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Abstract—Ubiquitous artificial intelligence (AI) is considered
one of the key services in 6G systems. AI services typically rely
on deep neural network (DNN) requiring heavy computation.
Hence, in order to support ubiquitous AI, it is crucial to
provide a solution for offloading or distributing computational
burden due to DNN, especially at end devices with limited
resources. We develop an optimization framework for assigning
the computation tasks of DNN inference jobs to computing
resources in the network, so as to reduce the inference latency.
To this end, we propose a layered graph model with which simple
conventional routing jointly solves the problem of selecting nodes
for computation and paths for data transfer between nodes. We
show that using our model, the existing approaches to splitting
DNN inference jobs can be equivalently reformulated as a routing
problem that possesses better numerical properties. We also apply
the proposed framework to derive algorithms for minimizing
the end-to-end inference latency. We show through numerical
evaluations that our new formulation can find a solution for
DNN inference job distribution much faster than the existing
formulation, and that our algorithms can select computing nodes
and data paths adaptively to the computational attributes of given
DNN inference jobs, so as to reduce the end-to-end latency.

Index Terms—DNN job splitting, computing network, comple-
tion time, routing

I. INTRODUCTION

6G system is envisioned to support artificial intelligence
(AI) services all over the network from the core to the end
hosts, referred to as ubiquitous AI [1]. In many cases, AI
services depend on the computation of deep neural network
(DNN) and hence require a fair amount of computing power,
even only for inference. This can be a significant burden
especially for end devices such as mobile phones and IoT
devices in which computing resources are highly limited as
they run on limited battery power. In order for ubiquitous AI
service to be in place, it is thus necessary to provide a solution
to overcome limited computing power.

There are several approaches to enable AI at end devices.
One is to find a lightweight NN architecture commensurate
with available computing resources. SqueezeNet in [2] makes
extensive use of 1x1 convolutions to reduce the number
of parameters. MobileNetV1 in [3] reduces the number of
arithmetic operations by introducing depth-wise separable con-
volutions. In [4], automated neural architecture search (NAS)
is proposed based on reinforcement learning in which the
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reward reflects the latency of inference. Since the latency
depends on the underlying computing resources, such a reward
drives the action (i.e., values of hyperparameters) toward the
set of architectures that can yield reasonably fast inference for
given computing power. There is a large body of work in this
context, and refer to [5] for more details.

Another approach is to exploit computing resources dis-
tributed over the network. Specifically, the (feedforward) com-
putation of DNN inference job is partitioned into multiple
tasks, and these computation tasks are assigned to nodes with
computing resources in the physical network. For example,
in layer-wise partition, all the neurons in the same layer are
assigned to a same node [6], [7]. Once the node finishes
computing the tasks (or layers) assigned, it transfers the output
data (of the last layer assigned) to the next node and subse-
quently, the transferred data are fed as the input data to the
corresponding layer. In this work, we develop an optimization
framework for distributing or splitting computation tasks of
DNN inference jobs over the network in which some (or all)
nodes are equipped with computing resources.

Such a problem requires to make a joint decision on node
selection for computation and path selection for data transfer.
One of the challenges in the problem is that the amount of flow
can change after passing through a node where computation
is carried out, because input and output data size of DNN
layer can differ from each other. Hence, the problem is vastly
different from conventional routing in which flow conservation
holds, i.e., incoming and outgoing flows match at every node
except at source and destination. To tackle the problem, we
propose a layered graph model in which simple conventional
routing jointly solves the node and path selection problems.
Using the model, we reformulate the existing approaches to
distributing DNN inference jobs as a conventional routing
problem that possesses better numerical properties.

Furthermore, we apply the proposed framework for com-
puting DNN inference jobs over the network with minimum
end-to-end latency, defined as the duration between the time
when the data at source start to be processed and the time when
the inference result is delivered to the destination. Obviously,
the end-to-end inference latency consists of waiting time and
service time. The waiting occurs at link(s) when data need to
wait to be transmitted, and also at node(s) when computation
tasks need to wait to be processed. The service time is the pure
transmission time plus computation time. With this definition,
many of the existing works in the context of DNN inference
job splitting focus primarily on minimizing the service time
while it is also important to take into account the waiting time.

It is generally hard to deal with waiting time as it is a
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complex function of arrival and departure processes. Nonethe-
less, we consider a fictitious system in which the waiting time
is an upper bound on the waiting time in the actual system.
Our framework enables to efficiently solve the problem of dis-
tributing a single DNN inference job such that the end-to-end
latency is minimized in the fictitious system. Exploiting the
efficient solvability of single-job problem with our framework,
we develop algorithms for distributing multiple DNN inference
jobs so as to reduce the job completion time defined as the
earliest time at which all the inference jobs are finished. The
contributions of our work can be summarized as follows:
• We develop an optimization framework for computing

DNN inference jobs over distributed computing networks
with minimum latency. Our framework enables to select
nodes for computation and paths for data transfer jointly
via simple conventional routing in the layered graph
model.

• Applying our framework, we reformulate the existing ap-
proaches as a conventional routing problem that exhibits
superior numerical performance.

• We develop algorithms for distributing DNN inference
jobs over the network so that the end-to-end latency is
reduced.

• We prove the numerical property of our formulation and
the performance guarantee of our algorithms.

• We verify the performance of our formulations and algo-
rithms through various numerical evaluations.

The rest of the paper is organized as follows. In Section
II, we discuss related work. In Section III, we present the
system model and describe the problem, and in Section IV,
we propose the layered graph model that simplifies the DNN
job distribution as a conventional routing problem. In Section
V, we present some applications of our framework including
1) reformulation of existing approaches and 2) algorithms for
computing DNN inference jobs with minimum completion
time. In Section VI, we present numerical evaluations demon-
strating the performance of our formulations and algorithms.
We conclude the paper in Section VII.

II. RELATED WORK

Edge computing is one of the most promising solutions in
the context of overcoming the computational limit at end hosts
[8]. The demand for edge computing mainly arises from video
or image analytics that heavily relies on compute-intensive
deep learning [9]. In many cases, the focus is on how to select
either the local computing resource or remote (edge or cloud)
server, so that the entire analysis of an image or frame can be
carried out at the chosen resource. For example, in [10], video
frames are sent to edge server in which one of neural network
based inference models is selected for object detection. In [11],
the offloading decision of each video frame is made based
on estimated network condition and response time, so that
the end-to-end latency of frame analysis can be minimized.
In [12], the offloading problem is solved taking into account
service time and accuracy in the setting where the local device
has a small model while the edge has cumbersome model with
better accuracy.

As mentioned above, the demand for computation offloading
arises mainly when inference or analysis should be made
based on deep neural network (or deep learning). Since deep
neural network typically consists of multiple layers and filters
(applied block-by-block in data) in some early layers, there has
been effort to distribute and parallelize the computation tasks
of layers and/or blocks in layers, which is of main interest in
this work.

Many of works in this context consider the Inter-of-Things
(IoT) environment in which nodes are equipped with limited
computing resources. In [13], each hidden neuron is mapped
to an IoT node. The goal is to find a mapping that minimizes
the network-wide total transmit power or time while the
computing resource needed for assigned neurons and daily
energy consumption satisfy the specified limit. The work of
[6] assumes layer-wise partition, and seeks to find a mapping
that minimizes (data) transmission time plus computation time,
subject to privacy constraints as well as various resources
constraints. This problem is formulated as an integer quadratic
program, and a reinforcement learning based mapping algo-
rithm is proposed. In [7], a similar problem and formulation
are developed with early-exit convolutional neural network
(CNN).

Some work considers vertical partition of convolution opera-
tions that take the majority of computation in DNN. Unlike the
layer-wise partition where partitioned tasks have precedence
constraint, in vertical partition, convolution operations are
partitioned into tasks that can be computed independently. In
[14], an IoT node distributes such independent computation
tasks (formed through vertical partition) to nearby IoT devices
and fuses the collected results at the output of convolution
layer. In [15], [16], even a layer in the fully connected part is
partitioned into multiple groups and distributed to computing
nodes. Since parallelization inevitably incurs communication
overhead, some works seek to find a partition and allocation
of computation tasks with minimum communication demand
[17], [18]. There are also some work considering both vertical
and layer-wise partitions together with model sparsification
[19].

While many of the above solutions are derived based
on the formulation of integer optimization [7], [13], [17],
[20], there are many results that apply deep reinforcement
learning (DRL), circumventing the difficulty of solving such
an optimization problem (which is NP-hard in general) [6].
In [21], the classical job-shop scheduling problem is solved
via DRL adopting graph neural network, in which a job
consists of sequential operations with precedence constraint.
This is related to the distributed DNN computation as layers
in DNN are computed sequentially with precedence. In [22],
a computation task is formed with a group of neuron(s) from
a single layer, and the RL agent distributes the tasks to mobile
devices with reward being aggregate computation throughput,
which has the effect of minimizing latency. This work is
extended to account for partition of convolution operations
[23]. In [24], DRL-based algorithm makes a decision on each
layer of DNN inference computation whether the layer is
computed at local, edge, or cloud, so as to minimize the
integrated objective of delay, energy and cost. [25] develops an
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RL-based algorithm for deferring the assignment of incoming
inference request, leaving a room for future requests, which
enables a better packing of requests with smaller latency and
energy consumption.

The goal of our work is focused on optimization framework
for splitting DNN inference jobs over distributed computing
networks. In particular, we are primarily interested in devel-
oping an efficient formulation of the problem. We believe
that such a formulation can be utilized in various facets of
methodology to solve the DNN inference job distribution
problem.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

Consider a communication network in which nodes are
equipped with computing resources. Let GP = (VP , EP )
denote this physical network where VP is the set of nodes
(routers/servers/hosts) and EP is the set of edges (communica-
tion links) connecting the nodes. Let µuv be the transmission
capacity of link (u, v) ∈ EP . The computation capacity of
node u is denoted as µu, and its unit can for example be
GFLOPs/sec. There is a queue for every transmission link,
and Quv is the queue length at link (u, v) representing the
amount of packets waiting to be transmitted. Likewise, Qu is
the amount of computation tasks (e.g., in GFLOPs) waiting to
be computed at node u. This computing network is used to
process deep neural network (DNN) inference jobs.

