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Abstract 13 

Lameness is a major problem affecting pigs and its detection is subjective and challenging on 14 

large farms. Previous research using advanced kinematic gait analysis (Vicon) has established 15 

that abnormality in the movement of the axial body during walking is associated with 16 

lameness in pigs. Vertical excursion of head and neck was most affected, and increased by 17 

+15-58 mm in lame compared to normal pigs. However, simpler technology is required to 18 

automate lameness detection. In this experiment, walking trajectories of mid-line dorsal body 19 

regions of seven normal pigs varying in size were filmed repeatedly within day and between 20 

days on two or three occasions within one week. Trajectories were tracked simultaneously 21 

using both a 6-camera Vicon system, set up in an array flanking a walkway and detecting 22 

reflective markers, and a Microsoft Kinect motion sensor, mounted above the walkway. Four 23 

pigs wore a large (height 30 mm) reflective marker in the mid-neck region, detectable by both 24 

Kinect and Vicon during two days. Two custom-written computer algorithms using the 25 



Kinect developer toolkit were produced to (1) follow the large neck marker and (2) enable 26 

marker-free tracking of other body regions. Reversed depth data from the Kinect and vertical 27 

position data from the Vicon were compared to assess agreement. There was a high positive 28 

correlation between the Kinect and Vicon trajectory means of the large neck marker 29 

(P<0.001; r=0.994). The Kinect neck marker trajectory mean was generally higher than the 30 

Vicon trajectory mean, therefore a positive difference of 4 mm ± 4.2 mm (LoA) was noted. 31 

There was no pig effect on trajectory differences, but a pig effect on trajectory mean which 32 

reflected the size of the pig (P<0.001). The mean±SD of continuous differences between 33 

corresponding Kinect and Vicon neck marker trajectories amounted to 5 ± 1.5 mm. The mean 34 

of vertical displacement amplitudes was 5 ± 2.8 mm, and hence the minimum difference of 35 

+15 mm in lame animals should be detectable in more than 99% of cases. Trajectories of 36 

neck, back and pelvis generated by a marker-free Kinect application showed less similarity to 37 

corresponding Vicon trajectories. It was concluded that the Kinect device could distinguish 38 

sound from lame pigs by tracking neck region elevation during walking; however, markerfree 39 

tracking algorithms need refinement and further development to become sensitive and 40 

reliable. 41 
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1. Introduction 44 

Lameness is a major problem afflicting 10-20% of the pigs within the modern pig 45 

industry (Kilbride et al., 2009). To date, lameness detection in livestock is largely subjective, 46 

potentially delayed and insensitive to early or mild problems (Dalmau et al., 2010). 47 

Subjective lameness scoring often has a low to moderate repeatability between observers, and 48 

estimates of true lameness prevalence on a farm require the examination of all animals, which 49 

makes the monitoring of animal mobility a challenging and expensive task (Mullan et al., 50 

2009). 51 

 There are various lameness indicators in different farm animal species. Arching of 52 

the back is a common indicator of lameness in cows (Poursaberi et al., 2010; Sprecher et al., 53 

1997), head bobbing is characteristic in sheep and horses (Kaler et al., 2009; Buchner et al., 54 

1996) and in pigs (Stavrakakis et al., 2013; Mustonen et al., 2011). Other qualitative 55 

lameness indicators which have been used by observers of cows include 'tenderness', 56 

'irregular gait' and 'increased abduction' (van Nuffel et al., 2009).  Generally, most lameness 57 

scoring systems across species include concepts such as “changes in weightbearing of 58 

affected limb(s)”, “irregular or assymmetric gait” and “discomfort and reluctance in moving”. 59 

Visual mobility scoring requires a high level of training and assessment of individual 60 

animals. However, this is often difficult to implement on farms with multiple animals in a 61 

pen and other factors, such as dirty floors, potentially influencing the subjective outcome 62 

(Mullan et al., 2009).  63 

In an attempt to achieve objectivity and to automate lameness detection, various 64 

researchers have recently used biomechanical and computer vision techniques to assess 65 

lameness in a range of species including horses (Pfau et al., 2007), cattle (Viazzi et al., 66 

