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Abstract—Testbeds have become a vital tool for evaluating
and benchmarking applications and algorithms in the Internet of
Things (IoT). Testbeds commonly consist of low-power IoT de-
vices augmented with observer nodes providing control, logging,
and often also power-profiling. Today, the research community
operates numerous testbeds, sometimes with hundreds of IoT
nodes, to allow for detailed and large-scale evaluation. Most
testbeds, however, lack opportunities for tracing distributed
program execution with high accuracy in time, for example, via
minimally invasive, distributed GPIO tracing. And the ones that
do, like Flocklab, are built from custom hardware, which is often
too complex, inflexible, or expensive to use for other research
groups.

This paper closes this gap and introduces Grace, a low-cost,
retrofittable, distributed, and time-synchronized GPIO tracing
system built from off-the-shelf components, costing less than C20
per node. Grace extends observer nodes in a testbed with (1)
time-synchronization via wireless sub-GHz transceivers and (2)
logic analyzers for GPIO tracing and logging, enabling time-
synchronized GPIO tracing at a frequency of up to 8 MHz. We
deploy Grace in a testbed and show that it achieves an average
time synchronization error between nodes of 1.53 µs.

Index Terms—GPIO Logging, GPIO Tracing, Testbed, Internet
of Things, IoT, Time-Synchronization

I. INTRODUCTION

With more than 10 billion connected IoT devices deployed
by the end of 2021 [1], the Internet of Things enables
new applications in our connected and data-driven society.
Their connected and often distributed nature makes extensive
testing, evaluation, and benchmarking a must to ensure proper
performance.

Simulation [2], [3] allows for high-level insights into pro-
tocols and algorithms. However, simulation cannot capture all
details of the environment, nor is it capable of evaluating
the performance of protocols on real hardware. Therefore, the
research community commonly uses testbeds: deployments of
(low-power) IoT devices co-located with observer infrastruc-
ture, typically an edge device – like a Raspberry Pi – for
instrumentation, logging, and deployment control.

While testbeds provide real-world insights and are today’s
established tool for evaluating distributed IoT applications,
they lack one essential capability: The capability to non-
intrusively – or with minimal intrusiveness – track the exe-
cution of distributed protocols and algorithms. For example,
for debugging and evaluating protocols, we often need insight
into the execution and states within the hardware. For non-
distributed settings such as traditional software development,

one commonly uses debuggers, with which one can halt pro-
gram execution and inspect the system’s state. In distributed
settings, we cannot halt the operation of nodes as both the
environment continues to change, and further nodes will also
continue their operation. Another common way is printing
messages during operation, usually through a serial interface.
However, printing takes several tens of milliseconds, which
leads to side effects on program executions and limits accurate
timestamping. It might even break the timing in timing-critical
sections of a program, leading to missed deadlines.

The third way of gaining insight is through tracing the
General-Purpose Input/Output (GPIO) pins of a processor
or microcontroller. Toggling GPIO pins offers a minimally
intrusive way of communicating timing-correct information on
the operation to the outside world. A logic analyzer can record
the GPIO traces to evaluate these later. While logic analyzers
provide us with a time-accurate trace of the execution of a
program, they commonly only provide insights into one device
due to the physical distance between devices. However, in a
distributed communication system, it is of high importance to
know how multiple devices interact with each other and at
what exact point in time, or how much time passes between
the same operation on multiple devices. For example, Time-
Division Multiple Access (TDMA) protocols like Glossy [4]
or Time-Slotted Channel Hopping (TSCH) [5] are time-critical
protocols that synchronize their communication; and among
others, LWB [6] and Chaos [7] enable multiple devices to
send data concurrently in a time-synchronized fashion. To
evaluate synchronization of protocols like these and interaction
between multiple devices, we require a GPIO tracing system,
which performs a time-synchronized tracing on all devices.
Many means of time-synchronization exist (including the
Network Time Protocol (NTP) and the Global Positioning
System (GPS)), however, none of them offers a low-cost, low
complexity solution that is both available at indoor testbed
locations and offers the required accuracy.

There are distributed, time-synchronized GPIO logging sys-
tems implemented in existing testbeds [8]–[10]. However,
they use custom hardware with FPGAs and require a specific
testbed observer platform throughout the testbed. This limits
their adoption into other testbeds, especially those that already
exist and use different hardware and observer platforms.

