
This is the author’s version of an article that has been published in Elsevier Computer Networks. Changes were made to
this version by the publisher prior to publication. The final version of record is available at https://doi.org/10.1016/j.comnet.2023.110162.

The source code associated with this project is available at https://github.com/risingfbk/p4ddle.

Introducing Packet-Level Analysis in
Programmable Data Planes

to Advance Network Intrusion Detection
Roberto Doriguzzi-Corinα, Luis Augusto Dias Knobα, Luca Mendozziβ, Domenico Siracusaα, Marco Saviβ

αCybersecurity Centre, Fondazione Bruno Kessler, Trento - Italy
βUniversity of Milano-Bicocca, Department of Informatics, Systems and Communication (DISCo), Milano - Italy

✦

Abstract—Programmable data planes offer precise control over the low-
level processing steps applied to network packets, serving as a valuable
tool for analysing malicious flows in the field of intrusion detection. Albeit
with limitations on physical resources and capabilities, they allow for
the efficient extraction of detailed traffic information, which can then be
utilised by Machine Learning (ML) algorithms responsible for identifying
security threats. In addressing resource constraints, existing solutions
in the literature rely on compressing network data through the collection
of statistical traffic features in the data plane. While this compression
saves memory resources in switches and minimises the burden on the
control channel between the data and the control plane, it also results in
a loss of information available to the Network Intrusion Detection System
(NIDS), limiting access to packet payload, categorical features, and
the semantic understanding of network communications, such as the
behaviour of packets within traffic flows. This paper proposes P4DDLe,
a framework that exploits the flexibility of P4-based programmable data
planes for packet-level feature extraction and pre-processing. P4DDLe
leverages the programmable data plane to extract raw packet features
from the network traffic, categorical features included, and to organise
them in a way that the semantics of traffic flows are preserved. To
minimise memory and control channel overheads, P4DDLe selectively
processes and filters packet-level data, so that only the features required
by the NIDS are collected. The experimental evaluation with recent
Distributed Denial of Service (DDoS) attack data demonstrates that
the proposed approach is very efficient in collecting compact and high-
quality representations of network flows, ensuring precise detection of
DDoS attacks.

Index Terms—Programmable Data Planes, Network Intrusion Detec-
tion, Packet-Level features

1 INTRODUCTION

Network intrusions and anomalies are one of the most
significant plagues in modern communication networks.
As the number and complexity of incidents are constantly
increasing [1], it has become imperative to implement metic-
ulous monitoring and robust counteraction measures to
effectively detect and mitigate these threats. In the past
decade, network monitoring has lived a second youth,
thanks in large part to the prominence of Software Defined
Networking (SDN) [2], [3] and to the rise of ML technologies
in networking [4]. Within the network security domain, the
fusion between the centralised control plane of SDN and
data-driven threat detection powered by ML algorithms

has proved remarkable efficacy in promptly identifying and
mitigating network intrusions and anomalies [5].

Despite the undeniable benefits brought by the syn-
ergy between SDN and ML, the implementation of robust
network security solutions remains a challenge, primarily
due to the fine-grained traffic features required by ML
algorithms. In this context, a direct and effective approach
for leveraging the centralised control plane of SDN, while
ensuring that ML algorithms receive the necessary traffic
information, is through a technique known as packet mirror-
ing [6]. By employing packet mirroring, a duplicate copy of
the network traffic is transmitted from the data plane to the
control plane, where it undergoes traffic feature extraction
and pre-processing before ML algorithms can be executed
upon it (Figure 1a). Unfortunately, the channel between
data and control planes often comes with severe bandwidth
and latency bottlenecks [7], [8], [9], [10]. These inherent
limitations imply that it may be overwhelmed by the sheer
volume of mirrored data [11], thereby jeopardising ordi-
nary SDN network operations and compromising prompt
response to ongoing network attacks.

The recent emergence of programmable data planes [12]
has introduced a technology that offers a promising solution
to tackle the above challenges. Programmable data planes
enable the customization of the data plane pipeline (known
as fastpath [13]) using domain-specific languages like P4
[14]. This level of programmability and flexibility empowers
network practitioners to optimise feature extraction, data
pre-processing, and ML inference operations, which can
be offloaded to the data plane (see Figure 1b): with pro-
grammable data planes, it thus becomes possible to finely
manipulate the type and volume of traffic data forwarded
to the control plane (known as slowpath [13]). However,
it is important to note that the data plane has inherent
limitations, such as a limited set of available arithmetic
instructions and memory capacity in the match-action tables
[15]. As a result, only simple ML models can be effectively
offloaded, which may lead to noticeable degradation in
inference performance [16].

We advocate leveraging the full potential of the cen-
tralised SDN control plane by executing ML inference di-
rectly on the SDN controller. This approach allows network
monitoring operations to exploit the advantages of a com-

Copyright (c) 2024 Elsevier. Personal use is permitted. For any other purposes, permission must be obtained from Elsevier by contacting the Permissions Helpdesk
Support Center https://service.elsevier.com/app/contact/supporthub/permissions-helpdesk/.

ar
X

iv
:2

30
7.

05
93

6v
4

 [
cs

.C
R

]
 4

 J
an

 2
02

4

2

Programmable Data Plane

Control Plane & Application Layer
Data Pre-

Processing
ML

Inference
rules

packets

Control
Channel

Network
Traffic

Feature
Extraction

Match-Action
Pipeline

Packet
Mirroring

(a) Packet mirroring.

Programmable Data Plane

Control Plane & Application Layer

Feature
Extraction

Data Pre-
Processing

ML
Inference

Match-Action
Pipeline

rulesfeatures

Network
Traffic

Control
Channel

(b) In-network traffic monitoring.

Programmable Data Plane

Control Plane & Application Layer
Data Pre-

Processing
ML

Inference
rules

features Data Pre-
ProcessingNetwork

Traffic Feature
Extraction

Match-Action
Pipeline

Control
Channel

(c) Hybrid approach.

Fig. 1: Approaches to traffic monitoring with programmable data planes.

prehensive, global view of the network, while also enabling
the implementation and execution of sophisticated ML al-
gorithms. By performing ML inference on the controller, the
network can benefit from enhanced analysis and decision-
making capabilities, leveraging the rich information avail-
able at the control plane. Simultaneously, we recognise the
value of programmable data planes in performing traffic
feature extraction and pre-processing. By leveraging the
programmability of data planes, it becomes possible to pre-
cisely control the amount of data that traverses the control
channel. This approach allows for selective processing and
filtering of data at a data plane level, reducing the burden on
the control channel and enabling efficient resource allocation
(see Figure 1c).

This concept has been extensively explored in the sci-
entific literature, with several studies proposing solutions
based on the aggregation of traffic statistics computed
within the data plane. The primary objective of these so-
lutions is to optimise the load on the control channel and
effectively manage memory utilization in the data plane
[17], [18], [19], [20], [21]. One notable drawback of relying
solely on statistical traffic features, such as flow duration,
averages, maximums, minimums, and standard deviations
of attributes like packet size, rate, and inter-arrival time, is
the inability to report categorical features (e.g., IP and TCP
flags, Differentiated Services Code Point (DSCP), etc.), the
timestamp of packets or portion of packets’ payload directly
to the control plane. These packet-level traffic features are
crucial to detect some types of network intrusions, such
as brute force attacks (e.g., by monitoring the TCP flags,
including SYN, ACK, FIN and RST flags [22]), anomalous
QoS settings (monitoring the DSCP code points) [23], TCP,
UDP and ICMP fragmentation attacks (monitoring the IP
flags) [24], etc. In addition, the timestamp of packets and
portions of the payload are employed in combination with
categorical features by certain ML-based NIDSs in the cur-
rent state of the art (e.g., [25], [26], [27], [28], [29], among
many others) to learn the semantic of malicious traffic flows
and to segregate them from legitimate network activities.

In this paper, we propose P4DDLe (P4-empowered Ddos
detection with Deep Learning), a framework for efficient
packet-level feature extraction and pre-processing in P4-
based programmable data planes. P4DDLe inherently sup-
ports the categorical features, and it has been designed to
preserve the semantic integrity of the flows. With these
properties, P4DDLe ensures that the ML-based NIDS exe-
cuted in the control plane can capture the relevant protocols,

data formats, application behaviours and traffic patterns,
allowing for a comprehensive understanding of the network
traffic semantics.

P4DDLe exploits stateful memory objects (P4 registers)
and a counting Bloom filter to efficiently select and store the
packet-level features that are relevant for the ML model.
This approach enables the data plane to discard redundant
data, which would otherwise be disregarded by the control
plane, with great benefits in terms of control channel usage
and control plane processing load. The selected features are
stored within two ring buffers, which have been specifically
designed to avoid race conditions between the control plane
(reading the stored features) and the data plane (writing
them). The latter aspect has been often neglected by previ-
ous works.

To the best of our knowledge, this is the first work
addressing the challenges of packet-level feature extraction
in the data plane for network security applications. In con-
trast to existing works, P4DDLe combines the flexibility of
packet-level features with the network-wide view provided
to the NIDS by the centralised SDN control plane (not avail-
able when the NIDS runs completely in the data plane [30],
[31]). We believe that the combination of these two features
sets P4DDLe apart from current state-of-the-art approaches
to network attack detection with programmable data planes.

We have extensively evaluated P4DDLe using a recent
dataset of DDoS attacks and a well-known NIDS based on
a Convolutional Neural Network (CNN) that takes packet-
level features as input [25]. We have compared our approach
against a naı̈ve strategy for packet-level feature extraction,
which stores the data in the buffers sequentially without any
optimisation logic. In a comprehensive range of testing sce-
narios, we empirically show that P4DDLe is able to collect
more feature-rich traffic flows. As a result, our approach
achieves a significantly lower system False Negative Rate
(FNR), measured as the sum of overlooked and misclassified
malicious flows, enabling faster detection and mitigation of
network attacks.

The main contributions of this work can be summarised
as follows:

1) A framework for P4-based programmable data planes
called P4DDLe, designed to cope with the requirements
of modern NIDSs, which often rely on raw packet-level
features for accurate cyber threat detection.

2) A mechanism based on counting Bloom filters to ef-
ficiently group packet-level features into traffic flows

3

while minimizing the chances of collisions between the
flow identifiers.