2014a; van Hertem et al., 2013) and pigs (Meijer et al., 2014; Pluym et al., 2013). Temporal 67 

gait variables (stance times), measures of asymmetry between left and right limbs and the 68 



arching of the back are the most widely used gait variables for automated lameness detection 69 

in cows (Viazzi et al., 2014a; van Nuffel et al., 2009). However, there are differences 70 

between species in gait alteration and compensation strategies and also in farming routines, 71 

therefore suitable species-specific gait variables and detection algorithms need to be 72 

identified and developed (Stavrakakis et al., 2015; Neveux et al., 2006). Using a specialised 73 

marker-based Vicon system for kinematic gait analysis, abnormality in the movement of axial 74 

body regions during walking has been associated with lameness in pigs. Stavrakakis et al., 75 

(2015; 2013) reported that vertical excursion of the head and neck was most affected in lame 76 

pigs and increased by +15-58 mm compared to normal pigs.  77 

Extensive attempts are now being made within the field of clinical biomechanics to 78 

utilise the Microsoft Kinect sensor as a cheaper alternative to conventional expensive and 79 

laborious gait analysis technologies, such as the Vicon system (Sandau et al., 2014). Good 80 

agreement between the Kinect and specialised motion analysis systems has already been 81 

established for some clinical purposes, such as assessment of postural control, functional 82 

activity and spatiotemporal gait assessment in humans (Bonnechere et al., 2014; Clark et al., 83 

2013). Kinect studies of gait assessment in humans currently use the full skeletal tracking 84 

ability of the Kinect (Seer et al., 2014), whereas this study used only the depth sensor since 85 

the skeletal tracking was not designed to work with quadrupeds. If developed further, 86 

however, the Kinect sensor could provide a new, cheap and portable movement monitoring 87 

device for quadrupeds and may allow early and consistent identification of lame pigs. 88 

Furthermore, continuous monitoring could enable assessment of changes in pen- and farm 89 

based lameness prevalence over time, for example when changes occur in management, 90 

genetics, nutrition and behaviour of pigs (Viazzi et al., 2014b).  91 

The aim of this study was to evaluate the validity of the Microsoft Kinect sensor for 92 

assessment of normal walking in pigs, by comparing its depth data measurements with the 93 



“gold standard” provided by the Vicon system. Pigs of varied size were used to identify 94 

potential sensitivity of the Kinect sensor to differences in depth, i.e distance from the body 95 

surface to the sensor. It was hypothesised that the Kinect depth data could reproduce Vicon-96 

derived trajectories both in terms of absolute and relative values, and that pigs could be 97 

correctly identified as having a normal walking pattern based on relevant Kinect-derived 98 

measurements. Correlation of both single values derived from Kinect and Vicon trajectories 99 

and continuous differences along trajectories were assessed. A reference marker tracked by 100 

both systems on the neck gave the ground truth estimate for the difference between the 101 

Kinect and Vicon; a markerfree tracking within the Kinect depth data was performed to 102 

evaluate the potential “unaided” performance of the sensor. 103 

 104 

2. Materials and Methods 105 

2.1.1 Experimental design and data collection 106 

All procedures on animals were in accordance with institutional and UK animal 107 

welfare regulations (http://www.ncl.ac.uk/research/ethics/animal/animalpolicy.htm). From 108 

the commercially-run pig unit at Cockle Park, Newcastle University, seven clinically healthy 109 

pigs (Hermitage Genetics, Kilkenny, Ireland) were randomly selected  at a mean liveweight 110 

of 52 kg (SD 9.5, range 39-63kg) and housed in a partly-slatted concrete pen (9 m2) in a 111 

controlled environment building. One week of habituation to close human contact and short 112 

isolation from pen mates followed.  113 

Subsequently, over a period of seven days, data were collected on liveweight and 114 

selected gait parameters on two (N=3 pigs) or three (N=4 pigs) separate days. Not all seven 115 

pigs were cooperative on all three days or their data were not usable due to marker occlusion 116 

or very irregular movement. Motion capture took place in an adjacent building, a modified 117 

finisher pig building which had been adapted to provide a waiting area, a handling area and a 118 

https://owa.ncl.ac.uk/owa/redir.aspx?C=aa9057545cde4a9b9d16ee8e34b854be&URL=http%3a%2f%2fwww.ncl.ac.uk%2fresearch%2fethics%2fanimal%2fanimalpolicy.htm


motion capture arena. Hemispherical, reflective markers (19Lx19Wx10H mm; The Vibration 119 

