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Enzymatic hydrolysis of the main components of lignocellulosic biomass is one of the promising methods 
to further upgrading it into biofuels. Biomass pre treatment is an essential step in order to reduce cellu 
lose crystallinity, increase surface and porosity and separate the major constituents of biomass. Scientific 
li terature in this domain is increasing fast and could be a valuable source of data. As these abundant sci 
entific data are mostly in textual format and heterogeneously structured, using them to compute biomass 
pre treatment efficiency is not straightforward. This paper presents the implementation of a Decision 
Support System (DSS) based on an ori ginal pipeline coupling knowledge engineering (KE) based on 
semantic web technologies, soft computing techniques and environmental factor computation. The 
DSS allows using data found in the li terature to assess environmental sustainability of biorefinery sys 
tems. The pipeline permits to: (1) structure and integrate relevant experimental data, (2) assess data 
source reliability, (3) compute and visualize green indicators taking into account data imprecision and 
source reliability. This pipeline has been made possible thanks to innovative researches in the coupling 
of ontologies, uncertainty management and propagation. In this first version, data acquisition is done by 
experts and facilitated by a termina ontological resource. Data source reliability assessment is based on 
domain knowledge and done by experts. The operational prototype has been used by field experts on a 
realistic use case (rice straw). The obtained results have validated the usefulness of the system. Further 
work will address the question of a higher automation level for data acquisition and data source reliabil 
ity assessment 
1. Introduction 

The bioconversion of lignocellulosic biomass has been exten 
sively studied in the past 30 years. Enzymatic hydrolysis of the 
main components of the biomass is one of the promising methods 
to further upgrading it into biofuels (Fig. 1 ). The structural hetero 
geneity and complexity of cell wall constituents such as crys 
tallinity of cellulose microfibrils, speàfic surface area and 
porosity of matrix polymers are responsible for the recalàtrance 
of cellulosic materials. Biomass pre treatment is consequently an 
essential step in order to reduce cellulose crystallinity, increase 
surface and porosity and separate the major constituents of bio 
mass (e.g. cellulose, hemicellulose, lignin, phenolic acids). The 
objective of such pre treatments depends on the process type 
and biomass structure. For instance, pre treatment methods can 
be divided into different categories: mechanical, physical, chemi 
cal, physicochemical and biological or various combinations of 
these (Fig. 2i Each method has its drawbacks such as energy 
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fig. 2. four dilferent biorefinery processes to transform biomass into glucose. 
consumption, corrosion of processing tools, water consumption,
introduction of inhibiting effects, or the high number of separation
and purification steps. Low or no water consumption during ligne 
cellulosic pre treatment can decrease the generated effluents, and
also reduce the energy input for the biomass pre treatment (Zhu 
and Pan, 2010; Barakat et al., 2014). 

In recent years, environmentally friendly pre treatments such
as milling or ultrasonic, plasma and wet explosions have been
studied for biomasses such as woods, bagasse, riœ and wheat
straw (Kumar et al., 2009; Zhu and Pan, 2010; Adapa et al., 2011;
Schultz Jensen et al., 2011; Sheikh et al., 2013 ). Currently, these
proœsses are not cost effective, not only because of high invest 
ment costs but also because they can be very heavy on energy.
For example, the total energy requirement of milling processes
depends on the physicochemical properties of biomass and on
the ratio of particle size distribution of materials before and after
milling, this ratio being strongly dependent on the equipment or
machine used. The environmental factor, energy consumption
and energy efficiency are classically used to compare the perfor 
mances, efficiencies and environmental impacts of different pre
treatment processes (Zhu and Pan, 2010; Barakat et al., 2014;
Chuetor et al., 2015). However, survey articles concerning these
three criteria for chemical, physicochemical and mechanical treat 
ment of lignocellulosic biomass remain scarce. Moreover, the
rapidly increasing scientific literature in this demain would make
such surveys quickly obsolete. To take advantage of this huge
and potentially valuable source of information, innovative tools
able to integrate continuously new information are required. 
The main obstacle holding back the use of those scientific data
is their textual format and heterogeneous structure. Our first aim
in this paper is to show the relevance of semantic web based KE
methods to structure the experimental information and express
it in a standardized vocabulary. Such structuring can be done using
an ontology (the semantic part of our model) to represent the
experimental data of interest (see step 1 in Fig. 3). Ontologies are
knowledge representation models that facilitate linkage of open
data and offer automated reasoning tools. Once structured in
ontologies, collected information and data are made homogeneous
and can be processed to compute criteria allowing the comparisons
of proœsses. 

Our second aim in this paper is to demonstrate the feasibility of
a pipeline (see Fig. 3), taking as inputs process data found in scien 
tific documents, and whose final output is a ranking of those pro 
cesses integrating data source reliability. Note that our system is 
partially inspired from previous semantic approaches used to facil 
itate "a priori" calculation of environmental indicators in industrial
symbiosis (Trokanas et al., 2015; Raafat et al., 2013). 

To illustrate our proposai, we present a first attempt to compare
different pre treatment processes (Fig. 2) in terms of sugar yield
after enzymatic hydrolysis and of environmental factor, by reusing
data already published in the sàentific literature. Energy efficiency
is out of the scope of this paper as there is a Jack of data about
energy consumption in the current literature. The illustrating
example concerns glucose extraction in rice straw and compares
the four processes presented in Fig. 2. These processes may include
a sequence of unit operations, as shown in Table 1. 
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fig. 3. Data treabnent pipeline to compare biomass pre-treatment processes. 

Table 1 
Definition of process types in terms of unit operations. 

