit-ratio constraint can also be added to the opti-
mization P3, as

∑
k p

(k)
g h(k) ≥ β, where h(k) is derived as

h(k) =
∑
l

al

|Sl|C∑
x=0

q
(k)
l,x

(
1−

(|Sl|C−C
x

)(|Sl|C
x

))
, (34)

where last multiplicative term indicates the probability that
at least one chunk from x chosen chunks of Sl is selected
from the requested file.

6 EVALUATION AND NUMERICAL RESULTS

In this section, we evaluate the performance of JPC, DPC
and SPC approaches under different network parameters.
Furthermore, we compare the performance of the DPC
and SPC with the JPC approach without and with having
constraint on average hit-ratio probability. We use the CVX
toolbox of MATLAb simulator for solving LP optimizations
(18), (24) and (33). Moreover, we represent simulation re-
sults in order to validate our analytical approach. Unless
otherwise stated, the system parameters are considered to
be N = 5, K = 2, C = 10 and M = 2, with popularity set
{0.5, 0.18, 0.12, 0.11, 0.09} and request generation probabil-
ity set {0.7, 0.3}.

In the following, we also present a random caching
policy, called random dummy approach, as a benchmark, to
compare the performance of the proposed policies. Also, we
derive the interval of achievable privacy degrees in RDA,
JPC, DPC, and SPC methods.

6.1 Random Dummy Approach (RDA)
As noted before, dummy-based approaches are the baseline
solutions to privacy-preserving problems [12], [27]. In the
basic dummy approach, the M most popular files are cached
in each cache with probability one. However, C chunks
are sent in response to every request, regardless that the
requested file is cached or not. Hence, the adversary does
not acquire any information from the transmitted chunks,
leading to maximum privacy degree in the network. In
order to provide different degrees of privacy in the dummy
approach, we consider a modified version, namely, the Ran-
dom Dummy Approach (RDA). Similar to the basic dummy
approach, in RDA, the most popular files are cached in
all caches. However, each request associated to a cached
file is responded with C dummy chunks with probability
s and zero chunks with probability 1 − s. Moreover, the
requests associated to un-cached files are responded with
C chunks, as usual. Then, using (12d), at a given s, the
privacy degree of RDA is calculated as 1 − pmax

g

(
(1 −

s)p1 + max{pM+1, sp1}
)
, where pmax

g = maxk p
(k)
g , and

pM+1 represents the popularity of {M + 1}-th file, which
is the most popular un-cached file. In the following, we
derive the interval of achievable privacy degrees by RDA,
JPC, DPC,and SPC.

RDA, JPC, and DPC: As mentioned before, in order
to minimize the privacy degree, first of all, the caching
policy should be deterministic so that the adversary has no
ambiguity on which file has been cached. In this case, using
(12d), the privacy degree is derived as 1 − pmax

g p∗cached −
pmax
g p∗uncached, where p∗cached and p∗uncached are the pop-

ularities of the most popular cached and un-cached files,
respectively. Then, in order to minimize the privacy degree,
it is enough to maximize p∗cached+p∗uncached, which happens
when the M most popular files are cached with probability
one in every cache. This results in minimum privacy degree
to be equal to Ψmin = 1−pmax

g p1−pmax
g pM+1. Policies DPC

and SPC can choose the most popular placement with prob-
ability one, and thus, achieve Ψmin. To this end, it is enough
to set q(k)

i = 1 for i ∈ {1, 2, ...,M} and zero otherwise in
DPC, and in SPC, P (k)(z) = 1 for z = (1, 2, · · · ,M). In
RDA, the most popular files are already cached, however,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

through setting s = 0, the requests for cached files are
not responded with dummy files at all, resulting in the
minimum privacy degree Ψmin.

On the other hand, maximum privacy degree is achieved
whenever the adversary cannot achieve any information
from the number of chunks transferred over the shared link.
In this case, the adversary chooses the most popular file as
the requested file and argmaxk p

(k)
g as the requesting cache,

leading to a maximum privacy degree equal to Ψmax =
1− pmax

g p1. Ψmax is achieved in RDA and DPC through set-
ting s = 1 and q(k)

i = M
N , ∀i, k, respectively, where the latter

is written considering the constraint
∑
i q

(k)
i = M in DPC.

