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ABSTRACT

Edge caching plays an increasingly important role in boost-
ing user content retrieval performance while reducing re-
dundant network traffic. The effectiveness of caching ulti-
mately hinges on the accuracy of predicting content pop-
ularity in the near future. However, at the network edge,
content popularity can be extremely dynamic due to diverse
user content retrieval behaviors and the low-degree of user
multiplexing. It’s challenging for the traditional reactive caching
systems to keep up with the dynamic content popularity
patterns. In this paper, we propose a novel Predictive Edge
Caching (PEC) system that predicts the future content popu-
larity using fine-grained learning models that mine sequen-
tial patterns in user content retrieval behaviors, and oppor-
tunistically prefetches contents predicted to be popular in
the near future using idle network bandwidth. Through ex-
tensive experiments driven by real content retrieval traces,
we demonstrate that PEC can adapt to highly dynamic con-
tent popularity at network edge, and significantly improve
cache hit ratio and reduce user content retrieval latency over
the state-of-art caching policies. More broadly, our study
demonstrates that edge caching performance can be boosted
by deep mining of user content retrieval behaviors.

KEYWORDS

edge caching, proactive caching, deep mining, sequential
prediction, content retrievals

1 INTRODUCTION

Emerging applications, such as Virtual/Augmented/Mixed
Reality, require high-throughput and low-latency content
delivery. Edge caching is a promising solution to simulta-
neously reduce user content retrieval latency and mitigate
traffic congestion in core networks. The key to achieve high
caching gain is to accurately predict the content popular-
ity in the near future. The classic caching policies, such as

LFU, LRU and their variants, assume contents that are pop-
ular in the past will continue to be popular in the near fu-
ture. Caching replacement is therefore guided by simple sta-
tistics of the past content requests, such as time elapsed
since the last request (LRU) and the frequency of past re-
quests (LFU). Compared with the traditional CDN servers,
each edge cache node is equipped with smaller storage and
serves a smaller user group. As a result, the aggregate con-
tent popularity of users served by an edge cache node is less
stationary, and more difficult to be accurately estimated by
simple aggregate statistics of the past requests.
Lots of efforts have been made recently to address the

edge caching challenge. Some methods, e.g. CRFP [22] and
SG-LRU [13], have been proposed to improve or combine
LFU and LRU policies. Recently, machine learning methods
have been applied to improve caching performance by ex-
plicitly or implicitly learning the future content popular-
ity, e.g. LHR[42], Learning Relaxed Belady (LRB) [33], and
CEC [54]. But all of these methods are still reactive caching,
in which cache replacements are only triggered by cache
misses. Meanwhile, proactive caching, e.g. [4], enjoys the
freedom of prefetching any content at any time with addi-
tional bandwidth cost. As discussed in [6], content popular-
ity estimation is critical for efficient proactive caching. [34]
gives the theoretically upper bound for proactive caching
when content popularity is stationary. Periodical proactive
cache updates, e.g. [26], can cope with non-stationary con-
tent popularity. However, it cannot adapt to the content pop-
ularity variations between two updates.
In this paper, we propose a novel Predictive Edge Caching

(PEC) system that predicts the future content popularity us-

ing fine-grained learning models that mine sequential pat-

terns in user content retrieval behaviors, and opportunistically

pre-fetches contents predicted to be popular in the near fu-

ture to improve cache hit ratio and reduce content retrieval

latency. To address the diverse user content interests and
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Figure 1: Overview of PEC System. The upper part is

per-user next-content prediction model. Given user’s
recent requests with timestamps, the predicted con-

tents !D (=, C) and their weights #»F 2 can be obtained.

With the estimated arrival time ĝD
:+1, a real time pre-

dictive score ( (D, 2, C) will be generated. The lower part

is realtime caching policy with caching scores. The
cache is partitioned into proactive portion and reac-

tive portion, which are updated according to the pre-

dictive and reactive caching scores respectively.

content consumption behaviors, instead of using the aggre-
gate content request statistics of all users, wemine each indi-
vidual user’s content request history and predict when and
which content each user is likely to request the next using
sequential machine learning models. We then aggregate the
next-content predictions of all users to generate predictive
caching scores reflecting the future content popularity. Con-
tents predicted to be popular will be proactively prefetched
into cache in the background using spare network band-
width. To closely keep track of dynamic content popularity,
per-user next-content predictions, predictive caching score
updates, and proactive content prefetches are all conducted
in realtime. The high-level structure of PEC is illustrated in
Figure 1. Within this novel predictive edge caching frame-
work, we make the following contributions:

• We develop machine learningmodels to mine the user
sequential viewing patterns.We show that n-gram and
self-attention sequential models have complementary
performance, and can be easily combined to generate
accurate fusion prediction. We use simple, yet robust,
statistical methods to predict the arrival time of the
next request.

• To guide online prefetching, we develop models to ag-
gregate per-user content request predictions into per-
content predictive caching scores, and update them
continuously as posterior probabilities over time.

• We design a hybrid caching system that prefetches
contents with high predictive scores into the proac-
tive portion and caches popular contents missed by
the predictions into the reactive portion. The sizes of
the two portions are dynamically adjusted, and the
content replacements in the two portions are orches-
trated to maximize the caching gain.

• We develop a three-level strategy that controls the
bandwidth consumption of proactive downloading to
minimize its negative impact on the regular traffic.

• Through extensive edge caching simulations driven
by real-world data traces, we demonstrate that, com-
pared with the state-of-art reactive and the traditional
periodical proactive caching policies, PEC can signif-
icantly improve the cache hit ratio and reduce user
content retrieval latency with controlled bandwidth
overhead.

The rest of the paper is organized as the following. In
Section 2, we introduce the related work. Sequential models
for the next-content prediction are developed in Section 3.1,
and Section 3.2 presents the statistical model for the next
request arrival time prediction. Section 4 presents the de-
sign for using per-user predictions in hybrid caching. We
perform comprehensive evaluation using real world data in
Section 5. And the final Section 6 delivers the conclusion.