Process type 

PM 
PM-UFM 

PM-PC-PS--UFM 

PM-PC-PS 

Sequence of unit operations 

Milling 
Pre-milling + Ultrafine milling 

Pre-milling + Physicochemical treatment + 
Press and separation + Ultrafin milling 
Pre-milling + Physicochemical treatment + 
Press and separation 

1 www.java.com. 
2 Resource Description Framework is a graph model dedicated to formai descrip­

tion of Web resources. 
3 https: //je na.apache .org/. 
The scope of application, as well as its relevance within the field 
of Biorefineries, have been defined in close collaboration with the 
3BCAR network. The 3BCAR French Carnot network (http://www. 
3bcar.fr) brings together researchers frorn seven laboratories in 
France (500 researchers) involved in the design of biornass trans 
formation processes into bioenergy, bio based materials and mole 
cules. ln the framework of the IC2ACV project financed by the 
3BCAR network, the need arose for a Decision Support System 
(DSS) able to help researchers involved in the Biorefinery design. 
The purpose of this DSS is to assist deàsion makers in making 
rational choices based on data and knowledge expressed by 
domain experts in the scientific literature. lt is a real boon to col 
laborate with the 3BCAR network as researchers act as a stake 
holder advisory board and help to specify the project scope, by 
defining the key parameters that must be in the generic tool. More 
over, a preliminary communication (Busset et al., 2015) indicates 
that this tool is of great interest for the international research corn 
munity in the field of Biorefinery and industrial companies. The 
DSS developed in this context aims at achieving progress in the 
complex issue of assessing the environmental impact of alternative 
Biorefinery systems. The presented DSS has the following 
functionalities. 

(i) lt is able to annotate, store and maintain potentially incom
plete or imprecise data extracted from the scientific litera
ture, in dedicated databases containing biorefinery system
characteristics ( e.g. glucose yield, mass balance in terms of
water, chemical reagents) and process parameters ( e.g.
milling rotation speed, treatment duration, temperature,
pressure);

(ii) lt computes environmental impact indicators ( called Efactor
in the following) integrating data reliability aspects;

(iii) lt ranks the different Biorefinery processes according to their
environmental impact.
The underlying pipeline, shown in Fig. 3, is based on an original 
coupling of IŒ methods, soft computing techniques and environ 
mental factor computation to assess environmental sustainability 
of Biorefinery systems (see steps 2 and 3 of Fig. 3). To our knowl 
edge, there is currently no data treatment pipeline similar to the 
one designed and implemented in this study. This pipeline takes 
as input a set of scientific papers extracted from bibliographical 
resources on the Web and generates as output a ranking of biore 
finery processes based on environmental impact assessment. 

The paper is organized as follows. Our approach is compared to 
the state of the art in Section 2. Functional specifications of the DSS 
are introduced in Section 3. The corresponding software architec 
ture is detailed in Section 4. lmplementation details of the 
graphical user interface in Java 1. the RDF2 data base management 
system with Jena3

, the environmental impact calculations, as well 
as the DSS assessment are presented in Section 5. Section 6 
concludes the paper. 
2. Comparison with the state of the art

Our DSS, which will be described in more details in Section 4, is 
a pipeline composed of three steps: (1) annotation guided by an 
ontology of experimental data published in scientific papers, (2) 
annotated data extraction and Efactor indicator computation, (3) 
process ranking including yield and Efactor indicator visualization 
in graphical maps. To our knowledge, no similar methodology 
exists in the literature, in particular for steps 2 and 3. We can how 
ever provide some elements of comparison for the first step of the 
pipeline: experimental data structuring using the semantic tool 
(including data annotation and querying guided by an ontology) 
proposed in this paper, called @Web (for Annotated Tables from 
the Web). 

ln general, relevant experimental data are scattered in different 
parts of the document and expressed in different formats. For 
example, in Biorefinery related papers, unit operation controlled 
parameters are often described in sentences within the Material 
and Method section, while experimental results are presented in 
tables located in the Results and discussion section. ln this context, 
the automation of information extraction and annotation from text 
and tables is a major issue that should be discussed. Let us first 

http://www.3bcar.fr
http://www.3bcar.fr
http://www.java.com
https://jena.apache.org/


4 Permanent links are URLs designed to reference a piece of information in a
permanent way or for a given period of time.
discuss the automatic extraction in text of relevant and related
pieces of information. The literature on this topic is twofold.

On one hand, a substantial amount of work on binary relation
extraction has been done. The first approaches to discover relations
between entities focused on a limited linguistic context and relied
on discovering co occurrences and manually designed pattern
matching (Huang et al., 2004). Rule based techniques defined as
regular expressions over words or part of speech (POS) tags have
been used to construct linguistic or syntactic patterns (Proux,
2000, Hao et al., 2005; Hawizy et al., 2011; Raja et al., 2013). How
ever, manually defined rules require heavy human effort. Later on,
machine learning based approaches, e.g. Support Vector Machines
(SVMs) (Minard et al., 2011), were widely employed (Rosario,
2005, Miwa et al., 2009; Van Landeghem et al., 2009, Zhang,
2011) to solve classification tasks (Rosario and Hearst, 2004). Those
methods have shown their usefulness but require a large amount
of annotated data for training, which usually takes tremendous
human efforts to achieve. Being based on numerical models, they
may not be directly understandable by the final user.

On the other hand, the extraction task of n ary relations (i.e.
relations having more than 2 arguments) is a more complex issue,
though it is needed in our application context.Work was conducted
dividing n ary relation extraction into three main steps. The first
step consists in identifying entities (or arguments) using resources
such as ontologies or dictionaries. The second one consists in iden
tifying the trigger word of the relation using dictionary based
methods or rule based approaches to construct patterns from
dependency parse results (Le Minh et al., 2011), or using machine
learning methods (Bjorne et al., 2009, Buyko et al., 2009, Bui
et al., 2011, Zhou et al., 2014) in order to predict the trigger word
of the relation. Finally in the third step, binary relations are con
structed using the trigger word and machine learning methods
are used to classify whether or not binary relations belong to the
searched n ary relation, but with a substantial loss of accuracy.
Relation extraction methods are in general based on those three
independent steps. In our context, arguments of the n ary relation
can be implicitly expressed in the text and usually appear in several
sentences. Therefore, state of the art methods, which make the
hypothesis of the presence of a trigger word, are not directly usable.