In JPC, any probability distribution P (k)(z) that results in
the same caching probability of files leads to the maximum
privacy degree Ψmax, e.g., the probability distribution that
chooses any combination M files out of N with the same
probability 1

(N
M)

. Thus, the achievable privacy degree by JPC,

DPC, and RDA is equal to [1−pmax
g (p1+pM+1), 1−pmax

g p1].
SPC: The following lemma introduces the achievable

privacy degrees by SPC.

Lemma 3. Given subsets {S1, S2, ..., SL}, assume a placement
ẑ such that ẑi = |Si|C for i ∈ {1, ...,m−1}, 0 < zm ≤ |Sm|C ,
and zi = 0 for i > m. In fact, z is the placement which chooses all
chunks of the first m − 1 subsets completely, and the remaining
chunks from subset Sm such that

∑m
l=1 ẑl = MC . Then, the

minimum and maximum privacy degree of SPC, denoted by Ψmin
SPC

and Ψmax
SPC , respectively, are derived as

Ψmin
SPC =1− p∗1pmaxg −max

{(|Sm|C−C
zm

)(|Sm|C
zm

) p∗Mp
max
g , p∗M+1p

max
g

}

− p∗Mpmaxg

(
1−

(|Sm|C−C
zm−C

)
+
(|Sm|C−C

zm

)(|Sm|C
zm

))
,

Ψmax
SPC =1− p∗1pmaxg .

(35)

Proof. Please see Appendix B.

It is seen from the above lemma that the minimum
privacy degree in SPC is dependent on C .

6.2 Numerical Results

In Figure 3, the optimal communication costs of DPC and
JPC approaches, derived from (18) and (24), respectively, are
plotted versus the privacy degree threshold, ζ . In the case
of the JPC approach, the results are plotted in the cases of
C = 1 and C = 10. As can be seen, the number of chunks
does not affect the optimal communication cost in the JPC
approach, as proved in Lemma 1. Moreover, DPC and JPC
approaches result in the same optimal performance. Also,
it is observed that optimum communication cost increases
with ζ . This is due to the fact that in order to provide
higher privacy degree, the randomness in caching strategy
increases, which leads to caching of more popular files less
probable.

In Fig. 4, the communication cost of RDA, and optimal
communication costs of JPC and DPC are plotted versus
ζ . In order to derive the communication cost of RDA at a
given value of ζ , first we derive the parameter s of RDA

Fig. 3: Numerical and simulation results of optimal Ω vs.
privacy degree threshold, ζ in two approaches: DPC and
JPC.

Fig. 4: Optimal Ω versus privacy degree threshold, ζ when
α = 1 and C = 1.

approach which results in privacy degree ζ , i.e., we set
1 − pmax

g

(
(1 − s)p1 + max{pM+1, s p1}

)
= ζ (see Section

6.1). Then, the communication cost of RDA is calculated
as s

∑M
i=1 pi +

∑N
i=M+1 pi. As demonstrated in Figure 4,

all three approaches have the same communication cost at
the minimum privacy degree, i.e., ζ = 0.56. Here, JPC and
DPC cache the most popular contents, and RDA parameter
s is equal to zero. However, as ζ increases, the optimum
communication cost increases more rapidly in the RDA
approach. This is because in RDA, in order to preserve the
increased privacy degree ζ , we need to increase s, which
simultaneously increases the average number of files trans-
ferred in response to all cached files. However, DPC and JPC
approaches have more freedom to treat files distinctly by
choosing different placements with different probabilities,
thus yielding lower optimal communication cost than RDA.
Moreover, according to Figure 4, JPC (DPC) outperforms
RDA, up to 21%.

