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Abstract 
This research proposes a new model for the generation of basic soil information maps for precision 

agriculture based on multitemporal remote sensing data analysis and GIS spatial data modelling. It 

demonstrates (i) the potential of multitemporal soil pattern analysis (ii) to generate functional soil maps 

at field scale based on soil reflectance patterns and related soil properties and (iii) how to improve 

these soil maps based on the identification of static homogenous soil patterns by excluding temporal 

influences from the developed prediction model. Principal components and per-pixel analyses are 

used for the separation of static soil pattern from temporal reflectance pattern, influenced by (vital and 

senescent) vegetation and land management practices. The potential of the proposed algorithm is 

investigated using multitemporal multispectral RapidEye satellite imagery at a demonstration field 

“Borrentin” field in Northeast Germany. 

 

Keywords: Precision agriculture; site-specific management; remote sensing; GIS; multitemporal; soil 

pattern; spatiotemporal variability; bare soil; organic matter; 

 

1 Introduction 

 

Soil maps provide basic knowledge regarding soil-landform interactions and soil variability across 

diverse landscapes (Zhu et al. 2013). Qualitative and quantitative soil data at different scales 

(landscape- or field-scale) are increasingly desired for (1) general policy-making, land resource 

management and environmental monitoring and (2) more precise applications in precision agriculture, 

hydrological modelling and soil landscape studies (Franzen et al. 2002; Lin et al. 2005a; Lin et al. 

2005b; Robert 1993). 

The concept of precision agriculture is based on the presence of temporal and spatial within-field 

variability of soil and crop characteristics (Zhang et al. 2002). Precision agriculture responds to this 

variability with fine-scale information-based optimization of farm inputs (e.g., fertiliser, herbicides, and 

seeds) to increase farm profitability, crop productivity, environmental quality and sustainability (Ge et 

al. 2011; Mulla 2013). The nucleus of site-specific management (SSM), a common precision 

agriculture practice, is the identification of (crop) management zones as “relatively homogenous sub-

units of farm fields that can each be managed with a different, but uniform, customised management 

practice” (Mulla 2013). Management zones usually reflect within-field variability at scales finer than soil 

mapping units in the form of soil pattern or vegetation pattern. Addressing site-specific variability 

requires more specific information regarding the soil properties (i.e., mapped on functional soil maps) 
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than can be offered by traditional soil maps based on conceptual generalization-models of remotely 

sensed data, direct field survey, and special knowledge of soil, terrain, geology, vegetation and human 

factors (Zhu et al. 2013). 

In recent years, numerous quantitative soil mapping models and approaches for the determination of 

soil properties at the field-scale based on DEM, proximal and/or remote sensing data have been 

developed. Spatial and geostatistical techniques, such as inverse distance calculations, various 

kriging-procedures, fuzzy clustering algorithms (Birrell et. al. 1996; Gotway et al. 1996; Guo et al. 

2013; Liu et al. 2008; López-Granados et al. 2005; Sumfleth and Duttmann 2007; Triantafilis et al. 

2009; Yan et al. 2007; Zhu et al. 2013), can transfer punctual quantitative soil property data to fine-

scale soil maps, depending on the sampling strategy and the accuracy of the extensive, time-

consuming and costly field survey. Non-invasive proximal and remote sensors and their corresponding 

physical-based or empirical-based data analysis methods have been approved as potentially effective, 

rapid and cost efficient (Mulder et al. 2011) and provide continuous, direct or indirect data on 

physiochemical soil properties depending on spatial, temporal or spectral sensor resolution. Several 

studies have analysed the relationships between soil reflectance characteristics, such as soil colour 

and soil brightness/lightness, and soil properties (Hummel et al. 2001; Viscarra Rossel et al. 2006; 

Viscarra Rossel et al. 2009; Singh et al. 2004; Spielvogel et al. 2004). 

Ge et al. (2011), Mulla (2013), Plant (2001), Panda et al. (2010) and Zhang et al. (2002) offer a 

research overview of proximal sensing systems (e.g., spectroscopy, soil electrical conductivity 

sensors, and NIR-sensors) and remote sensing systems (e.g., multi- and hyperspectral satellite 

sensors and LIDAR based DEMs), as well as their applications in agriculture and soil science, 

including crop yield, biomass, crop nutrients, water stress, infestations of weeds, insects and plant 

diseases, hail or wind damage and especially soil properties (e.g., organic matter, moisture, texture, 

pH, nitrogen, salinity, and cation exchange capacity). 

Although quantitative information regarding soil properties could not be measured directly using 

qualitative multispectral data methods (e.g., colour composites, band ratios, indices, and 

transformations), there are several advantages to the use of multispectral (low-spectral-resolution) 

data for SSM applications: (1) very high return frequency, (2) spatial resolution, (3) existing data 

archives, (4) relatively low costs and (5) accessibility. The cause of high-temporal and high-spatial 

resolution multispectral imagery and time-series are suited for information extraction of qualitative 

determinations, delineation of management zones, deriving soil patterns and determining and 

mapping soil surface units (Ge et al. 2011; Mulder et al. 2011). 

Sommer et al. (2003) remarked that in addition to technical and methodical progress, a deeper 

understanding of temporal-spatial variability and soil pattern properties as well as the underlying 

development processes is still highly demanded, especially for choosing best-SSM practices. 

McBratney (2000; 2003) reviewed various hybrid approaches of quantitative soil pattern analysis. 

For precision agriculture application in Germany, Lamp et al. (2001; 2002) presented the concept of 

“Digitale Hofbodenkarte” as a data fusion model based on field surveys, existing soil maps (e.g. 

Bodenschätzung 1:10.000), proximal sensors (EM38-sensor, NIR-sensor) and products of remote 

sensing (e.g., soil, phenology, yield maps). Because ECa is sensitive to numerous soil properties, 

such as texture (i.e., clay content), mineralogy, soil moisture and salinity (Corwin and Lesch 2005), its 
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use may be problematic in hilly to undulating young morainic soil landscapes composed of closely 

linked wet, boggy depressions and kettle holes with loamy, clayey peaks and plateaus, such as in 

north-eastern Germany (Lamp et al. 2004). 

