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ABSTRACT 17 

Detecting beef eating quality in a non-destructive way has been popular in recent years. 18 

Among various non-destructive assessing methods, the feasibility of hyperspectral imaging 19 

(HSI) system was investigated in this paper. Hyperspectral images of beef samples were 20 

collected in an abattoir production line and used for predicting the beef tenderness and pH 21 

value. Support vector machine (SVM) was applied to construct the prediction equation. 22 

Before utilizing the original HSI spectral profiles directly, we propose to use singular 23 

spectrum analysis (SSA) as a pre-processing approach, where SSA has been proven to be an 24 

effective technique for time-series analysis in diverse applications. The results indicate that 25 

SSA can remove the instrumental noise of HSI system effectively and therefore improve the 26 

prediction performance.  27 
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1 Introduction 31 

As time goes, food quality control has become a significant issue to human beings. Serving as 32 

a very important source of nutrition, the quality of muscle foods including meat and fish, 33 

influences the re-purchase behavior of consumers (Weeranantanaphan et al., 2011). 34 

Considering food quality control requires non-destructive real-time monitoring on the 35 

production line, near-infrared spectroscopy (NIRS) was first established as a fast and 36 

promising tool for multi-constituent quality analysis of food materials, which has proved its 37 

feasibility especially in meat industry (Gowen et al., 2007; Weeranantanaphan et al., 2011). 38 

However, with limited spatial information, internal constituent gradients within food 39 

products could not be captured by NIRS, leading to discrepancies between predicted and 40 

measured composition (Gowen et al., 2007). Therefore, multispectral imaging (MSI) system, 41 

combining images at a small number of narrow wavebands, was developed afterwards to 42 

overcome the above mentioned drawbacks and has demonstrated its success for detection 43 

of meat quality (Dissing et al., 2013; Panagou et al., 2014). Through capturing hundreds of 44 

continuous bands at different wavelengths, hyperspectral imaging (HSI), as an updated 45 

version of MSI, has received considerable attention in recent years since it can acquire the 46 

spatial and spectral information simultaneously. The information contained in the HSI cube 47 

can be utilized in many areas, going from traditional applications in agricultural land use 48 

analysis with remote sensing (Lee et al., 2010; Prabhakar et al., 2011; Qiao et al., 2014) and 49 

military surveillance (Gill et al., 2011; Zhao et al., 2013) to newly emerging platforms for 50 

biomedical imaging (Wang et al., 2013) and non-invasive food quality control and analysis 51 

(Baiano et al., 2012; Gowen et al., 2009; Kelman et al., 2013; Naganathan et al., 2008; Sun, 52 



2010). Due to the fact that HSI could collect more information than NIRS and MSI during the 53 

same time, there is a growing trend to investigate its ability to predict meat quality in a way 54 

that is fast, non-destructive and requires no reagent. In this paper, beef was chosen as a 55 

representative of muscle foods since it contributes most to the meat market in EU with 56 

8,000,000 tonnes annual consumption and similar levels of production (Panagou et al., 2014). 57 

Usually, for both NIRS and HSI, pre-processing of the spectral profile is needed, to eliminate 58 

undesired effects and noise produced during the data collection process. Common pre-59 

processing techniques, especially for NIRS, include calculating derivatives, standard normal 60 

variate (SNV) and multiplicative scatter correction (MSC) (Rinnan et al., 2009). However, 61 

using derivatives of spectra may even enhance the noise and lead to more difficult spectral 62 

interpretation. For SNV and MSC, it is required to apply these transformations to all spectra 63 

as the corrected spectra would be more accurate if more spectra were involved, which is 64 

infeasible in the abattoir. In practice, ideally a prediction model based on HSI will be installed 65 

in the abattoir production line, and for every single piece of beef steak, the model should 66 

predict the quality assessment result in a real-time manner. Therefore, it is necessary to use 67 

a pre-processing technique that can be applied to every single spectrum itself, without 68 

considering other spectra. In this paper, we mainly demonstrate that singular spectrum 69 

analysis (SSA) can be regarded as an optimal pre-processing step in de-noising HSI beef 70 

spectra, where it will not be restricted by the number of HSI samples. With the beef eating 71 

quality references available as ground truth, the support vector machine (SVM), which is a 72 

state-of-the-art non-linear regression technique, was employed for data regression. 73 