Next, we investigate the impact of the number of chunks,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 5: a) Cmin and b) optimal Ω versus hit rate threshold
(β), where ζ = 0.61 and 0.77.

i.e., C , on the hit-ratio-constrained JPC. In particular, when
optimizing the hit-ratio-constrained JPC, we increase the
value of C until there exists a feasible solution to the
optimization. We refer to the minimum value of C that
makes the optimization feasible as Cmin. In Figure 5a and
5b, Cmin and the corresponding optimal communication
cost are plotted versus the hit-ratio threshold β, respectively,
assuming N = 12 and M = 3. The results are depicted for
the cases that the file popularities are generated according
to the Zipf distribution with parameter α = 1 and α = 1.5,
and the corresponding privacy degree thresholds, ζ , are
considered to be 0.77 and 0.61, respectively.

As can be observed in Figure 5a, Cmin increases with
β since in order to increase the number of files cached
partially, we need to cache smaller parts of the files which is
possible through increasing C . Meanwhile, the correspond-
ing communication cost increases as observed in Figure 5b,
since by increasing the average hit ratio, smaller parts of the
popular files are cached on average.

In Figure 6, we compare the performance of the pro-
posed SPC approach, at different values of L, i.e., the
number of subsets, against optimal JPC, considering Zipf
parameter α = 0.65, N = 12, and M = 3. Moreover,
all subsets are assumed to have the same size. Also, note
that the files are divided in subsets according to Section 5,
i.e., the subsets are filled with files in a descending order
of popularity. As can be seen in Figure 6, the performance
of optimal SPC approach becomes closer to the optimal
JPC as L increase, where at L = 12, they have the same
performance. Moreover, it is observed that with changing L
from 12 to 3, the optimal communication cost increases at
least 6% and at most 9% However, the number of feasible
placements decreases from 220 to 10, leading to less complex
optimization problem. Another interesting point is that as
we decrease L, the minimum achievable privacy degree
increases, leading to more secure probabilistic caching strat-

Fig. 6: Optimal Ω versus privacy degree ζ in the SPC
approach, where N = 12, M = 3, α = 0.65.

Fig. 7: a) Cmin and b) Optimal Ω, versus hit rate threshold
(β), where ζ = 0.81 and α = 1.

egy. As such, the minimum privacy degree increases 5% at
L = 3 compared to L = 12.

In Figures 7(a) and 7(b), Cmin, i.e., minimum value of
C at which hit-ratio-constrained SPC optimization is fea-
sible, and its corresponding optimal communication cost
are plotted versus hit-ratio threshold β, respectively. As
observed in Figures 7(a), Cmin increases with β since in
order to support a higher hit-ratio, more files should be
cached partially, which requires caching smaller parts of the
files through increasing the value of C . Also, it is observed
that when the number of subsets is small, generally Cmin

is smaller, e.g., at L = 3, Cmin increases from one at hit-
ratio equal to 0.8, however, at L = 6, 12, such a value
is equal to 0.6. This is because, in the SPC approach, the
chunks in each subset are chosen equally probably. Thus,
the adversary gains no knowledge about the files within
each subset and chooses the most popular file in each subset
as the requested file. Consequently, when the number of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 8: a) Average optimal Ω and b) The number of feasible
placements versus number of subsets(L) points, where α =
1.

files within each subset increases, or equivalently L be-
comes smaller, the error probability of the adversary, i.e.,
the probability that one file other than the most popular file
is requested, increases. Moreover, it is observed from 7(b)
that the optimal communication cost increases with β. This
is because the space of the cache is dedicated more to less
popular files to increase the hit-ratio, which in turn increases
the communication cost.

In Figure 8(a), the average of optimal Ω over the interval
of achievable privacy degrees is plotted versus the num-
ber of subsets L. As can be seen, the average optimal Ω
decreases with L since the performance of SPC becomes
closer to the optimal JPC. Also, the gradient of the curves
is decreasing, i.e., the difference between average optimal Ω
in smaller size L, e.g., 2 and 3 is more significant than in
larger sizes of L such as 8 and 10. This is important because
the profit ratio is not worth the computation cost despite
the minimization of optimal omega in larger L sizes. As
depicted in Figure 8(b), the number of feasible placements,
i.e., |F̂ | grows exponentially as the L size grows.