 

We present a model for functional soil mapping at the field-scale for precision farming based on 

multitemporal remote sensing data analysis and GIS spatial data modelling. The objectives are (i) to 

demonstrate the potential of multitemporal soil pattern analysis in comparison with monotemporal 

analysis, (ii) to generate functional soil maps based on identified soil reflectance patterns and related 

soil properties, and (iii) to improve these soil maps based on the detected static homogenous soil 

pattern. For data mining purposes, NDVI-thresholds and phenological data were used to select the 

most suitable RapidEye datasets out of 40. Because of the high spatial and temporal resolution of the 

multispectral imagery, the temporal-spatial static soil pattern could be derived using image-processing 

methods, such as standardized principal components analysis and per-Pixel-algorithms. This allowed 

the production of a highly significant functional soil map with respect to organic matter for the field 

outside of Borrentin in northeast Germany. 

 

2 Materials & Methods 

 

2.1 Study area 

 

The multitemporal soil pattern approach was tested on a 131-ha agrarian field (53°48′9′′N, 12°58′13′′E) 

directly south of the village of Borrentin and 12 km south of Demmin in the north-eastern lowlands of 

Germany. The “Borrentin” field is located in the intensively used agricultural state Mecklenburg-

Western Pomerania, consisting of 80.3% farmland, 19.5% grassland/pastureland and 0.2% other 

agrarian land use. In 2012, the main crops were cereal crops (55.5%), feed crops (19.3%), oleaginous 

fruits (18.6%), root crops (3.6%), legume crops (0.4%) and others (2.6%) (Statistisches Landesamt 

Mecklenburg-Vorpommern 2013). 

Due to its geomorphological features, including (sandy-) loamy morainic parent material of the late 

Pleistocene, kettle holes and slightly undulated relief, the study site is characteristic of the young 

morainic soil-landscape of northern Germany (Bundesanstalt für Geowissenschaften und Rohstoffe 

2006). Stagnosols, Luvisols and their transitional types evolved from unconsolidated glacial till and 

colluvial soils from eroded loamy material or deposits over former bogs (Zentrales Geologisches 

Institut 1942; Bundesanstalt für Geowissenschaften und Rohstoffe 2006). The elevation ranges 

between 39.3 m and 52.1 m above sea level (mean: 42.4 m; std. dev.: 2.4 m), and slope angle 

between 0° and 7° (mean: 1.1°, std. dev.: 1.1) (Bundesamt für Kartographie und Geodäsie 2014). At 

the field-scale, the “Borrentin” field has a low depression from southwest to northeast, with a high 

concentration of kettle holes and a more textured south-easterly adjacent area with relatively steep 

slopes and a few kettle holes concentrated in gullies (Figure 1) (Bundesamt für Kartographie und 

Geodäsie 2014). 
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Hydrologically, the Borrentin field drains subterraneously via a natural slope gradient from southwest 

to northeast, crossing the depression towards the creek “Galgenbach”, which flows into the River 

Peene 3 km northeast of the 32-km² Kummerower Lake (Bundesamt für Kartographie und Geodäsie 

2012). The present climate is characterized by a long-term (1981-2010) mean temperature of 8.7° C 

and mean precipitation of 584 mm/yr, measured at the Teterow weather station, 26 km west of 

Borrentin (DWD 2014a, DWD 2014b). 

 
Figure 1: Digital Elevation Model (resolution: 10 m) of Field Borrentin (Bundesamt für Kartographie und Geodäsie 2014) 

 

In general, the study area is located at the test site of DEMMIN® (Durable Environmental 

Multidisciplinary Monitoring Information Network; upper left corner: 54°2′N, 12°52′E, lower right corner: 

53°45′N, 13°27′E), which was installed in 1999 by the German Aerospace Centre (DLR) as a 

calibration and validation test site for national and international remote sensing missions. Since the 

installation of the TERENO North-eastern German Lowland Observatory (TERENO-NE) in 2011, 

managed by the German Research Centre for Geosciences Potsdam (GFZ), both institutions have 

cooperated in the region of Demmin. The primary objective of TERENO is long term monitoring (>15 

years) and analysis of environmental change. Further specific goals of the TERENO remote sensing 

research group at GFZ are (1) supplying environmental data for algorithm development in remote 

sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) 

practical tests of remote sensing data integration in agricultural land management practices. 

 

2.2 Baseline data 

 

For model generation and validation as well as data interpretation, comprehensive soil sampling and 

analysis were conducted. Table 1 shows all input data and their specific characteristics. 

 
Table 1: Baseline data and specific data characteristics 
Category Data Characteristics 
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Remote 
Sensing 

RapidEye 
Source: RapidEye Science Archive (RESA) & German Aerospace 

Centre (DLR) 

• Spectral bands: 5 (B, G, R, RE, NIR) 

• 2009: 8 (April - September) 

• 2010: 6 (June - October) 

• 2011: 16 (March - November) 

• 2012: 10 (January - October) 

Ground 
truth 

Phenological data 

Source: German weather service (DWD) (DWD 2013) 

• Observation stations: 5 (Dargun, Greifswald, Teusin, Tuetpatz, Tutow) 

• Initial date for each phenological macro stage per crop 

Crop data 

Source: Agrarservice Vorpommern GmbH 
• Crop information (crop type) 

Meteorological data (precipitation) 

Source: German weather service (DWD) (DWD 2014a) 

• Greifswald meteorological station  

Soil data 
Source: German Research Centre for Geosciences Potsdam (GFZ) 

• Soil surface mixed sample: 170 

• Soil properties: texture, soil acidity, organic matter content, and CaCO3 

 

2.2.1 Remote sensing data 

To analyse the complexity of the soil and vegetation reflectance patterns, a multispectral, state-of-the-

art sensor with high spatial and temporal resolution was needed. Due to its 5.5 days return frequency 

(at nadir), 6.5 m spatial resolution and the accessibility of the existing data archives, the RapidEye 

satellite system was chosen. In total, 43 radiometric calibrated and georeferenced RapidEye scenes 

(Level 1B, Level 3A) from April 2009 to October 2012 were obtained from the RapidEye Science 

Archive (RESA). After atmospheric correction using ATCOR for ERDAS IMAGINE and image to image 

co-registration using an in-house developed algorithm (Behling et al. 2014), coordinate transformation, 

cartographic projection and clipping to the extent of the study site, the resulting RapidEye subsets of 

the Borrentin field were used as the basis for further image analysis. From each RapidEye subset, 

NDVI-images were derived, and their descriptive statistics were analysed. 