In this paper, we present Grace, a low-cost, retrofittable,
distributed, and time-synchronized GPIO tracing system using



off-the-shelf components. Grace extends observer nodes with
(1) time-synchronization via wireless sub-GHz (433 MHz)
transceivers and (2) logic analyzers for GPIO tracing and
logging. Using sub-GHz wireless, Grace enables a building-
wide time-synchronization from a single central node perform-
ing unidirectional RBS-like time-synchronization. Further, we
devise a software framework to enable extensive tracing capa-
bilities building on this hardware. In our evaluation, we show
that Grace is capable of continuously logging sparse data
as produced when debugging IoT systems, such as wireless
protocols, at a rate of 8 MHz. Moreover, we show that we
achieve a time-synchronization of on average 1.53 µs, which,
as we argue, is sufficient for most applications.

Overall, this paper makes the following contributions:
• We present Grace, a low-cost time-synchronized GPIO

tracing system for IoT testbeds.
• We implement Grace using off-the-shelf hardware to

enable easy adoption in other building-wide testbeds and
make both the software and the hardware setup openly1

available.
• We show Grace’s low cost of less than C20 per node.
• We evaluate Grace, showing its degree of time-

synchronization between nodes of on average 1.53 µs,
while not exceeding a worst-case synchronization of
3.75 µs.

The remainder of this paper is organized as follows. Sec-
tion II gives necessary background information. Section III
introduces Grace’s design, and Section IV presents our exper-
imental evaluation. Section V reviews related GPIO tracing
testbed systems, followed by the conclusion in Section VI.

II. BACKGROUND

This section provides the necessary background for the
remainder of this paper. We introduce (A) the concept of
time synchronization with a focus on (B) the Network Time
Protocol (NTP) and (C) the Reference Broadcasting System
(RBS). Afterward, we provide general background on (D)
Logic Analyzers.

A. Time Synchronization

Most electronic computing devices use a crystal oscillator
as a basis for their clock. These oscillators operate at a certain
frequency, but usually do not perfectly hold their nominal
frequency. No oscillator is perfect, and physical variations like
temperature or air pressure add to the oscillators’ frequency
variation. While these drifts are negligible in stand-alone
single computer setups, they impose a challenge on distributed
computing and communication systems. These systems require
a tight synchronization of the individual clocks. For time-
sensitive applications, these clocks have to fulfil one or both of
these metrics: precision and accuracy. The notion of precision
(β) defines the maximum time error between two clocks (p,
q) of a system (∀t, ∀p, q : |Cp(t)−Cq(t)| ≤ β). The notion of
accuracy (α) describes a clock’s difference towards a reference

1Available as open-source at: https://github.com/ds-kiel/grace

timescale (∀t, ∀p : |Cp(t)− t| ≤ α) [11]. A common reference
timescale is UTC, which the Network Time Protocol (NTP)
(see section II-B) uses.

Depending on the importance of accuracy or precision, dif-
ferent synchronization approaches like NTP (see section II-B)
or the Reference Broadcasting System (RBS) (see section II-C)
are possible. Within the next sections, we describe these two
in more detail.

B. Network Time Protocol (NTP)

The most widely used time synchronization protocol for
distributed systems is the Network Time Protocol (NTP) [11].
It is the default protocol used by computers and most devices
directly connected to the Internet, and builds the baseline for
other protocols. For time synchronization, a device contacts
an NTP server to receive the server’s local time. From the
received timestamps and the device’s local timestamps of
sending the request and receiving the response, the device can
compute the round trip time and thus determine its offset from
the reference clock.

In NTP, clocks are synchronized to UTC. As not each NTP
server can be equipped with a reference clock, e.g., a GPS
receiver, NTP builds a hierarchical structure of servers. This
structure uses so-called stratum levels. A stratum-1 server is
equipped with a reference clock. Each server is a stratum-
(k + 1) server if the server it contacts to synchronize to is a
stratum-k server. NTP is known to achieve accuracy between
1 and 50 ms.

C. Reference Broadcasting System (RBS)

The reference broadcasting system (RBS) [11] differs sig-
nificantly from methods like NTP. It does not assume the
existence of an accurate clock (e.g., a UTC clock) within
the network. Instead, it merely has the goal of network-
internal clock synchronization. RBS is a wireless, physical
layer time synchronization method. Moreover, contrary to
other methods, where a node contacts a timeserver, in RBS, a
time source broadcasts a reference signal to all nodes within
the network. Every node generates a timestamp with its local
clock on reception of the synchronization signal. As RBS only
has a single sender that reaches all receivers, most parts of
the critical path are eliminated. In a wireless network, the
transmission time to all receivers is roughly the same, with a
negligible offset. Thus, the critical part is only the reception
(and timestamping) of the broadcast packet at the receivers.
To reduce jitter introduced upon reception, RBS performs
multiple broadcast rounds, and nodes exchange each other’s
delivery times to estimate their mutual, relative offset.

