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Abstract

The benefits of livestock breeders are usually closely related to the weight of

their animals. In this paper we present a method to anticipate the weight of

each animal provided we know the past evolution of the herd. Our approach

exploits the geometrical relationships of the trajectories of weights along the

time. Starting from a collection of data from a set of animals, we learn a

family of parallel functions that fits the whole data set, instead of having one

regression function for each individual. In this way, our method enables animals

with only one or a few weights to have an accurate estimation of their future

evolution. Thus, we learn a function F defined on the space of weights and

time that separates the trajectories in such a way that F has constant values

on each trajectory. The key point is that the specification of F can be done in

terms of ordering constraints, in the same way as preference functions or ordinal

regressors. Therefore, F can be obtained from a classification SVM (Support

Vector Machines). To evaluate the method, we have used a collection of real

world data sets of bovines of different breeds and ages. We will show that our

method outperforms the separate regression of each animal when there are only

a few weights available and we need medium or long term predictions.
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1. Introduction

The estimation of the weight of bovines, and other livestock, as a function

of time is very important for breeders. The efficiency of growth determines the

economic benefits not only in beef cattle, but also in dairy bovines (Arango and

Van Vleck, 2002).

There are different approaches to study weight evolutions in the literature.

In (West et al, 2001), the biological fundamental principles of the growth of

many diverse species are emphasized. They show that it is possible to fit the

same sigmoid for cows, pigs, guppies or shrimps, provided that it is performed

a transformation of time and weight data to a common dimensionless scale.

The estimation of the weight of bovines has been studied since a long time

ago; see, for instance (Enevoldsen and Kristensen, 1997). The use of Artificial

Intelligence tools to predict beef cattle scores is not new. In (González-Velasco

et al., 2011) and (Alonso et al., 2007) assessment functions for beef cattle are

presented. Moreover, to estimate live weights of bovines in (Stajnko et al., 2008;

Tasdemir et al., 2011a,b) the authors used digital image processing procedures.

A different point of view is used when the objective is the selection of stud

bulls. In this case, the bulls are housed together in central evaluation stations;

they stay there for several months, depending of the management policies of

breeds and beef markets requirements. During that time each bull is weighted

approximately every 15 or 30 days; at the end of the testing period, bulls are

ranked according to their genetic merits. The methods used to compute this

ranking include the use of a pedigree tree in order to consider not only the

observed rate of weight gain, but mainly the capability of bulls to transmit

genetically that gain to their progeny (Meyer, 2002a,b, 2005; Schenkel et al.,

2002; Freetly et al., 2011). A comparison of different genetics methods can be

seen at (Jaffrézic and Pletcher, 2000).

2



In this paper we are concerned with finding accurate predictions of weights of

beef cattle, neither for the whole specie nor for the expectations of the progeny.

We want to anticipate the weight of each single animal in order to improve the

incomes of breeders (Dı́ez et al., 2003; Alonso et al., 2007, 2013), given that

market prices follow a well known annual cycle.

The approach proposed in this paper exploits the geometrical relationships

of the trajectories of weights along the time. Starting from a collection of data

from a set of animals, we learn a family of parallel functions that fits the whole

data set, instead of having one regression function for each individual. In this

way, our method enables animals with only one or a few weights to have an

accurate estimation of their future evolution. To learn this family of functions,

in the next section, we describe how to build a classification data set. The idea

is to deal with an ordering of the trajectories in the same way used to learn

ordinal regression (Herbrich et al., 2000; Herbrich, 2002; Alonso et al., 2008) or

to learn preferences (Joachims, 2002; Bahamonde et al., 2004); see also (Schultz

and Joachims, 2003).

To evaluate the performance of the method, we have used real world data

sets of bulls and cows of different breeds and ages. Of special interest are the

results achieved with young bulls of Asturiana de los Valles, a beef breed of

the North of Spain. We will show that, in all cases, our method outperforms

the individual regression of each animal, in special when there are only a few

weights available and we need reliable medium or long term (more than 100

days) predictions.