3) A comprehensive assessment of the proposed ap-
proach, including a sensitivity analysis of the Bloom fil-
ter size (directly linked to the probability of collisions),
and the evaluation of a state-of-the-art NIDS in detect-
ing realistic DDoS attacks using P4DDLe’s packet-level
representation of the network traffic.

The remainder of the paper is structured as follows.
Section 2 reviews and discusses the related work. Section 3
provides an overview of P4 data plane programming, count-
ing Bloom filters and the CNN used in our experiments.
Section 4 presents P4DDLe’s architecture and the methods
for feature extraction and storage. Section 5 details the
setup of the experimental evaluation presented in Section
6. Finally, the conclusions are given in Section 7.

2 RELATED WORK

One of the primary challenges in network traffic monitoring
is finding a balance between the accuracy of the monitored
traffic attributes and the level of resources (both network
and computing) required to achieve it. In this regard, pro-
grammable network devices can be exploited to handle
the monitoring operations in the data plane, effectively
reducing the burden on both control plane and control
channel. Nevertheless, despite the adaptability of modern
data plane implementations, including those relying on the
Programming Protocol-independent Packet Processors (P4)
programming language, they still have certain limitations
in the types of operations they can perform. To address
this issue, a common technique is to offload some of the
computation from the data plane to the control plane (e.g.,
performing ML inference), where more computing power
and advanced tools are accessible. Nevertheless, this ap-
proach could be constrained by the limited capacity of
the communication/control channel linking the data and
control planes.

This section provides an overview of recent research that
has tackled these challenges, with a particular emphasis on
the network security domain, where achieving a balance
between resource utilization and monitoring accuracy is
critical for quickly identifying and responding to cyber
threats.

2.1 ML-based In-network Traffic Classification

In network monitoring applications, an effective solution to
prevent the control channel from being overloaded with net-
work data is to offload the tasks of traffic feature extraction,
data pre-processing, and ML inference to the programmable
data plane (see Figure 1b). This approach, also known as
the in-network approach, offers several advantages in terms
of control channel utilization by minimising the interaction
between data and control planes. However, despite its bene-
fits, this approach also presents some significant drawbacks
that should be taken into account.

It is worth noting that the P4 programming language
does not support floating-point operations and divisions
[32]. Consequently, some highly effective ML algorithms,
including Artificial Neural Networks (ANNs), cannot be

directly implemented in the data plane, as those algorithms
rely on model weights that are usually represented as
floating-point numbers. Recent initiatives have been try-
ing to enable floating-point operations to P4, either with
the adoption of dedicated hardware Floating Point Units
(FPUs) [33] or by proposing hardware changes to the
data plane’s architecture of programmable devices [34]. Al-
though promising, these approaches present limited porta-
bility to existing P4 devices (switches and/or smartNICs),
and may require a non-negligible time horizon for their
adoption in more recent products.

For this reason, most of the existing proposals for
ML-based in-network traffic classification that exploit pro-
grammable data planes adopt simple ML models, such as
decision trees [16][35][36][37][38], binary decision trees [39],
random forests [40][41][37][30][38], Support Vector Machine
(SVM) [16][37], Naı̈ve Bayes [16][37], K-means [16][37],
XGBoost [37]. Concerning Neural Network (NN) models,
Binary Neural Network (BNN) can be successfully offloaded
[31][42] thanks to their simplicity, as model weights are
binary values.

In all these works, the ML models are implemented
by exploiting either match-action tables, populated by the
control plane with appropriate rules, or by making use
of P4 registers, i.e., by hard-coding the model into the P4
program. The former case is more flexible, as the model
can be updated by the control plane at runtime (e.g. after
re-training) by just injecting new rules, but it consumes
memory that is typically dedicated to traffic forwarding.
In a recent work, Razavi et al. [43] have implemented an
ANNs directly in the data plane. A notable limitation of
this approach is the encoding of floating-point weights as
8-bit integers. As no performance evaluation is presented,
the efficacy of the proposed solution remains uncertain.
In addition, some works [44][45] focus on the design and
implementation of frameworks for offloading to the data
plane the most appropriate ML model according to the task
to be executed.

In general, what we can conclude by analysing the
aforementioned papers is that the performance of ML-based
in-network traffic classification is often hindered by the
inherent limitations of the P4 language and/or of the un-
derlying hardware. This can make it challenging to offload
ML models with satisfactory classification performance.

In contrast to the solutions mentioned above, we have
opted to execute the traffic classifier in the control plane.
This approach allows us to choose the most appropriate
ML model for a given task, without being constrained by
the limitations of the P4 language or the hardware of the
devices. By leveraging the flexibility of the control plane,
we can use more advanced ML models to achieve better
accuracy and performance as needed. Furthermore, the cen-
tralised nature of the SDN control plane enables the NIDS
to leverage network-wide traffic data, facilitating more accu-
rate and comprehensive detection of network threats. This
advantage is not attainable with the distributed inference
employed by in-network approaches.

2.2 Interaction between Control Plane and Data Plane
Offloading a portion of traffic processing to the control plane
(Figure 1c) requires careful consideration of the limitations

4

imposed by the control channel in terms of bandwidth and
latency. This consideration becomes even more crucial when
a substantial amount of data must be exchanged between
the two planes, as is for instance required when executing
ML inference in the control plane for DDoS attack detection
[25].

NetWarden [13] is a defense solution designed to miti-
gate network covert channels, utilising programmable data
planes. In order to achieve this goal, NetWarden’s approach
involves restricting the data plane to performing per-packet
operations exclusively on header fields. On the other hand,
the control plane is only used for batch operations, reducing
the need for interaction between the control and data planes
and optimising the overall performance of the system. DySO
[10] is a monitoring framework that shares the same funda-
mental principles as NetWarden, seeking to eliminate the
bottleneck that can occur between data and control planes.
Our research similarly aims to minimise the interaction
between the two planes, accomplishing this by conducting
feature extraction and selection in the data plane. By only
forwarding essential data to the control plane for input
to the ML model, we can significantly reduce the overall
system latency and optimise performance.

A couple of recent works take different approaches to
solve the bottleneck issue with the control channel. Escala
[9] operates under the assumption that multiple control
channels may be in use and may become overloaded. To
address this issue, Escala offers the ability to elastically scale
these channels at runtime as necessary, and to seamlessly
migrate event streams (i.e., data transmitted from the data
to the control plane) between different channels. Chen et al.
[8] introduce MTP, a novel framework designed to optimise
the placement of measurement points in the data plane,
with the aim of minimising the overall cost associated with
monitoring servers and network devices. This framework is
based on an Integer Linear Programming (ILP) formulation,
which defines a constraint on the capacity of the links
between the data and control planes. In general, these works
are orthogonal to our proposal and could be adopted to
further alleviate the performance bottleneck of the control
channel.

Finally, Bermudez Serna et al. [46] focus on security
aspects. They propose a reactive configuration mechanism
that can be adopted to counteract attacks aimed at over-
loading the control channel which, given its constrained
capacity, could easily get saturated by malicious traffic.
Also, this strategy is orthogonal to our proposal and could
be adopted together with it for enhanced security.

2.3 Efficient Feature Extraction in the Data Plane

Efficient feature extraction in programmable data planes is
a challenging problem that has received limited attention in
the scientific literature. The goal is to generate features that
are compatible with the input layer of a ML classifier, which
is executed in the control plane for traffic monitoring or
classification. Despite the importance of this problem, there
are only a few studies that have addressed it and most of
them, like our work, focus on DDoS detection as a use case.

In this respect, FlowLens [19] is a flow classifier designed
for programmable switches that implements a mechanism

for optimising the amount of data to be stored in mem-
ory and transferred through the control channel. While
this feature enables efficient processing of network flows,
race conditions on the shared memory are managed by
the control plane, which deletes the flow tables to avoid
concurrent read/write operations on the registers that store
the traffic features. According to the paper, the flow tables
are left empty until the reading process is completed. As a
result, any incoming packets during this period cannot be
processed or collected.

Musumeci et al. [17] propose an approach to SYN
Flood DDoS attack detection that leverages P4-based pro-
grammable data planes for feature extraction and pre-
processing. The P4 program extracts statistical traffic fea-
tures computed over a pre-defined time window, such as
average packet length, percentage of TCP and UDP packets
and percentage of TCP packets with active SYN flag. A
similar approach is adopted by Zang et al. [20], who propose
a DDoS detection system based on ensemble learning and
data-plane feature extraction and pre-processing. Due to
the reliance on global statistical features rather than per-
flow features, both approaches are limited to producing
binary outputs indicating the presence of an ongoing at-
tack. However, their ML classifiers cannot identify specific
malicious flows. HybridDAD [21] is another solution based
on statistical features. In this case, the output of the ML
algorithm is a label that indicates whether there has been an
attack during the previous time window, plus the class of
the attack (among four types of DDoS flood attacks).

ORACLE [18] implements a flow-based feature extrac-
tion and pre-processing in the data plane for the detection of
DDoS attacks, which is offloaded to ML algorithms executed
in the control plane. To accomplish this, ORACLE employs
a P4 program that collects per-flow statistical features, in-
cluding flow duration, standard deviation of inter-arrival
time, average packet size, and standard deviation of packet
length. Apart from the inherent complexity of calculating
statistical features in the data plane due to the limitations of
the P4 language, ORACLE utilises hashing to index flows.
With this approach, packets from different flows can be
grouped together in the case of collisions. As a result, the
computed statistics may be incorrect, making the final flow
statistics unreliable and unusable.

Our solution addresses the limitations of prior research
by implementing a double-block storage mechanism in the
data plane, which effectively prevents race conditions. We
achieve this by using two separate blocks (implemented
using a set of P4 registers) and switching between them
using a dedicated P4 register. The data plane writes to
one block while the control plane reads from the other,
ensuring consistency and minimising conflicts. Compared
to previous methods based on statistical flow-level features,
our approach leverages a packet-level representation of net-
work traffic, which preserves the semantics of flows (i.e., the
behaviour of packets within each flow) and the categorical
features of packets (e.g., TCP flags, ICMP type, etc.). This
information is crucial for various ML-based NIDSs [25],
[26], [27], [28], [29]. On the other hand, packet-level features
may entail a greater amount of data transmission via the
control channel, compared to flow-level statistical features.