D. Logic Analyzer

A logic analyzer records the physical state of one or more
signals over time. Logic Analyzers commonly trace digital
signals. To process the trace of a logic analyzer, several
software solutions working with logic analyzers have built-
in features to not only display the recorded traces, but even
decode protocols like the Serial Peripheral Interface (SPI)

https://github.com/ds-kiel/grace


communication protocol to use a logic analyzer to debug
communication between electronic components [12].

III. DESIGN

Our design of Grace enables the time-synchronized use
of GPIO tracing in building-wide testbeds while only using
off-the-shelf components. Actuating GPIO pins is minimally
intrusive and thus has negligible influence on a system’s
timing.

A. Design Overview

The diagram in Fig. 1a illustrates the general idea of Grace.
One synchronization node repeatedly sends out a time signal.
Each testbed node, equipped with a receiver, receives this
time signal. Using this signal, each observer synchronizes its
GPIO tracing clock. This synchronization of the tracing clocks
enables the post-processing to match the GPIO traces of the
different devices and build a common trace over all distributed
devices.

Within the following sections, we describe the design of the
different components in more detail. We discuss our time-error
correction algorithm and discuss the system’s integration into
an existing testbed.

B. Synchronization Node

The synchronization node is a node (physically) indepen-
dent of the testbed and its nodes. It consists of a microcon-
troller and a 433 MHz radio (see Fig. 1a). We use the 433 MHz
band, which is an ISM band available in the International
Telecommunication Union’s (ITU) region 1 (i.a., Europa and
Africa). Creating a design with 433 MHz radios allows the
use of only one synchronization node for a typical building
scale testbed due to its more extended range compared to
the range of radios using higher frequencies. Moreover, the
433 MHz band is well outside the bands usually used for
IoT research: the 2.4 GHz and 868/915 MHz bands. For
larger testbeds beyond building scale, the use of multiple
of these synchronization nodes is possible, but it requires
them to be disciplined with an external clock (e.g., a GPS
pulse per second signal) to ensure synchronization between
the individual synchronization nodes.

According to a configurable time interval, in our case one
second by default, the node generates and transmits a times-
tamp. This timestamp contains a counter value representing
the time that has passed since turning on the synchronization
node. As long as we only have one synchronization node, we
do not require a globally accurate clock, but rather a single
time source (here a microcontroller) within the vicinity of the
network. The radio broadcasts this timestamp to all testbed
nodes, which have to be in range of the synchronization node
at all times. This approach of sending a timestamp at a regular
interval (e.g., once a second) to all nodes of the network
in a single(-hop) wireless broadcast follows the approach of
the reference broadcasting system (RBS) (see Section II-C).
Through the single broadcast and the close distance of all
nodes to the synchronization node, the signal propagation
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Fig. 1: Design Overview of Grace.

delay is low enough that all nodes will receive the time signal
with a negligible time offset of less than one logic analyzer
sample or up to a few samples for physically large testbeds.
Note that we do not intend to synchronize the clocks of testbed
observers but rather the clocks corresponding to the logic
analyzers.

C. Testbed node

A testbed node consists of a controller (e.g., a Raspberry
Pi) and one or more low-power IoT devices as target platforms
(see Fig. 1a). The target platforms expose GPIO pins that
are to be traced. To allow this tracing, we build a system
consisting of a USB logic analyzer and a radio that can be
retrofitted to any testbed. We intend to use the logic analyzer
for the GPIO tracing and the radio for receiving the timestamp
from the synchronization node. We reserve one of the logic
analyzer’s pins for the radio. All other GPIO pins are available
for tracing the target platforms’ GPIO pins. Once the radio
receives a signal from the synchronization node, it turns on
its GPIO pin connected to the logic analyzer. This notifies
the process, handling the logic analyzer’s input of a new
timestamp. Moreover, it pinpoints the reception of the time
signal to an exact tick of the logic analyzer. In other words,
we can match the reception time of the synchronization signal
to a local timestamp of the GPIO tracing system. This allows
us to perform error correction on the local time and thus have
a notion of synchronization for combining the recorded traces
of different devices in post-processing.