2 RELATEDWORK

To meet the new challenges of content delivery, more and
more researchers are focusing on edge caching in different
ways. Caching methods can be roughly classified into two
types: reactive caching and proactive caching. Reactive caching
approaches, such as LRU, LFU, First-In First-Out (FIFO) and
Greedy-Dual-Size-Frequency (GDSF) [10, 24, 5, 7] , replace
the cached content having the lowest scorewith the requested
content upon each cache miss, while proactive caching ap-
proaches update the whole cache periodically [8, 25, 43, 11].
In [12], authors investigated LRU, LFU and Belady’s algo-
rithms, and concluded caching for video streaming can ben-
efit from look-ahead technique. AViC in [2] estimates chunk
request time and evicts the furthest chunk when updating
cache. In [47], contents are prefetched to edge cache nodes
based on the aggregated content consumption statistics, in-
stead of per-user content prediction. Our work develops an
adaptive real-time proactive caching approachwhich prefetches
contents to become popular using idle bandwidth to adapt
to dynamic popularity at edge.
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Machine learning (ML), as a modern powerful tool, has
also been well introduced into the caching field. Some ef-
forts have been made on estimating dynamic content pop-
ularity [46, 40, 1, 33, 20, 42], while other efforts have ap-
plied deep reinforcement learning (DRL) to directly gener-
ate content placement strategy given various evolving state
features [39, 31, 48, 18, 9, 28, 30, 16, 27, 52, 41, 36, 49, 44,
29, 54]. In [26], LEAP , a machine learning model is trained
to prefetch video segments to improve user’s QoE in adap-
tive video streaming. Most of the proposed machine learn-
ing models are trained to learn the aggregated content con-
sumption patterns of a group of users served by the same
cache. LRB [32] is a machine learning model to estimate the
arrival time of the next request for a content (from any user
in the group) within or out of the Belady boundary. Our
machine models are designed to mine the sequential pat-
terns of how each individual user consumes contents and
predict for each user which content she will consume the
next. Nearly Optimal Cache (NOC) in [51] aims to mini-
mize the dynamic regret, which is the performance gap be-
tween an online learning algorithm and the best dynamic
policy in hindsight. NOC has provably good worst-case per-
formance for dynamic environments with no prior distri-
bution assumptions, but it potentially degrades the perfor-
mancewhenworkingwith friendly request patterns. Sequen-
tial prediction model is a hot topic in both industry and
academia, ranging from the traditional Markov chainmodel [14],
to the recent machine learning models, such as recurrent
neural network (RNN) [15], long short-termmemory (LSTM) [37],
convolutional neural network (CNN) [38], and transformer [35]
with self-attentionmechanism. Self-attentionmodel [17] out-
performs some state-of-art sequential prediction models. In
[21], temporal-aware self-attention model delivers a promis-
ing prediction accuracy.

3 PER-USER NEXT CONTENT REQUEST
PREDICTION

The key for achieving high caching gain is to accurately
predict which contents will be popular in the near future.
We estimate the short-term content popularity on an edge
cache node by predicting the next content that will be re-
quested by each user served by the edge cache. Given the
past content requests generated by user D, our model pre-
dicts 1) which content user D will request next 2) when the

next request will be generated. More specifically, given the
content request history of user D,

R (D) (C) , {〈g (D)1 , 2
(D)
1 〉 · · · 〈g (D)8 , 2

(D)
8 〉, · · · 〈g (D)

:
, 2

(D)
:

〉},

where g
(D)
8 and 2

(D)
8 are the arrival time and content of the

8-th request respectively, we want to predict g
(D)
:+1 and 2

(D)
:+1

for the next request from user D.

3.1 Sequential Models for Next-content
Prediction

How a user sequentially consumes contents is highly depen-
dent on the type of contents. For example, after D finishes
episode < of a TV series �, there is a good chance that D
will move on to the (<+1)-th episode of� the next. We can
use a simple heuristic model to predict the next content for
users watching TV series:

% (2 (D)
:+1 = �<+1 |2 (D):

= �<) = 1,

where�< denotes episode< of TV series �. We applied the
simple heuristic to our datasets 1, the prediction accuracy
is 45.31%. However, there is no such strong sequential pat-
terns for the other types of contents, such as movies, shows,
short videos, etc. We now develop learning-based sequential
models for the next-content prediction.

3.1.1 n-gram model. Sequential models are widely used in
Natural Language Processing.We adopt the simple, yet pow-
erful, n-grammodel to solve our problem. More specifically,
by assuming the next content only depends on the previous
= − 1 contents, the probability of the next content can be
estimated by the conditional probability of

% (2 (D)
:+1 = 2 |2

(D)
:
, 2

(D)
:−1, · · · , 2

(D)
:−=+2). (1)

Empirical conditional probability is derived from the history
data. An illustration of 3-gram is shown in Fig.2.

Figure 2: 3-gramModel: after building the 3-gram tree,

given input sequence [28 , 2 9 ], model predicts the next-

content candidates !̂D with their probabilities.

1The datasets will be described in detail in Section 5.1
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3.1.2 Time-aware Self-a�ention Sequential (TSAS)Model. The
n-gram Markovian model can capture short-range content
transition patterns, but falls short to model complex transi-
tion patterns in longer ranges. Meanwhile, Deep neural net-
works, such as Recurrent Neural Networks (RNNs) and Con-
volutional Neural Networks (CNNs), can be used to mine
long-range patterns, but they perform well only with dense
data. More recently, self-attention based sequence-to-sequence
models, such as Transformer [35], have achieved state-of-
the-art performance in various NLP tasks. The main idea is
to learn the “self-attention weights" that quantify the pair-
wise impacts of words in the same sentence and predict the
future words based on the previouswords. The self-attention
mechanism has been extended for sequential recommenda-
tion by additionally incorporating positional information and
time information [21] [17] in user-item interaction sequence.
Caching is highly time-sensitive. We not only need to

place popular contents in the cache, but also should do it
at the ‘right’ time. Contents to become popular the next
day don’t have to be cached now. Meanwhile, other than
the watched contents, the time a user spent on each con-
tent also tells a lot about the user’s content preference and
watching habit. For example, if a user often skips to another
video within 10 minutes, it makes more sense to predict
she will watch a short video instead of a long movie next.