5

We alleviate this by proposing a flow-based storage mech-
anism, that relies on a statistical technique called counting
Bloom filter [47]. By doing so, we can keep in memory only
the essential data required for control plane operations,
reducing the need to transmit extra traffic information that
would ultimately be discarded.

3 BACKGROUND

3.1 Data Plane Programming with P4

P4 is a language for expressing how the network traffic
is processed by the data plane of programmable network
elements such as hardware and software switches. P4 is
target-independent, thus it supports a variety of targets such
as ASICs, FPGAs, NICs and software switches.

The basic components of a P4-programmable forwarding
pipeline are illustrated in Figure 2. This diagram outlines
the Version 1.0 Switch Architecture Model [48], abbreviated
as V1model, which is widely adopted by developers for
P4 program implementation. We utilised this model as a
reference for P4DDLe. The pipeline encompasses a Parser,
a state machine that extracts packet headers and metadata
from the incoming bitstream, a Checksum verification control
block, an Ingress Match-Action processing control block, an
Egress Match-Action processing control block, a Checksum
update control block and a Deparser, which assembles the
headers with the payload received from the Parser.

Checksum Update/
Egress Match-ActionParser Checksum Verification/

Ingress Match-Action

MAU

M
EM AL
U

Tr
affi

c
M

an
ag

er

MAU MAU MAU
Deparser

Payload

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM

AL
U

AL
U

AL
U

AL
U

AL
U

AL
U

AL
U

AL
U

AL
U

AL
U

AL
U

… …

Fig. 2: P4-programmable pipeline components (V1model).

As shown in the figure, the Match-Action block may
consist of one or multiple Match-Action Units (MAUs).
Each MAU comprises TCAM and SRAM memory blocks
(MEM in the figure) for various purposes such as match-
action tables, registers, meters, etc. The Arithmetic Logic
Units (ALUs) blocks instead execute arithmetic operations
and modifications on the packets’ headers and metadata
based on the content of the match-action tables, which host
the traffic forwarding rules. ALUs may use stateful objects
stored in the SRAM memory (e.g., registers) for additional
operations.

Relevant to this work are the stateful objects of type
register. Registers belong to a wider category of stateful
elements called extern objects, which also include counters
and meters. Unlike match-action tables, which are stored in
the TCAM memory and can be modified only by the control
plane, extern objects in the SRAM memory can be read
and written from both data and control planes. Therefore,
the access to registers, and to extern objects in general,

should be managed with atomic operations to prevent race
conditions.

In this work, we use registers to store per-packet and per-
flow data that is written by the data plane and periodically
read by the control plane. We initially enclosed read/write
operations into atomic blocks to avoid race conditions be-
tween data and control planes. However, as we noticed
that this approach causes a considerable loss of traffic data
when the control plane locks the registers for reading, we
adopted a more efficient strategy consisting of using two
different registers, one for writing and one for reading. A
third register serves as a switch to orchestrate the access to
those two registers. Section 4 provides more details on this
mechanism.

3.2 Counting Bloom filters
A counting Bloom filter [47] is an array of m cells that utilizes
probabilistic hashing techniques to keep an approximate
count of items. We use a counting Bloom filter to efficiently
count the number of packets belonging to the same flow
that have been collected in a specific time frame. The key
idea behind a counting Bloom filter is to use h hash func-
tions to map the elements of a set onto an array of size
m. To achieve this, each element is hashed h times using
different hash functions. The resulting hash values are used
to index into the array, and the corresponding array cells
are incremented by one. Since multiple elements can map to
the same cell due to collisions, the counters of an element
may not be incremented equally. To estimate the count of
an element, the minimum value of the cells to which the
element is mapped is used. The rationale behind this is that
the minimum count is less likely to have been affected by
collisions with other elements.

This is a highly efficient method for counting the num-
ber of packets per flow (or packets/flow) that have been
collected in a memory block within a given time window.
While a single hash function, such as CRC32, can also
perform this task, counting Bloom filters are less prone to
collisions, which can lead to inaccuracies in the count.

3.3 Neural network architecture
To validate our approach to data plane traffic feature ex-
traction, we consider the DDoS attack detection use case. In
particular, we focus on volumetric DDoS attacks, as they are
particularly challenging to handle in constrained systems,
such as network switches and SmartNICs, due to the large
amounts of data rate such attacks can produce.

In this work, we adopt a state-of-the-art solution for
DDoS attack detection called Lightweight, Usable CNN in
DDoS Detection (LUCID) [25]. LUCID is a CNN that takes as
input a representation of a traffic flow consisting of packet-
level features and returns the probability of the flow being
malicious (i.e., part of a DDoS attack). Its input format
makes LUCID suitable for data plane feature extraction,
where line-rate packet processing is a requirement.

LUCID’s representation of traffic flows consists of packet-
level features organised in two-dimensional arrays. Rows
are the flow’s packets in chronological order (LUCID defines
bi-directional flows identified by a 5-tuple of IP addresses,
L4 ports and L4 protocol), while columns are per-packet

6

features, categorical features included (e.g., TCP flags, IP
Flags, ICMP type, etc.). By utilising a convolutional layer as
its initial hidden layer, LUCID effectively leverages the afore-
mentioned representation to learn traffic flow semantics and
uncover latent behavioural patterns from the chronological
sequence of packets. LUCID’s output layer is a 1-neuron
layer whose value is the probability of the input flow being
a DDoS flow.

We set the same hyper-parameters as in the LUCID paper
with respect to the height and number of the convolutional
kernels, h = 3 and k = 64 respectively. On the other
hand, we slightly adapt the neural network’s architecture
to comply with the requirements of the feature extraction
executed in the data plane. First, two packet features used
by LUCID, namely highest layer and protocols, involve appli-
cation layer information that is not available in the packet
headers (LUCID extracts such features with the support of
TShark [49], which can return detailed packet’s summaries
along with standard header fields). Therefore, we only use
the f = 9 features that can be extracted in the data plane,
namely: Timestamp, Packet Length, IP Flags, TCP Length, TCP
Ack, TCP Flags, TCP Window Size, UDP Length and ICMP
Type.

We also decrease the detection time window from t =
100 seconds to t = 2 seconds and the number of pack-
ets/flow from p = 100 to p = 4. First, by reducing the input
size we reduce the processing time and memory usage.
Second, based on the results reported in [25], LUCID can
achieve a very high classification accuracy with any value
of t > 1 second when combined with p > 3.

In summary, in our experiments, we use the following
LUCID hyper-parameters:

p = 4, f = 9, k = 64, h = 3, t = 2

Despite a lower number of packets and features in the flow
representations and a shorter time window, we will show
that the classification accuracy of the proposed system is
comparable to that obtained by the original LUCID im-
plementation on a publicly available dataset of DDoS and
benign traffic.

4 SYSTEM ARCHITECTURE

Motivated by the insights presented in Section 1, the ob-
jective of this study is to enable efficient network intrusion
detection in the control plane of programmable networks
through packet-level analysis. The primary challenge in
achieving this objective lies in the limitations of the net-
work devices responsible for extracting and collecting such
features, as well as the constrained capacity of the control
channel used to transmit them to the control plane.

Given these premises, we present P4DDLe, an approach
to intrusion detection for P4-based programmable networks
that enables resource-efficient traffic feature extraction and
filtering in the data plane. The key idea of P4DDLe is to
extract and store in the data plane only the features that are
essential to the Traffic Classifier running on the control plane,
thereby optimising the amount of data transmitted through
the control channel. For this purpose, we have designed
a system architecture matching the V1model presented in
Section 3.1, with the support of control plane software for

Data Plane
Control Plane

Ingress

Traffic classifier

Normalisation

Neural Network

Read block
Set registers

API

AP
I

Parser

Fe
at

ur
e

ex
tra

ct
io

n

C
he

ck
su

m

Ve
rifi

ca
tio

n

Se
le

ct

m
em

or
y

bl
oc

k

Egress

C
he

ck
su

m

U
pd

at
e

Deparser

Payload

Block 0
Write to

line c0

Block 1
Write to

line c1

Switch register

co
un

tin
g

Bl
oo

m
 F

ilt
er

Fig. 3: System architecture.

traffic classification (Figure 3). The P4 program executed in
the data plane extracts the packet attributes and makes them
available to the control plane. On the other hand, the control
plane is responsible for gathering the traffic metadata from
the registers allocated in the data plane and coordinating
the read/write access to such registers.

The architecture presented in the figure has been specif-
ically designed to reduce the workload on the control chan-
nel while adhering to the limitations imposed by the P4
language and the available resources in the data plane.

4.1 Core logic
Data plane operations are sketched in Figure 3 (bottom part)
and elaborated in the pseudo-code of Algorithm 1. The
data plane logic is implemented in the Parser and in the
Ingress Pipeline. The Parser takes the incoming packets and
extracts header fields and metadata required by the Traffic
Classifier (line 3 of the pseudo-code). The components in the
Ingress Pipeline are in charge of storing the traffic features
and other metadata in stateful memory, provided that the
packet passes the Checksum verification (line 4).

The key idea behind P4DDLe for supporting packet-
level feature extraction and storage is to collect only the
features that are needed by the Traffic Classifier. In our
implementation, the traffic classifier (i.e., LUCID) takes as
input a representation of traffic flows consisting of matrices
of packet-level features (Section 3.3). Each flow has the
shape p × f , where p denotes the number of packets/flow,
and f represents the number of features extracted from the
header of each packet. These requirements determine how
the packet-level features are extracted and stored in the
data plane. Nevertheless, it is important to note that our
design is flexible and compatible with various packet-level
representations of network traffic, including those involving
segments of the packet’s payload (e.g., FC-Net [26]).

For each incoming packet, the f features described in
Section 3.3 are extracted from its header (line 7). Before
storing this information in the stateful memory, P4DDLe
verifies that there are less than p packets belonging to the
same flow already stored in memory. If this condition is
verified, the features are saved in memory, otherwise, they

7

Algorithm 1 Data plane feature extraction and storage.

1: procedure FEATUREEXTRACTION(Packet (pkt))
2: define p× f ▷ Traffic Classifier input shape (Sec.