Within the following sections, we describe the different
components of the GPIO tracing and the time synchronization.

D. GPIO Tracing

For GPIO tracing, Grace employs a USB-driven logic
analyzer. This logic analyzer has to be able to trace sparse
amounts of data on multiple GPIO pins and write the traces
without prior processing to the USB buffer.

E. Trace Data Processing

The algorithms at the observer processes the incoming
data in bulks. We perform different actions based on the
changes present in each data sample. Each data sample is one
recording of the logic analyzer. We compare each sample to
its previous one. If there are changes present, we identify the
corresponding channels of the logic analyzer. Depending on



Algorithm 1 Tick
Input: TICKS PER SECOND, stateclock , freqadj , offsetadj ,

errorremaining , seconds, ticksactual, accumulator
Output: offsetadj , errorremaining , seconds, ticksactual, accumulator
1: if stateclock = OFFSET or stateclock = FREQ then
2: accumulator ← accumulator + freqadj − offsetadj

3: if offsetadj < 0 then
4: errorremaining ← errorremaining + offsetadj

5: else
6: errorremaining ← errorremaining − offsetadj

7: end if
8: if errorremaining ≤ 0 then
9: offsetadj = 0

10: end if
11: if accumulator > TICKS PER SECOND then
12: seconds← seconds + 1
13: accumulator ← accumulator − TICKS PER SECOND
14: end if
15: ticksactual ← ticksactual + 1
16: return
17: end if

the channel’s role, we perform further actions. If the state of
the channel corresponding to the radio changed and that pin
turned on, we know that we received a new time signal. We
describe the algorithm for processing this time data in the
following section (Section III-E1). If we detect a change on
one of the traced GPIO pins, we timestamp the event (if we
previously received at least two global timestamps) according
to Equation 1 and hand it over for further processing. Lastly,
we perform one clock tick of the logic analyzer updating its
timestamp for the next sample.

timestamp← 109 ∗ seconds+ accumulator

ticks per ns
(1)

For simplicity and without losing generality, we assume a
time-stamp interval of one second for the algorithms. An adap-
tation to send out timestamp values representing a different
timescale is also easily realizable.

1) Time Error Correction: Once the observer’s tracing data
processing algorithm detects the reception of a new time
signal, we execute Algorithm 2. This algorithm essentially
determines the time increment added for each sample recorded
by the logic analyzer. At first, it reads the received data
(timestamp) from the radio and sets the radio back into
receive mode, which prepares the radio for receiving the next
timestamp and turns off the radio’s GPIO pin. Now we have
the global timestamp and the exact tick it was received on.
The processing of it differs depending on the state the GPIO
tracing clock-correction system is in. The clock correction has
three different states WAIT, OFFSET, and FREQ. Initially, we
start in state WAIT until we process our first time signal.

When receiving the first time signal, the algorithm saves
the received timestamp as the current time with respect to
the current sample, and as the previous timestamp for the
algorithm’s next iteration. Moreover, it changes the clock’s
state to OFFSET.

When the system is in state OFFSET or FREQ, we start by
calculating a factor after receiving and reading the reference
time (secondsref ):

Algorithm 2 Handle reference time signal
Input: WEIGHT, TICKS PER SECOND, stateclock , ticksnominal, ticksactual,

seconds, freqnominal, accumulator
Output: stateclock , freqadj , offset, offsetadj , errorremaining , seconds,

secondsprevious, ticksactual

1: secondsref ← read timestamp from radio
2: if stateclock = WAIT then
3: seconds← secondsref
4: stateclock ← OFFSET
5: else
6: factor ←

(secondsref−secondsprevious)∗ticksnominal
ticksactual

7: if stateclock = OFFSET then
8: freqadj ← freqnominal ∗ factor
9: stateclock ← FREQ

10: else
11: freqadj ← (1 −WEIGHT) ∗ freqadj + WEIGHT ∗ freqnominal ∗

factor
12: end if
13: if secondsref = seconds + 1 then
14: errorremaining ← TICKS PER SECOND− accumulator
15: offset← accumulator − TICKS PER SECOND
16: else if secondsref = seconds then
17: errorremaining ← accumulator
18: offset← accumulator
19: end if
20: offsetadj ← offset/ticksnominal