 

2.2.2 Vegetation data 

Vegetation parameters, such as crop type, phenology and NDVI-index, characterize the vegetation 

and plant conditions at the time of acquisition. Based on the BBCH-scale (Meier 2001), for each 

phenological macro-stage ((0) germination, (1) leaf development, (2) tilling, (3) stem elongation, (4) 

booting, (5) inflorescence emergence/heading, (6) flowering/anthesis, (7) development of fruit, (8) 

ripening, and (9) senescence) of winter wheat and winter rape, the mean values of the initial dates 

were calculated from all phenological data from five observation stations (Table 1). These mean 

values represent the regional starting date of each phenological macro stage for each crop type. 

Therefore, all RapidEye subsets of the Borrentin field could be assigned to the corresponding BBCH-

phenological stage based on the crop type. Finally, the annual crop information obtained was 

transformed into GIS-data through digitalization and vectorization. 

 

2.2.3 Soil sampling and analysis 

In October 2013 a total of 170 soil samples were collected from the study site. To receive a 

representative soil sample dataset a SW-NE-orientated grid sampling strategy was developed taking 

into account existing soil maps, digital elevation model and visible soil patterns based on soil colour. 
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Mean distance between neighbouring sampling locations was 66.3 m, ranging from 12.1 m to 98.4 m 

(std. dev. 12.36). The position of each sample was measured by GPS with an accuracy of approx. 5 

m. To decrease the GPS-precision inaccuracy, a 5 m buffer around each soil sampling location was 

generated, expressing the location-specific mean values of digital data (e.g., multispectral bands, 

principal components) at sampling points. Later on these mean values were extracted for statistical 

analysis. 

At each coordinate, five subsamples within a radius of 1 m and a depth from top to 10 cm were 

collected as one soil surface mixed sample, composed of 500 to 700 g of soil. Each sample 

represented approximately 0.78 ha. Following physical and chemical soil parameters were analysed 

by the soil-physical laboratory of the Institute of Ecology, Chair for Soil Conservation, University of 

Technology Berlin: (1) Particle size distribution using a combined sieve (fraction 0.063–2 mm) and 

pipette (fraction <0.063 mm) method (DIN ISO 11277), (2) soil acidity (pH) with 0.01 m CaCl2 (DIN 

ISO 10390; DIN EN 15933), (3) organic matter content (OM) by using the loss on ignition method (DIN 

19684-3; DIN EN 15935; Ball 1964) and (4) carbon content (CaCO3) (DIN EN ISO 10693). The results 

of particle size distribution were used for determination of soil texture classes according to the official 

German Soil Survey Description (AG Boden 2005). 

 

2.3 Analysis workflow 

 

In addition to data acquisition and preparation, the multitemporal approach presented here is 

composed of four analysing steps: (1) data mining, (2) image mining, (3) stability analysis, and (4) 

information extraction/statistical analysis/functional soil map generation. 

 

2.3.1 Data mining / Selection of best suitable datasets 

For multitemporal soil pattern analysis, the separation between the static soil pattern and the temporal 

pattern, which is derived from the (vital and senescent) vegetation, land management practices or 

clouds/cloud shadows, is the most important step. To facilitate the data mining process for the most 

suitable datasets, the time-series of 43 RapidEye subsets was filtered by (1) the threshold of the 

NDVI-MEAN (MEAN = arithmetic mean), (2) the threshold of the NDVI-SD (SD = standard deviation) 

and (3) the phenological situation per crop on the acquisition date. To be independent from field data 

the method is based only on image analysis and phenological data. An iterative visual analysis was 

performed, to define threshold values as basis for automated classification of (1) bare soil images and 

(2) images with vegetation/management effects. 

First, the data with NDVI-MEAN values less than 0.2, indicating low vital vegetation, are selected for 

further analysis. Second, NDVI-SD (threshold = 0.07) allows the identification of disturbances from 

land management and atmospheric conditions (e.g., clouds or shadows). The wider the data 

dispersion from the average (arithmetic mean), the more probable is the inclusion of disturbing 

influences. The third selection criterion is the separation of bare soil images from ripe and senescent 

vegetation images. The time period from harvesting up to and including the phenological macro-stage 
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of germination assists with assigning low vegetation effects to vital, ripe and senescent plants. 

Furthermore, image enhancement methods, such as contrast stretching and false colour composite 

generation (Schowengerdt 2007), were used (1) to expose details of reflectance pattern and (2) to 

visually analyse management and vegetation effects (e.g., farming stripes or plant remains). Images 

with intolerable vegetation or management influences must be excluded. 

For the Borrentin field, Figure 2 shows the NDVI-MEAN value (y1-axis), the NDVI-SD value (y2-axis), 

and the most suitable time-period based on the phenological and crop conditions (indicated by a blue 

box) for each RapidEye subset. Based on the NDVI-thresholds (MEAN 0.2, SD 0.07; indicated by an 

orange line) and on the phenological situation on the acquisition date (germination=0), the RapidEye 

subsets could be classified into two classes: (i) bare soil images (datasets below the orange line) and 

(ii) images with vegetation and/or management influences (datasets above the orange line). All 

subsets for which both NDVI-values are below the NDVI-threshold-line and which were taken in the 

most suitable time-period can be considered bare soil images with a tolerable vegetation effect, 

indicating that there was no significant vegetation influence disturbing the soil pattern detection. 