As a result, to accurately predict the next content 2
(D)
:+1, we

should not only consider the user’s past content sequence,

{2 (D)1 , · · · , 2 (D)
:

}, but also the timestamps of those contents

{g (D)1 , · · · , g (D)
:

}.
Motivated by the work in [21], we develop a customized

time-aware self-attention model for next-content prediction.
We convert each user’s content request history into sequences
of length =. For the clarity of presentation, we now denote
one sequence from any user as {〈g1, 21〉 · · · 〈g=, 2=〉}. We train
a self-attentionmodel using length-n sequences from all users2.
We assume that the impact of the 9 -th request of the se-
quence on the 8-th request (We only consider 9 < 8 for the
causality consideration) depends on: 1) the requested con-
tent 2 9 , 2) g8 − g 9 , the time elapsed from the 9 -th request to
the 8-th request.
As illustrated in Figure 3, to learn the self-attentionweights,

we embed contents using an embeddingmatrix� (2) ∈ R |� |×3 ,
where d is the dimension of the latent embedding space. A
content embedding vector is projected to the corresponding
Key, Query and Value vectors using learnable projectionma-
trices, : ,, @,, E ∈ R3×3 respectively. All the time inter-
vals are quantized and capped to be integers within [0, :],
and then embedded using two matrices � (C,:) , � (C,E) ∈ R:×3 ,
one for Key, the other for Value. We summarize the context

2Padding will be applied if a user has requested less than = contents.

Figure 3: TSAS Model Structure.

of the first 8 − 1 requests as a weighted sum of the embed-
ding value vectors of the requested contents and the time-
intervals between requests:

I8 =

8−1∑

9=1

U8 9 (� (2)
2 9 ,

E + � (C,E)
g8−g 9 ), (2)

where �
(∗)
;

represents the ;-th row vector of the embedding

matrix � (∗) , and the self-attention weight coefficient U8 9 be-
tween request i and j is calculated by the softmax function:

U8 9 =
exp (<8 9 )∑=
:=1 exp (<8:)

<8 9 =

�
(2)
28 ,

@ (� (2)
2 9 ,

: + � (C,:)
g8−g 9 )

)

√
3

.

Weadd non-linearity by feeding the output of the self-attention
layer to a point-wise Feed-ForwardNetwork (FFN)with drop-
out and layer normalization. Finally, the probability of con-
tent 2 for the 8-th request is predicted as:

% (28 = 2 |〈g1, 21〉 · · · 〈g8−1, 28−1〉) ∼ Z8 · � (2)
2 , (3)

where Z8 is the latent context vector outputted by the self-

attention layer and FFN, and �
(2)
2 is the content embedding

vector for candidate 2 .

Figure 4: Fusion Prediction System.
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3.1.3 Fusion Prediction Model. To combine the short-range
and long-range sequential patterns captured by the n-gram
and TSAS models, we generate final prediction using model
fusion. We tried different fusion methods, including Comb-
Sum, combMNZ andReciprocal Rank Fusion(RRF) [23]. Among
them, combSum fusion achieved the best performance and
it has ranking scores for the final output, which can be used
as content caching scores.
The diagram of the fusion prediction system is shown in

Fig. 4. Specifically, we generate two top-n lists from the n-
gram and TSAS models. The two lists are merged, and for
each candidate content 2 in the merged list, we normalize
its n-gram and TSAS scores (= (2) and () (2) from (1) and (3)
using max-min normalization, respectively. We then rank
all the contents based on their combined normalized scores,
and put the top n contents into the fused top-n list. The
weight for each content is simply its combined normalized
score:

F2 =
(= (2) + () (2)

2
. (4)

Figure 5: PredictContent and Arrival Time of Next Re-
quest for Each User with On-Off View Pattern

3.2 Next-request Arrival Time Prediction

For the purpose of caching, other than predicting the next

content 2
(D)
:+1, it is also important to predict when D will re-

quest the next content, i.e., g
(D)
:+1. A user’s activities follow

on-off pattern. When a user is actively watching videos, af-
ter finishing content 2: , she will generate the next content

request. So the next-request arrival time is simply g
(D)
:+1 =

g
(D)
:

+ ) (D) (2: ), where ) (D) (2: ) is the random variable of
the time duration that D will watch the current content 2: .
Meanwhile, if the user leaves the video watching session af-
ter finishing 2: , the next request will be generated when she

becomes active again, then g
(D)
:+1 > g

(D)
:

+ ) (D) (2: ), and the
gap is the length of the user’s off-period. The off-periods
are very random, depending on lots of other factors outside
of video watching. The length of an off-period can be eas-
ily hours or even days, much longer than the time-scale of

edge caching. Meanwhile, a user typically watches multiple
videos within each on-period, so the inter-arrivals between
adjacent requests in the complete trace are dominated by
the inter-arrivals between two adjacent requests within the
same on-period. In this section, we will focus on predicting
the interval till the next request within the same on-period.
If the next request does not arrive beyond the predicted ar-
rival range, we will cancel our prediction and wait for the
user to become active again. The next content and arrival
time prediction with on-off pattern is illustrated in Fig.5.
The key is to predict ) (D) (2: ). One way is to use the sta-

tistics of the watching time of other users for 2: . However,
we don’t have the actual watching time in our trace. As a
work-around, we use the interval till the next request af-
ter 2: to approximate the watching time for 2: . To mitigate
the approximation error when 2: is the last request of an
on-period, we first cap the watching time for each video
type with a reasonable upper bound, e.g. three hours for
movies. Then we use the sample median, instead of sam-
ple mean, to estimate `() (2: )), to limit the impact of the
outliers. Similarly, we also obtain the sample variance of
the watching time f2() (2: )). Then we assume that user D
will finish the current content 2: and generate the next con-
tent request at a uniformly random time in a future win-

dow of [0(g (D)
:+1), 1 (g

(D)
:+1)], where 0(g

(D)
:+1) = g

(D)
:

+ `) (2: )) −
f (!(2: ))/2, and 1 (g (D):+1) = g

(D)
:

+ `() (2: )) + f (!(2: ))/2.
It is also possible to generate more “personalized" watch-

ing time prediction by treating) (D) (2: ) asD’s personal pref-
erence/rating for content 2: . We applied Matrix Factoriza-
tion to estimate) (D) (2: ), but the estimation errors are higher
than the simple sample median estimation. We will further
study personalized watching time prediction in future.