A. Inference Jobs
There are J DNN inference jobs, each corresponding to the

feedforward computation of a DNN model (We call job and
model interchangeably depending on the context). For each
model j ∈ J = {1, ..., J}, the input data (e.g., camera images
and sensor values) are generated at sj ∈ VP and the inference
result needs to be delivered to tj ∈ VP . Each model j ∈ J
has Lj layers. We assume that each layer can be possibly
computed at different nodes in VP . Let cjl be the computational

load of layer l(= 1, ..., Lj) of model j. Hence, cjl
µu

is the
computation time if layer l of model j is to be processed at
node u. Let djl be the output data size of layer l of model j.

Similarly, djl
µuv

is the transmission time if the output data of
layer l is to be transferred from node u to v. The computation
time plus transmission time is called the service time. Hence,
if layer l of model j is computed at node u, and the output data
is transferred to node v, then the service time at this segment
is cjl

µu
+

djl
µuv

.
We also consider the waiting time. In the above example,

suppose that the queue length at node u is Qu when the
computation task arrives at node u, and the queue length at
link (u, v) is Quv when the output of computation is buffered
at link (u, v) for transmission. Thus, the waiting time is
Qu

µu
+ Quv

µuv
. The duration between the time of entering node

u and the time of arriving at node v is waiting time plus
service time, i.e., Qu

µu
+ Quv

µuv
+

cjl
µu

+
djl
µuv

. In this work, for
simplicity of presentation, we ignore propagation time at any
component either inside a node or between nodes (i.e., link),
but our results can be readily applied to the scenario with
propagation delay since propagation adds constant delay.

B. Job Completion Time

Suppose that each job j is assigned a path from its source
sj to destination tj , including the information of the node at
which each layer is computed. Time starts from 0. Let Cj

be the time when the inference result of job j is delivered to
the destination, i.e., tj . Hence, Cj is the end-to-end inference
latency. This time is obviously equal to waiting time plus
service time along the path from sj to tj . Define the job
completion time Cmax as

Cmax = max
j
Cj .

Hence, Cmax is the time when all the jobs are finished.
This time is also called makespan in the field of job-shop
scheduling. Clearly, the job completion time is determined
by path selection for data transfer and node selection for
computation. We simply call these two decisions “routing”. In
this work, we develop a framework for routing DNN inference
jobs for minimum job completion time.

C. Challenges

There are several challenges in tackling the problem of
routing DNN inference jobs for minimum completion time.
First, the routing problem in this work is inherently related
to the classical job-shop scheduling problem which is known
to be NP-complete [26]. In the job-shop scheduling problem,
there are multiple jobs, and each job consists of ordered
operations. All of the operations must be assigned to some
machine, and in each machine, the priority among operations
should be decided in order to minimize the job completion
time. If the machine for each operation to be computed at
is given and fixed, then the problem is called the “job-shop
scheduling problem”. Otherwise, it is called the “flexible
job-shop scheduling problem”. In our problem, each layer
(corresponding to operation in job-shop scheduling) in every
job should be assigned a node for computation, together with
path selection. Our problem therefore contains a flexible job-
shop scheduling which is hard to solve. Note that this is
immensely different from the conventional routing problem
which is easy to solve under many circumstances.

Another challenge comes from the difficulty of handling
waiting time. It is necessary to predict the waiting time so
that the routing decision can be made by taking into account
both waiting time and service time. However, the waiting time
at a component (i.e., node or link) depends on the departure
processes in the preceding components and hence, it is hard to
predict the waiting time. To circumvent this issue, we consider
a fictitious system in which the waiting time provides an upper
bound on the actual waiting time. The completion time in
the fictitious system is thus an upper bound on the actual
completion time. We apply our framework in order to find a
routing decision minimizing completion time in the fictitious
system. The details are presented in Section V.

IV. LAYERED GRAPH AND ROUTING

As mentioned above, our problem requires to determine the
path as well as the nodes for computation along the path.
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It is hard to formulate this problem applying the traditional
technique involving flow conservation constraints. Inspired by
[27] and [28] where service chaining problem in software-
defined network (SDN) is solved with graph layering, we
construct the layered graph with which the problem can be
simplified. Suppose for simplicity of presentation that there is
only a single model with L layers. Consider L+ 1 copies of
GP , denoted by G0, G1, ..., GL with Gl = (Vl, El),∀l. For
each l ∈ L = {0, ..., L}, denote by ul ∈ Vl the replicated
node of u ∈ VP , and hence, (ul, vl) ∈ Vl the replicated link
of (u, v) ∈ EP . There is an edge from node ul−1 to ul for all
u ∈ VP and l = 1, ..., L. These edges are called cross-layer
edges, denoted by EC . Define the layered graph G = (V,E)
where V = V0∪· · ·∪VL and E = E0∪· · ·∪EL∪EC . Fig. 1
shows an example of the layered graph G derived from the
original physical network graph GP .

G0=(V0, E0)

u0

u1

uL

Red edges: cross-layer edges
(denoted by EC)

.

Original Network Graph GP=(VP , EP)
u v

w

s

t

.

.

v0

w0

s0
t0

v1

w1

s1
t1

vL

wL

sL

tL

Layered Graph G=(V, E)

<latexit sha1_base64="k23ZQ+Rsh0BQqWboq24c6iRT29Q=">AAACBnicbZBPS8MwGMZT/875r+pNL8EheJDRylAvwtCLBw8TXDfYSknTdAtL0pKkwigDj34Sj+pFvPolPPhtzLYedPOFhB/P874k7xOmjCrtON/WwuLS8spqaa28vrG5tW3v7HoqySQmTZywRLZDpAijgjQ11Yy0U0kQDxlphYPrsd96IFLRRNzrYUp8jnqCxhQjbaTA3vcuvcCBXZyl5ooSrabsBbeBXXGqzqTgPLgFVEBRjcD+6kYJzjgRGjOkVMd1Uu3nSGqKGRmVu5kiKcID1CMdgwJxovx8ssMIHhklgnEizREaTtTfEzniSg15aDo50n01643Fk5D/Z3cyHV/4ORVpponA07fijEGdwHEmMKKSYM2GBhCW1HwX4j6SCGuTXNnk4M5uPQ/eadU9q9buapX6VZFICRyAQ3AMXHAO6uAGNEATYPAInsEreLOerBfr3fqYti5Yxcwe+FPW5w/yH5d/</latexit>

V = V0 [ · · · [ VL

G1=(V1, E1)

GL=(VL, EL)

<latexit sha1_base64="3ZLrNMfYTmlQDXmm6o4HA4HWR+Y=">AAACHHicbVBNS8MwGE79nPOr6tFLcAgeZLQy1IswHAMPHia4D1hLSdN0C0vakqTCKPsbHv0lHtWLeFTw35h1PejmA8n78Lzvy5M8fsKoVJb1bSwtr6yurZc2yptb2zu75t5+R8apwKSNYxaLno8kYTQibUUVI71EEMR9Rrr+qDHtdx+IkDSO7tU4IS5Hg4iGFCOlJc+0mldNz4IOThN9BbGSM970bvOaOblHJkgw0WJj4pkVq2rlgIvELkgFFGh55qcTxDjlJFKYISn7tpUoN0NCUczIpOykkiQIj9CA9DWNECfSzXLXCTzWSgDDWOgTKZirvzcyxKUcc19PcqSGcr43FU99/l+7n6rw0s1olKSKRHjmFaYMqhhOk4IBFQQrNtYEYUH1cyEeIoGw0nmWdQ72/K8XSeesap9Xa3e1Sv26SKQEDsEROAE2uAB1cANaoA0weATP4BW8GU/Gi/FufMxGl4xi5wD8gfH1A9DWoJk=</latexit>

E = E0 [ · · · [ EL [ EC

ul : replicated node of u ∈ VP in layer l
(ul,vl) : replicated edge of (u,v) ∈ EP in layer l
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G = (V, E)

Fig. 1. Example of layered graph derived from original network graph GP
for DNN model with L layers

A. Routing in Layered Graph

We now discuss how the routing in the layered graph
simply expresses both path selection for data transfer and node
selection for computation. Suppose that source and destination
nodes are s ∈ VP and t ∈ VP respectively. Consider finding
a path from s0 to tL. The cross-layering segment of the
path specifies the node where the corresponding layer is
computed. For instance, if the path traverses link (ul−1, ul),
then layer l of the model is computed at node u. The intra-
layer segment of the path specifies the transfer of the output
data of corresponding layer (of model). For instance, if the
path traverses the link (ul, vl), then the output data of layer l
is transferred from node u to node v. Fig. 2 shows an example
of routing in the layered graph, and what each segment in the
path represents. It is important to note that the classical routing
(that just finds a path from source to destination) in the layered
graph determines both path selection and node selection for
computing of all the layers of the model simultaneously.

B. Routing Multiple Jobs

The layered graph can easily facilitate the routing of multi-
ple jobs at the same time. Recall that Lj and (sj , tj) represent
the number of layers in job (or model) j and source-destination
pair of job j, respectively. Redefine L = maxj L

j , and
construct the layered graph with L + 1 layers as shown in

G0

G1

G2

u0

u1

u2

v0

w0

s0
t0

v1

w1

s1
t1

v2

w2

s2
t2

(1)

(2)
(3)

(4)

(5)

(1) Input data transferred from s to u

(2) Layer 1 computed at node u

(3) Output data of layer 1 transferred
from u to v

(4) Layer 2 computed at node v

(5) Output data of layer 2 transferred
from v to t

What each segment represents

Fig. 2. Example of routing in layered graph with L = 2

Fig. 1. The source sj ∈ VP and destination tj ∈ VP are
mapped to sj0 ∈ V and tjLj ∈ V , respectively. Finding a
path from sj0 to tjLj for each job j in the layered graph gives
the node and path selection of all the jobs. Some examples
pertaining to this are presented in Section V.