2. Material and methods

2.1. Data

In the research reported in this paper we used several real world data sets

of bovines of different breeds and ages. A data set of 351 Angus bulls from the

Indiana Beef Evaluation Program (IBEP). All animals have 6 weights recorded

taken at ages 180 to 509 days.
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A second data set of 822 bulls of Asturiana de los Valles with more than 5

weights after the adjustment period. They have from 5 to 11 weights (after the

adjustment period), but most of them (557 animals) have 6. The ages of the

animals range from 241 to 508 days.

Finally, a third data set obtained from Meyer’s program to compute the

relative genetic merits (Meyer, 2002a). The data includes the weights of a

group of cows from the Wokalup Selection Experiment in Western Australia.

We only considered the records of the animals (358) with at least 2 weights; the

maximum number of weights is 6 recorded between 19 and 82 months.

2.2. The method of weight trajectories

Let us consider a set B of bovines. For each animal we have recorded a

number of weights. The whole data available can be represented by a set of

pairs (wai, dai) where wai is the ith weight of the animal a taken when it was

dai days old.

A first attempt to generalize these data consists in computing one regres-

sion function fa for each animal trying to optimize the loss produced by the

differences

wan − fa(dan),∀ a ∈ B (1)

Provided that for each animal a ∈ B we want to predict its weight wan at

day dan.

However, if we want to be able to estimate the weight of a new animal (not in

B), we have two options. If we have obtained reasonably good approximations

with the family (fa : a ∈ B), and these family of functions belong to the same

class, say linear for instance, then we can try to induce a new regressor of

the same class for the new animal. Unfortunately, faithful regressors need a

large collection of observations, and in this case this requires time, what it

is contradictory with our intention of anticipating the weight in future days.

Additionally, the acquisition of data is costly and in general a risky task both
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for people and for the animals that become stressed during weighting sessions

(Goyache et al., 2001).

The second option consists in trying to generalize somehow the set (fa : a ∈ B)

to obtain a kind of universal function able to estimate the weight of any animal

at any time. It is not clear how to do this; and, on the other hand, it is necessary

to consider individual differences: in some cases they are really important. But

if we were able to devise a method to take advantage of all pairs (wai, dai) at

the same time, we can wait an improved generalization performance, since the

number of such pairs in practice is usually high.

The method that we are proposing in this paper emphasizes the role of the

trajectories followed in the space of weights and days (W x D) by the successive

weights of the animals. Thus, we first look for a function F : W x D → < able

to separate the trajectories considered as subsets of W x D. In other words, a

function F such that

F (w, d) = constant (2)

defines implicitly all reasonable trajectory for the weights of the animal (see

Fig. 1).

Then, given a set of measurements of an animal a, {(wak, dak) : k = 1, . . . , n−

1)}, we define the constant for its trajectory as the average of F values obtained

on each point. In symbols,

constanta =
1

n− 1

n−1∑
k=1

F (wak, dak) (3)

Therefore, to estimate wan, the weight of the animal at day dan, we only

need to obtain from (2) the explicit version of the function relating w and d.

Returning to the optimization problem of (1), to express it in terms of F ,

we need to constraint the form of this function. So, let us assume that F (w, d)

is a linear combination of the first argument and a general function of d, say

g(d); that is,

F (w, d) = α w + g(d), α ∈ < (4)
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Figure 1: Herd trajectory found for Asturiana de los Valles; comparison with three sample

animals. Trajectories of each animal can be obtained from herd trajectory and a constant

value.

Then, we have that the explicit version of the function that predicts the

weights of the animal a, fa, is given by

fa(d) =
1

α

(
1

n− 1

n−1∑
k=1

F (wak, dak)− g(d)

)
(5)

Therefore,

wan − fa(dan) = wan −
1

α

(
1

n− 1

n−1∑
k=1

F (wak, dak)− g(dan)

)
= (6)

=
1

α

(
F (wan, dan)− 1

n− 1

n−1∑
k=1

F (wak, dak)

)

Hence, the deviation in weight predictions of a given animal is proportional

to the deviations of F values on the weight-day points of the weight trajectory

of that animal. In other words, the minimization of (1) can be achieved if we

6



are able to ensure the uniformity of F values on the weight trajectories of the

animals. For this purpose we propose a heuristic approach. Since we do not

know the right value of F (w, d) for any (w, d), we are going to ask F to fulfill

a set of constrains. Let us consider two animals a and b weighted the same

sequence of days (di = 1, . . . , n − 1), then we say that the trajectory of a is

higher than that of b if and only if

wai > wbi ,∀ i = 1, . . . , n− 1 (7)

In this case we ask F to fulfill the constraints:

F (wai, di) > F (wbj , dj) ,∀ i, j = 1, . . . , n− 1 (8)

If the dates of weights are not exactly the same, we can approximate the

values by means of interpolation, and then we can decide if the trajectories of

two animals have any comparative relationship or not. Notice that interweaving

trajectories will not yield to any constrain like those in equation (8).