7 CONCLUSION

Decreasing the communication cost in edge networks re-
sults in caching the most popular files in edge caches.
However, it degrades the users’ privacy since it provides
the adversary with knowledge about users’ interests in
different files. In this paper, we proposed JPC, based on joint
chunk placement at different caches, to preserve privacy
in the network while minimizing the communication cost.
We showed that the corresponding optimization problem
is LP. However, the LP optimization requires deriving all
feasible chunk placements, which is cumbersome when the
system parameters are large. To overcome this, we propose a
scalable-JPC approach (SPC) in which the files are grouped
into small subsets, and then the placements are done based

on the subsets, i.e., the number of chunks stored from a
subset. Numerical results revealed that the JPC approach
outperforms SPC, DPC, and random dummy approaches.

APPENDIX A
PROOF OF LEMMA 2
Assume that in the cases ofC = 1 andC > 1, the SPC policy
indicates the probability distributions O(k)(ẑ) and Ǒ(k)(ž),
respectively, where ẑ ∈ F̂ (see (27)) and ž = (ž1, ž2, · · · , žL)
represents a feasible placement in the case of C = 1. In
fact, žl indicates the number of files chosen from subsets
Sl. Thus, ž ∈ F̌ = {ž|žl ∈ {0, 1, · · · , |Sl|}, 1 ≤ l ≤
L,
∑L
l=1 žl = M}. In the case that C > 1, we refer to the

optimization P3 in (33) as P3c, and rewrite it as:

P3c : min
{Γy}Cy=0,O

(k)(ẑ)

K∑
k=1

L∑
l=1

p(k)
g al E[Y

(k)
l]

s.t. 1−
C∑
y=0

Γy ≥ ζ,

Γy ≥ p∗l p(k)
g P (Y = y|l, k), ∀k, l, y,

(36)

where from (33), E[Y
(k)
l] =

∑|Sl|C
x=0 q

(k)
l,x (1 − x

|Sl|C) is the
average number of transferred files under policy O(k)(ẑ),
given that cache k requests one file from Sl. Moreover,
P (Y = y|l, k) in the second constraint of (36) is derived
from (30) and (31). Moreover, in the case of C = 1, we
rewrite P3 as:

P31 : min
Γ̌0,Γ̌1,Ǒ(k)(ž)

K∑
k=1

L∑
l=1

p(k)
g al E[Y̌

(k)
l]

s.t. 1− Γ̌0 − Γ̌1 ≥ ζ,
Γ̌0 ≥ p∗l p(k)

g P (Y̌ = 0|l, k), ∀k, l,
Γ̌1 ≥ p∗l p(k)

g P (Y̌ = 1|l, k), ∀k, l,

(37)

where Y̌ and E[Y̌
(k)
l] are the corresponding values of Y and

E[Y
(k)
l] in the case of C = 1. P (Y̌ = y|l, k) and E[Y̌

(k)
l]

are derived similar to P (Y = y|l, k) and E[Y
(k)
l] through

setting C = 1.
Now, let {o(k)(ẑ), {γy}Cy=0} be a feasible solution of P3c,

resulting in E[Y
(k)
l] = e

(k)
l . Then, through the following

lemmas, we show that the optimal communication cost of
P3c is less than or equal to that of P31 .

Lemma 4. If there exists a caching policy ǒ(k)(ž) over F̌ , under
which E[Y̌

(k)
l] = e

(k)
l , then, {ǒ(k)(ž), γ̌0, γ̌1}, with γ̌0 and γ̌1

defined as γ̌0 = 1
C

∑C
y=0(C − y)γy and γ̌1 = 1

C

∑C
y=0 yγy is

a feasible solution of P31, and results in the same communication
cost as o(k)(ẑ) in optimization P3c.