21: ticksactual ← 0
22: end if
23: secondsprevious ← secondsref
24: return

factor ← (secondsref − secondsprevious) ∗ ticksnominal

ticksactual
(2)

This factor determines how much faster or slower the logic
analyzer clock ran since receiving the previous timestamp.
It uses both the current timestamp (secondsref ) and the
previously received timestamp (secondsprevious), as well as
the nominal number of ticks (ticksnominal) that should pass
within a second (e.g., 8 000 000 at 8 MHz) and the actual
number of ticks passed since the previous reception of a
timestamp (ticksactual). If this factor is 1, the clock of the
logic analyzer is running at its nominal frequency. If the factor
is <1, the logic analyzer’s sampling frequency is too high and
if the factor is >1, its frequency is too low. Using this factor,
we can adjust the frequency value:

freqadj ← freqnominal ∗ factor (3)

If the clock’s state is FREQ, we perform a slightly different
frequency adjustment. We take a weighted approach between
the previous frequency and the newly calculated frequency.
That means, that we keep parts of the current frequency and
only adjust it to a certain percentage. This way, we take
previous changes into account and do not only react to the
most recent time interval. This approach is comparable to a
PI controller, taking the current offset and the history into
account [13].

Phase offset: When the clock’s state is OFFSET or FREQ,
the algorithm performs an additional phase offset adjustment.
If the logic analyzer’s frequency is not exactly the nominal
frequency and neither a multiple of it, there will remain an
offset of ticks the logic analyzer’s clock is ahead or behind
the reference clock. This offset is a phase offset, which we also



need to handle when increasing our clock. To be able to correct
this phase offset, we calculate the error to the closest second
and an adjusted offset to adjust the phase when increasing the
tick counter for each logic analyzer sample. Lastly, we reset
the tick counter (ticksactual) to zero.

If the current clock state is OFFSET, we change the clock’s
state to FREQ. Independent of the clock’s state, we save the
previous timestamp for the algorithm’s next iteration.

2) Clock Tick: Algorithm 1 performs the frequency and
phase adjustments computed in Algorithm 2 and discussed
above. This algorithm only executes once the system has re-
ceived an initial time value and thus is either in state OFFSET
or FREQ. On each tick, we increase an accumulator value by
a frequency value deduced by a phase offset value. With this,
we increase the logic analyzer timestamp (cf. Equation 1) by
a value close to its actual frequency while removing the phase
error over time. This method of error correction corrects the
error evenly spread over the course of one second. If we do
not have a (remaining) phase error, the timestamp increases
with the logic analyzer’s frequency. Once the accumulator
reaches the value corresponding to a second, we increase the
second counter and reduce the accumulator by the respective
value corresponding to one second. Lastly, we increase the
tick counter.

This method of performing a tick at each sample has the
advantage that it allows us to precisely adjust the clock of
the logic analyzer. Moreover, the advantage of doing these
adjustments in software is the granularity with which we can
adjust phase and frequency. Instead of performing a correction
every 10 ms (cf. NTP [11]) and having to do a rather large
adjustment, adding 9 or 11 ms, we can have much smaller
changes by adjusting the clock slightly for every data sample
and thus approximately 8 × 106 times a second (if the logic
analyzer runs at 8 MHz).

F. Post-processing

Each of the testbed’s nodes independently collects traces
and timestamps these. Yet, as the system is intended to run
distributed on several devices, we need to aggregate and
process the traces, eventually. As all timestamps are based
on the same global clock, we can just collect all timestamped
traces and merge these into a common trace. When tracing a
GPS 1-PPS (1 pulse per second) signal at one of the testbed
nodes, we can use it to stretch or unstretch the recorded time
between two GPS time signals for all traces. Thus, we can
match our traces to a more accurate timescale (UTC).

G. Implementation

After presenting the design of Grace, we discuss its im-
plementation. We also discuss its integration into our existing
testbed [14], to illustrate how Grace can be retrofitted and
integrated into existing testbeds.

Synchronization node: For implementing the synchroniza-
tion node, we use a STM32F401 microcontroller with 86 MHz
clock speed and a CC1101 433 MHz radio [15]. We send
a timestamp once a second, a choice inspired by the 1-PPS

TABLE I: Cost of components for Grace.

Component Cost (C)
CC1101 Radio Module 9
STM32F401 Development Board 9
8-Channel Logic Analyzer 8
Jumper Wires <1
Total: Synchronization Node 19
Total: Testbed Node 18

signal GPS receivers generate. The timestamp we send once
a second is a 4 byte value and the sole payload of the packet.