Let us now discuss automatic extraction of relevant information
in tables. State of the art methods and tools (Knoblock et al., 2012;
Buche et al., 2013; Tian et al., 2013; Zhang, 2014) make the
assumption that data tables are organized in the same way than
in relational databases: a data table is composed of vertical col
umns (each column corresponding to a single feature, for example
Biomass, temperature, etc.), themselves composed of cells. Unfor
tunately, this assumption is not always valid for data tables pub
lished in scientific articles. Various features may be present in
the same column (temperature and treatment duration may be
given in the header of a column corresponding to the process yield)
or tables may have two entries (vertical and horizontal). Therefore
robust automatic data table pre treatment must be designed and
validated in order to apply state of the art tools to data tables
extracted from scientific documents.

Automatic extraction of relevant information from text and
tables of scientific articles being an active research topic, it is not
ready yet for use in an operational system. Hence in our pipeline
(see Fig. 3) annotation is performed manually, the ontology being
used to guide the annotator. In this way, we may consider the
annotation process as semi automated.

The only tool comparable with @Web to implement the first
step of the DSS is, to the best of our knowledge, Rosanne
(Rijgersberg et al., 2011), an Excel ‘‘add in” application built upon
the OM ontology, an ontology of quantities and units of measure.
Rosanne allows quantities and units of measures associated with
columns of an Excel table to be annotated using concepts from
OM. As @Web does, Rosanne manages the notion of phenomenon,
very similar to the notion of symbolic concept in @Web, which rep
resents non numerical data, for example process name or type of
material. The main difference is that @Web defines the notion of
relation, which links together data (studied object with controlled
parameters and results) in order to represent a whole experiment.
This notion is important in the DSS, being used to extract anno
tated data in order to compute Efactor indicators. There is no such
notion, nor an equivalent one, available in Rosanne. Authors of
Rosanne made the choice to develop an Excel ‘‘plug in” that brings
semantics to data under Excel, a widely used tool in the scientific
community. Being a Web application, @Web was naturally
designed as a collaborative platform to share documents (for
example scientific articles) associated with annotated tables.
Moreover, @Web proposes an end user graphical interface to query
annotated tables (see Section 4.1) which is not available in the cur
rent version of Rosanne. For its part, Rosanne proposes an interest
ing functionality to merge several annotated tables sharing a
column annotated with the same concept. In conclusion, @Web
and Rosanne tools are complementary and are based on a partly
common ontological representation, the quantity units component
of @Web being very close to the one used by OM. Some perspec
tives are given in the conclusion regarding that complementarity.
3. Functional specifications of the system

Since the DSS functional specifications depend on the users, the
first step was therefore to identify the potential users. They were
identified in the 3BCAR network of researchers. Then, the func
tional specifications were determined during the IC2ACV project’s
meetings, gathering several experts of the 3BCAR network. Finally,
the functional specifications were refined during annual meetings
of 3BCAR about IC2ACV results.

The following functional specifications are implemented in the
IC2ACV DSS:

1. gathering, integrating and structuring heterogeneous data
available in the scientific literature about biomass transforma
tion processes;

2. defining a simple and generic ontological model of the informa
tion which must be identified and annotated in the scientific
papers. The model must be simple because it should be easily
updated by biorefinery experts (who are not computer scien
tists) and generic in order to be useful for other kinds of data
managed by 3BCAR researchers (for instance packaging
characteristics);

3. allowing an open data access to original data and associated
units of measure. This can be done thanks to permalinks4 and
dedicated querying systemmanaging unit conversion to facilitate
data reusability;

4. assessing the reliability of data (sources) and taking it into
account in the environmental impact assessment;

5. managing imprecise data since experimental data associated
with biomass (eg. glucose rate) and biomass process (eg. glu
cose yield) are subject to uncertainty;

6. taking into account the biological variability associated with
biomass processes and the subsequent uncertainty propagation
during the environmental impact indicator computation;

7. computing environmental factor indicators (mass balance
indicators called Efactors);

8. visualizing the ranking of biomass processes according to
process yield and Efactors.



4. Architecture of the decision support system

This section details the three steps of the data treatment pipe
line. In the first step, experimental data published in scientific
papers are annotated thanks to an ontology implemented in
OWL5 2/DL and assessed in terms of their source reliability.
Annotated data are stored in a RDF database and available in open
access via permalinks, a SPARQL6 end point and a dedicated query
ing system guided by the ontology. The second step consists in
extracting annotated data from the RDF database to compute Efactor
indicators and data reliability scores. This extraction is done using
SPARQL queries generated by the dedicated querying system guided
by the ontology. Process yields, Efactor indicators and data reliability
scores can be visualized in the third step as graphical maps. This
last step provides a synthetic and global overview of biomass
pre treatment process ranking.
4.1. Heterogeneous experimental data integration (step 1)