3.3)
3: hdr,meta←PARSER(pkt) ▷ Header and metadata
4: if VERIFYCHECKSUM(hdr)==false then
5: return
6: end if
7: f̄ ← meta.features(f) ▷ Vector of packet’s features

8: id4f , id
4
b , id

5
f , id

5
b ← meta.id ▷ Set of packet’s IDs

9: for all id ∈ {id4f , id4b , id5f , id5b} do
10: hid ← CRC32(id) mod 2r ▷ hid ∈ [0, 2r − 1]
11: end for
12: k ← SWITCHREG.READ() ▷ Memory index

k ∈ {0, 1}
13: if minid∈{id4

f ,id
4
b ,id

5
f ,id

5
b}Fk[hid] < p then

14: ck ← POSITIONREG.READ(k)
15: BLOCK.WRITE(Bk[ck],(id5f , f̄))
16: ck ← ck + 1
17: for all id ∈ {id4f , id4b , id5f , id5b} do
18: if Fk[hid] < p then
19: Fk[hid]+ = 1 ▷ Increase the counters
20: end if
21: end for
22: end if
23: COMPUTECHECKSUM(h)
24: DEPARSER(pkt,hdr)
25: end procedure

are discarded. By disregarding irrelevant features in the
data plane, P4DDLe ensures optimal utilisation of memory
resources and control channel.

To achieve this goal, P4DDLe keeps track of the number
of packets/flow collected within a given observation time
window by using a probabilistic technique based on hashing
called counting Bloom filters [47] described in Section 3.2.
Instead of using h different hash functions to generate h
hash values from a packet, P4DDLe leverages the P4 im-
plementation of the CRC32 algorithm with h = 4 different
packet identifiers id4f , id

4
b , id

5
f , id

5
b (line 8). The identifiers

id4f and id4b each represent a 4-tuple consisting of source and
destination IP addresses, as well as source and destination
transport ports, for a given packet. The index f refers to
the forward order, in which the values appear in the packet,
while the index b represents the backward order, in which
the positions of the IP addresses and transport ports are
swapped. The other identifiers id5f and id5b are generated by
taking the two 4-tuples id4f and id4b , and by adding a fifth
item with the value of the packet’s transport protocol to each
of them (i.e., they both are 5-tuples).

After computing the CRC32 value for each of the four
identifiers (as shown in line 10), the algorithm checks
whether the minimum counter value among the four coun-
ters stored in the filter in the computed positions (i.e.,
hashed values) Fk[hid] is less than the maximum number of
packets/flow allowed (i.e., p). If such a condition is verified,
the current packet belongs to a network flow for which less
than p packets have been collected so far. In such a case, the

packet’s 5-tuple identifier id5f and its corresponding features
f are saved in memory and the position in the memory is
updated. These operations are summarised from line 12 to
line 22 of the algorithm’s pseudo-code and detailed in the
following sections.

Finally, once the feature extraction and collection op-
erations have been completed, the program updates the
packet’s checksum to reflect any packet modifications (even
though the current implementation does not actually alter
the packet’s contents) (line 23). The header and payload are
then reassembled through the DEPARSER function before
the packet is sent to the egress port (line 24).

4.2 Registers

Feature extraction and collection are handled with the sup-
port of stateful memory elements, such as registers. The
value k ∈ {0, 1} of the Switch Register is used to coordinate
the memory access and to avoid race conditions between
control and data planes. This value is set by the control
plane and used by the data plane to select the appropriate
registers for read/write operations (line 12).

Traffic features are stored in two memory blocks Bk

(line 15). A memory block consists of f registers (one per
packet feature), along with other 5 registers for hosting
the five elements of the 5-tuple id5f , which is used later
on by the Traffic Classifier to map packets into flows. Each
register is divided into n cells, whose size varies depending
on the value being stored. In our implementation, register
Source IP is of size <bit<32>>, while Timestamp is of size
<bit<48>>, TCP Length is of size <bit<16>>, etc. n is
the maximum number of packets whose features can be
extracted and stored in Bk. Figure 4 sketches the structure
of a memory block, in which each row represents a packet,
and each column corresponds to an element of the 5-tuple
packet identifier or a packet-level feature.

Features (f)

Ti
m

es
ta

m
p

(4
8

bi
ts

)

Pk
t L

en
gt

h
(1

6
bi

ts
)

IP
 F

la
gs

 (1
6

bi
ts

)

TC
P

Le
ng

th
 (1

6
bi

ts
)

TC
P

Ac
k

(3
2

bi
ts

)

TC
P

Fl
ag

s
(9

 b
its

)

TC
P

W
in

 S
ize

 (1
6

bi
ts

)

U
DP

 L
en

gt
h

(1
6

bi
ts

)

IC
M

P
Ty

pe
 (8

 b
its

)

Packet ID

Pa
ck

et
s (

n)

So
ur

ce
 IP

 (3
2

bi
ts

)

So
ur

ce
 P

or
t (

16
 b

its
)

De
st

 IP
 (3

2
bi

ts
)

De
st

 P
or

t (
16

 b
its

)

Pr
ot

oc
ol

 (8
 b

its
)

i-th Packet

Fig. 4: Memory block structure.

In our implementation, we use two counting Bloom
filters Fk, each one associated to the corresponding memory
block Bk. Specifically, a filter is a register consisting of m

8

cells, each with a size of 3 bits to store the packets/flow
counters. It is important to note that the output of the
CRC32 hashing function is a 32-bit number, which would
ideally require the allocation of two counting Bloom filters
of m = 232 cells. While this would be the optimal solution
to minimize the chances of collisions, such an approach
would require a significant amount of memory space. To
address this concern, we have decided to limit the bit count
of CRC32’s output to r < 32. We achieve this by using the
modulo operator (line 10), with r being a number dependent
on the number of packets that can be stored in a memory
block, denoted by n. The sensitivity of P4DDLe to the size
of the counting Bloom Filter is provided in Section 6.1.1.

4.3 Memory Management
The memory blocks Bk are managed as circular buffers
to ensure that the most recent traffic data is always avail-
able. Thus, when a memory block Bk is full, denoted by
ck = n − 1, the subsequent packet is stored at the begin-
ning of the block, which corresponds to position ck = 0,
overwriting the old packet stored there. When it happens
for many packets, such as in high packet rate situations, the
control plane classifier may miss the information of older
flows either partially or entirely.

4.4 Control-Data Plane interaction
The Control Plane interacts with the Data Plane through
Remote Procedure Calls (RPCs), such as those provided
by software frameworks like Apache Thrift API [50] or
P4Runtime API [51]. In this regard, the Control Plane is
in charge of swapping the value of the Switch Register,
collecting the packet features from the two memory blocks
Bk and clearing registers Bk, Fk and ck (k ∈ {0, 1}).

t0 Set k=1
t1 Read B0
t2 Reset B ,F ,c 0 0 0

t3 Set k=0
t4 Read B1
t5

time

Feature processing
Traffic classification

t0

t1

t2

t3

t4

t5

time

Write B0

Write B1

Write B0

Control plane Data plane

Reset B ,F ,c 1 1 1

Fig. 5: Memory access timeline.

Figure 5 illustrates the timelines of Control and Data
Plane operations. The two planes operate in parallel and
never block each other. The Data Plane always writes on the
same block until the value of the Switch Register is changed
from the Control Plane. If we start from time t0, as shown in
the figure, once the control plane sets the value of the Switch
Register to 1, the Data Plane will start writing on memory

block B1. After that, the Control Plane will first read block
B0 and, once done with reading the block, it will reset all the
registers of blocks B0, F0 and c0 and the traffic features will
be processed for classification. The whole process restarts at
time t3, when the Control Plane sets the Switch Register to 0
to retrieve the features collected in memory block B1, while
the Data Plane switches to block B0. It is important to note
that the frequency of this process (computed as 1/(t3 − t0)
using the example in Figure 5) is managed by the Control
Plane and does not depend on Data Plane’s state.

5 EXPERIMENTAL SETUP

P4DDLe has been implemented as a set of methods for the
reference P4 software switch (namely the Behavioral Model
version 2 (BMv2) [52]) and tested in a Mininet emulated
network [53]. A prototype implementation of P4DDLe is
publicly available for testing and use [54].

The network topology, represented in Figure 6, includes
two virtual hosts, one acting as the attacker which sends
malicious traffic to the second virtual host (i.e., the victim of
the attack). The evaluation environment has been set up on
a single physical machine equipped with an 80-core Intel(R)
Xeon(R) Gold 5218R CPU @2.10GHz and 128 GB of DDR4
RAM. This machine also runs the LUCID framework [55],
which includes a pre-processing tool and a CNN trained for
DDoS attack detection.

LUCID and the switch are interfaced through Remote
Procedure Calls (RPCs). The RPC mechanism is imple-
mented using the Apache Thrift API [50] and is used
to read, write and reset the registers from the control
plane through data plane methods bm_register_read,
bm_register_write and bm_register_reset respec-
tively [56].

Data Plane (Mininet)

BMv2Attacker Victim

LUCID
Control Plane

Thrift API

Fig. 6: Experimental setup.

5.1 Dataset
P4DDLe is evaluated using CIC-DDoS2019 [57], a recent
dataset of DDoS attacks provided by the Canadian Institute
of Cybersecurity at the University of New Brunswick. This
dataset contains multiple days of network activity, including
benign traffic and 13 distinct types of DDoS attacks. It is ac-
cessible to the public and contains pre-recorded traffic traces
with complete packet payloads, along with supplementary
text files that provide labels and statistical information for
each traffic flow [58]. In our experiments, we inject the P4
switch with the traffic traces to evaluate P4DDLe’s perfor-
mance in handling the feature extraction process in the data

9

plane. In the dataset, the benign traffic was created using the
B-profile [59], which defines distribution models for various
applications, such as web (HTTP/S), remote shell (SSH),
file transfer (FTP), and email (SMTP). On the other hand,
the attack traffic was generated using third-party tools and
can be broadly classified into two main categories: reflection-
based and exploitation-based attacks. The first category in-
volves attacks in which the attacker triggers responses from
a remote server (such as a DNS resolver) towards the
victim’s spoofed IP address, ultimately overwhelming the
victim with these responses. The second category pertains to
attacks that exploit known vulnerabilities in target systems,
applications or in certain network protocols.