V. APPLICATIONS OF OUR FRAMEWORK

Our framework in the previous section can be applied to
various problems of distributing DNN inference jobs. In this
section, we present some of these examples.

A. Reformulation of Existing Approaches

The work of [6] and [7] formulates the problem of assigning
DNN layers to nodes for minimizing end-to-end latency as an
integer quadratic program (IQP). The data transmission time
between two nodes, say u and v, is taken into account by
assuming that every link has the same capacity and the data
are transferred on the shortest hop path from u to v. Although
this assumption of data rate simplifies the formulation, the
end-to-end latency under the assignment obtained from such
a formulation can experience relative large latency when data
transmission time contributes to end-to-end latency to a large
portion and links can have different capacities. Obviously, such
a case occurs when networking resources are scarce while
computing resources are abundant.

Our framework can incorporate both node and path selection
as an integer linear program (ILP) which has numerical
advantages over IQP. To unify the notation in layered graph,
let us define the edge capacity and transmission/computation
task as follows:

1) µulvl = µuv,∀(u, v) ∈ EP , l ∈ L
2) µul−1ul

= µu,∀u ∈ VP , l = 1, ..., L

3) qjuv =

{
djl , if (u, v) ∈ El, l ∈ L
cjl , if (u, v) = (wl−1, wl) ∈ EC , l = 1, ..., L

,

where L = {0, 1, ..., L}. The first line indicates that every
intra-layer edge (ul, vl) ∈ El,∀l ∈ L in the layered graph
has the same capacity as the original edge (u, v) ∈ EP . The
second line indicates that the capacity µul−1ul

of cross-layer
edge (ul−1, ul),∀l ∈ L is equal to the computation rate of
node u which is µu. The value qjuv denotes the amount of
task. If (u, v) is the intra-layer edge in Gl, then qjuv is the
data size of layer l of model j. On the other hand, if (u, v) is
the cross-layer edge from wl−1 to wl for any w, then qjuv is
the amount of computation tasks required by layer l of model
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j. Hence, q
j
uv

µuv
is the transmission time of output data of layer l

if (u, v) is an intra-layer edge in El, and the computation time
of layer l at node w if (u, v) is a cross-layer edge (wl−1, wl).

Define the variable rjuv to be 1 if the path of job j traverses
edge (u, v) ∈ E, and 0 otherwise. Let mj

l be the memory
requirement of layer l(= 1, ..., Lj) of model j. Consider the
following formulation:

min
r

∑
j∈J

∑
(u,v)∈E

qjuv
µuv

rjuv (1)

s.t.
∑

v:(u,v)∈E

rjuv −
∑

v:(v,u)∈E

rjvu =


1, if u = sj0
−1, if u = tjLj

0, otherwise
,

∀u ∈ V, j ∈ J (2)∑
j∈J

Lj∑
l=1

cjlr
j
ul−1ul

≤ c̄u,∀u ∈ VP (3)

∑
j∈J

Lj∑
l=1

mjlr
j
ul−1ul

≤ m̄u,∀u ∈ VP (4)

rjuv ∈ {0, 1},∀(u, v) ∈ E, j ∈ J , (5)

where c̄u and m̄u denote the maximum amount of computation
tasks that are allowed at node u and the memory (such as
RAM) capacity of node u, respectively. The objective function
(1) is the total computation plus transmission time of all the
jobs. The constraint (2) ensures that for each job j, a path is
found from source sj0 to destination tjLj , so that the inference
on the data generated at the source can be delivered to the
destination. The constraints (3) and (4), from [6] and [7],
require that the amount of computation tasks and memory
requirement at each node should not exceed certain thresholds.

This is an equivalent reformulation of the one1 in [6] and
[7], except that our formulation does not fix a priori the path
for data transfer between nodes. Our formulation can take
into account the transmission time better, especially when link
transmission rates are relatively low. More importantly, our
formulation is an ILP which has advantages over IQP in [6]
and [7] (Although IQP can be linearized, it introduces a large
number of variables and constraints). The number of variables
in our formulation is J ·|EP |·(L+1), whereas it is J ·|VP |·L in
the formulation of [6] and [7]. Although our formulation has
slightly more variables, the linearity of formulation enables
to find a solution more quickly. This is demonstrated through
numerical evaluation in Section VI.

B. Formulation for Single Job with Waiting Time

Since the above formulation takes into account only the
service time, most of the computation tasks may be assigned
to fast path with high transmission capacity or node with
high computation capacity. For example, if the transmission
time is negligible because link capacities are considerably
high compared to computation capacity, then the service time
can be minimized by assigning all the jobs to the node with

1There are some other constraints, but we only present the constraints that
are essential to the discussion

highest computation capacity. However, in practice, such an
assignment can incur large waiting times, and hence, adversely
affect the completion time. Although introducing the budget
constraints (3) and (4) has the effect of minimizing the
completion by distributing the workload over the network, one
may consider the completion time more directly without such
constraints.

For example, consider the scenario in Fig. 3 where two
models, each with two layers need to be routed. Recall that
dj0 is the input data size. Routing policy 1 seeks to minimize
the total service time, thereby processing all the layers at node
u. If job 1 is processed first, then job 2 must wait until job 1
is finished, which incurs one second of waiting. This results in
the completion time of 2.2s. On the other hand, routing policy
2 aims at minimizing the completion time by assigning job 1
to node v and job 2 to node u. The total service time under
this policy is larger than that under policy 1. However, the
completion time is reduced to 1.35s as neither job experiences
waiting.

100GFLOPs/sec

u v
80GFLOPs/sec

100Mbps
Job/Model

Layer l

0 1 2

1
𝑑!" (Mbits) 10 0.1 0.001

𝑐!" (GFLOPs) 50 50

2
𝑑!# (Mbits) 10 0.1 0.001

𝑐!# (GFLOPs) 60 60

s1 s2 t1 t2

s1 = s2 = u,  t1 = t2 = v

Routing
Policy Job

Latency at Each Segment (s) Stot Cmax

u u→v v 10-5s cut off

1
1 1 10-5 0

2.2 2.2
2 1.2 (+1) 10-5 0

2
1 0 0.1 1.25

2.55 1.35
2 1.2 10-5 0

Greedy
(in Sec. 5.3)

1 1 10-5 0
2.6 1.6

2 0 0.1 1.5

Fig. 3. Examples of routing policy. The number “+1” in red color indicates
waiting time. Stot: total service time

It is important to note that the waiting time needs to be
considered in order to minimize the completion time. Further-
more, if one can somehow take into account the waiting time
in a more direct manner, some or all of the budget constraints
(which are needed to distribute the workload) may be removed.
This is because the solution that seeks to minimize waiting
time will necessarily distribute the workload over the network.
This is also an important aspect of considering waiting time
(in a more direct manner) because it is easier to solve the
problem with fewer constraints. In the following, we discuss
how our framework can be applied in this context.

We start with a simple case with J = 1, i.e., a single job
needs to be routed. Recall that the queue lengths Qu,∀u ∈ VP
and Quv,∀(u, v) ∈ EP are the computation and transmis-
sion tasks that are waiting to be computed and transmitted,
respectively. These queue lengths in the physical network are
reflected into the layered graph as follows:

1) Qulvl = Quv,∀(u, v) ∈ EP , l ∈ L
2) Qul−1ul

= Qu,∀u ∈ VP , l = 1, ..., L
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For brevity, let us omit the superscript j. Consider the follow-
ing formulation:

min
r,z

∑
(u,v)∈E

quv
µuv

ruv +
∑

(u,v)∈E\EC

Quv
µuv

ruv +
∑
u∈VP

Qu
µu

zu (6)

s.t. zu ≥ rul−1ul , ∀u ∈ VP , l = 1, ..., L (7)

∑
v:(u,v)∈E

ruv −
∑

v:(v,u)∈E

rvu =


1, if u = s0
−1, if u = tL
0, otherwise

, ∀u ∈ V

(8)
ruv ∈ {0, 1}, ∀(u, v) ∈ E (9)
zu ∈ {0, 1},∀u ∈ VP (10)

Similar to (2), the constraint (8) ensures that the solution
finds a path from source to destination, including the node at
which each layer of model is to be computed. The first term
in (6) is the total service time. The second and third terms
represent the waiting time at links and nodes, respectively,
provided that upon the arrival at corresponding components,
Quv and Qu are the actual amount of data waiting for
transmission/computation. Specifically, the second term adds
the waiting times at all the links traversed. Note that if the
solution translates to a path with cycle(s) in the original graph
GP , then the second term may add Quv multiple times for
some (u, v) ∈ EP . By constraint (7), zu is 1 in the optimal
solution only if node u ∈ VP is selected for computing
layer(s). The third term is thus the total waiting time at nodes.
Likewise, if the solution gives a loopy path, then there may be
a node visited twice or more, and hence, the third term may
not give the actual waiting time. Otherwise, if the optimal
solution gives a simple path, then the objective function value
is the actual end-to-end latency. This is summarized below.

Lemma 1: Assume that the optimal solution r =
[ruv, (u, v) ∈ E] of problem (6)-(10) translates to a simple
path (i.e., a path with no cycles) in the original graph. Then,
the objective function value in (6) is the job completion time.
In simulations, we were able to observe that a simple path is
found in many of the instances tested.