To facilitate integration of scientific data coming from heteroge
neous sources, one of the relevant solutions is to use ontologies
(Noy, 2004; Doan et al., 2012). An ontology defines a set of primi
tives to model a domain of interest: classes, attributes (or proper
ties) and relations between members of the classes (Guarino et al.,
2009). The ontology is used to create and/or reuse standardized
vocabularies and to index data sources with those vocabularies
in order to allow data source interoperability. Our system uses
@Web to capitalize experimental data extracted from scientific
documents found on the Web. Here are its main components.
@Web implements a complete workflow (see Fig. 4) to manage
experimental data: extraction and semantic annotation of data
from scientific documents, data source reliability assessment and
uniform querying of the collected data stored in a database opened
on the Web. @Web relies on an Ontological and Terminological
Resource (OTR) which guides scientific data semantic annotation
and querying. An OTR associates a terminological component to
an ontology in order to establish a clear distinction between the
linguistic expressions in different languages (i.e. the term) and
the notion it denotes (i.e. the concept) (Roche et al., 2009;
McCrae et al., 2011; Cimiano et al., 2011). For instance, English
terms ‘‘Grasses and energetic plants” and ‘‘Energy crops” and the
French term ‘‘Plantes énergétiques” denote the same symbolic con
cept Grasses and energetic plants. The OTR is designed to model
scientific experiments. It is composed of two layers: a generic
one and a specific one dedicated to a given application domain.
Since the OTR is at the heart of the scientific data capitalization
workflow, @Web can be reused for different application domains:
only the specific part of the OTR must be redefined to re use
@Web for a new domain (see Touhami et al., 2011 for a reuse in
food packaging). Let us point out that the OTR satisfies functional
specifications 2 of the IC2ACV DSS presented in Section 2.

@Web is composed of two sub systems (see Fig. 4). The first one
is an annotation sub system for the acquisition and annotation,
with concepts of the OTR, of experimental data extracted from sci
entific documents; those annotated data are being stored into a
database. This sub system also allows the reliability of data
sources to be assessed using the approach of (Destercke et al.,
2013). The second sub system is a flexible querying system based
on the approach presented in (Destercke et al., 2011). @Web is
implemented using the semantic web standards (XML7, RDF,
5 Web Ontology Language is a knowledge representation model built upon RDF.
6 SPARQL (SPARQL Protocol and RDF Query Language) is the protocol and the query

language which permits to search, add, edit or delete RDF graphs.
7 Extensible Markup Language is a markup language.
OWL, SPARQL): the OTR is defined in OWL2 DL, annotated tables
in XML/RDF and the querying in SPARQL. We present in Section 4.1.1
the Biorefinery OTR used in @Web. Section 4.1.2 details the model
used to assess data source reliability.

4.1.1. Biorefinery OTR model
The OTR is designed to represent scientific experiments in order

to annotate data tables in a given domain (see Touhami et al., 2011
for more details). We made the choice to represent an experiment
by using n ary relations between several experimental parameters
and a given result. This structures information in a simple way as
requested by functional specification 2 (see Section 3). As recom
mended by W3C (Noy et al., 2006), we used the design pattern
which represents a n ary relation thanks to a concept associated
with its arguments via properties. Let us illustrate this notion by
using the example of n ary relation Biomass Glucose Composi
tion Relation (see Fig. 5). This relation is characterized by 4 argu
ments: (1) the glucose rate, which is the experimental result, (2)
the biomass, which is the studied object, and associated experi
mental parameters being (3) the biomass state (untreated or trea
ted) and (4) the experiment number reported in the document.
This relation is used to create annotated tables, as shown in Table 2.
It presents an example of annotated table extracted from the scien
tific document (Hideno et al., 2009), which determines the glucose
rate of rice straw, in two different experiments. The columns of the
annotated table correspond to the arguments of the relation Bio
mass Glucose Composition Relation.

An excerpt of Biorefinery OTR global structure is presented in
Fig. 6. The conceptual component of Biorefinery OTR is composed
of a core ontology to represent n ary relations between experimen
tal data and a domain ontology to represent specific concepts of a
given application domain. In the Up core ontology, generic con
cepts Relation and Argument represent respectively n ary relations
and arguments. The representation of n ary relations between
experimental data requires a particular focus on the management
of quantities and their associated units of measure. In the Down
core ontology, generic concepts Dimension, UM_Concept,
Unit_Concept and Quantity allow the management of quantities
and their associated units of measure. The sub concepts of the gen
eric concept Symbolic_Concept represent the non numerical argu
ments of n ary relations between experimental data. The domain
ontology contains specific concepts of a given application domain,
in this paper the Biorefinery domain. They appear as sub concepts
of the generic concepts of the core ontology. In the Biorefinery OTR,
relations represent either experiments which characterize biomass
(see Fig. 5) or experiments involving unit operations performed
on biomass. For instance, the milling operation is represented by
the n ary relation Milling Solid Quantity Output Relation (see
Fig. 7).

It is characterized by 7 arguments and represents the milling
solid quantity output, which is the milling experimental result
for a given biomass associated with a set of experimental parame
ters being the biomass input quantity, the total pre treatment
energy used for the milling, the treatment duration, the milling
rotation speed and the type of milling.

In the Biorefinery OTR, all concepts are represented as OWL
classes, hierarchically organized by the subsumption relation sub
ClassOf and pairwise disjoints.

The terminological component of the Biorefinery OTR contains
the domain related set of terms used to annotate data tables. Sub
concepts of the generic concepts Relation, Symbolic_Concept and
Quantity, as well as instances of the generic concept Unit_Concept,
are all denoted by at least one term of the terminological compo
nent. Each of these sub concepts or instances are, in a given lan
guage, denoted by a preferred label and optionally by a set of
alternative labels, which correspond to synonyms or abbreviations.
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Excerpt of the annotated table biomass composition. 

No Biomass Biomass state Experience number Glucose rate 

Unit: 1 Unit:% 

1 Rice straw Untreated biomass 1.000e+-00 3.700e+01 

2 Rice straw Untreated biomass 2.000e+-00 3.700e+01 
Labels are associated with a concept or an instance thanks to SKOS8 

labelling properties, recommended by W3C to represent controlled 
vocabularies associated with concepts (see the "Gras ses and Energetic 

plants" example given in the introduction of Section 4.1 ). 
8 Simple Knowledge Organization System. 
4.1.2. Reliability assessment scores for Biorefinery 

When gathering data from various documents, the question 
rapidly arises as to how reliable these data or these documents 
are. @Web proposes a reliability estimation tool, presented in 
details in (Destercke et al., 2013) and whose basis we recall here. 
This tool aims at providing an automatic, a priori (that is, avoiding 
a specific examination) estimation of the document and data reli 
ability from a set of meta information related to the data and the 
document. 