Compared to other regression methods, SVM does not ask for a large amount of training 74 

samples to construct the calibration equation. Additionally, it is not affected by sample 75 

outliers either (Burges, 1999). 76 



The remaining sections of this paper are organized as follows. In Section 2, sample 77 

preparation and collection are presented. Besides, algorithms employed in the experiments 78 

will be explained as well. Experimental results and conclusion are given in Section 3 and 4 79 

respectively. 80 

2 Materials and methods 81 

2.1 HSI system 82 

A push-broom HSI system (Gilden photonics) with wavelength ranging from 283 to 863 nm 83 

at a spectral resolution of about 2.5 nm was used to collect beef data samples. Fig. 1 shows a 84 

schematic diagram of the imaging system, which consists of a charge-coupled device (CCD) 85 

camera, a spectrograph with lens that utilizes a wavelength dispersive system to acquire all 86 

wavelengths of a single spatial line simultaneously, a tungsten halogen lamp, a sliding track 87 

and a black tray for the beef. With the targeted object sliding through the imaging system, a 88 

three dimensional HSI cube can be formed. Before the image collection starts, a spectral 89 

calibration procedure has to be done at two extreme illuminating conditions, using a white 90 

tile that reflects almost 100% of the radiation at all working wavelengths and also the lens 91 

cap to get a dark image. These steps make sure that the sample reflectance can be 92 

separated from the system response (Naganathan et al., 2008). Eq.(1) shows the calibration 93 

calculation, 94 

 





,
W

I B
R

I B
      (1) 95 

where I , WI  and B  stand for intensities of the raw image and white/dark reference images, 96 

respectively. 97 



 98 

Fig. 1. Schematic diagram of a visible HSI system: components 1-5 refer to the CCD camera, spectrograph and 99 

lens, halogen lamp, sliding track and scanning tray, respectively. 100 

2.2 Sample preparation and HSI data collection 101 

Over 200 carcasses (M. longissimus muscle), which are aged for 48 hours, were randomly 102 

selected in an abattoir production line during two consecutive days, irrespective of gender, 103 

conformation, fatness, weight or maturity. For each carcass, a piece of steak with thickness 104 

of 25 mm was recovered from the 11th rib position of the strip loin. 105 

Allowing for two minutes of blooming, hyperspectral images were collected. After imaging, 106 

each steak was divided into lateral and dorsal halves, labelled and vacuum packaged. The 107 

lateral halves were further aged for 5 days and the dorsal halves were aged for 12 days at -1 108 

ºC before freezing. A temperature data logger was packed with each batch in order to verify 109 

the temperature during the aging process. Thus, these steaks had a total aging time of 7 110 

days and 14 days before quality parameter measurements. 111 

2.3 Sample quality reference measurements 112 

Tenderness, juiciness and flavor of beef are considered as the most important attributes that 113 

influence the repurchase behavior of consumers (Shackelford et al., 2001). In our 114 

experiments, slice shear force (SSF) was measured as the tenderness reference, while the 115 

ultimate pH is found to have a strong relationship with juiciness and flavor of beef steaks. On 116 

the day before tenderness and pH tests, steaks were thawed overnight at ambient 117 



temperature and ultimate pH values were first measured using a calibrated Hanna meat pH 118 

meter (HI 99163) without the knife blade attached. Two measurements were taken at 119 

different locations and averaged to give the final result. For offline SSF measurement, steaks 120 

were cooked on a clam-shell grill until the center temperature reached 71 ºC using a 121 

stainless steel temperature probe. Samples were sheared perpendicular to the muscle fiber 122 

axis with a Tenderscot tenderometer (Pentland Precision Engineeris, Loanhead, Midlothian), 123 

and the highest force during the shear process was picked up as the SSF. In summary, there 124 

are four beef quality attributes in total for each steak that need to be predicted, which are 125 

SSF7, SSF14, pH7 and pH14. 126 

2.4 Singular spectrum analysis 127 

As a relatively new technique, SSA is commonly used for time series analysis and forecasting. 128 