The traffic traces have been divided into training, vali-
dation and test sets and processed with the LUCID’s packet
parser [60]. Such a tool extracts packet-level features from
the traffic and groups them into array-like representations
of network flows, as described in Section 3.3.

TABLE 1: DDoS attack traces (test sets).

Attack Duration #Flows Flow rate Packet rate
(sec) (flows/sec) (kpackets/sec)

DNS 383 5736 15 2.6
LDAP 27 26 0.96 8
MSSQL 65 787092 12109 24
NetBIOS 65 519069 7985 16
Portmap 19 152956 8050 16
SNMP 38 74882 1970 17
SSDP 23 195521 8500 30
UDP-Lag 13 116439 8957 20

The pre-processing of the training and validation traces
is done offline for LUCID’s training and tuning, whereas
the traffic traces of the test set are solely employed for
online testing. During the testing phase, feature extraction
is performed in the data plane (as explained in Section 4),
while LUCID’s parser tool is executed in the control plane
for building the arrays and normalising the features.

To mitigate the impact of BMv2’s poor performance [61],
we made a strategic decision to exclude all attacks with a
packet rate higher than 30 kpackets/s from the test set. This
step was necessary to ensure the integrity and accuracy of
our evaluation results by preventing any interference caused
by packets being dropped due to BMv2’s performance lim-
itations. The key details of the remaining test traces are
presented in Table 1 for reference.

5.2 Evaluation metrics

Our primary evaluation metrics are the Collected Flows and
the system False Negative Rate (sFNR). Collected Flows mea-
sures the number of flows stored in memory relative to the
total number of flows injected into the switch within a given
time window. This metric provides insight into P4DDLe’s
ability to capture information on as many traffic flows as
possible.

The sFNR quantifies the percentage of malicious flows
that go undetected, either due to misclassification by the
NIDS, or because no packets of such flows are present in
the memory block due to the reasons explained in Section
4.3. By assessing the sFNR, we measure the efficiency of

P4DDLe in promptly identifying and flagging potential
intrusions. A formal definition of the sFNR measured in a
given observation time window is provided in Equation 1.

sFNR = FNR+
1

|Xm|
∑

xi∈Xm

cxi
⊕ nxi

(1)

In Equation 1, FNR is the False Negative Rate of the
NIDS running in the control plane. It is worth reminding
that FNR is the metric that measures the percentage of
positive samples (in our case, the malicious flows) that are
misclassified as negatives by a classifier. In the equation, the
set of malicious flows is denoted by Xm, cxi represents the
actual number of packets collected for a given malicious
flow xi in a memory block, while nxi is the number of
observed packets of that flow. The XOR operation cxi ⊕ nxi

returns 1 if cxi = 0 and nxi ̸= 0 or if cxi ̸= 0 and nxi = 0
(the second case can never happen), and returns 0 otherwise.
The summation computes the total number of observed
malicious flows in a given time interval with no packets
collected in the memory block. We divide this value by the
total number of observed malicious flows Xm to obtain the
rate.

We also define the quality metric that allows us to es-
tablish a relationship between three distinct quantities: (i)
the number of packets in a traffic flow, (ii) the number of
packets of that flow collected in the data plane within a
given time window, and (iii) the packet/flow p required
by the Traffic Classifier running in the control plane. This
metric quantifies the level of “useful” information that the
data plane delivers to the Traffic Classifier for each flow,
while taking into account that gathering more than p packets
per flow is inefficient resource utilization. Specifically, the
quality metric is defined by Equation 2.

quality =
1

|X|
∑
xi∈X

cxi

lxi

(2)

The quality metric is determined by taking the average
quality score across the flows observed within a given time
window. In the equation, the set of such flows is denoted
by X = {Xb, Xm} and includes both benign flows Xb and
malicious flows Xm. The quality of a single flow xi ∈ X
is expressed as cxi over lxi , where lxi = min{nxi , p} is the
minimum between the number of packets nxi of the i-th
flow and p. lxi represents the optimal number of packets
that we need to collect in the data plane to maximise the
amount of information provided to the ML model for a
given flow xi. Collecting fewer packets may not provide
sufficient information for the classifier, while collecting
more may waste valuable memory space without providing
any additional benefits to the classifier. This is because
any excess packets beyond the optimal number would be
discarded by the feature pre-processing component, which
constructs the flow samples required by the ML model.

In the case of the quality metric, cxi
represents the

number of packets stored in a memory block for a given flow
xi, either benign or malicious. With P4DDLe, which uses a
counting Bloom filter to track the number of packets/flow
in memory, the value of cxi

ranges from 0 to p. With no
packet tracking, cxi

may fall between 0 and nxi
. It is worth

noting that in certain cases, the value of cxi
may be zero

10

even when nxi ̸= 0. This can occur when no packets for flow
xi have been collected in the current memory block, either
because of collisions or because they were overwritten by
more recent packets in the circular buffer (Section 4.3).

6 EVALUATION RESULTS

One of the key benefits of P4DDLe over other approaches is
the ability to extract raw packet features from the network
traffic, categorical features included, and to organise them
in a way that the semantics of traffic flows are preserved.
P4DDLe efficiently achieves this objective by implement-
ing a counting Bloom filter (Section 3.2) that tracks the
number of packets/flow without any wastage of memory
resources in the data plane. We demonstrate the advantages
of P4DDLe through simulation and emulation experiments,
where we disable the tracking methods and observe the
corresponding changes using a range of metrics.

In the simulation scenario, no actual network data is in-
volved. Instead, we rely on the network profile of a campus
network [62] and we demonstrate the benefits of P4DDLe
by simulating the feature extraction and storage process in
the data plane. The second set of experiments has been
conducted in an emulated environment consisting of two
hosts (an attacker and a victim) and a P4-enabled software
switch with configurable registers. The experiments involve
injecting pre-recorded network traffic into this environment,
using a publicly available dataset of both benign and DDoS
traffic.

6.1 Simulation Scenario

The goal of the simulations is to analyse the correlation
between the size of the memory block Bk and two key vari-
ables: the maximum number of packets/flow (i.e., variable
p) and the number of cells m of the Bloom filter Fk. This
information gives an understanding on how to configure
P4DDLe based on the characteristics of the network traffic
under monitoring (mainly the average packet rate and av-
erage packets/flow) to maximise the number of collected
flows within a given time window. To do so, we fix the size
of Bk and we vary the value of p and the bit count r of the
CRC32’s output that determines the size of the Bloom filter
(see Section 4.2).

We utilise the profile outlined in [62] to simulate the
benign traffic of a realistic network. This profile was gener-
ated using network activity data gathered from a university
campus and does not present any documented attack in the
trace. From it, we extracted the distribution of TCP, UDP,
and other protocols and we computed the average number
of packets/flow for each protocol.

Each experiment consists of 1000 iterations, each simu-
lating the collection of a random number of flows, ranging
from 1 to 8192 flows. The length of such flows (number
of packets/flow) is generated based on the aforementioned
traffic profiles, while the arrival of packets across differ-
ent flows has been randomised to ensure a non-sequential
packet distribution, aligning with the characteristics of real-
istic packet-switched networks. To minimise potential issues
due to the insufficient space in memory to store packets for
all the 8192 flows (which is not the goal of this analysis),

we reserve space in the memory block Bk for at least two
packets/flow by setting the value n = 16384 packets (see
also Figure 4 for reference).

These experiments are realised with Python scripts
designed to simulate a single collection of network flows.
The scripts replicate the logic of both P4DDLe (as described
in Algorithm 1) and a baseline configuration. In the baseline
setup, the packet filtering algorithm intrinsic to P4DDLe is
deliberately deactivated, causing all incoming packets to
be stored in memory within the circular buffer, with no
constraints on the number of packets per flow. These scripts
are publicly available for testing on the P4DDLe repository
[54].

6.1.1 Bloom filter size
Each Bloom filter is characterised by two key dimensions:
the number of cells, denoted as m ∈ [0, 2r − 1], and the
size of each cell. In this experiment, we have set the size
of the cells while varying the value of r to understand the
sensitivity of P4DDLe to the number of cells in terms of
Collected Flows. Considering that 75% of the flows within
the traffic profile consist of no more than 4 packets, we have
chosen to set the cell size to 3 bits. This size adequately
accommodates the counting of up to 4 packets/flow.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Flows

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Co
lle

ct
ed

 F
lo

ws
 (%

)

Bloom Filter Size
1024 Cells (r = 10)
2048 Cells (r = 11)
4096 Cells (r = 12)
8192 Cells (r = 13)
16384 Cells (r = 14)
32768 Cells (r = 15)
Single Hash (r = 15)
Baseline

Fig. 7: Percentage of collected flows on the value of r.

Figure 7 presents the results obtained with Bloom filter
sizes from 1024 to 32768 cells (or r from 10 to 15). The
figure also includes the results obtained with a single hash
function (with r = 15) , allowing for a comparative analysis
with Bloom filters. As expected, the larger the Bloom filter
size, the smaller the number of hash collisions and the
higher the number of flows collected. Remarkably, it is
worth noting that P4DDLe is able to collect more flows
than the baseline, regardless of the Bloom filter size. It is
important to recall that the baseline approach gathers all
packets without any filtering logic. Considering that the
average number of packets/flow in the traffic profile is
78, the baseline approach exhausts the memory capacity
with approximately 210 flows (calculated as 16384/78).
Consequently, once the memory block reaches its limit, older
packets are overwritten by more recent ones, resulting in a
loss of flows. The results of this experiment also confirm
the efficiency of Bloom filters over a single hash function

11

in limiting the collisions, as discussed in Section 3.2 and
demonstrated by Tarkoma et al. [47].