To this effect, S groups A1, ... ,As of meta information important 
to assess reliability are first defined in accordance with decision 
makers and domain experts, a group A; taking C; values 

ail, ... , a;c,. For instance, the C; values for the group "Sugar analysis 
method" would be the different available methods. Various types 
of meta information, summarized in Table 3, have been considered 
for the Biorefinery data sources: 
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Metadata considered in the reliability assessment for B iorefinery. 

Source 

Type of 
source 

Citation 
count 

Publication 
date 

Production 

Sugar analysis 
method 

Statistics 

Energy measure repetitions 

Enzymatic hydrolysis repetitions 

Biochemical and physicochemical 
treatment r epetitions 
• meta information on the data source itself, for instance the
source type ( e.g. scientific publication, technical report), the
source reputation, citation data;
• meta information related to means used to produce data. In
papers based on experiments in Life Science, such information
is typically included in a section called Material and method, 

which thoroughly describes the experimental protocol and
material. Sorne methods may be known to be Jess accurate than
others, but are still chosen for practical considerations;

• meta information related to statistical procedures: presenœ of
repetitions, uncertainty quantification (i.e. variance, confidence
interval), elaboration of an experimental design.

In practice, the groups are made so that their impact on reliabil 
ity can be estimated independently, while a group � may contain 
multiple criteria (e.g. number of citations and publication date). 



For each possible value of each group, the method then consists 
in assessing the reliability of a document or data having this partie 
ular value. After the groups have been formed, for each value 
ay, i 1, ... , S,j 1, .. . , C;, an expert of the field from whieh data 
are collected gives his/her opinion on about how reliable are the 
data whose meta information is ay. This opinion is expressed lin 
guistically, chosen from a set of limited modalities ( or combina 
tions of them), e.g. ve,y unreliable, slightly unreliable, neutral
slightly reliable, ve,y reliable and unknown. The number of modali 
ties is limited (usually 5 or 7), accounting for known limitations 
of human cognitive abilities (Miller, 1956). ln practiee, several 
experts of the field belonging to the 3BCAR network, specialists 
of different unit operations (respectively mechanical, physico 
chemical and biological) have been interviewed resulting in a con 
sensual opinion 

To each document o, are then assoàated S linguistie assess 
ments ( according to the value taken by the corresponding meta 
information). A missing value in the meta information is simply 
treated as the linguistie assessment unknown in terms of reliability. 
ln order to apply refined fusion techniques able to deal with poten 
tially conflicting information (as some meta information may indi 
cate an unreliable document, while others may designate a rather 
reliable one), the linguistie assessments are translated into a 
numerical format, using the notion of fuzzy sets, that are adequate 
numerical models of linguistie values. ln order to have enough flex 
ibility, these fuzzy sets are defined on an ordered finite reliability 
spaœ 0 {01 , ... , Os} of 5 elements, 01 being the lowest reliability 
value, Os the highest. The number of elements could be higher than 
5, but this is a reasonable choiee. lndeed that number should 
remain odd in order to have a neutral element, not too low so that 
fuzzy sets corresponding to different terms can be numerically 
quite distinguishable and not too high so that computational prob 
lems do not arise. Each modality is then transformed into a fuzzy 
set on 0 (see Fig. 8 for an illustration). 

The S fuzzy sets µ
<t,

, ... , µ
0

; corresponding to document o's 
group reliability are then merged together using evidential theory 
and a maximal coherent subset approach which allows conflicting 
evidenœs to be taken into account. Such an approach aims at rec 
onciling ail sources while keeping as much information as possible, 
meaning that missing information (i.e. presence of the unknown
modality) does not impact the result. The potential conflict in 
meta information (i.e. assessment of high reliability for one aspect 
but of low reliability for another one) is retlected in the imprecision 
of the final mode): presenœ of conflict will end up in a quite impre 
cise estimation of the reliability, while its absence will result in a 
quite precise estimation. The result of this merging is a mass distri 
bution m0 : 29 

- [O, 1) whieh retlects the global reliability of o (see 
Destercke et al., 2013) for more details i 

The mass m0 provides an accurate synthesis of the different 
meta information contributions, and its analysis could allow one 
to automatically identify subsets of conflicting and of coherent 
meta information. Yet, it is still too complex to be analysed at a 
glance. For this reason, a further summarizing is provided, in which 
1.0 

0.5 

0.1 

Fig. 8. Fuzzy set corresponding to the terrn very reliable defi ned on e with 5 

elements. 
reliability estimation in the form of an interval �' î;J is proposed. 
The final score Eo is computed using the following formula: 

E., "I:m0(E)inf /JiEJ(O;) 
Ec9 

where/(0;) i, that is each 0; is replaœd by its corresponding rank 
(a natural choice, even if other functions could be chosen). E., is 
obtained with the same formula, replacing in/ by sup. The length 
or imprecision of �, t;'j retlects to which extent the various pieces 
of meta information are consistent: E., provides in some way a 
"worst" possible reliability, while Eo correspond to a "best" possible 
reliability, the two being close to each other when information is 
consistent. These scores can then be used in the querying system 
to rank annotated data assoàated with documents according to 
their reliability, where one can adopt different strategies: e.g., opti 
mistie (pessimistie) by ranking according to Eo (Eo). 