Based on the singular value decomposition (SVD), it is able to decompose the original time 129 

series into a few components, including the ‘clean’ series, oscillations and noise (Zabalza et 130 

al., 2014b). The algorithm of SSA is briefly introduced as follows.  131 

The first step in the SSA algorithm is to transform the investigated series into the trajectory 132 

matrix. Assume we have a one dimensional series vector with length N  as   1 , , Nx xX . 133 

Given a window length L   1< L < N , the initial series can be mapped into K  lagged vectors, 134 

 
T

1, ,i i i+L-x xX  for 1i = , ,K , where  1K = N L . Then, the trajectory matrix is formed 135 

as Eq.(2). One thing worth of noting is that the matrix T  is a Hankel matrix with size of L K , 136 

where T  has equal elements
 ijx

 
on the anti-diagonals where  consti j , 137 
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The next step is to perform the SVD of the trajectory matrix T . First, the eigenvalues of TTT  139 

are calculated and arranged in the decreasing order, written as    1 L 0 . The 140 

corresponding eigenvectors are denoted as  1 , , LU U . Then the result of SVD is shown in 141 

Eq.(3), 142 

   1 ,dT T T      (3) 143 

where d  is the rank of T ,  T
i i i iT U V   1, ,i d  are called elementary matrix with rank 144 

1, and  T /i i iV T U  are often called principal components of the matrix T . In general, the 145 

contribution of iT  to the trajectory matrix T  depends on the ratio of each eigenvalue and 146 

the sum of these eigenvalues, shown in Eq.(4), 147 
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The following step of SSA is called grouping, where the set of indices  1, ,d  is divided into 149 

m  disjointed subsets 1 , , mI I . Assume   1 , , pI i i , then the trajectory matrix 150 

corresponding to the group I  is defined as   
1 pI i iT T T . Similarly, the resultant trajectory 151 

matrices can be calculated for every group 1 , , mI I I  and Eq.(3) is expanded as Eq.(5), 152 

   
1 mI IT T T      (5) 153 

The last step is the diagonal averaging which first hankelizes the grouped matrices IT  and 154 

then transforms them into a new series with length N . Let 1 1( , , )Ny yY  be the 155 

transformed one dimensional series of 
1I

T , elements in 1Y  can be represented as Eq.(6), 156 
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where  min( , )L L K ,  max( , )K L K , 

   , 1 , 1j k j j k jy y  if L K  and 

   , 1 1,j k j k j jy y  if L K . 158 

Hence, the initial series  1( , , )Nx xX  can be decomposed into m  series: 159 

   1 .mX Y Y        (7) 160 

In SSA decomposition with m  reconstructed series, the first reconstructed series  1Y  is 161 

regarded as the most important one. Hence the rest are discarded as noise. 162 

2.5 HSI data pre-processing 163 

The hyperspectral image data were then imported to MATLAB 2013 (MathWorks) for further 164 

processing and analysis. Fig. 2(a) shows a sample image at one wavelength after reflectance 165 

calibration. In order to improve the regression performance and processing speed, a region-166 

of-interest (ROI) with size of 100  200 was selected from the lean part on each 167 

hyperspectral image, illustrated in Fig. 2(b). Even though most of fat area was discarded, 168 

there were still a few pixels that had different spectral features from pure lean pixels, i.e. 169 

dead pixels. In this context, an iterative pixel removal process (Burger and Geladi, 2006) was 170 

applied to the ROI to exclude these dead pixels. For all spectra in the ROI, the Euclidean 171 

distances to the median spectrum and the standard deviation of these distances were 172 

calculated. Then those pixels with distances higher than five standard deviations were 173 

removed from the ROI. It is assumed that in our experiments, 100 times iterations should be 174 

enough for removing dead pixels. In addition, the first 50 bands were removed due to the 175 

visual spatial noise presented in the images. After these cleaning steps, it is assumed that all 176 

pixels in the ROI are contributed by the lean part and finally a new median spectrum in Fig. 177 



2(c) can be achieved, shown by the full line. One thing worth of noting is that for the new 178 

median spectrum, the reflectance at each wavelength does not necessarily come from the 179 

same location in the ROI. As a result, noise could also possibly be produced during this 180 

process. As mentioned previously, we propose to use SSA for removing various noises from 181 