CC1101 Packet Format: The total structure of the packet
we send after the preamble consists of 2 bytes sync word,
one byte each for packet length and address, 4 bytes payload
(timestamp) and a 2-byte checksum [15].

Testbed node: As an observer, we use a Raspberry Pi 3B+
in our testbed. For the GPIO tracing, we use an eight-channel
logic analyzer featuring a Cypress EZ-USB FX2LP microcon-
troller [16]. The FX2 consists of an 8051 microcontroller, a
USB interface, and i.a. the General Programmable Interface
(GPIF). The GPIF allows specifying custom communication
protocols via a finite state-machine. It is used to constantly
sample data from the Logic Analyzer’s input pins into the
USB buffer. These components work independently of each
other, allowing a deterministic tracing operation without being
interrupted by the microcontroller or the USB interface. We
build a custom firmware for the FX2, enabling us to focus
on tracing sparsely occurring events continuously for the full
duration of an experiment. The logic analyzer’s state machine
samples the state of its (eight) inputs at a frequency of 8 MHz
(one sample every 125 ns). Internally, it passes these samples
to the USB interface and writes them to the USB buffer.
To one pin of the logic analyzer, we connect a radio, the
same one mentioned above (CC1101 433 MHz radio). To
notify the logic analyzer of a successfully received packet, the
CC1101 asserts the successful reception of a reference signal
on one of its GPIO pins [15]. We implement the described
trace collection and time error correction functionalities and
algorithms as part of an application running in user space on
the observer (Raspberry Pi). For having a high granularity for
the timestamps, we choose a value of (260) as a value for the
constant TICKS_PER_SECOND in our algorithms. Moreover,
when calculating the new frequency adjustment value, we
weight the newest frequency offset estimation with 90% and
the previous estimate with 10% (cf. WEIGHT = 0.9). For ease
of wiring the logic analyzer and the radio to the Raspberry Pi,
and positioning the radio, we design a (non-essential) custom
PCB HAT for the Raspberry Pi (see Fig. 1b).

Post-processing: We implement the post-processing to ag-
gregate the GPIO traces into a common human-readable CSV
file. Moreover, we also convert it into a VCD file to be able to
easily, visually analyze the combined traces with a software
like GTKWave.

Cost: As we argue that Grace is a low-cost GPIO tracing
system, we present in Table I the cost for the different
components, at the time of writing. The table shows, that both



the hardware for a testbed node, as well as the hardware for
the synchronization node, stay below C20. Equipping a full
testbed of 20 nodes with this GPIO tracing system costs less
than C380.

IV. EVALUATION

In this section, we experimentally evaluate our time-
synchronized GPIO tracing system Grace. We evaluate its
degree of time-synchronization and its stability within an
actual testbed deployment. We set it into perspective to other
time synchronization approaches, discussing its advantages
and disadvantages. We evaluate the different sub-systems
individually before finally looking at the system as a whole.

A. Evaluation Setup

1) Testbed: We evaluate Grace on our local testbed of 20
nodes (see Fig. 2), spanning the top-most floor of a university
building with an area of 500 m2. The floor was mostly
unoccupied during the experiments, yet, as we use 433 MHz
for communication, we expect even an occupation to have
minimal impact on the evaluation results.

We equip 16 of the 20 nodes, with a logic analyzer and a
radio (marked with orange squares in Fig. 2). Additionally, we
place the synchronization node in close vicinity of one of the
testbed nodes (marked with a red circle in Fig. 2).

2) Metrics: We evaluate Grace in terms of the logic an-
alyzer’s frequency stability, the synchronization node’s fre-
quency stability, timing offset between testbed nodes, and
system-wide time-synchronization stability. We measure fre-
quency deviations and time offsets.

3) Reference Clock: For measuring the exact timing, we
require systems with a more accurate clock than the system’s
clock we evaluate. Therefore, we either use an external logic
analyzer (Saleae Logic Pro 8) or the 1-PPS signal output
of GPS receivers as a reference clock. The error of our
reference clock is up to 50 µs/s (50 ppm) for the Saleae logic
analyzer [17] and up to tens of nanoseconds between two GPS
receivers. For the experiments in Sections IV-C and IV-E we
use the logic analyzer, as we interface two nodes at once.
For the remaining experiments, we use the GPS receivers.
The GPS receivers (marked ’G’ in Fig. 2) have an external
antenna mounted on the outside of the building, to keep the
1-PPS synchronization at the specified accuracy.