Solution, Burlington) were attached at the central nasal bone, the mid-neck proximal to 120 

shoulders (frontal to the shoulder widening), the posterior mid-thorax (back), anterior mid-121 

pelvis (narrowest width between abdomen and pelvis) and tail base of one pig at a time 122 

(Figure 1, B), using double-sided, adhesive tape (Supa Brands, Worsley, Manchester). Next, 123 

the pig was moved into the motion capture area, where it proceeded to walk along a concrete 124 

walkway measuring 3.5 m long and 2.0 m wide. Movement was captured simultaneously by 125 

the Vicon 3D optoelectronic motion analysis system and the Kinect motion sensor.  126 

The Vicon system (Vicon T20, Oxford, UK) included six infrared cameras set up in 127 

an array to one side of the walkway and connected to a PC featuring Nexus software (v1.7.1, 128 

Vicon, Oxford, UK). Frames were sampled at 125 Hz and subsequently interpolated to match 129 

the sampling rate of the Kinect. The Kinect motion sensor (v1, Kinect for Windows, 130 

Microsoft, USA) was mounted 1.8 m above the walkway (Figure 1, A). Filming was 131 

triggered manually when pigs approached the field of view of the Kinect camera. Cooperative 132 

pigs followed a human guide at a regular and continuous walking pace along the walkway. 133 

Since, during the process of filming, it transpired that the hemispherical markers were 134 

too flat for extraction by the Kinect sensor, the marker on the neck was replaced by a larger 135 

spherical, reflective marker (25x25x30 mm) on the second and third days for four out of the 136 

seven pigs. This large marker served as a reference marker for the true difference between 137 

Kinect and Vicon, since it could be tracked by both motion capture systems. The remaining 138 

three pigs were fitted with only hemispherical markers for collection of Vicon data and 139 

constituted the dataset for marker-free Kinect tracking. 140 

 

 

 



 

 

 

 

Figure 1 A-D: 

 

 

 

 

 

 

 

Gait lab set-up showing the Vicon 

cameras with infrared strobe around 

each lens, and the Kinect camera 

mounted above the walkway (arrow). 

  
Pig on walkway with five reflective Vicon  

markers (arrows) visible on the Kinect RGB 

camera. 

Reflective markers visible on the Vicon Nexus 

software motion capture screen. In this image 

the trajectory of the neck marker is displayed. 

 
 
 
 

D) The 30mm neck marker (arrow) 

extracted by a custom-written Kinect algorithm. 
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2.1.2 Data processing and analysis 141 

Two custom-written computer algorithms using the Kinect developer toolkit were 142 

produced. Kinect algorithm (1) identified and followed the large neck marker, placed on four 143 

of the pigs on two occasions, by finding regional points along the pig spine with the least 144 

distance to the sensor (referred to as depth). This was achieved by a programme which 145 

identified the pig outline, derived a band area along the longitudinal axis of the pig and 146 

compared the least distant values within the band on a frame-by-frame and frame-aligned 147 

region-by-region basis. Kinect algorithm (2) enabled a marker-free tracking of neck, back and 148 

pelvic sampling points, approximating the position of Vicon reflective markers on those three 149 

pigs without the large marker. Sampling points of nasal bone and tail base were discontinued 150 

due to inconsistencies of head and tail movement and therefore inconsistent tracking within 151 

the Kinect depth data.  152 

Kinect sampling point depth data generated by both algorithms were converted into 153 

distance-from-floor for comparison with Vicon’s vertical position data. To account for the 154 

fact that the floor of the walkway was not completely even, two different approaches were 155 

taken to adjust the depth data. Three empty frames at the beginning of a film selected 156 

immediately before entry of a pig onto the screen were used to generate a floor distance-to-157 

sensor pixel map, so that the coordinates of pig body sampling points could subsequently be 158 

subtracted from the corresponding floor positions (dynamic floor inverse). A second 159 

reversion technique assumed a constant floor distance value for the generation of a Kinect-160 

independent inverse of the sampling point data (constant floor inverse). The latter method 161 

enabled assessment of the true differences between both systems after normalising each value 162 

by subtracting the mean of the entire trajectory, but this method was not suitable for 163 

comparing absolute values. For the marker-free Kinect assessment, the second technique was 164 

also used, since only relative measures were compared. 165 



Vicon marker trajectory data were collected from Nexus software and imported into 166 

Matlab (R2010b, Mathworks©, Natick, USA) for resampling at 30 Hz and corresponding 167 