These values will be also used in order to compute a global reli 
ability score R within a collection of documents whieh includes 
several experiments of the same biorefinery proœss (see Sec 
tion 4.2). For a given set of documents 01 , ... , On, the global reliabil 
ity score R is a value in the interval [O, 1] with R = 0 for a set of 
unreliable documents and R = 1 for a set of very reliable docu 
ments. As reliability scores [Eo,, Eo,) assoàated with documents o; 
are imprecise, we compute standardized bounds [B.,R), given Emin 
and Em"" the minimal and maximal reliability scores 
(Emin 1, Ernax 5 in this paper), as follows: 

{! 
I::, (E.1 min) 

n(E...., m1n) 

1;:,(� Em1n) 
n(E...., Em1n) 

More details are presented in (Destercke et al., 2013); in partie 
ular various means to analyse the reliability results, such as the 
benefits one can retrieve from imprecise assessments or the way 
to detect subgroups of agreeing/disagreeing meta information 

4.2. Eco design indicators (steps 2 and 3) 

As seen in the previous section, the first step of the pipeline pre 
sented in Fig. 3 allows knowledge extracted from heterogeneous 
data sources to be annotated and its reliability to be assessed. 
The second step consists in extracting annotated data from the 
RDF database to compute environmental impact indicators. Fol 
lowing functional specification 7 listed in Section 2, we now pre 
sent the computation of mass balance indicators denoted 
Efactors. The Efactor indicator can be seen as the total input quan 
tity of matter not valorised into glucose but required to produce 
1 kg of glucose. This indicator is often used in survey papers dedi 
cated to biorefinery processes comparison (Zhu and Pan, 2010; 
Barakat et al., 2014; Chuetor et al., 2015). Ali kinds of matters 
whieh are inputs of the process are taken into account (by exam 
pie, the biomass, water, chemieal reagents ... ). For a given set of 
n documents o1, ... , On, we consider for each document O; the m 
experimental settings whieh are described in O; denoted 
eil, . .. , eim. ln the following, we call experimental settings, the set 
of controlled parameter adjustments for the given process (by 
example in a milling, different durations are tested resulting in dif 
ferent experimental settings). Each experimental setting is associ 
ated with a given biomass, denoted biomass(ey), whieh belongs to 
the set of I studied biomasses b1, .. . , b1• This biomass(ey) has been 
assigned (during the first step) to a given Biorefinery proœss, 
denoted process(ey), whieh belongs to the set of k alternative pro 
cesses p1, ... ,Pk, (see Fig. 2), whieh will be compared in Section 5.2. 
Following the functional specification 7 expressed by 3BCAR 



researchers, a matter balance indicator, denoted Efactor(o;,p, b) can
be computed for experimental setting {eii} belonging to a given
document o;. 

Remark. As biomass quantities differ in the considered experi
ments, ait values are norrnalized for 1 kg of initial biomass in order
to compute comparable Efactor indicators. Efactor is defined as in
(Chuetor et al., 2015): 

Efactor definition.

BiomassQJ:y + Chemi ca/ReagentQty + SolventQyt GlucoseReleasedQty 
Efactor 

G/ucoseReleasedQty 

(1)
GlucoseReleasedQty definition

GlucoseReleasedQty BîomassQty * GlucoseRate * GlucoseYield 

(2) 

where

• BîomassQty is the initial biomass quantity (kg).
• ChemîcalReagentQty is the chemical reagent product quantity

used in the process (kg). 
• SolventQty is the quantity of solvent (water and/or solution)

used in the process (kg). 
• GlucoseReleasedQty (kg) is a quantity defined as the biomass

quantity (input of the enzymatic hydrolysis unit operation)
multiplied by the glucose rate (available in the raw biomass)
and the glucose yield which depends on the considered exper 
imental setting. 

Functional speàfications 5 and 6 expressed by 3BCAR research
ers consist in (i) taking into account the uncertainty recorded in
experimental data results and (ii) propagating unœrtainties in
the Efactor computation. The experimental results considered in
this study are GlucoseRate and GlucoseYield. For each experiment,
the available results may be given as a scalar value, as an interval,
or as a tuple of the mean value and the standard deviation over the
experimental repetitions. Consequently, experimental results Glu 
coseRate (resp. GlucoseYield) can be considered as a sample drawn
from a random variable. We have noticed that, in ail documents,
the GlucoseYîeld random variable depends on experimental set 
tings, which is not the case for the GlucoseRate random variable
whose sampling shows no variation 

In the following, we propose for a given document o;, a given
biomass b E {b1 , ... , b1} and a given proœss p E {p1 , ... ,Pk}. two
ways to compute Efactor(o;,P, b). The first one consists in selecting
4 experime

Document 

Organosolv treatment 

15o•c for 30 
min 

15o•c for 60 
min 

1so·c for 30 
min 

180°c for 60 
min 

Fig. 9. 95% confidence intervals associated with the G/ucoseYield random
the best experimental setting presented in document O; and corn
puting Efactor,_ (o;, p, b). As the uncertainty level is not always
available in experimental data results, we propose a second way
to compute Efactor which consists in taking into account the infor 
mation provided by the entire set of settings and computing
Efactor0

' ( o;,p, b). lt is an indirect way to provide information about
the uncertainty associated with experimental data results of a doc 
ument o;. We also define, for a given biomass b and a given process
p, an Efactor indicator calculated for the en tire set of settings of the
en tire set of n documents 01, ... , On. 

Computing Efactor for the best experimental setting in document 
o;: Having in mind the imprecision expressed for random variable
GlucoseYield, a pessimistic point of view will prefer to guarantee
the highest minimal GlucoseYield, while an optimistic one will pre 
fer to guarantee the highest maximal GlucoseYield. In this paper , we
have chosen the pessimistic point of view to select the best exper 
imental setting. Let us consider GY,,1 (resp. <Tcy,,1) the mean value
(resp. the standard deviation) associated with the GlucoseYield ran
dom variable of experimental settingj described in document o;.