4 CACHING WITH PER-USER CONTENT
PREDICTION

Given the per-user next content request prediction from all
users, we now aggregate them into time-sensitive predictive
cache scores for hybrid proactive-reactive caching.

4.1 Time-sensitive Predictive Caching
Score

As soon as we predicted the next content 2
(D)
:+1 and its arrival

range [0(g (D)
:+1), 1 (g

(D)
:+1)], we assign predictive caching scores

to quantify its potential caching gain. This score should be
time-sensitive. If the predicted arrival range is still ahead,

i.e., C < 0(g (D)
:+1), it is not immediately urgent to cache the

content. If 0(g (D)
:+1) ≤ C < <83 , where <83 =

0 (g (D)
:+1)+1 (g

(D)
:+1)

2 .
i.e., the estimated lower bound for arrival has passed, but
the midpoint of the range is still ahead, it becomes urgent
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to cache the content, we update our uniform prior distri-
bution and assign a predictive caching score proportional

to the posterior density function ? (g (D)
:+1 = C |g (D)

:+1 ≥ C). If
the time has passed the midpoint of the estimate range, we
gradually reduce our confidence about the predicted arrival.
We don’t update the posterior density any more, and use
a fixed predictive score of 2, which is the posterior density
when C reaches the midpoint, until the predicted arrival up-

per bound1 (g (D)
:+1), beyondwhich the prediction is concluded

wrong, and the predictive caching score for the predicted
content is set back to zero. The user D’s contribution to the
predictive caching score of 2

(D)
:+1 is updated as:

S(D, 2 (D)
:+1, C) =




0 C < 0(g (D)
:+1)

1 (g (D)
:+1)−0 (g

(D)
:+1)

1 (g (D)
:+1)−C

0(g (D)
:+1) ≤ C <<83

2 <83 ≤ C ≤ 1 (g (D)
:+1)

0 C > 1 (g (D)
:+1)

(5)
An example of score update is illustrated in Fig. 6. Mean-
while, whenever D requests a new content, we will generate
a new prediction based on the newly requested content, the
predictive caching score for the previously predicted con-
tent from D will be reset, and caching score for the newly
predicted content will be calculated according to (5).

Figure 6: An example of updating predictive score as

posterior probability over time.

At any given time C , letA(C) be the set of the active users.
For eachD ∈ A(C), based on hermost recent content request
sequence, we can generate the top-n listLD (=, C) of contents
that D is mostly likely to request the next using the fusion
model in Sec. 3.1.3. Each content 2 in the top-n list has a
prediction weightF2 from (4). The total weighted predictive
caching score for any content in the combined top-n list of

Figure 7: An example of aggregating user-content

scores ( (D, 2, C) into content predictive score P1(2).
There are 3 users and two content(2:+1 and 2 ′:+1) in this
example. To simplify the figure, each user only has

one predicted content. User1 and user3 are predicted

to request 2:+1, and user2 is predicted to request 2 ′
:+1.

P1(2:+1) is the envelope of the orange distribution.

all the active users can be calculated as:

P1(2, C) =
∑

D :2∈LD (=,C)
F2( (D, 2, C), ∀2 ∈ ∪D∈A(C)LD (=, C),

(6)
where ( (D, 2, C) is calculated using (5). For TV-series data,
we only predict one candidate (the next episode), i.e., n=1,
andF2 = 1. An user-content scores aggregation example is
shown in Fig. 7. If a content shows up in multiple users’ top-
n lists, but the expected arrival range has not arrived yet,
according to (5), the content still get zero predictive score.
To distinguish such a content from a content not showing
up in any user’s top-n list, we give them the second class
caching priority, and use its nearest predicted arrival time
as the secondary predictive caching score:

P2(2, C) =
1

minD :2∈LD (=,C) 0(g (D):+1) − C
. (7)

The secondary caching score decreases with the shortest
time interval till the expected arrival of any active user, fol-
lowing the Farthest-In-Future (FIF) caching replacement pol-
icy. For comparison,P1(2, C) has higher priority overP2(2, C)
if P1(2, C) > 0.

4.2 Hybrid Proactive-Reactive Caching

4.2.1 Partitioning Cache into Proactive and Reactive Portions.

If the contents that are in the top-n next-content lists are not
currently in the cache, one can proactively download them
into the cache so that they can be directly served from the
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cache if they are indeed requested by a user. So the predic-
tive caching scores are the most suited for proactive caching
to achieve high hit ratio and low latency. Meanwhile, we
cannot solely depend on predictive scores to manage the
whole cache. First, our prediction models are designed for
active users and active items, and the predictive scores are
time-varying. As a result, at any time, only a portion of con-
tents that are recently active have predictive scores. Some-
times they cannot even fill up the cache, such as during early
morning. Secondly, our sequential prediction models work
on the per-user basis, and are not designed to capture the
content interest similarity cross users. For example, after
user A watched 2 , the sequential model is unlikely to pre-
dict � will immediately watch 2 again. But if 2 is indeed a
popular content, other users will likely to watch it in the
near future. We need to resort to the conventional reactive
caching algorithms to take advantage of the homogeneity
of content interests of a user group. To verify this, we con-