Vicon and Kinect video footages were identified. Vertical excursions (amplitudes) of Kinect 168 

and Vicon trajectories were calculated as the difference between local extremes on curves 169 

and averaged. Overall, 3-5 films per pig and per capture day were processed. 170 

After checking for normality of the data, the correlation between Kinect and Vicon 171 

trajectory means and effect of pig and capture date on trajectory means and differences were 172 

assessed using Minitab statistical software (v16, Minitab Inc., State College, USA). 173 

 174 

3. Results 175 

3.1.1 Large neck marker dataset (N = 4 pigs) 176 

Differences between absolute Kinect and Vicon trajectories (dynamic floor inverse). The 177 

mean ± SD of continuous differences between corresponding absolute Kinect and Vicon neck 178 

marker trajectories amounted to 8 ± 1.1 mm. A high positive correlation between the Kinect 179 

and Vicon trajectory means of the large neck marker (P<0.001; r=0.994) was found. This 180 

relationship became stronger when observations within pig were averaged by day or over the 181 

entire data collection (Figure 2 A-C). Average neck marker height was greater in all Kinect-182 

derived observations compared to the Vicon data and this positive difference was 4 ± 4.2 mm 183 

(Limits of Agreement, LoA; Figure 3). Pig effect on neck marker trajectory mean was 184 

significant (P<0.001), reflecting the size of the pig. Pig height, based on large neck marker 185 

trajectory means obtained by Vicon, ranged from 540-580 mm.  186 

 187 



 

 

 

 

Figure 2 A-C:   

Correlation of 

Kinect and Vicon 

neck marker 

vertical position 

showing means 

from 4 pigs x 2 

days with a total of 

40 observations 

(a), pig mean 

within day (b) and 

total pig mean (c).  
 

 

 

 

Figure 3: Limits of 

agreement between 

Kinect and Vicon 

neck marker 

vertical position 

trajectory means. 

Red line is at 3.8 

mm mean 

difference ± 4.2 

mm, representing 

the limits of 

agreement as SD 

(2.1 mm) x 2. 
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Differences between normalised Kinect and Vicon trajectories and vertical amplitudes 188 

(constant floor inverse). The mean ± SD of continuous differences between corresponding 189 

Kinect and Vicon neck marker trajectories amounted to 5 ± 1.5 mm. Similarly, the mean of 190 

vertical displacement amplitudes was 5 ± 2.8 mm, suggesting that differences were not 191 

exaggerated around trajectory extremes. There was no effect of pig on the differences 192 

between Vicon and Kinect trajectories, but there was a day effect (P=0.048). Mean difference 193 

on day 3 (5.8 mm) was higher compared to day 2 (4.7 mm). Absolute values (mean ± SD) of 194 

the average vertical amplitude of the neck marker trajectories were 16 ± 7.0 mm and 14 ± 5 195 

mm for the Vicon and Kinect measurement, respectively, which correspond to neck elevation 196 

values observed in normal pigs. Corresponding Vicon and Kinect neck marker trajectories of 197 

three pigs, performing a range of head movements are presented in Figure 4. Pig A shows the 198 

typical regular head bobbing at a quicker walking speed, whereas Pig B lifted its head and 199 

Pig C dipped its head whilst walking past the cameras. Corresponding Vicon and Kinect neck 200 

marker trajectories of one pig, with two different floor corrections methods applied, are 201 

presented in Figure 5. 202 
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Figure 4 A-C: Neck marker trajectory of three pigs (A, B, C) tracked by Vicon 

(continuous) and Kinect (dashed). Local maxima and minima are identified on each 

trajectory. *The Kinect sampling rate may vary depending on the instantaneous processing capacity 

of the PC. 
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Figure 5 A-B: (A) Neck marker trajectory of one pig tracked by Vicon (continuous), Kinect, 

assuming a constant floor (dashed), and Kinect with a dynamic floor correction (dotted).  B) 

shows the previous Vicon (continuous) and Kinect (dashed), assuming a constant floor, 

trajectories normalised to the trajectory mean for the assessment of absolute differences along 

the entire trajectories. * The Kinect sampling rate may vary depending on the instantaneous processing 

capacity of the PC. 
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3.1.2 Marker-free Kinect tracking method of neck, back and pelvic region (N = 3 pigs) 203 