The problem (6)-(10) is an ILP which is NP-hard in general.
However, we show that our formulation has a special structure
called total unimodularity, so that the optimal solution to ILP
can still be found with the relaxation of binarity constraints
in (9) and (10) as 0 ≤ ruv ≤ 1 and 0 ≤ zu ≤ 1. With
this relaxation, the formulation is just a linear program (LP)
which is polynomial time solvable. In general, LP introduces
fractional solution, which in our problem, implies multiple
paths with fractional flow. For example, the solution can have
the form of ruv = 0.7 along one path and ruv = 0.3 along
another, while the goal is to find a single path with unit flow.
The following theorem shows that our formulation always has
an integral optimal solution.

Theorem 1: The LP relaxation of formulation (6)-(10) has
an integral optimal solution (i.e., an optimal single path with
minimum completion time).

Proof: See Appendix A.
By this theorem, one can find a solution of the ILP (6)-(10)
by solving its LP relaxation which is much easier. This can

be used to develop an efficient algorithm for routing multiple
jobs, as presented in the following.

Remark. The quantities Qu and Quv can be replaced with
expected tasks when the job arrives at the corresponding
resource, so that expected waiting time can be taken into
account. The computation requirement qul−1ul

= cl of layer
l can be replaced with cl(1 + αI{ml>Mu}) where Mu is the
physical memory capacity of node u, and I is the indicator
function taking the value 1 if the condition is satisfied, and
0 otherwise. This reflects the slowdown of computation if
the memory requirement exceeds the physical memory and
techniques such as swapping are activated to accommodate ex-
cessive memory demand. This way, one can take into account
the impact of memory demand, without budget constraints
such as (4), which is likely to make the problem easier to
solve.

C. Greedy Algorithm for Priority-based Job Routing
In order to show how the formulation (6)-(10) can be

used, we assume preemptive scheduling at links and nodes.
Priority is assigned to every inference “job” (not to individual
layers), and uniformly applied to all the layers belonging
to the same job. For instance, consider two jobs j1 and j2,
and suppose that job j1 has higher priority than job j2. The
computation/transmission task of a layer in job j2 can be
preempted (while it is being computed/transmitted) up on the
arrival of the computation/transmission task of job j1.

We consider a greedy algorithm that determines the routing
and priority of jobs, one at a time in the order of priority.
Suppose now that the queue lengths Qu,∀u ∈ VP and
Quv,∀(u, v) ∈ EP represent the computation and transmis-
sion tasks (that are already routed) with higher priority than
the current model to be routed. For routing a job, we use the
formulation (6)-(10). Again, the first term in (6) represents
the total service time at nodes and links. The third term is the
total waiting time at nodes, assuming that the computation
of the current job at each node u must wait until all the
computation tasks of higher priority. This is obviously an
upper bound on the actual waiting time because some of the
computation tasks in Qu may have been finished by the time
when the computation task of the current job arrives at the
node. Similarly, the second term in (6) is an upper bound
on the total waiting time at links. The objective function in
(6) is thus an upper bound on the actual service time plus
waiting time which is equal to the completion time. Therefore,
in this case, the formulation (6)-(10) seeks to find a routing that
minimizes an upper bound on the completion time of current
job.

Note that due to networking delays (i.e., transmission
times), it is hard to express the actual waiting time in a simple
form. The upper-bound approach enables a simple formulation.
Although there may be a gap between upper bound and actual
completion time, we expect that minimizing the upper bound
would have the effect of minimizing the actual job completion
time. In the following, we consider this fictitious system in
which the upper bound is treated as the actual waiting time.

Let Q = [Quv,∀(u, v) ∈ E] which is the vector of unfin-
ished transmission/computation tasks in the network. Recall
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that this vector determines the waiting time of jobs. Let Cj(Q)
be the optimal objective function value of formulation (6)-(10)
for job j. That is, Cj(Q) is the completion time of job j if it is
routed based on the formulation in the presence of unfinished
tasks Q. Let r∗(j) be the optimal routing variable in this case.
Note that by Theorem 1, Cj(Q) and its solution r∗(j) can be
found by solving the LP relaxation of (6)-(10).

Algorithm 1 shows the greedy policy. First, it computes the
completion time of every job, and selects the job with earliest
completion time (line 1). This selected job is given highest
priority. Second, the unfinished task vector Q is updated (line
2) so that the remaining jobs with lower priority can be routed
with updated waiting time. The same procedure is repeated
until all the jobs are routed. As shown in Fig. 3, the greedy
algorithm finds a solution that balances the workload over
the network, and achieves the completion time close to the
minimum possible value which is achieved by routing policy
2. Although the algorithm is derived assuming the fictitious
system, we expect that the greedy algorithm performs well in
practice as it penalizes the solution utilizing the resources that
are highly occupied.

Algorithm 1: Greedy Algorithm
Given: Jobs J = {1, ..., J}
Init: Quv = 0,∀(u, v) ∈ E; U = J ; p = 1;

1 while U 6= ∅ do
2 jp = arg min

j∈U
Cj(Q);

3 Quv ← Quv + q
jp
uvr∗uv(jp),∀(u, v) ∈ E;

4 p← p+ 1;
5 U ← U \ {jp};
6 end

Output: Priority & Routing: [j1 > · · · > jJ ] &
[r∗(jp),∀p = 1, ..., J ]

The approximation ratio of this algorithm can be derived.
Let us abuse the notation by defining |VP | and |EP | as the
numbers of nodes with positive computation capacity and
edges with finite transmission capacity respectively in the
original graph GP . Let T ∗ be the minimum possible job
completion time in the actual system.

Theorem 2: Assume that the graph GP is k-edge-connected
and the formulation (6)-(10) always finds a simple path in GP .
Then, the job completion time under Algorithm 1 in the actual
system is at most αT ∗, where

α = max

{
2αtx,

2(L+ 1)(|VP |+ |EP |)αtx
k

,(
1 +
|EP |
|VP |

)
αcp

}{
2− 1

|VP |+ |EP |

}

αtx =

hL ·max
j,l

djl · max
(u,v)∈EP

µuv

hS ·min
j,l

djl · min
(u,v)∈EP

µuv
, αcp =

maxu∈VP µu
minu∈VP µu

hL = max
j
hjL, hS = min

j
hjS

hjL = longest path length in GP in hop count btw. sj and tj

hjS = shortest path length in GP in hop count btw. sj and tj .

Proof: See Appendix B.
Therefore, the greedy policy is an α-approximation algorithm.

Corollary 1: With zero network delay (or infinite link
capacity) and identical computation capacity at all nodes, the
greedy policy is a (2− 1/|VP |)-approximation algorithm.

Proof: See Appendix C.
Although the approximation ratio in 2 seems loose, in the

special case as in Corollary 1, our algorithm approximates
the optimal solution within a factor smaller than 2. We
thus anticipate our algorithm performs well in many other
scenarios. We show in Section VI that in many cases, the
greedy approximates the optimal in the fictitious system within
a small neighborhood.

Remark. The priority-based scheduling discussed in this
section may not be realistic in general communication net-
works, however such a scheduling policy will likely to gain
increasing attention. As the demand for supporting a large
spectrum of applications increases, the conventional one-size-
fit-all network solution becomes no longer viable. The concept
of network slicing has always been one of the key service
paradigms that can solve this problem. With network slicing,
certain services are assigned logically isolated computing
and networking resource blocks, within which customized
scheduling policy can be employed. The primary goal of
network slicing is to provide a certain level of quality-of-
service (QoS) guarantee through flexible scheduling in the
slice. For this reason, priority-based scheduling and admission
control (into slice) is an important problem of research [29],
[30]. Ubiquitous AI service provider may purchase a network
slice, and get subscribers with differentiated service level
agreement. Accordingly, we envision that the discussion of
priority-based scheduling for inference can potentially be an
important issue in practice in the future.

VI. NUMERICAL EVALUATION

In this section, we evaluate numerical advantages of our
framework and the performance of the greedy policy in Algo-
rithm 1. We adopt the settings from [7] where IoT environment
is considered. The original physical network GP is generated
by random geometric graph. That is, nodes are randomly
placed over the plane of x × x square with x = 30m. For
a pair of nodes, there is a bidirectional link if the two nodes
are within certain distance, e.g., communication range of each
other in wireless settings. Such a communication range is set
to 7.5m. If a disconnected graph is generated, it is discarded
to consider only connected graphs. The link transmission rate
µuv between two neighbors is randomly set to one of the
values in {1, ..., 5}× γ·µmax

tx

5 where γ is the scaling parameter
and µmax

tx is set to 72.2Mbps which is the data rate of WiFi 4.
We scale up (γ ↑) and down (γ ↓) the entire link transmission
rates in order to examine our framework in various regimes
where the computation time dominates the completion time
over transmission time or the other way around.

We assume three types of IoT nodes including Orange Pi
Zero (OPZ), Beaglebone AI (BAI) and Raspberry Pi 3 (RP3).
Table I shows the specs of these devices. Note that c̄u is
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TABLE I
NODE TYPES AND CAPACITIES. MM: MILLION MULTIPLICATIONS

Node type c̄u (MM) m̄u (MB) µu (MM/s)
OPZ 100,000 524.288 360
BAI 100,000 131.072 480
RP3 100,000 524.288 560

just the parameter introduced by the constraint (3), not a real
hardware spec. Each node in GP is randomly set to one of
the three types.

We consider three CNN models including SevenLayerNet
(SLN), AlexNet (AN) and ResNet101 (RN). The memory mj

l

and computation cjl requirement and output data size djl of
these models are identical to those in [7] where compressed
form of layers is assumed (see Table II). For each job, its
source and destination are chosen randomly from GP , and
one of the three models is randomly selected.

A. Example of Solution Found by Our Framework

We first present a small example of how our framework
finds a solution for distributing DNN inference jobs. There
are 20 nodes and 5 jobs. Fig. 4(a) shows the original network
graph with the source-destination pair of each job to be
routed. Different markers indicate different node types (circle:
OPZ, diamond: BAI, square: RP3). Note that the source and
destination of job 4 are the same node, implying that the
corresponding node generates the data and needs the inference
result on the data.