Figure 7 leads to another significant observation: the
stability of P4DDLe throughout the experiment rounds, in
contrast to the baseline approach. This stability is a direct re-
sult of the packet filtering strategy employed by P4DDLe. By
filtering out excess packets from each flow, P4DDLe ensures
that the memory allocated for a flow remains bounded by
the predetermined maximum p. Consequently, the number
of collected flows remains stable even in extremely ran-
domised scenarios like this simulation. In contrast, the base-
line approach lacks any form of packet filtering. As a result,
the number of packets per flow stored in memory is not
constrained, leading to much larger fluctuations in terms of
collected flows. This absence of bounds on per-flow packet
storage is evident from the erratic behaviour depicted in
the figure, where the scattered values of collected flows
reflect the wide range of flow sizes, spanning from 1 to
1000 packets (with average and standard deviation of 77 and
74 packets, respectively). The baseline curve shown in the
figure represents a polynomial approximation of the values
and serves to emphasize the average trend of collected flows
under this configuration.

In light of the results obtained in this simulation, we
have determined that setting the number of cells to 32768
is the most suitable choice. This value effectively minimises
hash collisions (0.5% with 8000 flows) while maintaining a
minimal impact on memory usage. It is important to note
that P4DDLe utilises two counting Bloom filters (Fk with
k ∈ {0, 1} in Algorithm 1). Since we only need 3 bits to
count up to p = 4 packets/flow, the size of each Fk Bloom
filter will be 12 kilobytes. This memory requirement is rel-
atively insignificant when compared to the memory blocks
Bk, each of which demands approximately 562 kilobytes to
store the features of 16384 packets.

6.1.2 Maximum number of collected packets per flow

In this experiment, we fix the size of the Bloom filter to
32768 cells, and we vary p from 2 to 128 packets/flow. We
expect that by decreasing the value of p, the average number
of packets collected per flow will also decrease, leading to
a higher number of collected flows in memory but also to
more potential collisions.

This behaviour can be observed in Figure 8, which
demonstrates that by increasing p, the memory block fills
up sooner and, as a consequence, the percentage of collected
flows deteriorates earlier. Of course, with p = 2 the memory
is never filled, even with 8192 generated flows (we remind
that we set the size of the memory block to 16384 packets).
However, we can notice that with p = 2 a small portion of
flows is lost due to collisions when the number of generated
flows is 5000 or higher. Indeed, when the value of p is small,
there is an increased likelihood of missing the condition
at line 13 of Algorithm 1. As a result, a higher number of
packets and flows are discarded. In the figure, we can also
notice the stability of P4DDLe with p = 4 almost until the
end of the experiment. For this reason, and considering the
proven effectiveness of LUCID with p > 3 (as discussed in
Section 3.3), we set p = 4 for the experiments conducted in
the emulated environment.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Flows

40%

50%

60%

70%

80%

90%

100%

Co
lle

ct
ed

 F
lo

ws
 (%

)

Value of p
2 Packets per Flow
4 Packets per Flow
8 Packets per Flow
16 Packets per Flow
32 Packets per Flow
64 Packets per Flow
128 Packets per Flow

Fig. 8: Percentage of collected flows on the value of p.

6.2 Emulated Scenario

Based on the results of the simulations described in the
previous section, we set the parameters for the emulations
as follows: (i) memory block size: n = 16384 packets, (ii)
bloom filter size: 32768 cells (r = 15) and (iii) maximum
packets/flows p = 4. The duration of all the experiments
has been set to 6 minutes, during which we inject various
combinations of attack and benign traffic from the attacking
host to the victim through the P4DDLe-enabled switch (see
Figure 6).

In this experiment, we generate a series of DDoS attacks
by using the traffic traces of the CIC-DDoS2019 dataset (see
Section 5.1). If we exclude the DNS attack, the flows of
the other attacks present an average flow length of around
2.2 packets, hence considerably smaller than those of the
profile of the campus network used in simulations (around
78 packets/flow). Considering that we chose p = 4 (i.e.,
p > 2.2), we expect that with these small flows, both
P4DDLe and the baseline can collect approximately the
same number of flows. Acknowledging that malicious traffic
flows typically do not constitute the totality of network
traffic, we define four evaluation scenarios to enable a
comprehensive comparison. These scenarios involve the in-
clusion of background benign traffic at varying proportions
relative to the total packets in the network, namely 0% (no
benign traffic), 25%, 50%, and 75%. Table 2 presents the
average flow length as we increase the percentage of benign
traffic in the network (whose average packet rate is about 0.7
packets/sec and average flow length is about 36 packets).

Other important information pertains to the relationship
between packets and flows. Since we add a portion of back-
ground benign traffic based on the total amount of packets,
this does not necessarily reflect an analogous increase in
the number of flows. Actually, based on the low average
flow length in the attacks (first column in Table 2), and
the relatively high number of packets/flow of the benign
trace (around 36 on average), even splitting 50% between
benign and DDoS packets, the average percentage of DDoS
flows is higher than 93% on the total of flows (excluding the
DNS attack that presents an exceptional behaviour). Table 3
shows the percentage of DDoS flows for each attack type.

Given these premises, we compare P4DDLe against the

12

TABLE 2: Impact of benign traffic on the average flow
length.

Attack Average Flow Length
0% 25% 50% 75%

SSDP 3.5 4.4 6.0 9.7
MSSQL 2.0 2.7 3.8 6.8
UDP-Lag 2.2 2.9 4.1 7.3
SNMP 2.0 2.6 3.8 6.7
Portmap 2.0 2.6 3.7 6.6
NetBIOS 2.0 2.6 3.7 6.6
LDAP 2.0 2.6 3.7 6.6
DNS 109.3 76.3 66.0 49.8

Average 15.6 12.1 11.9 12.5
Average (w/o DNS) 2.2 2.9 4.1 7.2

TABLE 3: Percentage of DDoS Flows based on the volume
of benign packets.

Attack Percentage of DDoS Flows
0% 25% 50% 75%

SSDP 100% 96.01% 90.07% 76.78%
MSSQL 100% 97.11% 93.00% 83.40%
UDP-Lag 100% 97.40% 93.19% 82.50%
SNMP 100% 97.63% 93.72% 83.45%
Portmap 100% 97.70% 93.57% 83.16%
NetBIOS 100% 97.71% 93.51% 83.20%
LDAP 100% 96.99% 93.48% 83.16%
DNS 100% 46.89% 27.15% 14.87%

Average 100% 90.93% 84.71% 73.82%

baseline approach in the emulated environment. For both
approaches, we inject each of the eight attacks of the CIC-
DDoS2019 dataset combined with benign traffic in the var-
ious proportions reported above. The comparison is evalu-
ated using the three metrics presented in Section 5.2, namely
sFNR, Collected Flows and quality.

6.2.1 Collected Flows and sFNR
Figure 9 shows the comparison related to Collected Flows
for all attack types. First, we can notice that with the
baseline approach the percentage of collected flows remains
stable when we vary the proportion between benign and
attack traffic. This can be attributed to the absence of any
filtering logic, causing the percentage of collected flows to
solely depend on the memory capacity. In contrast, P4DDLe
demonstrates consistent improvement in the percentage of
collected flows as the volume of benign traffic (and the
average flow length) increases. While the baseline approach
fills up the memory block predominantly with large benign
flows, P4DDLe optimizes memory usage by storing only
the essential information required by the NIDS and filtering
out packets that exceed the maximum limit of p = 4. This
memory management prevents large flows from occupying
excessive memory space, thus ensuring that a higher num-
ber of flows can be transmitted to the NIDS for classification.
For instance, in the case of the MSSQL attack, whose average
flow size is around 2 packets/flow, with 0% of benign
traffic the performance of P4DDLe is approximately the
same as with the baseline approach. This is because with
p = 4, no packets are filtered and the memory occupation
is similar with both approaches. However, as soon as we
add some benign traffic, which is composed of larger flows,

the filtering mechanism starts dropping the extra packets,
saving space in memory for more flows.

P4DDLe inherently maintains a balanced allocation of
memory for both low-rate and high-rate flows, resulting
in similar probabilities for their storage. This balance can
be observed when analyzing the distribution of collected
flows, distinguishing between DDoS traffic, whose packet
rate ranges from 2.6K to 30K packets per second, and
benign flows, which average around 0.7 packets per second.
For instance, consider the SSDP attack scenario with 30K
packets/sec, where the test traffic is divided into 25% be-
nign and 75% attack traffic. In this worst-case scenario, the
average percentage of collected flows is approximately 42%
for benign flows and 46% for attack flows, demonstrating
P4DDLe’s stability and effectiveness in handling heteroge-
neous network conditions.

The sFNR metric (Figure 10) shows the ability of P4DDLe
to collect more malicious flows than the baseline approach,
ultimately leading to faster mitigation of network attacks. It
is also worth noticing that when the volume of the attack
is small, like in the case of LDAP and DNS, the memory is
never filled, even when adding benign traffic. Therefore, the
collected flows is 100% for both, while the non-zero sFNR
obtained with the DNS attacks is solely due to LUCID’s FNR.

6.2.2 Flow quality
As defined in Section 5.2, the quality metric measures the
average amount of “useful” data collected in the data plane
and transmitted to the control plane for classification. Table
4 presents the average quality metrics, revealing that while
P4DDLe can collect a larger number of flows in memory,
these flows maintain a high level of quality, although some-
times slightly lower than that obtained with the baseline.

Unlike the baseline, P4DDLe might drop packets because
of collisions, which accounts for the slight reduction in qual-
ity observed in the attack scenarios that present a combina-
tion of high flow rate and high packet rate. The SSDP attack
is an interesting use case that demonstrates this observation:
as we add more and more benign traffic, the packet rate
remains constant (around 30 kpackets/sec), while the flow
rate decreases, hence the chances of collisions.

TABLE 4: Quality of collected flows at various percentages
of benign packets.

Attack Baseline P4DDLe
0% 25% 50% 75% 0% 25% 50% 75%

SSDP 95.7 94.8 93.3 86.2 90.1 91.9 93.8 95.7
MSSQL 100.0 100.0 100.0 100.0 99.9 99.5 99.3 99.7
UDP-Lag 99.7 99.8 99.9 99.9 97.8 98.4 99.2 99.8
SNMP 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.9
Portmap 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.9
NetBIOS 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.9
LDAP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
DNS 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 99.4 99.3 99.1 98.3 98.5 98.6 99.0 99.4

6.2.3 Temporal evolution
A comparison between the two approaches throughout the
whole experiment is presented in Figures 11 and 12. For a
matter of space, we provide the plots of only two attacks,
although the other attacks present similar behaviours. The

13

SSDP MSSQL UDP-Lag SNMP Portmap NetBIOS LDAP DNS
DDoS Attack

0%

20%

40%

60%

80%

100%
Co

lle
ct

ed
 F

lo
ws

 (%
)

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Algorithm
Baseline
P4DDLe

Fig. 9: Average Collected Flows.