Trajectories of neck, back and pelvis generated by a marker-free Kinect application generally 204 

showed less similarity to the corresponding Vicon trajectories. This was mainly reflected in a 205 

greater mean ± SD of the continuous differences between corresponding Kinect and Vicon 206 

trajectories, specifically 11 ± 2.2 mm. Mean differences between vertical amplitudes of neck, 207 

back and pelvic region trajectories were 6 ± 5.9 mm; 5 ± 3.7 mm and 4 ± 3.6 mm, 208 

respectively. Absolute values (mean ± SD) of the vertical amplitudes of neck trajectories 209 

were 19 ± 7.6 mm and 18 ± 8 mm for Vicon and Kinect measurements, respectively. Back 210 

vertical position amplitudes were 15 ± 10.7 mm and 18 ± 13 and pelvic amplitudes were 16 ± 211 

10.6 and 16 ± 8.7 according to Vicon and Kinect measurements, respectively.  212 

 213 

4. Discussion 214 

This study evaluated the validity of the Microsoft Kinect sensor for the identification 215 

of normal walking patterns in pigs, by comparing Kinect depth data measurements to data 216 

derived from the “gold standard” Vicon motion analysis system. It was hypothesised that the 217 

Kinect depth data could reproduce Vicon-derived trajectories in terms of both absolute and 218 

relative values and thus that pigs could be correctly identified as having a normal walking 219 

pattern based on relevant Kinect-derived measurements. A reference marker on the neck 220 

tracked by both motion capture systems gave the ground truth estimate for differences in 221 

marker position measured by the Kinect and Vicon systems, whilst marker-free tracking 222 

within the Kinect depth data was undertaken to evaluate the potential “unaided” performance 223 

of the sensor. Since this was a proof-of-concept study, the number of animals used was 224 

relatively low, but the replication of data collection was nevertheless sufficient to confirm 225 

reproducibility of the technology. 226 



In previous reports by Stavrakakis et al. (2015; 2013), lame pigs have been shown to 227 

have a characteristic head bob arising from altered head and neck movement, particularly a 228 

rise in the vertical displacement amplitudes of the head and neck during walking. This 229 

movement alteration was regarded as one of the most suitable gait parameters to be 230 

incorporated into automated detection of lameness in pigs. Other gait parameters relating to 231 

hoof placements in space and the timing of these, particularly asymmetries in temporospatial 232 

gait, were also strongly associated with lameness in groups of pigs (Stavrakakis et al., 2015). 233 

Nonetheless, these gait parameters are likely to be more difficult to exploit and integrate 234 

within a motion analysis system suitable for pig farms, because of the necessary sensor 235 

proximity to legs. In these previous studies, all data were collected by a Vicon motion capture 236 

system which enabled an accurate and steady tracking of both head and neck regions by 237 

means of reflective markers. However, using the Kinect in the present study, sampling points 238 

of nasal bone and tail base had to be discontinued due to inconsistencies of head and tail 239 

movement and therefore inconsistent tracking within the Kinect depth data. Additionally, the 240 

Kinect sensor was mounted in a bird’s eye-view perspective above the walkway, since this 241 

position was considered to be the most suitable perspective for an on-farm mobility 242 

monitoring device. A large marker on the nasal bone, therefore, would not have provided a 243 

large difference to surrounding surfaces within the depth data of the Kinect, whose x-and y-244 

planes were almost parallel to the frontal plane of the pig walking underneath. Consequently, 245 

when using the Kinect sensor filming from a bird’s eye perspective, neck elevation was 246 

considered to be the best proxy measure for the characteristic lameness-related head bob. 247 

In this study, tracking both the absolute depth and the relative depth trajectory of an 248 

object were of interest to test the general performance of the Kinect sensor in a farm 249 

environment. However, only the relative measures are subsequently required for the detection 250 

of lameness. Therefore, two techniques were applied to calculate distance-from-floor for 251 



comparisons between Vicon and Kinect data and thus enable assessment of absolute and 252 

relative differences. The technique which used the specific floor distance corresponding to 253 

the pixel(s) in which the neck marker was identified was expected to lead to greater 254 

differences between the two motion capture systems. Firstly, since the Kinect data is known 255 

to contain an uncertainty of up to 10 mm (Koshelham and Elberkink, 2012), then two 256 

measures based on Kinect data will theoretically contain twice the inherent Kinect 257 

uncertainty. Secondly, the walkway on which the pigs were walking had a minor inclination 258 

of approximately 5-10mm. Hence, using the floor distance to correct the neck marker 259 

distance from the sensor levelled the marker trajectory. No such correction was performed 260 

using the Vicon trajectories and hence differences between both systems became greater. The 261 

finding that absolute Kinect-derived trajectory heights were overestimated compared with 262 