2.3. The classification data set entailed by a set of relative comparisons

In this section we are going to see how a set of relative comparisons, as those

of equation (8), give rise to a classification data set. The idea is that a classifier

induced by a SVM provides a function F that satisfies as many constraints

(expressed as relative comparisons) as possible. The approach followed is not

new, see for instance (Schultz and Joachims, 2003); sometimes this method was

used to learn ordinal regression (Herbrich et al., 2000) or to learn preferences

(Joachims, 2002; Bahamonde et al., 2004).

For ease of reference, let us consider a finite set R of relative comparisons of

F values given by

F (wr1, dr1) > F (wr2, dr2) ,∀ r ∈ R (9)

If we assume that F is a linear function, there is a vector
→
c= (c1, c2) such

that F (w, d) =
→
c (w, d) = c1 w + c2 d . And then, the comparisons can be

expressed as

F (wr1 − wr2, dr1 − dr2)) > 0 ,∀ r ∈ R (10)
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or equivalently,

F (wr1 − wr2, dr1 − dr2)) > 0, F (wr2 − wr1, dr2 − dr1)) < 0 ,∀ r ∈ R (11)

Therefore, from a geometrical point of view, the function F represents the

distance to the hyperplane (of vectors perpendicular to
→
c ) multiplied by the

norm of
→
c . The search of

→
c is a NP-hard problem; however, it is possible to

approximate the solution like in classification Support Vector Machines (Vapnik,

1998). More formally, the search for a reliable function linear F satisfying (9)

can be expressed as an optimization problem for margin maximization. We

must

minimize V (
→
c , ξ) =

1

2

∥∥∥→c ∥∥∥2 + C
∑
r∈R

ξr (12)

subject to ∀r ∈ R, →c (wr1 − wr2, dr1 − dr2) > 1 + ξr

∀r ∈ R, ξr ≥ 0

where C is a parameter that allows trading-off margin size against training

error.

From a practical point of view, the classification data set is built with the

positive differences (vectors of the form (wr1 − wr2, dr1 − dr2) and class +1),

and the negative differences (vectors of the form (wr2−wr1, dr2−dr1) and class

-1). Table 1 shows a sample of how to generate instances of a data set from the

measurements of an animal. The hyperplane that separates these two classes

defines the function F subject to the relative comparisons of (9).

3. Experimental results

We have conducted a number of experiments to evaluate our method with

real world data sets. For this purpose, given a set of weight-days trajectories,

we compared the predictions of our method with those found after fitting, for

each animal, one regression function. We are assuming that we only knew a

reduced set of weights. So, we consider only the first 2 weights of each animal,

or the first 3 or 4 and finally we consider the performance in the assumption

8



Table 1: Example of how to build instances of a data set from pairs (weight, age) of measure-

ments of an animal

Measurements Instances

Weight(Kg) Age(days) Weight1 - Weight2 Age1 - Age2 Class

255 213 468-337 397-304 +1

337 304 468-255 397-213 +1

468 397 337-255 304-213 +1

337-468 304-397 -1

255-468 213-397 -1

255-337 213-304 -1

that we knew all the weights but the last one. Weights are taken in ascending

order of the animals’ ages. In all cases the target weight is the last weight

recorded for each animal. The idea is to discuss the differences in performance

of the proposed method and the alternative of considering a regression for each

animal separately. We show that for a few measurements of the animals, the

proposed method outperforms the separate regression while this approach is

better when we have a lot of weights of each animal.