SSDP MSSQL UDP-Lag SNMP Portmap NetBIOS LDAP DNS
DDoS Attack

0%

20%

40%

60%

80%

100%

sF
NR

 (%
)

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Algorithm
Baseline
P4DDLe

Fig. 10: Average sFNR.

00:00 01:00 02:00 03:00 04:00 05:00
Running time (s)

0%

20%

40%

60%

80%

100%

Qu
al

ity
 (%

)

Algorithm
Baseline
P4DDLe

00:00 01:00 02:00 03:00 04:00 05:00
Running time (s)

0%

20%

40%

60%

80%

100%

Co
lle

ct
ed

 F
lo

ws
 (%

)

Algorithm
Baseline
P4DDLe

00:00 01:00 02:00 03:00 04:00 05:00
Running time (s)

0%

20%

40%

60%

80%

100%

sF
NR

 (%
)

Algorithm
Baseline
P4DDLe

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Fig. 11: Metrics by running time on SSDP DDoS Attack.

00:00 01:00 02:00 03:00 04:00 05:00
Running time (s)

0%

20%

40%

60%

80%

100%

Qu
al

ity
 (%

)

Algorithm
Baseline
P4DDLe

00:00 01:00 02:00 03:00 04:00 05:00
Running time (s)

0%

20%

40%

60%

80%

100%

Co
lle

ct
ed

 F
lo

ws
 (%

)

Algorithm
Baseline
P4DDLe

00:00 01:00 02:00 03:00 04:00 05:00
Running time (s)

0%

20%

40%

60%

80%

100%

sF
NR

 (%
)

Algorithm
Baseline
P4DDLe

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Scenario
Only DDoS
25% Benign
50% Benign
75% Benign

Fig. 12: Metrics by running time on UDP-Lag DDoS Attack.

plotted data consistently validates the average numbers
presented earlier in this section, with no notable deviations
observed over time.

Besides the memory size and the packet rate, the per-
formance of P4DDLe is also influenced by the flow size

and, as a consequence, by the flow rate. By collecting only
p = 4 packets/flow, the number of collected flows increases
(and the sFNR decreases) when the flow rate increases, as
highlighted by the respective plots in the two Figures. On
the contrary, the baseline approach is less affected by the

14

TABLE 5: Control plane performance

Dataset Accuracy False Positive Rate Precision Recall F1 Score
Offline Online Offline Online Offline Online Offline Online Offline Online

ISCX2012 (IRC) 0.9888 0.9612 0.0179 0.0612 0.9827 0.9313 0.9952 0.9874 0.9889 0.9584

CIC2017 (LOIC) 0.9967 0.9455 0.0059 0.0123 0.9939 0.9994 0.9994 0.9430 0.9966 0.9697

CSECIC2018 (HOIC) 0.9987 0.9922 0.0016 0.0154 0.9984 0.9978 0.9989 0.9978 0.9987 0.9956

flow rate, as it keeps on overwriting the old flows when the
memory is full, resulting in approximately a stable sFNR
and number of collected flows.

6.3 Control Plane performance

As described in Section 3.3, the validation of P4DDLe has
been carried out using a modified configuration of LUCID,
the ML-based NIDS operating in the control plane. This
adaptation is essential to overcome the constraints posed
by the P4 data plane. Notably, two key features are omitted
(highest layer and protocols), and the packet count per flow p
is significantly reduced from 100 to 4. Under these settings,
we measured an average FNR of approximately 0.013 and
an average accuracy and F1 Score of about 0.93 on the
CIC-DDoS2019 dataset across the experiments described in
Section 6.2.

Nevertheless, we are keen to assess the impact of our
adaptation on the LUCID’s overall performance. To achieve
this objective, we have conducted further experiments in
the emulated environment, replicating the three DDoS at-
tacks used in the LUCID’s original paper. The three at-
tacks, generated using an IRC botnet and with well-known
DDoS attacking tools such as LOIC [63] and HOIC [64],
are part of three datasets provided by the University of
New Brunswick, namely ISCX2012 [65], CIC2017 [66] and
CSECIC2018 [67].

The results presented in Table 5 showcase the perfor-
mance assessment of LUCID in segregating DDoS attacks
from legitimate traffic under offline and online settings. The
offline results are derived from LUCID’s original paper,
where the evaluation was based on a static dataset of traffic
flows represented by 11 features, including highest layer
and protocols, and with p = 100. Conversely, the online
configuration aligns with the experimental setup detailed
in earlier sections, featuring 9 features and p = 4.

As reported in the table, the impact of reducing the
feature matrix size from 100 × 11 to 4 × 9 is relatively in-
significant in the case of the HOIC-based DDoS attack, with
a noticeable but moderate increase in the FPR from 0.16%
to 1.5%. However, for the other attacks, we can observe a
decrease of approximately 3% in the F1 Score, indicating a
general decline in overall performance, including a higher
FPR in both instances.

It is worth mentioning that the online results were ob-
tained by training LUCID with just 9 features and 4 packets
per flow. This highlights once again the remarkable adapt-
ability of neural networks in adjusting their weights to the
available input, underlining their flexibility and robustness
in various configurations.

7 CONCLUSION

In this paper, we have presented P4DDLe, a solution based
on P4 programmable data planes that enables the benefits
of centralised intrusion detection while reducing the im-
pact on control channel and hardware resources. P4DDLe
takes advantage of a probabilistic hashing data structure to
carefully select the amount of information to be extracted
from the network traffic and sent to the control plane, taking
into consideration the traffic features required by the traffic
classifier.

The key advantage of P4DDLe over similar solutions
resides in its ability to build a packet-level representation of
traffic flows. This peculiarity allows P4DDLe to satisfy the
requirements of state-of-the-art ML-based NIDS, which rely
on a detailed representation of the traffic that goes beyond
mere statistics. We have demonstrated that by using a count-
ing Bloom filter to retain only the necessary information
within the switch, P4DDLe optimises the usage of stateful
memory in the data plane, while reducing the chances of
missed malicious flows due to lack of memory space.

REFERENCES

[1] European Union Agency for Cybersecurity (ENISA), “ENISA
Threat Landscape 2022,” https://www.enisa.europa.eu/
publications/enisa-threat-landscape-2022, 2022, [Accessed:
30-June-2023].

[2] E. Rojas, R. Doriguzzi-Corin, S. Tamurejo, A. Beato, A. Schwabe,
K. Phemius, and C. Guerrero, “Are we ready to drive software-
defined networks? a comprehensive survey on management tools
and techniques,” ACM Computing Surveys (CSUR), vol. 51, no. 2,
pp. 1–35, 2018.

[3] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. M. Arco, and
R. Doriguzzi-Corin, “Hybrid sdn evolution: A comprehensive
survey of the state-of-the-art,” Computer Networks, vol. 192, p.
107981, 2021.

[4] M. E. Kanakis, R. Khalili, and L. Wang, “Machine learning for
computer systems and networking: A survey,” ACM Computing
Surveys, vol. 55, no. 4, pp. 1–36, 2022.

[5] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey
on sdn based network intrusion detection system using machine
learning approaches,” Peer-to-Peer Networking and Applications,
vol. 12, pp. 493–501, 2019.

[6] D. Yu, Y. Zhu, B. Arzani, R. Fonseca, T. Zhang, K. Deng, and
L. Yuan, “Dshark: A general, easy to program and scalable
framework for analyzing in-network packet traces,” ser. NSDI’19.
USENIX Association, 2019.

[7] S. Wang, C. Sun, Z. Meng, M. Wang, J. Cao, M. Xu, J. Bi, Q. Huang,
M. Moshref, T. Yang, H. Hu, and G. Zhang, “Martini: Bridging the
gap between network measurement and control using switching
asics,” in 2020 IEEE 28th International Conference on Network Proto-
cols (ICNP), 2020.

[8] X. Chen, H. Liu, D. Zhang, Q. Huang, H. Zhou, C. Wu, and
Q. Yang, “Eliminating control plane overload via measurement
task placement,” IEEE/ACM Transactions on Networking, pp. 1–15,
2022.

[9] H. Liu, X. Chen, Q. Huang, D. Kong, J. Sun, D. Zhang, H. Zhou,
and C. Wu, “Escala: Timely elastic scaling of control channels in
network measurement,” in IEEE INFOCOM 2022, 2022.

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022

15

[10] C. H. Song, X. Z. Khooi, D. M. Divakaran, and M. C. Chan,
“Revisiting application offloads on programmable switches,” in
2022 IFIP Networking Conference (IFIP Networking), 2022.

[11] T. Bühler, R. Jacob, I. Poese, and L. Vanbever, “Enhancing global
network monitoring with magnifier,” in 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), 2023,
pp. 1521–1539.

[12] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The pro-
grammable data plane: Abstractions, architectures, algorithms,
and applications,” ACM Comput. Surv., vol. 54, no. 4, may 2021.

[13] J. Xing, Q. Kang, and A. Chen, “Netwarden: Mitigating network
covert channels while preserving performance,” in USENIX Secu-
rity, 2020.

[14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[15] D. Ding, M. Savi, and D. Siracusa, “Estimating logarithmic and
exponential functions to track network traffic entropy in p4,” in
Proc. of IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2020.

[16] Z. Xiong and N. Zilberman, “Do switches dream of machine
learning? toward in-network classification,” in Proceedings of the
18th ACM Workshop on Hot Topics in Networks, 2019, p. 25–33.

[17] F. Musumeci, A. C. Fidanci, F. Paolucci, F. Cugini, and M. Torna-
tore, “Machine-learning-enabled ddos attacks detection in p4 pro-
grammable networks,” Journal of Network and Systems Management,
vol. 30, no. 1, pp. 1–27, 2022.

[18] S. G. Macı́as, L. P. Gaspary, and J. F. Botero, “Oracle: An architec-
ture for collaboration of data and control planes to detect ddos
attacks,” in 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 2021, pp. 962–967.