Proof. Regarding the definition of γ̌1 and the sec-
ond constraint in P3c, we conclude that γ̌1 ≥
p∗l p

(k)
g

1
C

∑C
y=0 yP (Y = y|l,K) = p∗l p

(k)
g e

(k)
l and γ̌0 ≥

p∗l p
(k)
g (1 − e(k)

l). These two inequalities are in fact the third
and second constraints in P31 since on the one hand, under
any policy belonging to F̌ , we have E[Y̌

(k)
l] = P (Y̌ =

1|l, k), leading to e(k)
l = P (Y̌ = 1|l, k). The first constraint

is also satisfied since γ̌0 + γ̌1 =
∑C
y=0 γy . Finally, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

communication cost under both policies o(k)(z) and ǒ(k)(ž)

are the same and equal to
∑
k

∑
l p

(k)
g ale

(k)
l .

Lemma 5. Suppose that there exists a constant value h such that
for any l ∈ {1, · · · , L}, 1 ≤ h ≤ |Sl| and hL ≥ MC , then
there exists a policy ǒ(k)(z) over F̌ under which E[Y̌

(k)
l] = e

(k)
l .

Proof. We introduce the policy ǒ(k)(z) as follows. First of all,
we assume that ǒ(k)(ž) = 0 for any ž that ∃ži 6∈ {0, h}, im-
plying that either zero or h files are cached from any subset
l. Also, let q(k)

l,h and q(k)
l,0 denote the probabilities of caching h

and zero files from subset Sl at cache k, under policy ǒ(k)(z).
Then, we have E[Y̌

(k)
l] = q

(k)
l,0 + q

(k)
l,h (1 − h

|Sl|), i.e., with

probabilities of q(k)
l,0 and q(k)

l,h (1− h
|Sl|) one file is transferred

in response to any file requested from Sl by cache k. Note
that 1 − h

|Sl| is the probability that the requested file is

not among h selected files. Then from E[Y̌
(k)
l] = e

(k)
l and

q
(k)
l,h + q

(k)
0,h = 1, q(k)

l,h is derived as |Sl|(1−e(k)
l)

h . It can be seen

that
∑L
l=1 hq

(k)
l,h =

∑L
l=1 |Sl|(1 − e

(k)
l). Since |Sl|(1 − e(k)

l)
is the average number of files cached from Sl under policy
O(k)(ẑ), we have

∑L
l=1 |Sl|(1 − e

(k)
l) = M . Consequently,∑L

l=1 q
(k)
l,h = M

h . Now, we use the caching placement strat-
egy of DPC, assuming that we have L files, a cache of size
M
h and caching probabilities q(k)

l,h . Regarding the equality∑L
l=1 q

(k)
l,h = M

h , a distribution over placements ž ∈ F̌ is
determined, where M

h elements of each placement is equal
to h and other elements equal to zero. This distribution is
assigned to ǒ(k)(z).

APPENDIX B
PROOF OF THE PRIVACY DEGREE BOUNDARIES IN
SPC

The minimum privacy degree in the SPC is achieved when
SPC tries to cache the most popular files as much as possible.
Thus, the SPC chooses a placement in which all files of the
subsets with lower index are chosen completely, as much as
possible. Suppose that such a placement caches all files of
the first m − 1 subsets, i.e., zl = C|Sl| for 1 ≤ l ≤ m − 1,
and caches only zm < C|Sm| chunks from subset m − 1.
We calculate the term maxl,k p

(k)
g p∗l Pr(Y |l, k) in (32b), for

y ∈ {0, 1, · · · , C}, to calculate the minimum privacy degree.
Case y = 0: Pr(Y = 0|l, k) is calculated as

Pr(Y = 0|l, k) =


1; l ∈ {1, 2, · · · ,m− 1},
(|Sm|C−C

zm−C)
(|Sm|C

zm
)

; l = m,

0; otherwise.

(38)

Thus, we have

max
l,k

p(k)
g p∗l Pr(Y = 0|l, k) = max

{
max

1≤k≤m−1
p(k)
g p∗l ,

p(k)
g p∗m

(|Sm|C−C
zm−C

)(|Sm|C
zm

) , 0
}

= pmax
g p∗1

(39)

Case y = C : Pr(Y = C|l, k) is calculated as

Pr(Y = C|l, k) =


0; l ∈ {1, 2, · · · ,m− 1},
(|Sm|C−C

zm
)

(|Sm|C
zm

)
; l = m,

1; otherwise.