3.1. Experiment settings

The scores shown in Tables 2, 3 and 5 were obtained separating the available

set of animals in a train set (75%) and a test set (25%). We used the test sets

to assess the performance of the predictions. So if

S = {(x1, y1), . . . , (xn, yn)}

is a testing dataset, the performance of a function f will be measured by MAPE

(mean absolute percentage error) and RMSE (root mean square error) defined

as follows:

MAPE(S, f) =
100

n

n∑
i=1

|f(xi)− yi|
yi

(13)
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Table 2: Comparison scores obtained with data of 351 Angus bulls from Performance Sum-

maries of the Indiana Beef Evaluation Program. We compare the final weight of each animal

with the weight predicted if we knew only the first weights recorded. Weights are taken in

ascending order of the animals’ ages.

SVM Linear Regression Adv.

#weights MAPE(%)a RMSE(Kg) MAPE(%) RMSE(Kg) daysb

1 3.9 ± 3.0 61.4 n/a n/a 147

2 3.6 ± 2.7 57.1 8.3 ± 6.1 136.3 125

3 3.3 ± 2.5 52.9 4.6 ± 3.7 76.2 97

4 3.1 ± 2.2 49.0 3.8 ± 2.6 59.0 62

n-1c 2.8 ± 1.9 43.7 2.7 ± 1.8 41.4 34

a Mean±std (standard deviation)

b Average number of days in advance to last weight

c All weights but the last one

RMSE(S, f) =

√√√√ 1

n

n∑
i=1

(f(xi)− yi)2 (14)

During the experiments, we used SVMlight (Joachims, 1999) with the default

parameters and a linear kernel. The classifying training set was formed com-

paring the trajectories of each animal with other trajectories randomly selected

until we obtained 10 animals with higher or lower trajectories. The number 10

it is not critical at all; we chose 10 to obtain manageable sizes of training set,

but the results were almost the same when we changed this parameter.

In all cases discussed here, the expression for the function g of the days

(see equation (4)) was linear; we tested polynomial expressions, but the results

were worse. The reason is that bovines below 18 months follow a linear weight

trajectory, what is the case of the animals involved in the experiments reported

in Tables 2 to 4. Notice that due to beef market requirements, bulls are usually

slaughtered before they reach the age of 18 months; therefore, it is difficult
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Table 3: Comparison scores obtained with data of 776 bulls from the evaluation station of the

Association of Breeders of Asturiana de los Valles (ASEAVA). We compare the final weight

of each animal with the weight predicted if we knew only the first weights recorded. Weights

are taken in ascending order of the animals’ ages.

SVM Linear Regression Adv.

#weights MAPE(%)a RMSE(Kg) MAPE(%) RMSE(Kg) daysb

1 5.3 ± 4.4 37.0 n/a n/a 141

2 4.9 ± 4.1 34.0 9.2 ± 9.6 37.7 115

3 4.5 ± 3.7 30.1 5.2 ± 4.8 24.9 89

4 4.0 ± 3.3 26.0 3.6 ± 3.0 18.2 61

n-1c 3.4 ± 2.7 21.9 2.0 ± 1.7 13.0 18

a Mean±std (standard deviation)

b Average number of days in advance to last weight

c All weights but the last one

to have data about older bulls. Thus, to deal with older bovines, they must

be cows, as in the data set used to compute Table 5 ; however in this case

we again obtained a linear relation between days and weights, although with

a quite different slope. The ages of cows range from 19 to 82 months, but we

only have available one weight per year; that is, a maximum of 6 measurements

for animal; this make difficult the possibility of fitting other kind of nonlinear

curves.

3.2. Results and discussion

In Table 2 we report the scores achieved with a data set of Angus bulls

(351 animals) from the Indiana Beef Evaluation Program. The family of linear

functions found by SVM on training set has a common slope of 3.73, while the

average gain, computed for the same set, was 3.71 pounds (1.68 Kg) per day.

The scores obtained with Asturiana de los Valles have being reported in

Tables 3 and 4. We have separated two sets of data. In the first one we included
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Table 4: Comparison scores obtained with a control set of 46 bulls from the evaluation station

of the Association of Breeders of Asturiana de los Valles (ASEAVA). We compare the final

weight of each animal with the weight predicted if we knew only the first weights recorded.

Weights are taken in ascending order of the animals’ ages.

SVM Linear Regression Adv.