HSI median spectra and the result is shown by the dotted line in Fig. 2(c). 182 

 183 

Fig. 2 HSI spectral feature extraction. (a) A band in a sample hyperspectral image, (b) ROI in the sample image, 184 

and (c) original median spectrum and SSA treated median spectrum of the ROI. 185 

There are two important parameters that affect the performance of SSA, which are the 186 

window length L  and the eigenvalue grouping. The window length determines the number 187 

of decomposed series after SSA, while the eigenvalue grouping defines how many 188 

decomposed series are used for reconstruction in order to remove noise. In our experiments, 189 

we only used the first decomposed series for spectrum reconstruction as previously 190 

discussed and the only parameter to be adjusted is the window length L . In Fig. 2(c), the 191 



window length is set as 5. Even though a subtle difference can be noticed in the plot, it is 192 

demonstrated that SSA did improve the prediction performance as shown below. 193 

After effective feature extraction by SSA, the reflectance spectra  R  were usually 194 

transformed into absorbance  1 / R  by logarithm transformation, in order to linearize the 195 

relationship between the concentration of an absorbing compound and the absorption 196 

spectrum (Rust et al., 2008). 197 

2.6 Regression analysis model 198 

Unlike other researchers who usually use partial least squares regression (PLSR) to build the 199 

regression model, we have employed SVM instead. The ability of SVM has been exploited in 200 

many applications associated with HSI, which is proved to be an outstanding machine 201 

learning model. However, a major problem of SVM is its curse of dimensionality. As a result, 202 

principal component analysis (PCA), as an effective feature extraction technique for 203 

hyperspectral data (Gowen et al., 2008; Ren et al., 2014; Zabalza et al., 2014a; Zabalza et al., 204 

2014c), was introduced to reduce the dimensionality of our beef hyperspectral images. 205 

PCA is found to be able to project the high-dimensionality data to a new space, where 206 

differentiability is higher in a subset containing first few transformed features than other 207 

subsets (Sun, 2010). Therefore, only a small amount of features would explain the high-208 

dimensionality data and the rest of features can be discarded. 209 

Assume kx   1,2, ,k n  is the reflectance spectrum of each sample with m  dimensions, 210 

then the whole dataset can be represented by an n m  matrix, shown as Eq.(8): 211 
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The first step of PCA is to find the covariance matrix of the whole data, as given in Eq.(9), 213 

      


T1
,

1n
XS X μ X μ      (9) 214 

where μ  is the mean spectrum of the whole dataset. The projection optW is chosen to 215 

maximize the determinant of the total covariance matrix of the projected samples, which is 216 

     T
1 2argmax ,opt LXW W S W w w w     (10) 217 

where iw   1,2i = ,...,L  is the set of L  dimensional eigenvectors of XS  corresponding to L  218 

largest eigenvalues. Thus, the dimensionality is reduced from m  to L . 219 

With a lower dimension L , SVM is applied to construct the prediction model. For 220 

classification and regression problems, SVM maps the training dataset x  to a high 221 

dimensional feature space by using a non-linear kernel function, shown below: 222 

  ( , ) ( ) ( ),i j i jK x x x x       (11) 223 

where   is the mapping function. Then it is able to classify the data by a maximal margin 224 

hyperplane. The radial basis function (RBF) kernel was selected in this paper, given in Eq.(12): 225 

   
2

( , ) exp( ).i j i jK x x x x       (12) 226 

Optimized parameters were grid-searched using four-fold cross-validation in order to avoid 227 

model over-fitting. 228 

3 Results and discussion 229 

To test the ability of HSI for evaluating unknown beef quality, data has to be split into the 230 

calibration set and the validation set, where models would be learnt from the calibration set 231 

and tested on the validation set. By sorting each quality trait (SSF7, SSF14, pH7 and pH14) in 232 



ascending order respectively and selecting every fourth sample into the validation set with 233 

the interleaving three samples being allocated to the calibration set (Williams, 2001), it 234 

ensures that the validation set is similar to the calibration set, considering the mean value, 235 

the range and the standard deviation (SD) of each analyzed quality attribute, where the 236 