(40)

Thus, we have

max
l,k

p(k)
g p∗l Pr(Y = C|l, k) = max

{
0, pmax

g p∗m

(|Sm|C−C
zm

)(|Sm|C
zm

) ,

max
m+1≤l≤L

p(k)
g p∗l

}
= max

{
pmax
g p∗m

(|Sm|C−C
zm

)(|Sm|C
zm

) , pmax
g p∗m+1

}
.

(41)
Case y ∈ {1, · · · , C − 1}: In this case, Pr(Y = y|l, k) = 0

for l 6= m since any file requested from m − 1 first subsets
and from subsets m + 1 to L leads to 0 and C chunks
transferred, respectively. Thus, for y 6= 0, C, we have
maxl,k p

(k)
g p∗l Pr(Y = y|l, k) = pmax

g p∗m Pr(Y = y|m, k).
Consequently, we have
C−1∑
y=1

max
l,k

p(k)
g p∗l Pr(Y = y|l, k)

= pmax
g p∗m(1− Pr(Y = 0|m, k))− Pr(Y = C|m, k))

= pmax
g p∗m(1−

(|Sm|C−C
zm

)(|Sm|C
zm

) − (|Sm|C−C
zm−C

)(|Sm|C
zm

)).

(42)

From (39), (41), (42), and (32b), Ψmin
SPC in (35) can be con-

cluded. Moreover, the maximum privacy degree in SPC is
achieved when all possible placements are chosen with the
same probability. In this case, the adversary chooses the
most popular file as the requested file and argmaxk p

(k)
g as

the requesting users, thus, leading to a maximum privacy
degree equal to 1− p∗1pmax

g .

REFERENCES

[1] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in iot edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 6, pp. 1133–
1146, 2020.

[2] S. Liu, C. Zheng, Y. Huang, and T. Q. Quek, “Distributed rein-
forcement learning for privacy-preserving dynamic edge caching,”
IEEE Journal on Selected Areas in Communications, 2022.

[3] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-
akanlahiji, J. Kong, and J. P. Jue, “All one needs to know about fog
computing and related edge computing paradigms: A complete
survey,” Journal of Systems Architecture, 2019.

[4] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, 2019.

[5] P. Ranaweera, A. D. Jurcut, and M. Liyanage, “Survey on multi-
access edge computing security and privacy,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 2, pp. 1078–1124, 2021.

[6] J. Ni, K. Zhang, and A. V. Vasilakos, “Security and privacy for
mobile edge caching: Challenges and solutions,” IEEE Wireless
Communications, vol. 28, no. 3, pp. 77–83, 2020.

[7] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, “Secu-
rity in mobile edge caching with reinforcement learning,” IEEE
Wireless Communications, vol. 25, no. 3, pp. 116–122, 2018.

[8] S. Cui, M. R. Asghar, and G. Russello, “Multi-cdn: Towards
privacy in content delivery networks,” IEEE Transactions on De-
pendable and Secure Computing, 2018.

[9] X. He, R. Jin, and H. Dai, “Physical-layer assisted privacy-
preserving offloading in mobile-edge computing,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC). IEEE,
2019, pp. 1–6.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[10] H. Ko, H. Lee, T. Kim, and S. Pack, “Lpga: Location privacy-
guaranteed offloading algorithm in cache-enabled edge clouds,”
IEEE Transactions on Cloud Computing, 2020.

[11] H. Jiang, J. Li, P. Zhao, F. Zeng, Z. Xiao, and A. Iyengar, “Loca-
tion privacy-preserving mechanisms in location-based services: A
comprehensive survey,” ACM Computing Surveys (CSUR), vol. 54,
no. 1, pp. 1–36, 2021.

[12] B. Niu, Z. Zhang, X. Li, and H. Li, “Privacy-area aware dummy
generation algorithms for location-based services,” in 2014 IEEE
International Conference on Communications (ICC). IEEE, 2014, pp.
957–962.

[13] K. P. Coopamootoo, “Usage patterns of privacy-enhancing tech-
nologies,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 1371–1390.