 

 
Figure 2: NDVI-threshold values and the most suitable time period (blue box) for each RapidEye-subset 
 

Due to these three data selection criteria, the time series of RapidEye datasets could be split into 5 

bare soil images (15/09/2009, 20/09/2009, 22/09/2010, 24/09/2011, and 02/10/2011), 1 bare soil 

image with strong management influence (18/08/2012), 29 vegetation images (25/04/2009, 

02/05/2009, 13/06/2009, 24/06/2009, 02/08/2009, 03/06/2010, 03/07/2010, 16/07/2010, 04/10/2010, 

01/03/2011, 22/03/2011, 09/04/2011, 20/04/2011, 21/04/2011, 05/05/2011, 07/05/2011, 21/05/2011, 

04/06/2011, 06/06/2011, 13/10/2011, 17/10/2011, 08/11/2011, 15/01/2011, 06/03/2012, 14/05/2012, 
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28/05/2012, 21/06/2012, 24/07/2012, and 16/10/2012), and 8 cloudy scenes (27/07/2009, 24/06/2010, 

08/04/2011, 30/05/2011, 16/07/2011, 21/04/2012, 23/05/2012, and 20/09/2012) were clearly identified. 

For each of those classes, Table 2 and Figure 3a, 3b, and 3c demonstrate exemplary RapidEye 

subsets and their filtering characteristics (NDVI-values and phenological macro-stage) as well as 

comments based on visual evaluation. The NDVI-SD of the image from 18/08/2012 (0.08) indicates 

too much variation for a bare soil image with a static pattern, which is supported by the previously 

mentioned image enhancement methods. The enhanced image showed detailed temporal patterns, 

such as farming stripes, which overlay the soil pattern in the eastern part of the field. Due to presented 

data selection method, the RapidEye subsets with a primarily temporal pattern, from vegetation, 

clouds, shadows or land management practices, could be identified and were excluded from further 

analysis because of their negative effects on the soil reflectance pattern detection. 

 
Table 2: Example of NDVI-values and BBCH-phenological stages 

BBCH-scale: (0) germination, (1) leaf development, (2) tilling, (3) stem elongation, (4) booting, (5) inflorescence 

emergence/heading, (6) flowering/anthesis, (7) development of fruit, (8) ripening and (9) senescence (Meier 2001) 
RapidEye subsets of Borrentin 

acquisition date NDVI-MEAN NDVI-SD BBCH class visual evaluation 

15/09/2009 0.08 0.03 0 bare soil image bare soil 

20/09/2009 0.06 0.03 0 bare soil image bare soil 

22/09/2010 0.18 0.05 0 bare soil image bare soil 

01/03/2011 0.36 0.04 1-3 image with vegetation/management effects vegetation 1-2 

24/09/2011 0.07 0.04 0 bare soil image bare soil 

02/10/2011 0.16 0.07 0 bare soil image bare soil 

28/05/2012 0.73 0.06 5-7 image with vegetation/management effects vegetation 3-8 

21/06/2012 0.70 0.07 5-7 image with vegetation/management effects vegetation 3-8 

24/07/2012 0.40 0.08 8-9 image with vegetation/management effects vegetation 9 

18/08/2012 0.14 0.08 0 image with vegetation/management effects bare soil management 

 

 
Figure 3a: Images with vegetation and/or land management influences (left to right: 21/06/2012, 24/07/2012, and 18/08/2012) 
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Figure 3b: Bare soil images (left to right: 15/09/2009, 22/09/2010, and 24/09/2011) 

 
Figure 3c: Static and temporal patterns after image enhancement (left to right: 15/09/2009, 22/09/2010, and 24/09/2011) 

 

In addition to vegetation and land management, variation in surface soil moisture also affects soil 

reflectance patterns, requiring an evaluation of the influence of soil moisture by comparing the 

preselected bare soil images with precipitation data because of the strong dependence between 

precipitation and surface soil moisture in relation to soil texture and relief position (Figure 1). The 

comparison of the amount of precipitation over the three days before image acquisition among all 5 

selected bare soil subsets (Table 3) demonstrates that the precipitation amounts and consequently the 

soil moisture levels on 15/09/2009 (6.7 mm) and 22/09/2010 (6.1 mm) are quite similar in rainfall 

amount, distribution and intensity and that both are definitely more moist than the conditions on 

24/09/2011 (0.3 mm), 20/09/2009 (0 mm) and 02/10/2009 (0 mm). For all 5 bare soil images, no 

rainfall occurred in the 24 hours before image acquisition. 

 
Table 3: Amount of precipitation (mm) at the Greifswald meteorological station (DWD 2014a) 

 Amount of precipitation [mm] 

Acquisition date Last 24 h Last 2 days Last 3 days Last 6 days Last 7 days Last 14 days 

15/09/2009 0 5.6 6.7 6.7 6.7 29.5 

20/09/2009 0 0 0 0 5.6 7.7 

22/09/2010 0 4.7 6.1 6.1 8.7 35.9 

24/09/2011 0 0.2 0.3 6.1 6.2 7.1 

02/10/2011 0 0 0 0 0 6.1 

 

For further spatial analysis of reflectance pattern and their relationships to soil properties, each 

identified bare soil image (best-suitable dataset) was used separately. Furthermore, a multitemporal 
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bare soil image, created by stacking all channels of each selected most suitable bare soil subset, is 

analysed. The resulting multitemporal-stacked image, consisting of 25 stacked bands, includes soil 

patterns with natural soil moisture fluctuations and essentially no management or vegetation 

influences. 