statistics are shown in Table 1. 237 

Table 1. Summary statistics of studied beef quality attributes. 238 

Trait  Calibration set  Validation set 

 n Min Max Mean SD  n Min Max Mean SD 

SSF7  159 46.97 299.54 131.46 48.18  52 69.41 285.62 130.73 45.69 

SSF14  159 63.35 291.56 132.23 42.91  52 73.61 239.82 131.32 39.91 

pH7  154 5.44 6.37 5.63 0.13  51 5.46 6.34 5.63 0.14 

pH14  154 5.46 6.46 5.69 0.14  51 5.48 6.41 5.69 0.14 

 239 

The prediction performance was evaluated quantitatively by the coefficient of 240 

determination (R2) and the ratio of performance deviation (RPD). Equations for these 241 

metrics are given below:  242 
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where iy  is the original quality trait value, if  is the predicted trait value, y  is the mean of 245 

original trait values and n  is the total number of samples in the validation set. The 246 

coefficient of determination varies within 0 to 1, where 0 represents a poor correlation 247 



between the predicted trait values and the reference trait values while 1 means a high 248 

degree of correlation.  249 

By trial and error, the number of principal components was set as 30. In that case, 250 

dimensionality has been reduced dramatically while enough features have been preserved. 251 

Results comparing the performance of the original spectra and SSA treated spectra for the 252 

validation set are shown in Table 2. The window length L  was tuned to achieve the best 253 

result. As highlighted in bold, except for limited improvement on SSF14, SSA could always 254 

stand out prominently, which demonstrates that it is an excellent feature extraction and de-255 

noising pre-processing procedure for HSI spectral profiles. Just like the time series, in this 256 

paper one-dimensional (1D) SSA was applied in HSI spectral domain. Future work involves 257 

combining two-dimensional (2D) SSA on the spatial domain, which has been proved to be 258 

even more effective on remote sensing HSI based classification problems than 1D SSA 259 

(Zabalza et al., 2015). 260 

Table 2. Performance comparison of original HSI spectra and SSA treated spectra for predicting beef eating 261 

quality attributes. 262 

Trait  Original spectra  SSA treated spectra 

 R
2 

RPD  L R
2 

RPD 

SSF7  0.1938 1.1019  2 0.3288 1.2082 

SSF14  0.1001 1.0264  2 0.1104 1.0249 

pH7  0.4227 1.2490  3 0.4511 1.2822 

pH14  0.2785 1.1234  7 0.3419 1.2090 

 263 

If we adjust the number of principal components and the window length of SSA by 264 

conducting a grid search, the regression performance with the validation set can be even 265 

further improved. Chosen parameters and results for SSA treated HSI spectra are shown in 266 

Table 3. 267 



Table 3. Best performance of SSA treated spectra for predicting beef eating quality attributes. 268 

Trait No. of PCs L R
2 

RPD 

SSF7 30 2 0.3288 1.2082 

SSF14 20 6 0.2033 1.1048 

pH7 45 2 0.5838 1.4320 

pH14 45 3 0.4863 1.3615 

 269 

As can be seen, for predicting ultimate pH values, both R2 and RPD indicate that HSI could be 270 

a promising tool for the beef industry. However, the results for predicting SSF are not very 271 

satisfying, which might be due to the fact that SSF is not a standard quantitative metric of 272 

meat tenderness, regardless inconsistent measurements within the ground truth. Similar 273 

results have been achieved by other researchers as well. Prieto et al. (Prieto et al., 2009) 274 

have predicted SSF using NIRS, giving R2 of 0.31 (RPD = 1.25) and 0.23 (RPD = 1.14) for SSF3 275 

and SSF14 respectively. But, it should be noted that comparisons between studies are not 276 

reliable due to different samples used. Nevertheless, we cannot deny the potential of HSI in 277 

providing additional information that could help to improve prediction of meat quality 278 

attributes. 279 

4 Conclusion 280 

In conclusion, a relatively new time series analysis method named SSA is proposed to pre-281 

process HSI spectra. By decomposing original spectra and reconstructing the spectra using 282 

the most significant components, SSA demonstrates its ability in removing noise and 283 

improving the prediction accuracy for HSI based beef eating quality evaluation. Although in 284 

this paper SSA was only applied on beef hyperspectral images, it is not limited in this field. 285 

We believe that it can be extended to other HSI based applications, including data prediction 286 

in both classification and regression problems. 287 
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