[14] D. Andreoletti, O. Ayoub, S. Giordano, G. Verticale, and M. Torna-
tore, “Privacy-preserving caching in isp networks,” in 2019 IEEE
20th International Conference on High Performance Switching and
Routing (HPSR). IEEE, 2019, pp. 1–6.

[15] D. Andreoletti, O. Ayoub, C. Rottondi, S. Giordano, G. Verticale,
and M. Tornatore, “A privacy-preserving protocol for network-
neutral caching in isp networks,” IEEE Access, vol. 7, pp. 160 227–
160 240, 2019.

[16] G. Acs, M. Conti, P. Gasti, C. Ghali, G. Tsudik, and C. A. Wood,
“Privacy-aware caching in information-centric networking,” IEEE
Transactions on Dependable and Secure Computing, vol. 16, no. 2, pp.
313–328, 2017.

[17] J. Cui, L. Wei, H. Zhong, J. Zhang, Y. Xu, and L. Liu, “Edge
computing in vanets-an efficient and privacy-preserving coop-
erative downloading scheme,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 6, pp. 1191–1204, 2020.

[18] R. Schlegel, S. Kumar, E. Rosnes, and A. G. i Amat, “Privacy-
preserving coded mobile edge computing for low-latency dis-
tributed inference,” IEEE Journal on Selected Areas in Communica-
tions, 2022.

[19] S. B. Hassanpour, A. Diyanat, A. Khonsari, S. P. Shariatpanahi,
and A. Dadlani, “Context-aware privacy preservation in network
caching: An information theoretic approach,” IEEE Communica-
tions Letters, vol. 25, no. 1, pp. 54–58, 2020.

[20] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain,
“Mobility-aware proactive edge caching for connected vehicles
using federated learning,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 22, no. 8, pp. 5341–5351, 2020.

[21] Z. Yu, J. Hu, G. Min, Z. Wang, W. Miao, and S. Li, “Privacy-
preserving federated deep learning for cooperative hierarchical
caching in fog computing,” IEEE Internet of Things Journal, 2021.

[22] F. Shi, L. Fan, X. Liu, Z. Na, and Y. Liu, “Probabilistic caching
placement in the presence of multiple eavesdroppers,” Wireless
Communications and Mobile Computing, vol. 2018, 2018.

[23] B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li, “Enhancing privacy
through caching in location-based services,” in 2015 IEEE confer-
ence on computer communications (INFOCOM). IEEE, 2015, pp.
1017–1025.

[24] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching
in cellular networks,” in 2015 IEEE international conference on
communications (ICC). IEEE, 2015, pp. 3358–3363.

[25] X. Lin, J. Xia, and Z. Wang, “Probabilistic caching placement in
uav-assisted heterogeneous wireless networks,” Physical Commu-
nication, vol. 33, pp. 54–61, 2019.

[26] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog
et al.: A survey and analysis of security threats and challenges,”
Future Generation Computer Systems, vol. 78, pp. 680–698, 2018.

[27] H. Lu, C. S. Jensen, and M. L. Yiu, “Pad: privacy-area aware,
dummy-based location privacy in mobile services,” in Proceedings
of the Seventh ACM International Workshop on Data Engineering for
Wireless and Mobile Access. ACM, 2008, pp. 16–23.

	1 Introduction
	2 System Model and Assumptions
	2.1 Edge caching model
	2.2 Adversary Model
	2.3 Communication Cost
	2.4 Privacy Degree
	2.5 Example

	3 Problem Formulation
	3.1 Linear Programming Optimization
	3.2 Hit Ratio Constrained JPC

	4 Disjoint Probabilistic Caching (DPC)
	4.1 DPC versus JPC

	5 Scalable JPC
	5.1 Communication Cost and PD in SPC

	6 Evaluation and Numerical Results
	6.1 Random Dummy Approach (RDA)
	6.2 Numerical Results

	7 Conclusion
	Appendix A: Proof of Lemma 2
	Appendix B: Proof of the privacy degree boundaries in SPC
	References