Next, the layered graph is constructed as shown in Fig. 4(b).
Note that the 3D geometry is only for visualizing the graph,
and not needed in the process of finding a solution. The
sources are placed in layer 0, i.e., G0, while the destinations
are placed in the final layer of corresponding DNN model.
For instance, job 1 has 5 layers in the model, and hence,
its destination is placed at t15 in layer 5. By solving the
formulation, the path is found for each source-destination pair
in the layered graph.

Fig. 4(c) depicts the five paths found. The straight down
arrow from upper layer to lower layer indicates that the
corresponding layer is computed at the corresponding node
(in the original graph). Note that job 4 is processed at the
the source node up to layer 4, and then at the neighboring
square node up to the final layer. The result is then delivered
back to the source (which is also the destination). Every other
job is processed at a single node. These paths in the layered
graph are then mapped back to the original graph as shown in
Fig. 4(d).

B. Numerical Advantages of Our Framework

We compare our ILP formulation (1)-(5) with the IQP
formulation in [7]. The two formulations solve the same
problems. We use Gurobi Optimizer running on Intel Xeon
Gold 5220R CPU @ 2.2GHz with 24 cores and 256GB of
RAM. Recall that in the formulation of [7], the transmission
latency between nodes is assumed to be shortest hop distance
∗ (data size ÷ constant rate). Since links can have different

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15

y

(a) Original graph with source-destination pairs

(b) Layered graph with source-destination pairs

(c) Paths found in layered graph

(d) Paths mapped to original graph
Fig. 4. Example of how the solution is found. Formulation (1)-(5) is used to
solve a problem with |VP | = 20, J = 5.
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TABLE II
CNN MODELS AND PARAMETERS. MM: MILLION MULTIPLICATIONS, KB: KILOBYTES

Model Requirement of each layer l = 0, ..., Lj (dj0: input data size) Unit

SLN
djl 9.41 50.18 12.54 1.54 0.77 0.04 - - - - KB
cjl - 3.81 20.08 1.20 0.07 0.002 - - - - MM
mjl - 19.20 409.60 4816.90 294.91 7.68 - - - - KB

AN
djl 618.35 279.94 173.06 259.58 259.58 36.86 16.38 16.38 4.00 - KB
cjl - 105.73 224.34 149.52 112.14 74.84 37.75 16.78 4.10 - MM
mjl - 139.78 1229.82 3540.48 2655.74 1770.50 151011.39 67125.25 16388.00 - KB

RN
djl 602.12 802.82 802.82 200.71 50.18 50.18 50.18 50.18 12.54 4.00 KB
cjl - 118.01 616.56 757.86 950.53 1156.06 1156.06 1156.06 565.18 2.20 MM
mjl - 37.63 786.43 2228.22 21757.95 26738.69 26738.69 26738.69 51380.22 8388.61 KB

rates, the constant rate in the IQP formulation is set to the
average rate of links on the shortest-hop path. The number of
nodes |VP | is fixed to 50, while the number of jobs J and the
data rate scaling γ are varied as J ∈ {5, 10, 20, 30, 40} and
γ ∈ {0.2, 0.5, 1.0, 2.0}.

Fig. 5 compares the solutions found by our ILP formulation
and IQP formulation of [7]. In Fig. 5(a), the service times (i.e.,
the objective function value in (1)) are shown in the form of
relative gap defined as OIQP−OILP

OILP
× 100(%) where OF is the

optimal objective function value of formulation F. For small
values of γ, link transmission rates are small, and hence, the
transmission latency takes a significant portion of service time.
Since our formulation takes into account both transmission and
computation latency, the solution found by our formulation
achieves smaller service time especially when γ is small. On
the other hand, for large values of γ, the transmission latency
becomes less significant, and the performance gap between
ours and IQP decreases. Observe also that the performance
gap increases as the number of jobs J increases. The gap in
each job’s service time cumulates more with a large number
of jobs.

The IQP formulation can be easily fixed to better take
into account transmission time and hence, the service time of
IQP formulation can be improved. We believe what is more
important is the runtime to solve formulation. Since it takes
nearly indefinite time for some problem instances, the time
limit of the solver is set to 100s for both formulations. Fig.
5(b) shows the runtime of both formulations. As the number
of jobs increases, the IQP quickly hits the time limit, meaning
that in 100 seconds, it fails to find a solution which can be
claimed to be optimal. On the other hand, our formulation
finds an optimal solution much faster than IQP, with slowly
growing runtime in the number of jobs.

C. Integrality Gap: Comparison with LP Relaxation

In order to further investigate the numerical advantages
of our framework, we evaluate the integrality gap. Consider
the LP relaxation of formulation (1)-(5), i.e., rjuv ∈ {0, 1}
relaxed as 0 ≤ rjuv ≤ 1. Let OLP be the optimal objective
function value of LP relaxation. Clearly, we have OLP ≤ OILP

because LP relaxation optimizes over the superset of what is
considered in ILP. For minimization problem, the integrality
gap is defined as OILP

OLP
, which is always no smaller than 1. If

the solver finds an integral solution which yields objective

(a) Relative gap of total service time (objective func-
tion value in (1)) defined as

OIQP−OILP

OILP
× 100(%)

(b) Runtime to solve formulation
Fig. 5. Comparison of ILP (ours) and IQP, with |VP | = 50. Each point is
the average of the results from 50 random problem instances

function value equal to OLP, it means that it has found
an optimal solution. However, this happens only when the
integrality gap is 1. Therefore, the integrality gap is a crucial
property of formulation from numerical perspectives (as well
as approximation algorithms).

Fig. 6 shows the integrality gap under various circum-
stances2. For most of the problem instances, the integrality
gap is nearly 1, and we postulate that the gap mostly results
from numerical precision issue as the objective function values
of ILP and LP are often equal upto a few digits after the
decimal point. As mentioned above, the integrality gap of 1 can
accelerate the solver to find an optimal solution. The results in
Fig. 6 explain why our formulation is able to find an optimal

2In contrast with the above evaluation, some problem instances turn out to
be infeasible especially when the network with small size (i.e., small |VP |)
needs to serve a large number of jobs. We omit the results for the combination
of (|VP |, J) with which there are fewer than 10 feasible instances out of 50
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(a) γ = 0.2 (b) γ = 2

Fig. 6. Integrality gap of our ILP formulation (1)-(5). Each point is the
average of the results from 50 random problem instances. The results with
other values of γ are omitted due to limited space.

solution much faster than IQP.
Note that for some instances, the integrality gap is relatively

large. For example, with (J = 50, |VP | = 50) in Fig. 6(a), the
average integrality gap is about 3. We found that for only
two instances out of 50, the ILP finds an extraordinarily long
path with cycles in the layered graph, after the time limit
100s of the solver is reached. The objective function values in
the two cases are about 9724s and 7725s respectively, while
the LP relaxation attains about 169s and 181s respectively.
Such a solution of loopy path can never be optimal because
one can immediately remove cycle(s) in the path to obtain
a solution with smaller objective function value and reduced
burden in the budget constraints. Although we believe this is an
issue of solver, such an extraordinary solution can be avoided
by adding a small penalty such as δ

∑
j,(u,v) r

j
uv with small

positive δ. This penalizes the solution with cycle(s), forcing
the solver to find an acyclic path.

Fig. 7 compares the runtime. As the number of jobs in-
crease, the runtime of ILP increases relatively fast compared
to that of LP. Notice that it takes more time for ILP to find a
solution when the number of jobs is large and the network size
is small. For instance, the runtime with (|VP | = 50, J = 40)
is smaller than that with (|VP | = 20, J = 40). This is because
when the resources are abundant in the large network, it is
easier to find a solution to support all the jobs. On the other
hand, if the resources are scarce compared to the demand, the
solution tends to be complicated, which obviously takes the
solver a long time to discover such a solution. Fig. 8 compares
the solutions under small and large values of |VP | with fixed
J , where only the first (in job-index-wise) 5 jobs’ paths are
shown. When |VP | is small, the paths tend to be complicated,
and indeed, many of the paths are cyclic in the original graph.
It is easy to guess from the form of the solution that it tries to
pack the paths to stay below the budgets. On the other hand,
when |VP | is large, all the paths are simple in the original
graph. This example clearly shows why it may take longer to
solve the problem when |VP | is small and J is large.

D. Evaluation of Greedy Algorithm
We now evaluate the greedy policy in Algorithm 1. The

following two algorithms are considered for comparison with
greedy, denoted by GRD.

1) Optimal algorithm (denoted by OPT) that finds a path
for each job such that the completion time is minimized
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Fig. 7. Runtime of ILP and LP vs. number of jobs J

(a) |VP | = 20, J = 40: only 5 jobs’ paths are shown.

(b) |VP | = 20, J = 40: only 5 jobs’ paths are shown. Nodes
are omitted to avoid congested figure.

Fig. 8. Integrality gap of our ILP formulation (1)-(5). Each point is the
average of the results from 50 random problem instances. The results with
other values of γ are omitted due to limited space.

in the fictitious system. The formulation is given in
Appendix D.

2) Node-first selection algorithm (denoted by NFS) that
selects a single node, say u, for each job with earli-
est computation completion, and takes the shortest (in
transmission completion time) path from source to u and
from u to destination. The details are given in Appendix
E.

While OPT finds an optimal solution, it may take an exces-
sively long time. In contrast, NFS may find a solution quickly,
but at the expense of increased completion time.