Table 1: Prediction Accuracy Comparison between

Proactive and Reactive Caching Scores

Recall Predictive score LRU2

Top 10 0.4750 0.5417

Top 10-50 0.3781 0.3448

Top 50-100 0.3350 0.2321

Top 100-200 0.3186 0.1746

Top 200-500 0.2548 0.1200

ducted a case study using two days of user content requests
in our 30C0B4C�1 . At the beginning of every 30 minutes, we
generate a list of 2,000 contents with the highest predictive
caching scores, and another list of 2,000 contents with the
highest LRU-2 scores (the inverse of the time elapsed since
the previous two requests for a content). Then we calculate
the "recall" as the fraction of the actual contents requested
within the upcoming 30 minutes that are covered by each
list. Table 1 reports the recall ratios for contents in different
popularity groups. It is clear that both lists cover the more
popular contents better. It is also interesting to notice that
LRU2 score is better than the predictive score when predict-
ing the most popular contents, while predictive score is bet-
ter than LRU2 for the rest of the popularity groups. The rel-
ative recall gap gets larger for the less popular groups. This
suggests that our predictive scores can be used to improve
caching performance for contents with medium popularity.
We now present PEC, a hybrid caching system, that takes

advantage of the complementary prediction power of pre-
dictive and reactive caching scores. PEC partitions the cache
into two portions, proactive portion and reactive portion.
The proactive portion is used to prefetch contents with high
predictive caching scores, while the reactive portion stores

contents without predictive scores and is updated reactively
using any reactive caching algorithm. For our experiments
in Section.5, we uses LRU2 for reactive caching.

Algorithm 1 Per-request Processing and Reactive Cache
Replacement

Input: user D requests content 2C at time C ;
Output: updated predictive caching scores, refreshed reactive
cache portion.

1: if 2C in cache then
2: ℎ8C + +
3: else
4: download 2C to reactive portion, evict content with lowest

reactive caching score
5: end if
6: reset user D’s contributions to predictive scores of contents in
D’s last top-n list !D (=, C ′);

7: add 〈2C , C〉 to D’s request history, generate new top-n list
!D (=, C);

8: for each contents in the new top-n list !D (=, C), update their
proactive caching scores;

4.2.2 Content Prefetching and Replacement. Algorithm1 de-
scribes how our hybrid caching algorithm processes each
new requested content 2C by user D at time C . If 2C is ei-
ther in the proactive or the reactive portion, it will be di-
rectly served from the cache and counted as a new cache
hit. Otherwise, 2C will be downloaded from the server and
stored in the reactive portion. If the reactive portion is full,
the content with the lowest reactive caching score, such as
the LRU2 score, will be evicted from the reactive portion.
Since D has just generated a new content request, the top-n
next-content list !D (=, C ′) generated when D requested the
previous content at C ′ expires. All predictive caching scores
S(D, 2, C) calculated for 2 ∈ !D (=, C ′) will be reset. We then
generate a new top-n list !D (=, C) using the fusion model in
Section 3.1.3 with 〈2C , C〉 as the most recent content request,
and update the predictive caching scores of all contents in
the new list according to (5), (6) and (7).

Algorithm 2 Periodic Predictive Score Update and Proac-
tive Cache Replacement

Input: predictive scores P1 and P2 for all active contents;
Output: updated predictive caching scores, refreshed proac-
tive cache portion.

1: while true do
2: if periodic update timer expires then
3: update P1 and P2 for all active contents;
4: restart update timer;
5: end if
6: if link to server is idle, and prefetch quota3available then
7: prefetch the content with the highest (P1, P2) score not

in cache, replace the content with the lowest (P1, P2) score in
proactive portion.

8: end if
9: end while
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Algorithm 2 describes how the predictive caching scores
are updated periodically over time, and how the proactive
portion is refreshed through prefetching. We periodically
update the predictive caching scores of all content in the top-
n lists of all active users according to (5), (6) and (7). When-
ever there is a chance for prefetching, we will prefetch the
content with the highest (P1, P2) scores but not in the cache
(proactive nor reaction portion) into the proactive portion.
If needed, the content with the lowest (P1, P2) score will be
evicted from the proactive portion.

4.2.3 Dynamic Partition Adjustment. In PEC, the predictive
scores are time-varying, the number of contents with pre-
dictive scores can be dynamic. To avoid assigning too much
storage for proactive caching when there are only a small
number of contents can be prefetched, we impose the dy-
namic partitioning mechanism. We first set up lower and
upper bounds for proactive portion as U ∗ �02ℎ4_(8I4 , V ∗
�02ℎ4_(8I4 , with hyper-parameters 0 < U < V < 1. At time
C , =(C) is the number of contents with predictive scores. We
set W ∗ =(C) as the target size for proactive portion (W can
be larger or smaller than one, depending on the prediction
quality). After each request, =(C) is updated. If the current
proactive cache size is less than W ∗ =(C), we increase it by
one (up to V ∗ �02ℎ4_(8I4); if the current proactive cache
size is larger than W ∗ =(C), we decrease it by one (down to
U ∗�02ℎ4_(8I4).

4.2.4 Controlling Prefetching Bandwidth Overhead. Although
proactive caching gives usmore freedom to update the cache
and boosts the caching performance by predicting the con-
tent popularity in the near future, it consumes extra band-
width to prefetch content. We propose a three-level band-
width overhead controlling strategy.

(1) Firstly, prefetching is only conducted in the background.
Whenever amissed content is being downloaded from
the server, the prefetching is banned. In other words,
prefetching only utilizes idle bandwidth to improve
caching performancewithout interfering with the reg-
ular content downloads.

(2) Secondly, after each user content request, if the link
becomes idle, we allow at most one content prefetch-
ing to control prefetching traffic.

(3) Thirdly, to further limit the bandwidth overhead, we
can introduce prefetching gap  to limit the prefetch-
ing frequency. Prefetching gap is the minimum num-
ber of user content requests between two prefetch-
ings. For example, if = 3, it means a new prefetching
is allowed only after three new user content requests.