 

2.3.2 Image mining / Detection of soil reflectance pattern 

Principal components analysis (PCA) is one of the best methods to study correlated multidimensional 

data without harming all multispectral band information (Panda et al. 2010). “It is a way of identifying 

patterns in data, and expressing the data in such way as to highlight their similarities and differences” 

(Smith 2002). By removing redundant information from all spectral bands, the number of dimensions is 

reduced without significant loss of information. PCA is typically used to identify factors that describe 

spectral variance, to reveal the underlying dimensionality of multivariate data and to compress image 

data (Mulla 2013; Abdel-Kader 2011). Applying PCA on a simply stacked image consisting of 

multispectral data from multiple dates, a spectral-temporal transformation is performed. Because of 

the two coupled dimensions, interpretation might be difficult (Schowengerdt 2007). However, based on 

the assumption that the percentage area of change is relatively smaller than the percentage area of no 

change, stable areas will appear in the lower-order PCs, and changing areas in the higher-order PCs 

(Richards 1984; Ingebritsen and Lyon 1985). Due to the previously mentioned elimination of the 

negative influences from the soil pattern detection, this assumption is considered valid for the 

presented multitemporal approach. For more improvement in signal to noise ratio and image 

enhancement as well as for better results in the respective alignment along the object of interest, this 

procedure can be standardized by using the correlation matrix as an alternative to the common 

unstandardized method using the covariance matrix (Li and Yeh 1998; Singh and Harrison 1985; Fung 

and LeDrew 1987; Eastman and Fulk 1993). In this way, the original bands are effectively normalised 

to equal and unit variance, which might be an advantage when data with different dynamic ranges are 

combined (Schowengerdt 2007). Fung and LeDrew (1987) stated that the first four components can 

store greater than 95% of the total variance, and the remaining components contain very little valuable 

information for land change studies. 

To detect the static soil pattern, the data dimensionality of the stacked image was reduced by 

performing standardised PCA. Based on the correlation matrix, twenty-five standardised principal 

components (PCsts 1-25) were calculated from the transformation of the 25 bands of the bare soil 

layer stack. The first five PCsts contain 99.64% of the total variance. Beginning with PCst 6, the data 

noise visibly increases (Figure 4); therefore, PCsts 1-5 were selected for subsequent statistical 

analysis. Figure 5 shows the three channel combinations of PCsts 1-5, which improve the visibility of 

the reflectance pattern. 

For monotemporal analysis, standardised PCA was also applied for each bare soil image based on its 

own correlation matrix. 
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Figure 4: Image of PCsts 1-6 

 
Figure 5: Image of the combined PCsts 1-5 

 

2.3.3 Stability analysis / Temporal-spatial analysis of soil reflectance pattern 

The multitemporal approach offers the possibility of evaluating the temporal-spatial stability of the soil 

reflectance pattern using change detection methods. For that reason, statistical per-pixel analysis was 

applied to preselected bare soil images. First, for each channel, one stacked image was created, 

consisting of the same channels of each bare soil subset. Second, for each stacked image, the 

standard deviation (SD) per pixel was calculated. Low standard deviation per pixel indicates high 

spatiotemporal stability. The lower the SD per pixel, the more static the reflectance pattern is. To 

combine the obtained pattern stability information, the resulting SD data of each channel were 

normalised by dividing by the corresponding SD maximum value. Thus, the SD data of each channel 

were scaled between 0 and 1, and disproportionate influence of channels with higher SD values due 
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to spectral characteristics was eliminated. Next, the arithmetic mean (MEAN) per pixel was calculated 

from all normalised SD per pixel images. The resulting image reflects the overall stability of the 

spatiotemporal pattern. 

 

2.3.4 Information extraction / Statistical analysis / Functional soil map generation 

For further statistical analysis, at every sampled soil point, the location-specific mean values of all 

standardised principal components of every monotemporal bare soil image and of the multitemporal 

bare soil stack images as well as all previously calculated absolute and normalized stability 

parameters (SD-per-channel, MEAN-of-all-SD-per-channel) were extracted. From 170 sampling sites, 

the descriptive statistics of each soil property variable were computed. Table 4 shows the mean, 

standard deviation, coefficient of variation, skewness, minimum and maximum of all soil parameters. 

Due to low occurrence of CaCO3 data (12% of all soil samples) and due to low CaCO3-content (Mean 

3.3%, SD 2.4%), the topsoil layer of the Borrentin field could be assumed to be essentially free of 

CaCO3. 

 
Table 4: Descriptive statistics of soil parameters (SD: standard deviation; CV: coefficient of variation) 

Soil parameter Mean SD CV [%] Skew Min Max 

OM [%] N = 170 5.38 7.66 58.72 4.70 1.52 54.82 

pH N = 170 6.52 0.50 0.25 -0.17 4.97 7.54 

CaCO3 [%] N = 20 3.28 2.37 5.61 0.28 0.30 7.50 

Clay [%] N = 162 11.92 3.94 15.55 0.76 4.07 25.51 

Silt [%] N = 162 29.43 6.36 40.47 1.06 12.37 51.99 

Sand [%] N = 162 58.64 8.33 69.38 -1.06 24.81 82.52 

 

Because soil parameters are typically not normally distributed, Spearman rank order correlation 

analysis was performed to examine the relationship between the soil parameters and the standardized 

principal components of the monotemporal and multitemporal images. The non-parametric 

Spearman´s rank correlation coefficient (rs) characterizes here the strength of the observed 

relationships, at a 99% confidence level. The identified highly significant correlations (rs ≤ -0.7 or rs ≥ 

0.7) were analysed in more detail using simple linear and non-linear regressions. The coefficient of 

determination (R2) was used to evaluate prediction quality. The model with the highest R2-value was 

chosen as the best prediction model. The efficiency of the prediction method (here, the obtained 

regression equation) was statistically evaluated by using leave-one-out cross-validation (Isaaks and 

Srivastava 1989). Therefore, the root mean square error (RMSE) was calculated. The lower the RMSE 

value, the more robust the prediction model is. 

The resulting regression equations of those soil variables that showed higher significant correlations 

with the best predicting standardized principal components were applied to the corresponding 

monotemporal and multitemporal images to generate functional soil maps. 