[19] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification
for ml-based network security applications.” in NDSS, 2021.

[20] M. Zang, E. O. Zaballa, and L. Dittmann, “Sdn-based in-band ddos
detection using ensemble learning algorithm on iot edge,” in 2022
25th Conference on Innovation in Clouds, Internet and Networks (ICIN).
IEEE, 2022, pp. 111–115.

[21] M. Roshani and M. Nobakht, “Hybriddad: Detecting ddos flood-
ing attack using machine learning with programmable switches,”
in Proceedings of the 17th International Conference on Availability,
Reliability and Security, 2022, pp. 1–11.

[22] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “Ssh compro-
mise detection using netflow/ipfix,” ACM SIGCOMM computer
communication review, vol. 44, no. 5, pp. 20–26, 2014.

[23] A. Custura, R. Secchi, and G. Fairhurst, “Exploring dscp modifi-
cation pathologies in the internet,” Computer Communications, vol.
127, pp. 86–94, 2018.

[24] P. Illy, G. Kaddoum, K. Kaur, and S. Garg, “Ml-based idps en-
hancement with complementary features for home iot networks,”
IEEE Transactions on Network and Service Management, vol. 19, no. 2,
pp. 772–783, 2022.

[25] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martı́nez-del
Rincón, and D. Siracusa, “Lucid: A Practical, Lightweight Deep
Learning Solution for DDoS Attack Detection,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 876–889,
2020.

[26] C. Xu, J. Shen, and X. Du, “A method of few-shot network
intrusion detection based on meta-learning framework,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 3540–
3552, 2020.

[27] M. M. Alani, “Botstop: Packet-based efficient and explainable iot
botnet detection using machine learning,” Computer Communica-
tions, vol. 193, pp. 53–62, 2022.

[28] E. Min, J. Long, Q. Liu, J. Cui, , and W. Chen, “TR-IDS: Anomaly-
Based Intrusion Detection through Text-Convolutional Neural
Network and Random Forest,” Security and Communication Net-
works, 2018.

[29] X. Han, S. Cui, S. Liu, C. Zhang, B. Jiang, and Z. Lu, “Network
intrusion detection based on n-gram frequency and time-aware
transformer,” Computers & Security, vol. 128, p. 103171, 2023.

[30] B. Coelho and A. Schaeffer-Filho, “Backorders: Using random
forests to detect ddos attacks in programmable data planes,” in
Proceedings of the 5th International Workshop on P4 in Europe, 2022,
p. 1–7.

[31] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas, “Line-speed
and scalable intrusion detection at the network edge via federated
learning,” in 2020 IFIP Networking Conference (Networking), 2020,
pp. 352–360.

[32] D. Ding, M. Savi, and D. Siracusa, “Tracking normalized network
traffic entropy to detect ddos attacks in p4,” IEEE Transactions on
Dependable and Secure Computing, 2021.

[33] R. L. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer, D. Cho,
G. Elias, D. Klein, J. Ladd, O. Maor et al., “Scalable hierarchi-
cal aggregation and reduction protocol (sharp) tm streaming-
aggregation hardware design and evaluation,” in International
Conference on High Performance Computing. Springer, 2020, pp.
41–59.

[34] Y. Yuan, O. Alama, J. Fei, J. Nelson, D. R. Ports, A. Sapio,
M. Canini, and N. S. Kim, “Unlocking the power of inline
{Floating-Point} operations on programmable switches,” in 19th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 22), 2022, pp. 683–700.

[35] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “pheavy: Predicting heavy
flows in the programmable data plane,” IEEE Transactions on
Network and Service Management, vol. 18, no. 4, pp. 4353–4364, 2021.

[36] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Map4: A pragmatic framework for in-network machine learning
traffic classification,” IEEE Transactions on Network and Service
Management, 2022.

[37] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensous-
sane, A. Bernabeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilber-
man, “Iisy: Practical in-network classification,” arXiv preprint
arXiv:2205.08243, 2022.

[38] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of in-
telligent network data plane,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023.

[39] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches
by knowledge distillation,” in IEEE INFOCOM 2022, 2022.

[40] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Van-
bever, “pforest: In-network inference with random forests,” arXiv
preprint arXiv:1909.05680, 2019.

[41] J.-H. Lee and K. Singh, “Switchtree: in-network computing and
traffic analyses with random forests,” Neural Computing and Appli-
cations, pp. 1–12, 2020.

[42] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi,
P. Costa, H. Haddadi, and R. Bifulco, “Re-architecting traffic
analysis with neural network interface cards,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022.

[43] K. Razavi, G. Karlos, V. Nigade, M. Mühlhäuser, and L. Wang,
“Distributed dnn serving in the network data plane,” in Proceed-
ings of the 5th International Workshop on P4 in Europe, 2022, p. 67–70.

[44] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Vargaftik, Y. Ben-
Itzhak, and N. Zilberman, “Automating in-network machine
learning,” arXiv preprint arXiv:2205.08824, 2022.

[45] T. Swamy, A. Zulfiqar, L. Nardi, M. Shahbaz, and K. Olukotun,
“Homunculus: Auto-generating efficient data-plane ml pipelines
for datacenter networks,” arXiv preprint arXiv:2206.05592, 2022.

[46] C. B. Serna and C. Mas-Machuca, “Preventing control plane over-
load in sdn networks with programmable data planes,” in 2022
18th International Conference on Network and Service Management
(CNSM), 2022.

[47] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and
practice of bloom filters for distributed systems,” IEEE Communi-
cations Surveys & Tutorials, vol. 14, no. 1, pp. 131–155, 2011.

[48] P. Manzanares-Lopez, J. P. Muñoz-Gea, and J. Malgosa-Sanahuja,
“Passive in-band network telemetry systems: The potential of pro-
grammable data plane on network-wide telemetry,” IEEE Access,
vol. 9, pp. 20 391–20 409, 2021.

[49] G. Combs, “Tshark - dump and analyze network traffic,”
2022, [Accessed: 30-Nov-2022]. [Online]. Available: https://www.
wireshark.org/docs/man-pages/tshark.html

[50] Apache Software Foundation, “Apache Thrift,” 2022, [Accessed:
30-Jun-2023]. [Online]. Available: https://thrift.apache.org/

[51] The P4.org API Working Group, “P4Runtime Specification,”
2022, [Accessed: 30-Jun-2023]. [Online]. Available: https://p4.
org/p4-spec/p4runtime/main/P4Runtime-Spec.html

[52] Open Networking Foundation, “Behavioral Model Source
Code,” 2022, [Accessed: 30-Jun-2023]. [Online]. Available:
https://github.com/p4lang/behavioral-model

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://thrift.apache.org/
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://github.com/p4lang/behavioral-model

16

[53] Mininet Project Contributors, “Mininet,” 2022, [Accessed: 30-Jun-
2023]. [Online]. Available: http://mininet.org/

[54] Luis Augusto Dias Knob, “P4DDLe source code,” 2023, [Accessed:
30-Jun-2023]. [Online]. Available: https://github.com/risingfbk/
p4ddle

[55] R. Doriguzzi-Corin, “LUCID source code,” https://github.com/
doriguzzi/lucid-ddos, 2020, [Accessed: January 5, 2024].

[56] Antonin Bas, “Behavioral Model Thrift Source Code,” 2022,
[Accessed: 30-Jun-2023]. [Online]. Available: https://github.com/
p4lang/behavioral-model/tree/main/thrift src

[57] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,
“Developing realistic distributed denial of service (ddos) attack
dataset and taxonomy,” in 2019 International Carnahan Conference
on Security Technology (ICCST). IEEE, 2019, pp. 1–8.

[58] University of New Brunswick. (2019) DDoS Evaluation
Dataset. [Online]. Available: https://www.unb.ca/cic/datasets/
ddos-2019.html

[59] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “To-
wards a reliable intrusion detection benchmark dataset,” Software
Networking, vol. 2018, no. 1, pp. 177–200, 2018.

[60] R. Doriguzzi-Corin, “Lucid dataset parser,”
https://github.com/doriguzzi/ lucid-
ddos/blob/master/lucid dataset parser.py.

[61] Open Networking Foundation, “Performance of bmv2,” 2019,
[Accessed: 30-Jun-2023]. [Online]. Available: https://github.com/
p4lang/behavioral-model/blob/main/docs/performance.md

[62] P. Jurkiewicz, G. Rzym, and P. Boryło, “Flow length and size dis-
tributions in campus internet traffic,” Computer Communications,
vol. 167, pp. 15–30, 2021.

[63] Imperva, “LOIC,” [Accessed: 31-Oct-2023]. [Online]. Available:
https://www.imperva.com/learn/ddos/low-orbit-ion-cannon/

[64] Imperva, “HOIC,” [Accessed: 31-Oct-2023]. [Online]. Available:
https://www.imperva.com/learn/ddos/high-orbit-ion-cannon/

[65] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection,” Computers & Security, vol. 31, 2012.

[66] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traf-
fic Characterization,” in Proc. of ICISSP, 2018.

[67] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization.” ICISSp, vol. 1, pp. 108–116, 2018.

http://mininet.org/
https://github.com/risingfbk/p4ddle
https://github.com/risingfbk/p4ddle
https://github.com/ doriguzzi/lucid-ddos
https://github.com/ doriguzzi/lucid-ddos
https://github.com/p4lang/behavioral-model/tree/main/thrift_src
https://github.com/p4lang/behavioral-model/tree/main/thrift_src
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
https://www.imperva.com/learn/ddos/low-orbit-ion-cannon/
https://www.imperva.com/learn/ddos/high-orbit-ion-cannon/

	Introduction
	Related Work
	ML-based In-network Traffic Classification
	Interaction between Control Plane and Data Plane
	Efficient Feature Extraction in the Data Plane

	Background
	Data Plane Programming with P4
	Counting Bloom filters
	Neural network architecture

	System Architecture
	Core logic
	Registers
	Memory Management
	Control-Data Plane interaction

	Experimental setup
	Dataset
	Evaluation metrics

	Evaluation Results
	Simulation Scenario
	Bloom filter size
	Maximum number of collected packets per flow

	Emulated Scenario
	Collected Flows and sFNR
	Flow quality
	Temporal evolution

	Control Plane performance

	Conclusion
	References