3Prefetch quota means the three-level bandwidth overhead controlling

strategy is satisfied.

The bandwidth overhead and prefetching efficiency
tradeoff will be studied in Section.5.6.

5 EVALUATION

In this section, we evaluate the performance of PEC on real
world datasets from two content providers. Datasets details
are introduced in Section 5.1. Prediction accuracy of per-
user next-content and next-request-time are evaluated in
Section 5.2 and 5.3 accordingly. Section 5.4 presents caching
simulator setup, evaluation metrics, and PEC settings and
its computation complexity. We compare PEC with several
state-of-the-art reactive and proactive caching benchmarks
in Section 5.5. The trade-off between bandwidth overhead
and proactive caching gain is investigated in Section 5.6.

5.1 Dataset

Thefirst dataset, datasetA is content request tracewith times-
tamps. It was collected from IPTVusers in different provinces
of China, and each user is identified by her IP address. On av-
erage, 61.90% of the video requests are for TV series, 24.91%
for movies, 8.94% for TV shows, and 4.25% for other types of
videos. DatasetB was collected from users of a major OTT
video service in a major city of China. The data format is
similar to datasetA, except each user has a unique ID, in-
stead of IP address. 51.99% of requests are for TV series and
48.01% are for the other types of videos. datasetB only con-
tains active users who generates at least 10 requests each
day.
To emulate Edge Caching scenarios, we use a subset of

Table 2: DATASET Details

Dataset �1 �2 �1 �2
# of users 58,016 5,363 507 263

# of contents 65k 20k 26k 16k

# of requests 536k 59k 100k 50k

time span 13 days 7 days

training set First 11 days First 5 days

testing set Last 2 days

datasetA based on user’s IP prefix. We call it 30C0B4C�1 . We
further sample a smaller subset, 30C0B4C�2 , of users shar-
ing the same /16 IP prefix. Similarly, we randomly sample
one subset from datasetB as 30C0B4C�1 , and another smaller
30C0B4C�2 from 30C0B4C�1 . The details are shown in Table 2.

5.2 Next-Content Prediction

5.2.1 Model Training and Configuration. We tried different
configurations and the best one is shown in Table 3. The in-
put of our TSAS next-content prediction model is a user’s
past 50 requests with timestamps. If the number of the past
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Table 3: Hyper-parameter Configuration

Parameter Value

input sequence length for TSAS 50
max time interval capping k 5 hours

learning rate 0.001
latent vector dimension d 50
# of self-attention blocks 2

batch size 128
drop rate 0.2

n-gram selection = = 3
download time for each content 0.5B

requests is less than 50, empty contents will be padded with
the timestamp of the start of the dataset. The maximal time
interval between two requests is capped at 5 hours. Other
parameters are set as default values in Tensorflow 1.12.0.
Following practices in [21] [17], to reduce the content/user
space and improve prediction accuracy, we only predict the
next requests for active users and active contents, since the
requests generated by active users are the most important
for caching. Users having at least 3 requests and contents
requested at least 3 times are considered as active. For the
n-gram model, we set = = 3 to achieve the best complexity-
performance tradeoff in our experiments. Similarly, 3-gram
model is built on active users and contents as well.

5.2.2 Prediction Accuracy. The accuracy of the top-n next-
content list is measured by the top-n hit ratio, which is de-
fined as the fraction of predictions that the next content
watched by D is indeed in the predicted top-n list. For TV
series, our simple heuristics only predict the next episode as
the next content, i.e, = = 1. The top-1 hit ratio is 45.31% for
30C0B4C�1 and 32.48% for30C0B4C�1 respectively. The predic-
tion accuracy for non-TV videos of 30C0B4C�1 are presented
in Table 4. The upper bound for fusing top-n lists of TSAS
and 3-gram is calculated as the hit ratio of the combined top-
n lists of the two models. It is clear that users are less pre-
dictable when watching non-TV videos, self-attention TSAS
model outperforms the 3-grammodel at larger=. The simple
CombSum fusion can significantly improve the prediction
accuracy of individual models to approach the fusion up-
per bound. This suggests that the two prediction models are
complementary, and can be easily combined. Similarly, for
30C0B4C�1 , TSAS and 3-gram also have complementary per-
formance, and fusion hit ratios are 0.1039, 0.1705, and 0.2548
for top-1, top-3 and top-10 prediction lists respectively.

Table 4: Hit Ratio for non-TV videos in 30C0B4C�1

Hit@n Fusion TSAS 3-gram Upper bound

n=10 0.1483 0.1263 0.1117 0.1603

n=3 0.1132 0.0911 0.0944 0.1296

n=1 0.0779 0.0691 0.0725 0.1012

5.3 Next-Request-Time Prediction

As discussed in Section 3.2, a user consumes video following
ON-OFF pattern. In each ON session, the user will request
the next video as soon as she finishes the last video, and
we can use the time interval between request for 2 and the
next request in the training set to approximate the watch-
ing time for 2 . This approximation is problematic if 2 is the
last video of an ON session. To filter out such intervals, we
first estimate the length of a video based on the largest mode
of the distribution of the watch time approximations from
all users (assuming a significant portion of users will fin-
ish watching the video). We then discard all approximations
larger than the estimated video length. Finally, we take the
sample mean and sample variance of the filtered watch time
approximations to estimate the next request arrival range as
described in Sec. 3.2. For a content that has never showed
up in the training set, we simply use 20 mins as an esti-
mation. The difference between the estimated mean arrival
time and the actual arrival time for30C0B4C�1 is shown in Ta-
ble 5. The prediction errors for 30C0B4C�1 are 11.92 minutes
and 15.27 minutes for TV-Series and non-TV-Series, respec-
tively. Knowing that the exact arrival time cannot be very
accurately predicted, the predictive score in Equation 5 is

calculated using a time interval [0(g (D)
:+1), 1 (g

(D)
:+1)] for loss

tolerance.