To eliminate any still existing temporal influence and to improve the prediction model, the normalized 

stability parameter MEAN-of-all-SD-per-channel was used to identify the threshold separating static 

and temporal reflectance patterns. For this purpose, the MEAN-of-all-SD-per-channel dataset was 

divided by percentiles (100-quantiles) into 100 groups of equal frequency 1%-segments. The 
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percentile value represents the separating-thresholds, below which all data are considered static and 

above which all data are considered temporal. Each extracted percentile value was applied to the 

input data by eliminating all sampling point data above the threshold and then was subsequently 

tested in the previously described regression prediction model with the same quality assessment and 

functional soil mapping procedure.  

 

3 Results and Discussion 

 

For soil parameter prediction modelling based on mono- and multitemporal bare soil images, it is 

necessary to identify those soil parameters that explain soil reflectance patterns. The obtained best 

model allows functional soil mapping at high accuracy. Analysing the temporal-stability of soil 

reflectance patterns and excluding detected temporal effects from the prediction model could improve 

the functional soil map. 

 

3.1 Relationships between soil properties and multitemporal/monotemporal bare soil images 

 

To understand the origin of the PCA-detected soil reflectance pattern, the relationships between the 

values of the standardised principal components and the laboratory-analysed soil parameters were 

statistically evaluated. Table 5 summarizes the relationships between soil properties and the 

standardised PCs of multitemporal and monotemporal bare soil images using the non-parametric 

Spearman´s rank correlation coefficient. 

 
Table 5: Spearman-Rho correlation between soil parameters and standardized PCs of multitemporal and monotemporal bare 

soil images 

(* significant at probability level 0.05, ** significant at probability level 0.01) 
Bands OM [%] pH CaCO3 [%] Clay [%] Silt [%] Sand [%] 

Multitemporal 

PCst 1 -0.797** -0.162* 0.539** -0.378** -0.155* 0.299** 

PCst 2 0.200** 0.11 0.045 0.337** -0.089 -0.097 

PCst 3 -0.533** -0.01 0.254 -0.092 -0.238** 0.209** 

PCst 4 -0.577** -0.205** 0.263 -0.453** -0.190* 0.383** 

PCst 5 -0.762** -0.12 0.448* -0.265** -0.123 0.212** 
 

15/09/2009 

PCst 1 -0.773** -0.171* 0.498* -0.417** -0.132 0.307** 

PCst 2 -0.781** -0.107 0.394 -0.316** -0.118 0.243** 

PCst 3 -0.503** -0.241** 0.130 -0.473** -0.113 0.335** 

PCst 4 -0.447** -0.201** 0.022 -0.428** -0.161* 0.332** 

PCst 5 0.692** 0.150 -0.348 0.277** 0.129 -0.217** 

20/09/2009 

PCst 1 -0.756** -0.169* 0.543* -0.361** -0.116 0.266** 

PCst 2 -0.745** -0.162* 0.471* -0.259** -0.102 0.194* 

PCst 3 0.428** 0.230** -0.148 0.334** 0.163* -0.290** 

PCst 4 -0.495** -0.215** 0.254 -0.329** -0.097 0.241** 

PCst 5 0.697** 0.175* -0.436 0.238** 0.042 -0.155* 
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22/09/2010 

PCst 1 -0.763** -0.147 0.536* -0.286** -0.247** 0.320** 

PCst 2 -0.605** -0.094 0.396 -0.125 -0.225** 0.203** 

PCst 3 -0.015 0.302** 0.442 0.288** -0.006 -0.158* 

PCst 4 -0.516** -0.104 0.463* -0.172* -0.180* 0.201* 

PCst 5 -0.593** -0.269** 0.373 -0.270** -0.256** 0.329** 

24/09/2011 

PCst 1 -0.777** -0.197** 0.632** -0.416** -0.127 0.302** 

PCst 2 -0.704** -0.165* 0.466* -0.327** -0.139 0.261** 

PCst 3 0.007 -0.168* -0.141 -0.386** -0.036 0.241** 

PCst 4 -0.245** -0.176* -0.086 -0.224** -0.129 0.246** 

PCst 5 0.628** 0.124 -0.209 0.266** 0.180* -0.260** 

02/10/2011 

PCst 1 -0.768** -0.152* 0.619** -0.368** -0.122 0.272** 

PCst 2 -0.352** -0.167* 0.115 -0.522** -0.087 0.361** 

PCst 3 -0.699** 0.034 0.493* 0.031 -0.080 0.022 

PCst 4 0.348** 0.274** -0.211 0.502** 0.117 -0.369** 

PCst 5 -0.634** -0.135 0.379 -0.174* -0.131 0.177* 

 

For the multitemporal stacked image, this coefficient revealed that OM, pH, CaCO3, clay, silt and sand 

were most strongly significantly correlated with the following spectral data: PCst 1 (OM), PCst 4 (pH), 

PCst 1 (CaCO3), PCst 4 (clay), PCst 3 (silt) and PCst 4 (sand). Strong correlations (rs ≤ -0.7 or rs ≥ 

0.7) were seen between OM and PCst 1/PCst 5 (rs = -0.797/-0.762). Other soil parameters showed 

moderate correlations (rs = ~±0.5), for instance, CaCO3 with PC 1 (rs = 0.539) and clay with PCst 4 (rs 

= 0.453), and weak correlations (rs = ±0.3 - ±0.4) were seen for sand (rs = 0.383). Silt (rs = -0.238 with 

PC 3) and pH (rs = -0.205 with PC 4) were the soil properties with the lowest significant correlation 

coefficient. Negative correlations indicated that small values of the standardised PCs corresponded to 

high values of soil properties. The darker the reflectance pattern, the higher the soil parameter value 

is. 

Similar to the multitemporal image, in all monotemporal images, strong correlations were observed 

only for OM (PCst 1, PCst 2, PCst 3, and PCst 5). OM generally had the highest correlation with PCst1 

(rs = -0.756 - -0.777), with the exception of one date, when it was more strongly correlated with PCst 2 

(rs = -0.781; 15/09/2009). As before, moderate correlations were found for CaCO3 with PCst 1 (rs = 

0.498 - 0.632) and clay with PCsts 1-3 (rs = -0.361 - -0.522). Weak correlations were observed for 

sand (rs = 0.302 – 0.335; rs = -0.369) and for pH on one date (rs = 0.302; 22/09/2010). A very low 

significant relationship was detected for silt (rs = -0.131 - -0.256; rs = 0.163 - 0.256). 