#weights MAPE(%)a RMSE(Kg) MAPE(%) RMSE(Kg) daysb

1 5.0 ± 3.7 32.1 n/a n/a 128

2 4.9 ± 3.8 32.5 11.8 ± 7.6 71.2 117

3 4.9 ± 4.0 33.0 12.6 ± 11.0 79.5 104

4 4.9 ± 3.9 32.4 7.9 ± 6.7 49.2 89

5 4.7 ± 3.8 31.5 6.4 ± 5.8 40.8 76

6 4.5 ± 3.6 30.0 5.0 ± 4.1 30.9 60

7 4.2 ± 3.4 28.2 3.6 ± 3.1 23.3 47

n-1c 3.9 ± 3.3 26.8 3.3 ± 3.1 22.1 15

a Mean±std (standard deviation)

b Average number of days in advance to last weight

c All weights but the last one

bulls from the initial date until November of last year; this sums 776 animals.

They have from 5 to 11 weights (after the adjustment period), but most of

them (557 animals) have 6. Table 3 collects the scores achieved with these data

separating a train set of 75% and a test set of 25%. The second set, with 46

bulls born after November, was used as control set to test if what was learned

with bulls of previous generations can be extended to future generations. The

results are reported in Table 4, and exhibit the same kind of scores of Tables 2

ad 3. The slope of the linear relation of weights and days found by our method

in the train set was 1.27, while the average weight gain was 1.23 kg per day.

Finally, Table 5 shows the scores obtained with the data set provided with

Meyer’s program to compute the relative genetic merits (Meyer, 2002a). We
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Table 5: Comparison scores obtained with 358 weights of beef cow from the Wokalup Selection

Experiment in Western Australia. We compare the final weight of each animal with the weight

predicted if we knew only the first weights recorded. Weights are taken in ascending order of

the animals’ ages.

SVM Linear Regression Adv.

#weights MAPE(%)a RMSE(Kg) MAPE(%) RMSE(Kg) mo.b

1 9.3 ± 6.7 72.4 n/a n/a 54.1

2 9.5 ± 7.2 70.6 42.5 ± 32.9 336.1 43.4

3 8.6 ± 6.0 62.1 16.7 ± 13.6 136.1 32

n-1c 8.3 ± 5.9 60.4 10.2 ± 8.5 83.2 12.8

a Mean±std (standard deviation)

b Average number of months in advance to last weight

c All weights but the last one

only considered the records of the animals (358) with at least 2 weights; the

maximum number of weights is 6. As was mentioned above, the slope found

by SVM for weights and months (in this case time is measured in months) is

3.83, while the average gain was 4.70 kg per month. In this case, the difference

of these values is higher than those found for young Angus or Asturiana de los

Valles. Notice also the difference of slopes due to the older age of Wokalup cows.

3.3. Anticipation

To give a measure of the relevance of weight predictions, we included in all

Tables (2 to 5) a column to display the difference in days (or months in the

case of Table 5) from the last weight used to make the predictions and the date

of the target weight. Thus, we observe that our approach outperforms linear

regressions when the problem was to anticipate weights more than 100 days;

the differences become lower until we have about 60 days to the target weight

is farther; below this number of days, it is preferable to use linear regression,

although in this case, the prediction problem is uninteresting: you can simply
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Figure 2: Comparative error charts showing the MAPE scores reported in tables 2 to 5

to compare the predictions of our method (based on SVM) with those found using linear

regression.

wait and see the final weight. The case of older cows reported in Table 5 is a bit

different; here our approach has lower average differences in all cases, although

the margin with linear regression becomes narrower when we have to predict

the weight one year before knowing the evolution of the previous years.

4. Conclusions

We have presented a method to anticipate the weights of livestock alterna-

tive to regression. Starting from a collection of weight trajectories along the

time of a set of similar animals, we described a method to build a training set

for a classification SVM in such a way that the hyperplane that separates the
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two classes defines implicitly the family of functions that estimate the weight

of each animal having available only a small number of previous weights. To

evaluate the method we have carried out several experiments with real world

data sets of weight trajectories of bovines of different breeds and different ge-

ographical environments. These experiments reported that our method has a

higher accuracy than the individual regression of each animal, especially when

there are only a few weights available and we need reliable medium or long term

predictions.
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