We first compare greedy and optimal algorithms. Let CALG
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be the completion time of algorithm ALG in the fictitious
system. We found that OPT fails to find a solution in 30
minutes if either J > 10 or N > 30. In addition, even if it
finds a solution after the time limit of 30 minutes, it achieves
even larger completion time than GRD or NFS. Hence, the
results from those instances were dropped. In other words, we
only consider the results in which the completion time of OPT
is no greater than that of GRD and NFS. Fig. 9 shows those
results. In Fig. 9(a) the relative gap of completion time, defined
as CGRD−COPT

COPT
× 100(%), remains below 7%, implying that

on average, GRD achieves completion time at most 1.07 times
that of OPT. As mentioned above, OPT introduces a large
number of variables and constraints, and thus, it takes a long
time to find an optimal solution (see Fig. 9(b)). Note that when
OPT hits the time limit of 30 minutes, most of the solutions
(if found) give meaningless completion time. As mentioned
above, those cases were omitted, and thus, the runtime of OPT
shown in Fig. 9(b) somewhat underestimates the true runtime.
This result shows that the greedy policy is able to find nearly
optimal solutions in reasonable time (at least for the cases
shown in the figure).

(a) Relative gap of completion time defined as
CGRD−COPT

COPT
× 100(%)

(b) Runtime
Fig. 9. Comparison of greedy and optimal algorithms

Next, we compare greedy and node-first selection algo-
rithms. In Fig. 10(a), the relative gap of completion time
increases as the data transmission rate (small γ) decreases.
This is because NFS selects a node (and thus a path) with
an emphasis on computation time, while with small γ, the
transmission time becomes a substantial element affecting

completion time. The greedy policy finds a path adaptively
to the circumstances regarding computation and transmission,
thereby achieving better completion time performance.

On the other hand, as the numbers of nodes and jobs
increase, the runtime of greedy scales poorly compared to the
node-first selection algorithm. The greedy requires to solve the
LP relaxation of (6)-(10) O(J2) times. We found that as the
iteration continues, it tends to take longer to solve the LP. With
J = 30, even one second of average solver runtime for single
LP can result in several hundreds of seconds of total runtime.
Therefore, it may be worthwhile to delve into the algorithmic
solution for (6)-(10), which we leave as future study.

(a) Relative gap of completion time defined as
CNFS−CGRD

CGRD
× 100(%)

(b) Runtime
Fig. 10. Comparison of greedy and node-first selection algorithms

VII. CONCLUSION

In this paper, we proposed a framework for routing DNN
inference jobs over the distributed computing network. Our
framework uses a novel layered graph model to simplify and
integrate the communication and computation problems via
conventional routing. Our algorithms presented in this paper
show an example of what one can do by exploiting the
proposed framework. Namely, a simple but effective solution
for enjoying the capability of DNN even with the lack of
computing power can be derived. In addition to the results
in this paper, we believe that our framework can facilitate
practical solutions to the problem of routing inference jobs.
Our framework will therefore be able to help overcome limited
computing power at end devices when ubiquitous AI is about
to be in service.
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APPENDIX A
PROOF OF THEOREM 1

We start with some background needed to show the afore-
mentioned property. The definitions and facts in the following
can be found in [31].

Definition 1: An m×n matrix A is totally unimodular (TU)
if the determinant of each square submatrix is equal to 0, 1
or -1.

Definition 2: A polyhedron P ⊆ Rn is the set of points that
satisfy a finite number of linear inequalities, that is, P = {x ∈
Rn : Ax ≤ b} where A ∈ Rm×n and b ∈ Rm.

Definition 3: A nonempty polyhedron is said to be integral
if all of its extreme points3 are integral.

The following two lemmas are the key to our analysis.
Lemma 2: If A ∈ Rm×n is TU, then P (b) = {x ∈ Rn+ :

Ax ≤ b} is integral for all b ∈ Zm for which it is nonempty
(the same is true for P (b) = {x ∈ Rn+ : Ax = b}).

Lemma 3: For a polyhedron P ⊆ Rn, a solvable LP
(max{cTx : x ∈ P}) has an integral optimal solution for
all c ∈ Rn if and only if P is integral.
By Lemmas 2 and 3, if the constraint matrix is TU, then
solving LP with integral vector b in P gives an integral optimal
solution (or if not, the fractional solution can be rounded to
an integral solution without losing optimality). In the case of
binary ILP, LP relaxation replaces the constraints (· ∈ {0, 1})
with (0 ≤ · ≤ 1). If the polyhedron with this relaxation is
integral, then solving the LP relaxation gives a binary optimal
solution because all the variables are constrained to be between
0 and 1 and hence integrality implies binarity. We exploit this
fact to show that LP relaxation of our formulation has a binary
optimal solution which in our case is a single path.

A. Matrix Representation of Our Formulation

We first represent the formulation in a matrix form.
Let y = [z; r1; r2]4 ∈ R(L+1)(|VP |+|EP |) where z =
[zu,∀u ∈ VP ] ∈ R|VP |, r1 = [rul−1ul

,∀u ∈ VP , l =
1, 2, ..., L] ∈ RL·|VP | and r2 = [ruv,∀(u, v) ∈ El, l =
0, 1, 2, ..., L] ∈ R(L+1)·|EP |. Let A1 and A2 be the ma-
trices corresponding to constraints (7) and (8), respectively.
Hence, we have A1 ∈ RL·|VP |×(L+1)(|VP |+|EP |) and A2 ∈
R(L+1)·|VP |×(L+1)(|VP |+|EP |). The formulation (6)-(10) can be
written as

min
y

cT1 y

s.t. A1y ≤ 0

A2y = b2

y binary vector

(11)

where c1 is a vector whose inner product with y gives the
service plus waiting time as in (6), and b2 is a integral vector
having 1, −1 or 0.

3A point in polyhedron P is extreme if it cannot be expressed as a nontrivial
convex combination of two distinct points in P .

4The notation ; is used to indicate the beginning of a new row. For example,
[1;−1; 1] is a 3-dimensional column vector.

Lemma 4: LP relaxation of the above formulation can be
written as

min
y

cTx

subject to

A1 I12 0
A2 0 0
I31 0 I33

 ys1
s2

 =

 0
b2
1


y, s1, s2 ≥ 0

(12)

where x is the vector [y; s1; s2], and s1 ∈ R(L+1)(|VP |+|EP |)

and s2 ∈ RL|VP | are slack variables. The vector c is the
augmented vector of c1 in (11) padded with zero to match
the dimension of x. The matrices Imn are identity matrices of
appropriate sizes.

Proof: To replace inequality constraint in (11) with equal-
ity constraint, we introduce the slack variable s1 ≥ 0. The
formulation (11) is equivalent to

min cT1 y

s.t. A1y + s1 = 0

A2y = b2

y binary vector
s1 ≥ 0

(13)

Now relax the binarity constraint as

min cT1 y

s.t. A1y + s1 = 0

A2y = b2

y ≤ 1

y, s1 ≥ 0

(14)

The slack variable s2 is introduced to replace the inequality
constraint with equality constraint again, i.e., replace y ≤ 1
with y+s2 = 1 and s2 ≥ 0. Putting all the equality constraints
together obtains the desired result (12).

Note that the polyhedron in LP relaxation (12) is the same
form as in Lemma 2 with equality Ax = b, where

A =

A1 I12 0
A2 0 0
I31 0 I33

 , x =

 ys1
s2

 , b =

 0
b2
1

 (15)

Note that b is an integral vector. Consequently, by Lemmas 2
and 3, we just need to show the total unimodularity of A.

B. Total Unimodularity

We start with some background on total unimodularity [31].
Lemma 5: For an m × n integral matrix A, the following

are equivalent:
1) A is TU
2) AT is TU
3) For each C ⊆ {1, ..., n}, there exists a partition (C1, C2)

of C such that∣∣∣∣∣∣
∑
j∈C1

aij −
∑
j∈C2

aij

∣∣∣∣∣∣ ≤ 1 for i = 1, ...,m (16)
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4) For each R ⊆ {1, ...,m}, there exists a partition (R1, R2)
of R such that∣∣∣∣∣∑

i∈R1

aij −
∑
i∈R2

aij

∣∣∣∣∣ ≤ 1 for j = 1, ..., j (17)

Condition (16) requires that for each row, the partitioned sum
(called partitioned row sum) must differ by at most 1. Note
that statement 4) in Lemma 5 is an immediate consequence
of 1), 2) and 3).

We can show the following lemma.
Lemma 6: If [A1;A2] is TU, then A is TU.

Proof: Suppose that [A1;A2] is TU. Then, by statement
3) in Lemma 5, any subset of the first block column (i.e., block
containing [A1;A2]) can be partitioned into two sets C1 and
C2 so that condition (16) is satisfied. Note that the identity
matrix I31 in the first block column of A does not affect the
forming of C1 and C2 because any column partition of identity
matrix satisfies condition (16).

Next, consider adding an arbitrary column, say ith column,
from the second block column of A. Note that the only nonzero
entry (which is 1) is in the ith row of this column. So, if
the current partitioned sum difference of ith row is zero, then
put the column into either C1 or C2, which does not violate
condition (16). If the partitioned row sum difference is 1, put
the column into a subset with smaller row sum so that the
partitioned row sum difference is balanced, i.e., zero. The third
block column can be treated exactly the same as the second
block in order to keep the condition in (16). This completes
the proof.

We can now focus on proving the total unimodularity of
[A1;A2] which is indeed totally unimodular.

Lemma 7: The matrix [A1;A2] is TU.
Proof: Consider the breakdown of [A1;A2] as shown in

Fig. 11. Let A1 = [A11 A12 A13]. The first |VP | columns cor-
respond to the variables zu,∀u ∈ VP . The next L|VP | columns
correspond to the variables rul−1ul

,∀l = 1, ..., L, ∀u ∈ VP .
The last (L + 1)|EP | columns correspond to the variables
ruv,∀(u, v) ∈ El, l = 0, 1, ..., L.

Each row of A1 in the top block corresponds to a constraint
in (7). Constraints are arranged such that the first block of L
rows corresponds to some node u, and each row in the block
indicates whether each cross-layer edge along replicated nodes
of u is visited. This is repeated for every other node in VP .
This forms the matrix A1.