Vicon is not surprising if taken into account that Vicon tracks the centroid of a marker, 263 

whereas the Kinect algorithm identified the nearest pixel(s) of the large marker. However, 264 

another possible explanation is that within the recommended tracking range for the Kinect, 265 

namely 0.8 - 4 m - a range which was never exceeded in this study, accuracy of the Kinect 266 

decreases with increasing distance of an object from the sensor (Koshelham and Elberkink, 267 

2012). This could be an additional error introduced by the dynamic floor correction. The 268 

technique which assumed a constant floor height generated data which corresponded directly 269 

to the Vicon data, since Vicon data also assumed a level floor. Consequentially, comparing 270 

the results of the two techniques, levelling the marker trajectory with the dynamic floor 271 

inverse generated an additional mean error of at least 3 mm.  272 

Due to differences in pig size, pig effect on absolute trajectory means was expected to 273 

be significant. However, there was no pig effect on differences between trajectories, 274 

suggesting that the same sensor mounting height could be recommended over walkways or 275 

pens containing pigs at different ages or sizes. Moreover, the absence of a pig effect on 276 



differences between Kinect and Vicon systems encourages the conclusion that greater within-277 

pig neck elevation due to lameness should be detectable by the Kinect. Interestingly, there 278 

was a day effect on differences between trajectories measured by the two systems, with 279 

results between two days deteriorating by 1.1 mm on average. Pigs generally became more 280 

habituated and cooperative with the process of motion capture and hence it might have been 281 

expected that differences between the two sensors would have reduced over time due to more 282 

regular movements by the pigs. Also, the equipment was not changed or handled differently 283 

and therefore an inferior performance of the Kinect would not be expected for reasons related 284 

to electronics. However, although this was not systematically quantified, the lighting 285 

conditions in the experimental building may have varied between the two days due to the 286 

prevailing weather conditions outside the building. The Kinect sensor is known to be 287 

influenced by lighting conditions (Koshelham and Elberkink, 2012; Hernandez-Lopez et al., 288 

2012), which can decrease accuracy of the device’s output. Thus the recently released Kinect 289 

version (v2) has been improved to be less sensitive to variations in lighting (Breuer et al., 290 

2014; Smisek et al., 2013). Future studies aiming to develop an on-farm automated lameness 291 

system based on the Kinect sensor should use the improved version to test whether 292 

differences compared to reliable systems, such as the Vicon, can be minimised. Furthermore, 293 

whilst in this study the Kinect and Vicon systems were manually synchronised, 294 

improvements in synchronisation between the two systems could be made to minimise 295 

differences even further. Finally, direct comparisons of normal and lame pigs should be made 296 

to confirm that normal and abnormal trajectories can be detected by the Kinect sensor 297 

independently.  298 

Overall, as a proof-of-concept study, the presented results have shown that the Kinect 299 

is a promising alternative device for tracking neck elevation in walking pigs, and even the 300 

marker-free tracking was surprisingly good despite imperfections in the methodology. 301 



However, tracking algorithms need improvement to accommodate for pigs walking at angles 302 

to the direction of movement and adjustments should also be made to the bending movements 303 

of body parts during walking with respect to the longitudinal body axis. Equally, for a 304 

reliable extraction of geometric points within body parts, machine learning classifiers should 305 

be trained to identify local image features corresponding to body parts of pigs, similar to the 306 

skeletal tracking tool used for humans (Henrickson et al., 2014).  307 

 308 

Conclusion 309 

Vertical position trajectories of a dorsal neck marker on pigs produced by the Kinect motion 310 

sensor and the “gold standard” Vicon system showed a high level of agreement. It is therefore 311 

concluded that the Kinect sensor is suitable to track characteristics of sound walking in pigs 312 

based on neck elevation and shows considerable potential to track abnormalities in walking 313 

patterns caused by lameness. Thus fully automated and marker-free tracking of relevant 314 

dorsal mid-line point trajectories for a relatively modest cost appears to be feasible, but the 315 

technology requires refinement and further software development before it can be 316 

recommended for commercial use. 317 
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