Table 5: Next Request Arrival Prediction Error (mins)

on Testing Set ( 30C0B4C�1 )

Type TV-Series Movie Show

Error (mins) 15.5197 25.3991 12.1609

5.4 Caching and PEC Configurations

5.4.1 Caching Configuration and Performance Metrics. We
simulate a single edge cache with variable storage size. The
edge cache is connected to a content server hosting all the
contents. If the content requested by a user is in the cache, it
can access it with zero latency, otherwise, the requested con-
tent will be downloaded from the server, incurring longer la-
tency. Cache hit ratio is a classic performancemetric. Addi-
tionally, users are directly impacted by the content retrieval
latency. Since prefetching generated by proactive caching
will consume some bandwidth on the link to server, it may
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introduce additional delays to retrieve missed contents from
server. Besides, delayed hit may happen if multiple requests
are requested at same time in a queue [3]. So latency is
another important metric, which indicates how long one
request needs to wait till it is pushed to the user. In the
experiments, we calculate latency reduction resulted from
caching by comparing the latency of cache supported con-
tent retrieval with cacheless content retrieval. We simulate
the content transmission on the link to the server to eval-
uate the total latency of serving all requests. In our simula-
tor, contentwill be downloaded sequentially from the server,
the active content download occupies the whole link band-
width. Following the common research practices [50, 54, 53,
45, 19], we assume each content has the same size, and the
transmission time for all contents is set to 0.5s in the follow-
ing experiments if no explicit declaration. Finally, we mon-
itor the bandwidth utilization on the link to quantify the
traffic overhead of proactive caching.

5.4.2 PECHyper-parameter Se�ings andComputation Com-

plexity. PEC employs two cache portions, with the reactive
portion controlled by LRU-2, and the proactive portion up-
dated by predictive caching scores. To maintain up-to-date
predictive scores, the periodic update timer in Algorithm 2
is set to 5 minutes. We set the prefetching gap K as 1 in
the following experiments if no explicit declaration. As dis-
cussed in Section 4.2.3, dynamic partitioning is employed
in PEC. We set U = 0.5, V = 0.9, W = 1.2 for 30C0B4C� and
U = 0.3, V = 0.6, W = 0.4 for 30C0B4C�. Fig. 8 compares the
cache hit ratios of dynamic partitioning with static partition-
ing in the first day of 30C0B4C�1 testing set. Cache hit ratio
is calculated for every 5 requests. Our dynamic partition-
ing can adapt well to the user activity variations over the
day and dominates static partitioning at different fixed ra-
tios most of the time.
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Figure 8: Hybrid Caching Performance Comparison

betweenDynamic Partitioning and Static Partitioning
at Different Fixed Ratios.

On our local computer with GTX 1660 Ti and Intel Core
i5-9400, it takes 12ms to update all predictive scores every
5 minutes as described in Equation (5), and 23ms to make
time-sensitive prediction (TSAS, 3-gram and fusion) after
each user content request on average. This makes PEC im-
plementable for real-time operation on reasonably config-
ured edge cache nodes.

5.5 Caching Experiments & Comparison
with Other Benchmarks

After training the prediction models using the training data,
we now use the content requests in the testing set to conduct
predictive caching experiments.

5.5.1 Comparison with Reactive Caching Policies. We first
compare PEC with following reactive caching policies:

(1) LRU-2: evicts content based on the time elapsed since
the previous two requests. In PEC, LRU2 is also used
to manage the reactive portion;

(2) LRU: evicts content based on the time elapsed since the
last request;

(3) LFU: evicts content based on the request frequency in
the whole history;

(4) LRB: Learning Relaxed Belady, an online learning ap-
proach using the concept of Belady boundary [32]

(5) NOC: an online learning based caching algorithm with
worst-case performance guarantee [51];

(6) CEC: dynamically selects reactive caching policies us-
ing reinforcement learning [54];

The results for cache size of 2, 000 over two-day testing data
on30C0B4C�1 is shown in Fig. 9a. Cache hit ratio is calculated
every 5k requests 4. PEC has much better performance dur-
ing the off-peak time, for example, from 3:00am - 15:00pm.
It is because during off-peak time, there is more idle band-
width, and PEC gets more chances to prefetch contents and
update its proactive portion. Fig. 9b plots the user request
rate and the prefetching rate by PEC, respectively. During
the peak time, prefetching rate is only less than half of the
request rate; during off-peak time, PEC can almost launch
one prefetching after each user request, so that the proac-
tive portion can be updated in-time to achieve high hit ra-
tio. Table 6 reports the average latency reduction of differ-
ent caching polices that were adopted into our cache system
simulator over the cacheless system. PEC has the largest la-
tency reductions over all the cache sizes, thanks to its predic-
tive prefetching. Besides, latency reduction are up to 53.23%,

4We couldn’t customize the instantaneous hit ratio calculation of the LRB

code, we only report the average hit ratio of LRB in Figure 10
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Figure 9: Comparison ofHitRatio over TwoDays betweenPECandReactiveCachingPolices aswell as Prefetching
with Simple Prediction Model.

63.48%, 57.85% on the 30C0B4C�2 , 30C0B4C�1 , 30C0B4C�2 re-
spectively, where the latency reduction of CEC are 46.81%,
58.94%, and 52.48%.