Each row of A2 in the bottom block corresponds to a
flow conservation constraint in (8). For instance, for some
node u ∈ VP , the first L + 1 rows correspond to the flow
conservation at replicated nodes ul in each layer l = 0, 1, ..., L.
As in A1, the second block A22 corresponds to the variables
rul−1ul

, l = 1, ..., L of cross-layer edges. Constraints are
arranged in the order of u0, u1, ..., uL. Since the edges are
between consecutive nodes, A22 are written as in Fig. 11.
Note that this A22 is a network matrix. The third block A23

corresponds to the variables ruv,∀(u, v) ∈ El, l = 0, 1, ..., L
of intra-layer edges. Clearly, A23 is a network matrix of L+1
connected components G0, ..., GL.

-1
-1
⋮

-1

-1
-1
⋮

-1

⋱

L

|Vp|

1
1
⋱

1

⋱

L

L

L

1
-1  1

-1
⋱

1
-1

1
1
⋱

1

⋱
1
-1  1

-1
⋱

1
-1

|Ep|

L+1

L+1

L+1

|Vp|

|Vp|

|Vp|

|Ep|

Fig. 11. Breakdown of matrix A. A23 is the network matrix of L+ 1 layers
G0, ..., GL without cross-layer edges

Consider partitioning the columns of the matrix A. Let C1

and C2 be a partition of an arbitrary subset C of the entire
columns. The following rule is applied for the partition.

1) Put any column from the first (L+ 1)|VP | columns into
C1 regardless of J

– Without the third column block (i.e., the columns of
[A13;A23], this guarantees that each row sum is 0,
1, or −1. Furthermore, the row sums corresponding
to A22 have exactly the same numbers of 1s and
−1s. Let s ∈ R(L+1)|VP | be the vector of these
row sums from the columns of A22. Again, s has
exactly same numbers of 1s and −1s. Consider the
matrix [s A23]. This matrix is obviously TU because
i) s has exactly the same numbers of 1s and −1s
and ii) each column of A23 has exactly one 1 and
one −1. Consequently, any subset of rows can be
partitioned into two subsets so that the condition in
(17) can be satisfied. That partition is indeed putting
all the rows in the same subset, with which the
partitioned column sum difference is always 0, 1,
or −1. Consequently, [s A23] is TU and any subset
of columns of the matrix can be partitioned so that
the condition in (16) is satisfied.

2) Treat any columns from the first two block columns as
a single column by adding those columns. Let d be the
resulting column vector. Let E be the matrix of arbitrary
column(s) from [A13;A23]. Partition the columns of [d E]
in the same way as partitioning an arbitrary subset of
columns of [s,A23] discussed above.

– As shown in 1), all of the top block row sums satisfy
condition (16) since the third block column in the
top block row (i.e., A13) is a zero matrix. By the
argument in 1) on the TU of [s A23], all of the
bottom block row sums also satisfy (16).

This completes the proof.
Proof of Theorem 2: By Lemmas 7 and 6, A is TU. By

Lemmas 3 and 2, LP relaxation (12) has an integral optimal
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solution. It is clear that LP relaxation (12) is equivalent to
(18).

min cT1 y

s.t. A1y ≤ 0

A2y = b2

0 ≤ y ≤ 1

(18)

Therefore, LP relaxation (18) has an integral optimal solution
which is a single path with minimum completion time.

APPENDIX B
PROOF OF THEOREM 2

We first introduce various routing policies below.
• Shortest completion (SC): optimal routing policy that

achieves minimum job completion time T ∗ in the actual
system

• Shortest service (SS): routing policy that achieves shortest
service time for each job (same in the fictitious and actual
systems)

• Greedy (GR): Algorithm 1 (in the fictitious system)
• Shortest waiting (SW): given that p − 1 jobs are routed

by greedy, the pth job is assigned to a node with positive
computation capacity, say u∗, with shortest computation
waiting time in the fictitious system. Then, a shortest
transmission waiting (in the fictitious system) path is
assigned from source to u∗ and from u∗ to destination.

The following notation is used:
• Wπ

j : total waiting time of job j under routing policy π
• Sπj : total service time of job j under routing policy π
• Wπ

j (tx) : total transmission waiting time of job j under
routing policy π

• Wπ
j (cp) : total computation waiting time of job j under

routing policy π
• Sπj (tx) : total transmission (service) time of job j under

routing policy π
• Sπj (cp) : total computation (service) time of job j under

routing policy π
It is clear from the definition that Wπ

j +Sπj is the completion
time of job j under routing policy π. We also have Sπj =
Sπj (tx) + Sπj (cp) and Wπ

j = Wπ
j (tx) +Wπ

j (cp).
We need a few lemmas to prove Theorem 2. For simplicity

of presentation, we break the results into small lemmas and
integrate these results for the proof of Theorem 2. Denote by
jp the pth job routed under greedy routing policy.

Lemma 8: The job completion time under greedy algorithm
in the actual system is upper-bounded by WGR

jJ
+ SGR

jJ
where

jJ is the last job routed under greedy algorithm.
Proof: By assumption of Theorem 2, the greedy policy

finds only a simple path for every job, and hence, each
job’s completion time in the fictitious system is the objective
function value of the iteration in which the job’s route is fixed.
The greedy policy routes a job with earlier completion time
first, and hence, the waiting time plus service time WGR

jJ
+SGR

jJ
of last job routed under greedy is the job completion time
of the greedy policy in the fictitious system. The completion
time in the actual system is at most the completion time

in the fictitious system, and consequently, upper-bounded by
WGR
jJ

+ SGR
jJ

.
Consequently, in order to analyze the job completion time of

greedy policy, we just need to derive a bound on WGR
jJ

+SGR
jJ

.
Lemma 9: The optimal job completion time T ∗ is lower-

bounded as

SSS
j ≤ T ∗, j = 1, ..., J (19)

1

|VP |+ |EP |
J∑
j=1

SSS
j ≤ T ∗ (20)

Proof: The LHS in inequality (19) is the fastest possible
service time of job j. The entire job is completed only after
every job has been served. Hence, the minimum completion
time T ∗ cannot be smaller than the fastest possible service
time of every job.

To show (20), we have

1

|VP |+ |EP |
J∑
j=1

SSS
j ≤

1

|VP |+ |EP |
J∑
j=1

SSC
j ≤ T ∗ (21)

The first inequality holds since the total service time of SC
cannot be smaller than that of SS. In the second inequality,
the LHS is the average busy time of network components
(nodes+links) under SC. It is clear that job cannot be com-
pleted as long as there remains a busy component under
SC, and consequently, optimal job completion time T ∗ is no
smaller than the LHS. Note that the service time at the link
with infinite capacity is zero, and hence, those links should
be excluded when computing the average. Similarly, under
SS or SC, the computation will not be carried out at the node
with zero computation capacity, and hence, those nodes should
be excluded when computing the average. This completes the
proof.

The above lemma enables to compare GR and SC via SS.
Let hjL and hjS be the longest and shortest path lengths (in GP )
in hop count between sj and tj , respectively. Define hL =
maxj h

j
L and hS = maxj h

j
S .

Lemma 10: The transmission times are bounded as

SSW
j (tx) ≤ 2αtxS

SS
j (tx),∀j (22)

SGR
j (tx) ≤ (L+ 1)αtxS

SS
j (tx),∀j (23)

where αtx =
hL·max

j,l
djl · max

(u,v)∈EP

µuv

hS ·min
j,l

djl · min
(u,v)∈EP

µuv
.

Proof: Under routing policy SW, link transmission occurs
only in layers 0 and L because all the NN layers are computed
in a single node with smallest computation waiting time.
Furthermore, in layers 0 and L, the transmission path is
simple because SW takes a shortest transmission waiting path.
Consequently, in both of layers 0 and L, the transmission time

is at most
hL·max

j,l
djl

min
(u,v)∈EP

µuv
. The transmission time under SW is

thus upper-bounded as

SSW
j (tx) ≤ 2

hL ·max
j,l

djl

min
(u,v)∈EP

µuv
. (24)
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On the other hand, the transmission time under SS is at least
hS ·min

j,l
djl

max
(u,v)∈EP

µuv
. Combining this with inequality in (24) yields the

desired result (22).
To prove (23), the same argument as above is applied to

each of L + 1 layers in G since the greedy policy finds a
simple path in each layer. This completes the proof.

Lemma 11: For any routing policy π, the computation
service time is upper-bounded as

Sπj (cp) ≤ αcpSSS
j (cp),∀j (25)

where αcp =
max

u
µu

min
u
µu

.

Proof: The worst case is when all the layers are computed
at the node with smallest (positive) computation capacity, and
the best case is when computed at the node with largest
computation capacity. The lemma immediately follows from
this observation.

Lemma 12: The service time under routing policy SW is
bounded as

SSW
j ≤ α1S

SS
j ,∀j, (26)

where α1 = max(2αtx, αcp).
Proof: We have

SSW
j = SSW

j (tx) + SSW
j (cp) (27)

≤ 2αtxS
SS
j (tx) + αcpS

SS
j (cp) (28)

≤ α1S
SS
j (29)

The first inequality follows from Lemmas 10 and 11, and the
second inequality follows from the definition of α1.

The above lemmas characterize the bounds on the service
time. We now derive the bounds on waiting time. Recall that
given p− 1 jobs routed by GR, the policy SW routes the pth
job jp as mentioned in the beginning of this section.