B. Logic Analyzer Frequency Stability

We start our evaluation by analyzing the frequency stability
of a logic analyzer. We, therefore, trace the 1-PPS signal of
a GPS receiver with a logic analyzer. In Fig. 3 we show the
frequency stability over two hours and the relative occurrence
of the different deviations, exemplary for one logic analyzer.
This logic analyzer had during the tracing of the GPS signal
an average deviation from the nominal frequency of 154.9
ppm. Generally, we expect the frequency stability of the
logic analyzers to be within ±200 ppm [17]. As 200 ppm
equals a time difference of 200 µs within a second, and thus,
a maximum time difference of 400 µs between two logic

Fig. 2: Local testbed of 500 m2. Red circle: synchronization
node; Orange squares: Nodes equipped with our GPIO tracing
system (Grace); Blue hexagons: other nodes; Marker G: nodes
equipped with GPS.
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Fig. 3: Stability of a deployed logic analyzer over time. On the
Y-axis, we display the relative deviation of the logic analyzer
from its nominal frequency of 8 MHz in ppm.

analyzers, this clearly underlines the need for a system with
time-synchronized logic analyzers.

C. Frequency Stability Of Synchronization Node

Next, we investigate the frequency stability of the synchro-
nization node. We configure the synchronization node to send
a packet once a second according to its internal clock. With
an external logic analyzer, we record the exact sending times
over a period of 90 minutes. For that, we record the end of
creating a timestamp at the microcontroller by tracing the chip
select line. Moreover, we trace the state of the GPIO pin the
radio turns off once it is done sending a packet.

Fig. 4a shows the offset of the microcontroller’s second
from the reference second over the time of the experiment
(between 7 and 9 µs). It also shows the resulting offset of
the reference time signal from the reference time. Generally,
the radio sending times precisely follow the microcontroller
with a slight jitter of on average 18.7 ns and a maximum of
78 ns. While the offset between two timestamps is on average
7.1 µs, it is of no concern as the offset will be evenly present
on all testbed nodes and thus have at most a minor influence
on the distributed time-synchronization. The added jitter in the
nanosecond range is no concern for our system’s requirements.

After investigating the synchronization node’s stability, we
next look at the stability of the testbed nodes. Firstly, we
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(b) Offset distribution of a radio’s input signal from the radio
output signal of the synchronization node. Avg offset (solid red
line): 1.32 µs, Std (dashed red lines): 637 ns.

Fig. 4: Stability of the microcontroller output, the synchronization node’s radio output, and the testbed node’s radio input.

look at the deviation of the input signal at one testbed node
from the output signal of the synchronization node. For that,
we interface both nodes with our external logic analyzer
simultaneously. On the synchronization node, we trace the
GPIO pin, the radio turns off once it is done sending a
packet, and on the testbed node, we trace the GPIO pin of
the radio that also notifies our time-synchronization system of
the availability of a new timestamp. We initially synchronize
these two timestamps, to analyze the receiver’s variation in
offset. Fig. 4b shows an average offset of 1.32 µs with a
standard deviation of 637 ns from the synchronization node’s
time signal.

Next, we look at two nodes in the testbed, close to each
other and the signal received by the radios. We once again use
the logic analyzer and trace the GPIO pin of the radio that also
notifies our time-synchronization system of the availability of
a new timestamp. We run several experiments with a total
duration of almost 5 hours. When looking at the reception time
differences between the two radios, we see the distribution
shown in Fig. 5a. The difference between the radio’s reception
times (without the time correction system) is on average 654 ns
(median: 562 ns) with a standard deviation of 487 ns. The
maximal measured offset between the two radios is 3.22 µs.
77.4% of the measurements have an offset of less than 1 µs.
Even the maximum value of 3.22 µs is sufficient for evaluating
the timing of many IoT protocols, including Time-Slotted
Channel Hopping (TSCH) [5].

D. Clock Correction

Next, we focus on the full system, including the time error
correction. To evaluate this, we include the nodes that have
a GPS receiver, and we use the 1-PPS GPS signal traced
by the testbed node’s logic analyzers. We analyze the time
differences of the timestamps associated with the 1-PPS GPS
signals. Fig. 5b shows the distribution of the time stamping
error of Grace. On average, the system has an error of 1.53 µs
with a standard deviation of 644 ns, and a maximum error
of 3.75 µs. This clearly shows the advantage of Grace over
NTP with a thousandfold higher precision. Moreover, this
synchronization is sufficient for analyzing timing in many

IoT protocols, including time-critical communication protocols
like Time-Slotted Channel Hopping (TSCH) [5] and Chaos [7].