Table 6: Latency reductionpercentage over a cacheless

system on 30C0B4C�1 (first day on testing set)

Cache size 500 1000 2000 5000

PEC 33.59% 44.36% 57.73% 73.79%

LRU2 28.71% 37.09% 46.51% 60.74%

LRU 27.50% 36.48% 45.90% 59.28%

LFU 30.78% 38.30% 47.05% 58.86%

CEC 29.78% 43.43% 56.02% 67.54%

We also compare PECwith these benchmarkson the other
three datasets and the results are shown in Fig.10. In most
cases, PEC outperforms the benchmarks, except on30C0B4C�1
and 30C0B4C�2 when the cache size is small. It is because
30C0B4C�1 and 30C0B4C�2 are for active users and top pop-
ular contents dominate their content requests. The tradi-
tional caching polices such as LRU/LFU can perform well
on these top popular contents. When the cache size is small,
LRU/LFU can outperform PEC sometimes. When the cache
size gets larger, it becomes equally important to cachemedium
popular contents. As demonstrated in Table 1, our predictive
score is better than the traditional caching scores to hit con-
tents with medium popularity. Consequently, PEC achieves
much higher hit ratio on larger cache sizes. LRB focuses on
large-scale datasets and considers contents with different
sizes. It was not designed for edge caching. As a result, it
was not sufficiently warmed up with our edge cache traces
to achieve good performance.

5.5.2 Comparison with Simple Periodically Proactive Caching.

The traditional proactive caching policy controls the whole
storage, periodically (the period is set to 3 hours) estimate
the content popularity using the past request frequencies,

and load the cache with the most popular contents in batch.
There is no cache replacement between two batch updates.
For a more fair comparison with PEC, we also implement
a hybrid proactive-reactive caching policy, called modified
proactive caching, which uses the same partition ratio as
PEC, the reactive portion is also controlled by LRU-2, but
the proactive portion is periodically updated using past con-
tent request frequencies. The caching results are reported in
Table 7 for different cache sizes on the first day of testing
set of 30C0B4C�1 . PEC significantly outperforms the two pe-
riodic proactive cache updating policies. The performance
improvement is mostly due to: 1) predictive caching scores
can better reflect the future content popularity than the sta-
tistics of the past requests, 2) PEC updates proactive scores
in realtime and the proactive portion is constantly updated
through background prefetching so that it can better adapt
to dynamic content popularity evolution.

5.5.3 Comparison with Naive-PEC Driven by Simple Predic-

tion Model. In PEC, we leverage time-aware TSAS model
with fusion process to capture user’s short-term and long-
term preferences. To justify the complexity of TSAS and fu-
sion model, we compare PEC with proactive caching guided
only by the 3-gram prediction model, called Naive-PEC. To
have a fair comparison, PEC andNaive-PEC use the same dy-
namic partition ratio, and for TV-series contents, PEC and
Naive-PEC use the same heuristic method. The only differ-
ence between them is the prediction model on the other con-
tents. The hit ratio result is shown in Fig.9c with the best
reactive benchmark CEC as the reference line. We can no-
tice that thanks to the prefetching method, Naive-PEC can
still have a better overall performance than CEC. Our time-
aware TSAS model with fusion process achieves more than
10% improvement over the Naive-PEC and it’s worthy to use
TSAS and fusion model.
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Figure 10: Hit Ratio Comparison with Benchmarks on Four Different Datasets under Different Cache Sizes

Table 7: Hit Ratio and Latency Reduction Comparison with Periodic Proactive Caching

The First Day
in Testing Set

Periodic Proactive Modified Proactive PEC

Cache Size latency HR latency HR latency HR

500 23.81% 0.1637 27.48% 0.2020 33.59% 0.2685

1000 29.38% 0.2061 34.03% 0.2520 33.59% 0.3624

2000 36.65% 0.2692 41.81% 0.3212 57.72% 0.4869

5000 47.41% 0.3652 52.80% 0.4211 73.79% 0.6593
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Figure 11: PEC Bandwidth Overhead and Caching Gain Trade-off

5.6 Bandwidth Overhead Analysis

We report the link utilization for proactive updates and reac-
tive updates in Fig.11a.We also report the link utilization for
the pure reactive policy LRU-2. Due to prefetching, the over-
all link utilization of PEC is higher than LRU-2, but is con-
trolled within an acceptable range by the three-level band-
width overhead control mechanism. Fig. 11b reports the link
utilization when the link capacity is halved and then each
content download takes 1 second to complete. As a result,
the server spends a larger fraction of its link bandwidth to
serve the missed contents, and the prefetching is suppressed
to a lower fraction. This suggests that PEC can elastically ad-
justs its prefetching traffic to minimize its negative impact

on the regular traffic. In this case, the hit ratio of PEC is
0.4632, still higher than the LRU2 hit ratio of 0.3718.
Fig.11c shows the how the tradeoff between hit ratio and

link utilization can be controlled by the prefetching gap  .
Larger  gives less chance for prefetching, leading to lower
link utilization, at the same time, degrades the performance
of PEC. But PEC always outperforms LRU2with a resealable
prefetching gap. Interestingly, there is a slightly hit rate in-
creases when the prefetching gap increases from 1 to 2. The
reason can be that the predictive caching score is not per-
fect, if PEC prefetches into cache too many contents that
never become popular, it will hurt the caching performance.
But still, the difference is small, does not change the overall
trend of the bandwidth-performance tradeoff.



Predictive Edge Caching through Deep Mining of Sequential Pa�erns in User Content Retrievals

6 CONCLUSION

In this paper, we develope a novel predictive edge caching
system, called PEC, which leverages on learning-based user
sequential behavior predictions and real-time background
proactive content prefetches to estimate and keep track of
the highly dynamic content popularity in the near future. In
our experiments driven by real-world user traces, compared
with the traditional periodic proactive caching, PEC signif-
icantly improves the hit ratio by up to 80%, and reduces
the latency by up to 55%. Meanwhile, PEC also outperforms
the state-of-art machine learning based reactive caching pol-
icy by 19.10% in terms of hit ratio, and reduces the con-
tent retrieval latency by 9.2%. PEC prefetching works in the
background and utilizes the spare bandwidth to boost the
caching performance. Its bandwidth overhead and caching
gain tradeoff can be flexibly controlled. Our work demon-
strates that per-user sequential prediction models can lead
to more accurate future content popularity estimation than
simple history-based statistics, and opportunistic content
prefetching can be used to tradeoff spare network bandwidth
for reduced latency, which is critical for the emerging edge
applications.
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