Lemma 13: Suppose that the original graph GP is k-edge-
connected. Then,

W SW
jJ (tx) ≤ 2(L+ 1)αtx

k

J−1∑
p=1

SSS
jp (tx). (30)

Proof: Recall that when job jJ is to be routed by SW,
the rest of J − 1 jobs have already been routed by GR. By
assumption, there are k disjoint paths between any pair of
nodes. For the path segment from source to u∗, the average
transmission waiting time along each of k disjoint paths is

at most5 1
k

J−1∑
p=1

SGR
jp

(tx). This shows that there is a path

from source to u∗ with transmission waiting time no greater

than 1
k

J−1∑
p=1

SGR
jp

(tx). Since the routing policy SW selects a

path from source to u∗ that has the smallest transmission
waiting time, the transmission waiting time W SW

jJ
(tx) is upper-

bounded by 1
k

J−1∑
p=1

SGR
jp

(tx). By Lemma 10, this is in turn

5This is an upper bound as there may edges not in k disjoint paths.

upper-bounded by (L+1)
k

J−1∑
p=1

SSS
jp

(tx). Applying the same ar-

gument to the segment from u∗ to destination proves the
lemma.

Lemma 14: We have

W SW
jJ (cp) ≤ αcp

|VP |
J−1∑
p=1

SSS
jp (cp) (31)

Proof: This lemma immediately follows from the follow-
ing inequalities:

W SW
jJ (cp) ≤ 1

|VP |
J−1∑
p=1

SGR
jp (cp) ≤ αcp

|VP |
J−1∑
p=1

SSS
jp (cp) (32)

Recall that both GR (by nature of formulation (6)-(10)) and
SW (by definition) do not compute at the node with zero
computation capacity. In addition, |VP | is the number of
nodes with positive computation capacity. The RHS of the
first inequality is thus the average computation waiting time
at a node. Since the routing policy SW selects a node with
minimum waiting time, the node waiting time under SW
should be no greater than the average node waiting time, which
shows the first inequality. The second inequality follows from
Lemma 11. This completes the proof.

Lemma 15: We have

WGR
jJ + SGR

jJ ≤W SW
jJ + SSW

jJ . (33)

Proof: Recall that given J − 1 jobs routed by GR, SW
finds a path such that the last job is processed at a single node,
say u∗, with minimum waiting time, and a shortest (in link
transmission waiting) path from source to u∗ and a shortest
path from u∗ to destination are concatenated to form a path
from source to destination of the last job. On the other hand,
for the last job, GR finds a path with minimum waiting plus
service time, given J − 1 jobs routed by GR. Therefore, the
inequality holds.

Proof of Theorem 2: By Lemmas 8 and 15, the job comple-
tion time under GR in the actual system is at most W SW

jJ
+SSW

jJ
.

Let α2 = max
(
αcp

|VP | ,
2(L+1)αtx

k

)
. By Lemmas 13 and 14, we

have

W SW
jJ ≤

αcp
|VP |

J−1∑
p=1

SSS
jp (cp) +

2(L+ 1)αtx
k

J−1∑
p=1

SSS
jp (tx) (34)

≤ α2

J−1∑
p=1

SSS
jp (35)

This together with Lemma 12 leads to

W SW
jJ + SSW

jJ ≤ α2

J−1∑
p=1

SSS
jp + α1S

SS
jJ (36)

≤ α3

{
1

|VP |+ |EP |

J−1∑
p=1

SSS
jp + SSS

jJ

}
(37)

= α3

{
1

|VP |+ |EP |

J∑
p=1

SSS
jp +

(
1− 1

|VP |+ |EP |

)
SSS
jJ

}
(38)

≤ α3

(
2− 1

|VP |+ |EP |

)
T ∗ (39)



16

where α3 = max(α2(|VP | + |EP |), α1). The last inequality
follows from Lemma 9. This completes the proof.

APPENDIX C
PROOF OF COROLLARY 1

By assumption of zero network delay, we have |EP | = 0,
and also αtx = 0 because Lemma 10 holds with αtx = 0.
In addition, αcp = 1. It immediately follows that α1 = 1,
α2 = 1

|VP | and α3 = 1. Therefore, the approximation ratio is
2− 1

|VP | , which completes the proof.

APPENDIX D
FORMULATION OF OPTIMAL ROUTING

Consider the binary variable tjp that takes the value 1 if job j
has priority p, and 0 otherwise. For two jobs j and k, if tjp = 1
and tkp′ = 1 with p′ < p, then it means that job k has higher
priority than j. As mentioned in Section V, the waiting time
of j at a component (link or node) in the fictitious system
is the sum of the computation or transmission tasks of all
the jobs passing through the component with higher priority
than j. The problem of minimizing the completion time in the
fictitious system can be formulated as follows:

min
r,z,t

max
j∈J

∑
(u,v)∈E

qjuv
µuv

rjuv+

∑
(u,v)∈E\EC

1

µuv

Quv +∑
p∈J

∑
p′<p

∑
j′∈J

tjpt
j′

p′q
j′
uvr

j′
uv

 rjuv+

∑
u∈VP

1

µu

Qu +
∑

(v,w)∈EC
v∈Vu

∑
p∈J

∑
p′<p

∑
j′∈J

tjpt
j′

p′q
j′
vwr

j′
vw

 zju

(40)
s.t. Constraint (2)

zju ≥ rjul−1ul
, ∀u ∈ VP , l = 1, ..., Lj , j ∈ J (41)∑

p∈J

tjp = 1,∀j ∈ J (42)∑
j∈J

tjp = 1,∀p ∈ J (43)

rjuv ∈ {0, 1}, ∀(u, v) ∈ E,∀j ∈ J (44)

zju ∈ {0, 1}, ∀u ∈ VP , ∀j ∈ J (45)
tjp ∈ {0, 1},∀j, p ∈ J (46)

The first term in the objective function is the total service
time. The second term is the waiting time at the traversing
links, adding up the transmission tasks of all the jobs with
higher priority. Similarly, the third term is the waiting time at
the node where the processing of job j is carried out, adding
up the computation tasks of all the jobs with higher priority.
The constraints (42) and (43) ensure that every job is assigned
a unique priority index p, and no priority index p is assigned
to more than one job. The maximum of this objective function
is the completion time, and the goal is to find a routing
with minimum completion time. This formulation introduces
a large number of variables. We found that it takes excessively
long time to preprocess for constructing objective function
and constraints. Furthermore, the solver often fails to find a
solution even in about half an hour. This led us to exclude
problem instances with large network/job size.

APPENDIX E
NODE-FIRST SELECTION ALGORITHM

Consider the routine [u,C] = selectNode(V,W ) that selects
the smallest-weight node in V with node weights W =
[wv,∀v ∈ V ]. The output u is the selected node, and C is
the weight of the selected node. Likewise, consider the routine
[H,C] = findShoPath(G, u, v,W ) that finds the shortest path
from u ∈ V to v ∈ V over the graph G = (V,E) with
link weights W = [wuv,∀(u, v) ∈ E]. The output H is the
shortest path found, and C is the total weight of the shortest
path. Consider the following algorithm:

Algorithm 2: Node-first Selection Algorithm
Given: Jobs J = {1, ..., J}
Init: Qu = 0,∀u ∈ VP ; Quv = 0,∀(u, v) ∈ EP ;

U = J ; p = 1;
1 while U 6= ∅ do

2 W j
cp =

[
Qu+

∑Lj

l=1 c
j
l

µu
, ∀u ∈ VP

]
, ∀j ∈ U ;

3 [uj , Cjcp] = selectNode(VP ,W
j
cp),∀j ∈ U ;

4 W j
tx =

[
Quv+d

j
0

µuv
, ∀(u, v) ∈ EP

]
, ∀j ∈ U ;

5 [Hj
1 , C

j
tx,1] = findShoPath(GP , s

j , uj ,W j
tx), ∀j ∈ U ;

6 W j
tx =

[
Quv+d

j

Lj

µuv
, ∀(u, v) ∈ EP

]
,∀j ∈ U ;

7 [Hj
2 , C

j
tx,2] = findShoPath(GP , u

j , tj ,W j
tx), ∀j ∈ U ;

8 jp = argmin
j∈U

Cjtx,1 + Cjcp + Cjtx,2;

9 Quj ← Quj +
∑Ljp

l=1 c
jp
l ;

10 Quv ← Quv + d
jp
0 , ∀(u, v) ∈ H

jp
1 ;

11 Quv ← Quv + d
jp

Lj , ∀(u, v) ∈ H
jp
2 ;

12 p← p+ 1;
13 U ← U \ {jp};
14 end

Output: Priority & Routing: [j1 > · · · > jJ ] &
[H

jp
1 → H

jp
2 ,∀p = 1, ..., J ]

In line 2, W j
cp is the vector of computation completion

time when the entire layer of job j is assigned to each node.
In line 3, for each job, the node with shortest computation
completion time is selected together with the corresponding
completion time. In line 4, the weight vector W j

tx contains
the transmission completion time at each link if the input
data of each job is transferred over the link. In line 5, the
path from source to the best node (selected in line 3) found
such that the input data are delivered to the best node with
minimum transmission latency. Similarly, in lines 6-7, the path
from the best node to the destination is found with respect to
the output data, i.e., the shortest path from the best node to
the destination in terms of transmission latency. In line 8, the
job with the earliest completion selected assuming that each
job is computed at the node selected in line 3, and the input
and output data are delivered along the paths found in lines 5
and 7, respectively. The route of the selected job is fixed with
priority corresponding to p (the lower, the higher priority), and
the unfinished tasks Q are updated based on the fixed path of
the job. In addition, the selected job is removed from the set
U that contains unassigned jobs. This is repeated until all the
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jobs are assigned. Therefore, the output of this algorithm gives
the priority and the path (with single node selection) for every
job.

This algorithm puts an emphasis on the computation by
first selecting the node with earliest completion if the entire
layer of a job is assigned to a single node. Although the
algorithm may be able to give out a solution quickly, there
are two drawbacks. First, it assigns the entire layer to a single
node, and hence, in situations where some layers need to be
split, the algorithm may perform poor. Second, in the setting
where data rates are low, the transmission time may become
a substantial element in the completion time. In this case,
the node-first selection strategy may incur large transmission
latency, eventually leading to large completion time.
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