We assume that the sample is drawn from a normal distribu
tion, the sample size being unknown (this is a reasonable assump
tion in such experiments). We recall that under this assumption,
the 95% confidence interval of the GlucoseYield random variable 
Is defined by [GY," 2<Tcy, ,GY,,,+ 2<TGY, ). We consider for each

, ' , 1/ 

document O; the m experimental settings which are described in
O; denoted eil , ... , eim . Theo, the best experimental setting with a
confidence degree of 95%, denoted eiJ•, is the one having the max 
imal lower bound of a 95% confidence interval: 

Best experimental setting definition

max (GY,, 2<TGY,,.))
je(1, ... ,m) , 

(3) 

For the four experimental settings described in (Amiri et al.,
2014), the results are presented in Fig. 9 for the following rice 
straw pre treatment process type "Pre Milling then Physicochem 
ical treatment then Press and Separation" ( called PM PC PS). The
best experimental setting corresponds to the pessimistic choice
discussed above, i.e. the one having the maximal lower bound of
the 95% confidence interval associated with the GlucoseYield ran 
dom variable ([33.07 36.47]). Let us consider that BiomassQ 
ty = 1 kg, SolventQty = 8 kg, ChemicalReagentQty = 0.0005 kg. With
the 95% confidence interval associated with the GlucoseRate ran 
dom variable• [0.51 995,0.57335] in (Amiri et al., 2014), we corn
pute, following Eq. (1), E/acto,J>e''(o;,p,b) = [42.04,51.34].
ntal variations 

Glucose yield = [24.375-26.875) 

Glucose yield = [26.105-28.805) 

Glucose yield = [33 07-36 47) 

Glucose yield = (26.105-28.805) 

Best 

expe 

 variable for experimental settings presented in Amiri et al. (2014}. 



Table 4
Seven examples of Efactorall indicators for processes of type PM-PC-PS.

Biblio ref Physicochemical pre-
treatment

Efactorallmin Efactorallmax

Hideno et al. (2012) Hot compressed water 48.66 61.96
Amiri et al. (2014) Organosolv 42.04 70.02
Sheikh et al. (2013) Torrefaction 3.97 4.78
Hideno et al. (2009) Hot water 31.21 45.67
Ilgook et al. (2014) Nitric acid pre-treatment 22.76 24.01
Poornejad et al.

(2013)
Oxidizing treatment 44.90 59.02

Poornejad et al.
(2013)

Ionic liquid treatment 43.74 45.38

9 webofscience.com.
10 http://www.mendeley.com/features/.
Computing Efactor for all of the settings in document oi: In this
case, we want to take into account Glucose Yield values obtained
for all of the settings. As settings are inter dependent, we define
the global Glucose Yield as the interval including the 95% confi
dence intervals associated with the GlucoseYield values obtained
in all of the settings. For instance, in Fig. 9, the global Glucose

Yield = [24.375,36.47]. Following Eq. (1), Efactorallðoi; p;bÞ =
[42.04,70.01]. Unsurprisingly, Efactorbestðoi; p;bÞ# Efactorallðoi; p;bÞ
as Efactorallðoi; p;bÞ takes into account all the experimental settings
of the document oi.

Computing Efactor for the entire set of settings of the entire set of
documents: An aggregated mass balance indicator for a set of n doc
uments o1; . . . ; on associated with a given biomass b 2 fb1; . . . ; blg
and a given process p 2 fp1; . . . ; pkg must also be computed,
denoted Efactorðp;bÞ. In this case, we consider that experimental
settings described in different documents are independent. Conse
quently, we define Efactorðp;bÞ as the interval [Efactorminðp;bÞ,
Efactormaxðp;bÞ] where:

Efactorminðp;bÞ
Pn

i 1Efactor
all
minðoi;p;bÞ

n

Efactormaxðp;bÞ
Pn

i 1Efactor
all
maxðoi;p;bÞ

n

Table 4 presents seven examples of Efactorall indicators, com
puted for a set of 6 documents including 23 settings of rice straw
pre treatment processes of type PM PC PS, the type of the specific
physicochemical pre treatment being given in the table. Based on
this table, Efactorðp;bÞ = [33.90,44.41] for p = PM PC PS and
b = rice straw.

5. Implementation

In this section, we detail the implementation of the data treat
ment pipeline presented in Fig. 3. In Section 5.1, we describe the
@Web software. Section 5.2 deals with the implementation of Efac
tor indicator computation and visualization.

5.1. @Web

We have presented in Section 4.1.1 the Biorefinery OTR which
has been defined to model experimental data in the domain of
biorefinery pre treatment processes. Biorefinery OTR is used in
@Web for the task of experimental data source annotation and
querying, using n ary relation concepts. @Web relies on the gen
eric part of the OTR model (see the core ontology in Fig. 7) and
allows the management of the domain ontology of Biorefinery
OTR with its associated terminology. As @Web relies on the generic
part of the OTR model, several OTR dedicated to different applica
tion domains can be managed simultaneously in @Web. For
instance, in our current implementation, an OTR dedicated to gas
transfer in packaging materials has also been defined and is avail
able at http://www6.inra.fr/cati icat atweb. Let us notice that the
core ontology, which has been designed to be non modifiable, is
not accessible to ontology managers. Moreover, we made the
choice to manage units in a transversal way defining only one
OTR of units of measure, because some units of measure may be
used in different OTR. Units can therefore be used by all the OTR
defined in @Web. The current version of the OTR of units of mea
sure is available at http://www6.inra.fr/cati icat atweb (section
@Web platform, thumbnail Ontology, option Unit Ontology).