 

Due to the results of the non-parametric Spearman´s rank correlation coefficient calculations, the soil 

parameters and standardised PCs with significant high correlations were considered highly valuable 

for deeper statistical analysis and prediction model generation. OM and PCst 1/PCst 5 were used for 

the multitemporal analysis, and for the monotemporal images, OM and PCst 1 (15/09/2009, 

20/09/2009, 22/09/2010, 24/09/2011, and 02/10/2011), PCst 2 (15/09/2009, 20/09/2009, and 

24/09/2011) and PCst 3 (02/10/2011) were used. The low to moderate correlations indicate that 

certain soil parameters (pH, CaCO3, clay, silt, and sand) are not suitable for functional soil mapping in 

this study, possibly because of the generally limited spectral resolution of the broadband multispectral 

sensor. Using hyperspectral sensors might be more promising for these soil parameters. 
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Visualising the scatterplots of each soil variable with each PCst reveals that, in total, no linear 

relationship between the soil parameters and the standardised PCs could be recognised. Further, no 

strong evidence of non-linear relationships between the already excluded soil properties (pH, CaCO3, 

clay, silt, and sand) and the standardised PCs could be identified. In comparison, the scatterplots of 

OM and the previously selected standardised PCs revealed non-linear relationships, expressed by 

power functions. To simplify further statistical analysis, the simple non-linear regression models were 

log10-transformed to simple linear regression models. To detect the best prediction model for OM, 

Table 6 compares the R² and RMSE values of the transformed linear regression models between the 

multi- and monotemporal images. 

 
Table 6: R² and RMSE for the relationship between OM (dependent variable) and the standardized PCs of the multitemporal 

and monotemporal images (independent variable) 

Multitemporal 15/09/2009 20/09/2009 22/09/2010 24/09/2011 02/10/2011 

Bands R² 
RMSE 

[%] 
Bands R² 

RMSE 
[%] 

Bands R² 
RMSE 

[%] 
Bands R² 

RMSE 
[%] 

Bands R² 
RMSE 

[%] 
Bands R² 

RMSE 
[%] 

PCst 1 0.795 7.59 PCst 1 0.762 8.17 PCst 1 0.773 7.98 PCst 1 0.735 8.63 PCst 1 0.787 7.73 PCst 1 0.746 8.44 

PCst 5 0.763 7.94 PCst 2 0.766 8.10 PCst 2 0.755 8.29 PCst 2 0.651 9.90 PCst 2 0.759 8.23 PCst 3 0.673 9.57 

 

Thus, for all OM-samples, significant (p-value <2.2e-16) and robust linear regression models with a 

coefficient of determination R² ≥ 0.673 and RMSE ≤ 9.90% were calculated. According to the highest 

coefficient of determination (R² = 0.795), the multitemporal-stacked image with the first standardised 

PC is the better option for functional soil mapping compared with monotemporal images (0.735 ≤ R² ≤ 

0.787). In addition, the prediction model based on the multitemporal-stacked image is the most robust 

(RMSE = 7.59%). 

 

Similar non-linear relationships were observed by Spielvogel et al. (2004) for the relation between OC 

content and soil lightness and by Konen et al. (2003) for OC content and Munsell value, chroma, and 

reflectance of agrarian soils in Iowa. Hummel et al. (2001) applied logarithmic-transformation to a non-

linear relationship between soil organic matter and NIR-data. 

An increase in OM content is correlated with a decrease in the spectral reflectance value of PCst 1, 

and consequently, the darker the soil pattern, the higher the OM content, and the lighter the soil 

pattern, the lower the OM content. 

Although the calculated regressions are significant, with a high coefficient of determination, some 

samples with log OM contents between 0.3% and 0.7% have differences in their log PCst 1-spectral 

reflectance values. This high variance indicates that the PCst 1 spectral reflectance is influenced by 

several other parameters. Although the correlations between the texture parameters (clay, silt, and 

sand) and PCst 1 were not significant (R² ≤ 0.185), the spectral reflectance (soil lightness) affecting 

the parameters could be CaCO3 and texture, where the OM content is the main determining variable, 

followed by CaCO3, clay and the low but significant influence of silt and sand contents (Spielvogel et 

al. 2004). The darkening effect of Fe-oxides on soil brightness (e.g., hematite) (Schwertmann 1993) 

does not occur here, due to the glaciomorphological and pedological genesis of the young morainic 

soil landscape of northern Germany. 
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To generate SSM user-friendly functional soil maps based on real OM values, it was necessary to re-

transform the obtained linear regression function and the coefficients back to a non-linear regression 

function. Based on the extracted and re-transformed prediction function of the multitemporal-stacked 

image, a functional soil map for OM was produced and classified with adaption to the official German 

Soil Survey Description (AG Boden 2005) (Figure 6). 

 

 
Figure 6: Functional soil map regarding OM based on the predicting regression equation of the multitemporal image and PCst 1 

(OM classification adapted to the official German Soil Survey Description with soil sampling results) 

 

Comparing the classified soil map with the laboratory measured OM-values shows that they are in 

accordance, particularly in the western portion of Borrentin field. There are still some prediction errors 

in the eastern portion, most likely caused by temporal effects. To understand this prediction 

uncertainty, a deeper analysis of the temporal-spatial stability of the reflectance patterns is necessary. 

 

3.2 Stability analysis 

 

To evaluate the temporal-spatial stability of the soil reflectance patterns, statistical pixel-wise analyses 

were applied on the multitemporal bare soil image. Further, the possibility of prediction model 

improvement was tested by stepwise eliminating the identified temporal effects. 