After comparing the system’s stability with a GPS reference,
we can also compare it to the reference signal our synchro-
nization node sends out. Therefore, we compare the deviation
of the local timestamps based on the synchronization signal.
Fig. 5c shows similar results to the GPS-based experiment.
However, when tracing the synchronization node’s time signal,
all the offsets between the different receivers get accumulated
(cf. Fig. 5a). Overall, the offset, when including all these
errors, between any two nodes is on average 2.92 µs with
a maximum offset of 7.9 µs.

E. Receiver Stability

From these results, we can conclude that Grace achieves
a building-wide time-synchronization in the range of a few
microseconds. This does not fully reach the degree of time-
synchronization offered by custom solutions with specific
hardware requirements or using FPGA’s for the GPIO tracing
[9], [10]. However, our system is easily and cost efficiently
retrofittable to existing testbeds and offers a sufficient time
synchronization for tracing of many application fields. More-
over, it offers a significantly higher degree of clock synchro-
nization than NTP.

V. RELATED WORK

Several testbed architectures presented in the recent years
offer GPIO interfacing capabilities. To our knowledge, the
first testbed offering GPIO tracing capabilities is Flocklab [8].
Flocklab’s GPIO tracing system directly uses the observer
for GPIO tracing and can trace up to 5 GPIO pins at a
sampling rate of up to 10 kHz. For time-synchronization,
the system uses NTP, reaching a precision of 40 µs. Next
to the GPIO tracing, Flocklab also allows GPIO actuation as
well as power profiling. With Tracelab [9], Lim et al. extend
Flocklab by a more capable GPIO acquisition system based
on an FPGA. They achieve a short-term sampling frequency
of up to 100 MHz, and a continuous sampling frequency of
around 285 kHz. For time synchronization, they use Glossy on
868 MHz with an FPGA-based clock correction control loop,
achieving a maximum time-synchronization error of 1.5 µs.
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(a) Occurrences of offsets between two radio
receivers. Avg: 0.65 µs, Std: 487 ns.
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(b) Offsets between any two traced GPS
signals. Avg: 1.53 µs, Std: 644 ns.
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(c) Offsets between any two GPIO tracing
nodes within our testbed. Avg: 2.92 µs, Std:
864 ns.

Fig. 5: Histograms showing the distribution of offsets between two radio receivers, or between multiple nodes using the full
time-error correction system. We show the mean value as a solid red line, and the standard deviation as dashed red lines.

Other testbed architectures like Aveksha [18], Minerva [19],
and HATBED [20] use different J-Link tracing methods,
including tracing the program counter, or watchpoint tracing
in a non-intrusive way. Minerva uses NTP for time synchro-
nization, with precision in the milliseconds range.

A more recent work is Flocklab 2 [10], which uses the
programmable real-time unit (PRU) of a Beaglebone Green
for GPIO tracing. For time synchronization, the system uses
GNSS with an accuracy of approx. 50 ns where available, and
the Precision Time Protocol (PTP) with an accuracy of approx.
1 µs at all other locations. Next to the GPIO tracing, it also
supports Serial Wire Debug (SWD) tracing through a J-Link
debug probe.

Regarding time synchronization, Grace has the highest
similarity with Tracelab. However, instead of performing the
time synchronization in hardware on an FPGA, we do it
at a higher precision in software on a Raspberry Pi when
processing the logic analyzer’s traces. Regarding the GPIO
tracing, we differ from all these solutions in that we use low-
cost logic analyzers that do not depend on a specific observer
platform.

VI. CONCLUSION

Testbeds are an important tool for developing and evaluating
IoT protocols. While there are many testbeds used by the
research community, most of them lack the capabilities to
accurately evaluate the timing of time-critical IoT systems.

With Grace, we present an easily retrofittable system ca-
pable of tracing the timing of IoT devices by proposing
a low-cost GPIO tracing system. Grace uses only low-cost
off-the-shelf components, making it retrofittable to existing
testbeds for less than C20 per node. We show that Grace
can synchronize GPIO events in a testbed with an average
time synchronization error of 1.53 µs, and a worst-case time
synchronization error of 3.75 µs.
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