Figure 7 reveals that the visible spectrum (B, G, and R) shows a similar distribution of the 

spatiotemporally static reflectance patterns of bare soils. In comparison, the images of the RE- and 

NIR-channels exhibit either similar or different stability. The overall stability, which reflects the average 

spatiotemporal stability of the bare soil reflectance pattern, was calculated as a mean of all SD-images 

(B, G, R, RE, NIR) (Figure 7). 
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Figure 7: Spatiotemporal stability of the bare soil reflectance pattern, divided by channel (green: low SD, red: high SD; data are 

normalized) and spatiotemporal overall stability of the bare soil reflectance pattern as a mean of all SD-images (green: low 

mean value, red: high mean value; data are normalized) 

 

We assume that the pattern with a high SD results from temporal effects, originating in the cause and 

effect relationships of relief, soil moisture, soil texture and vegetation (e.g., upcoming plants). In 

addition, land management (e.g., fertilisation and soil cultivation) are also causing the temporal 

pattern. 

Because of the previous assumption it is necessary to improve the developed prediction model for OM 

by excluding the strong temporal effects, which is allowed due to multitemporal data. Based on the 

spatiotemporal overall stability image (Figure 7), percentile-thresholds were statistically (stepwise per 

percentile) tested to separate static (low SD mean value) from temporal patterns (high SD mean 

value) (Figure 8). Applying the 67%-threshold, the OM prediction model was improved by 

approximately 2% (R² = 0.795 to R² = 0.814) with a weak loss of model robustness of approximately 

1.5% (RMSE = 7.59% to RMSE = 9.04%). This relatively low model improvement is due to previous 

filtering of the input datasets to detect the bare soil images with very low temporal effects. 
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Figure 8: Examples of the splitting thresholds (percentiles 90 to 60) and their corresponding R² and RMSE values 

 

To achieve the greatest model improvement based on the 67%-threshold of the spatiotemporal overall 

stability image, the soil sampling points (as model input data) within the identified temporal pattern 

were excluded from the further modelling steps. These excluded points are located in the total range 

of OM-values. In this case, the soil sample quantity was reduced from 170 to 122 samples (Figure 9). 

 
Figure 9: (left) Soil samples within the static and temporal reflectance pattern based on the 67%-threshold (green: static pattern; 

red: temporal pattern); (right) Scatterplot of the relationships between OM and standardized PC 1 of the multitemporal bare soil 

images based on the static soil pattern (threshold: 67%) 

 

Figure 9 also demonstrates the improved prediction model for OM and PCst 1 of the multitemporal 

dataset based on the 67%-threshold. A functional soil map of OM was derived from the enhanced 

regression equation and was also classified with adaption to the official German Soil Survey 

Description (AG Boden 2005) (Figure 10). Especially in the eastern, more textured portion of Borrentin 

field, the resulting functional soil map (based on the 67%-threshold) was improved for low OM-values 

compared with the previous map (Figure 6). 
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Figure 10: Functional soil map for OM based on the predicting regression equation of the multitemporal image and PCst 1 

(threshold: 67%) (OM classification adapted to the official German Soil Survey Description with soil sampling results) 

 

4 Conclusions & Outlook 

 

This study has provided support for the concept that multitemporal analysis of multispectral remote 

sensing data, such as RapidEye imagery, is more suitable than monotemporal analysis for the 

extraction of spatially precise static soil patterns for functional soil mapping at the field-scale. Data pre-

selection from the time-series using NDVI-thresholds and phenological macro-stages per crop on the 

acquisition date is essential to separate static from temporal reflectance patterns. Due to these 

selection methods, the bare soil images were accurately identified, and consequently, subsequent 

visual evaluation is no longer necessary. Statistical analysis demonstrated the existence of a non-

linear relationship between OM and the standardised principal components with the best prediction 

results combined with PCst 1. The further analysed soil parameters (pH and texture) did not correlate 

sufficiently with the standardised principal components due to the spectral sensor resolution. CaCO3 

was at least moderately significantly correlated with the PCsts, but its presence was very limited (20 

samples) in Borrentin field. 

Based on the spectral reflectance pattern (static soil pattern) of PCst 1 and the OM soil sampling data, 

a functional soil map of OM distribution could be produced. This functional soil mapping could be 

improved by eliminating reflectance patterns with strong spatiotemporal variability using stepwise 

testing percentile-thresholds. For Borrentin field, 67%-threshold was determined to be the best 

threshold. The correlation in this study between the spectral data (spectral variance) of the first 

standardised principal component of the multitemporal bare soil layer stack and the soil surface 

organic matter might be applied to other agrarian fields in the young morainic soil-landscape of north-

eastern Germany. For methods transfer at the field-scale as well as the landscape-scale, further 

investigations are necessary. Another advantage of standardised PCA is the possibility of transferring 
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the transformation parameters (correlation matrix) from one study area to another, thus securing 

methods transferability. Therefore, more soil sampling has been performed in 13 fields in the Demmin 

region. In addition, further analysis regarding the relationships between the static soil pattern and 

vegetation patterns should be performed, to gain knowledge concerning the transferability of soil 

surface patterns to deeper soil horizons because vegetation patterns might reflect the soil conditions 

of the deeper horizons (e.g., root zone), which could be recognized in the soil surface pattern. 

Furthermore, the analysis of soil reflectance pattern combined with DEM derived parameters could 

help to achieve a deeper understanding of the origin of soil reflectance pattern and their stability 

characteristics. 

In the future, the resulting static soil (brightness) patterns and their derived high resolution functional 

OM soil maps could be used as ancillary data either in delineating management zones for site-specific 

management in precision agriculture (e.g., respective sowing intensity and fertilization distribution) or 

as an information input to prediction models (e.g., scorpan) as well as for soil survey preparation and 

the calculation of soil fertility. Mulla (2013) stated the importance of combining archived and historical 

remote sensing data with real-time and auxiliary data (e.g., crop yield maps, digital elevation models, 

soil series maps). Therefore, the static soil pattern might be highly valuable for improving decision-

making in agricultural management. 
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