Recorded tutorials of the current @Web version are available
on line (http://www6.inra.fr/cati icat atweb/Tutorials). Here we
focus our presentation on the annotation sub system of @Web,
which implements the five sub steps presented in Fig. 10. The
annotation sub system of @Web implements a complete workflow
to extract experimental data from scientific documents and
semantically annotate them with n ary relation concepts defined
in the Biorefinery OTR.

In the first sub step, called Document selection, relevant docu
ments according to the OTR are retrieved from the Web and man
ually selected by a domain expert. This selection may be done
using classical bibliographical tools (for instance Web of Science9).
Documents can be uploaded in @Web from a desktop or from a col
laborative repository management using Mendeley10. After docu
ment loading, @Web manages their bibliographical references as
well as their entire text both in HTML and PDF formats. Documents
are grouped in topics. Four topics have been defined for biorefinery
and correspond to the four pre treatment processes (see Fig. 2 and
Table 1) which are compared in Section 5.2. For instance, (Amiri
et al., 2014), whose experimental settings have been presented in
Fig. 9, has been stored in PM PC PS topic which corresponds to the
PM PC PS pre treatment process presented in Table 1.

The second sub step is dedicated to document reliability assess
ment using the model presented in Section 4.1.2. In the current
version, meta information associated with each document is man
ually entered in order to compute reliability score. In Fig. 11, the
reliability score reflects an imprecise assessment
½Eo; Eo� ½1:5;4:98�, due to a conflict between expert opinions asso
ciated with meta information:

� ‘‘citation age and citation number” and ‘‘source type” are con
sidered as very reliable.

� ‘‘Enzymatic hydrolysis reproducibility” and ‘‘Biochemical and
physicochemical analysis reproducibility” are considered as
hardly reliable because only the average value of experimental
results associated with those unit operations is given in the
document.

All operations involving belief functions needed to compute
reliability scores have been implemented in an R package. The
package is called belief (Maillet et al., 2010), and it includes basic
functions to manipulate belief functions and associated mass
assignments (currently on finite spaces only).

In the third sub step shown in Fig. 10, called Table extraction,
data tables are automatically extracted from HTML versions of doc
uments using tag analysis. The discovered tables are then pre
sented to the domain expert for validation as they represent a
synthesis of some experimental data published in the document
and may be used to facilitate the manual entering. The fourth
sub step, called Table annotation, corresponds to the manual
semantic annotation of the selected data tables using the concepts
of the Biorefinery OTR. Taking into account the actual content of

http://www6.inra.fr/cati-icat-atweb
http://www6.inra.fr/cati-icat-atweb
http://www6.inra.fr/cati-icat-atweb/Tutorials
http://www.webofscience.com
http://www.mendeley.com/features/
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Document"s cnteria values 

Criterion age and citation number 
Œation Number : more than 40 
Age : 3 to 8 years old 

Criterion age and top citation 
Age : 3 to 8 years old 
Top Citation : top 10% 

Criterion source type 
Source Type : journal article 

Criterion Sugar analysis method 

Sugar analysis method : HPLC 

Criterion Energy measure reproducibility 

Energy measure reproducibility : unknown 

Criterion Enzymatic hydrolysis reproducibility 
Enzymatic hydrolysis reproducibility : """"'90 

Crlterlon Blochemlcal and physlco-ehemlcal analysls reproduclbllity 
biochemical and physico-chemical analysis repetition : average 

Reliability assessment"s document information 

Reliability results 4%1 
Low oxpectation: 1.5 ; High expectation: 4.98 

Known criteria values rate : 100.0 % 

Lasl assessment date: 2015.()1-28 

Fig. 11. @Web reliability assessment associated with Hideno et al. (2009). 
the original table, the annotator selects from the n ary relation 
concepts defined in the Biorefinery OTR those relevant to annotate 
the table. 

For instance, in Fig. 12, the expert selects several n ary relations 
including, for instance, Enzymatic hydrolysis o utput solid constituent 

quantity relation and Mill ing Solid Quantity Output Relation from 
the list of n ary relations concepts defined in the Biorefinery 
ITTR. The signatures of both n ary relations concepts are visualized 
in a table, one signature per row. This will guide the expert in his/ 
her entering task, allowing him/her not to forget to fulfil argu 
ments of the selected n ary relation concepts. This is important 
for data reusability. This example shows that several relations 
may be used in a given annotated table in order to annota te exper 
imental data associated with a complete pre treatment process as 
the one presented in Table S. 

This table presents an example of annotated table in @Web 
extracted from the scientific document (Hideno et al., 2009), which 
describes a biorefinery pre treatment process composed of a 
sequence of four unit operations occuring in experiments 1 and 
2. The columns of the annotated table correspond to arguments
of the relation Milling Solid Quantity Output Relation (see Fig. 6).
For instance, we can see on the first row that the first unit opera
tion is a cutting milling, instance of the relation Milling Solid Quan 

tity Output Relation. The third row shows that the third unit oper
ation of this process is another milling, dry ball milling, another
instance of the relation Mill ing Solid Quantity Output Relation.

During the manual data entering guided by the OTR, @Web pro 
poses assistance in several tasks. For instance, when entering 
quantity values and their associated units of measure, the expert 
may select a unit in the list of units associated with the quantity 
in the Biorefinery OTR. The expert may also drag and drop the 
quantitative values from the original table to the annotated table, 
which makes the data entry easier and reduces the risk of errors. 
As requested in functional specification 5 listed in Section 3, it is 
possible to enter a quantitative value as an interval or a mean/stan 
dard deviation pair. For instance, in Table 5, the quantity Output 

solid constituent quantity is defined as the precise value 5 g for Cut 

ting milling treatment in row no. 1 and as the interval [3.1e 2,4.9e 
2] g. for Enzymatic hydrolysis treatment in row no. 4. Missing data
are denoted by the interval [ inf; inf]. @Web may also assist the
expert in the symbolic concepts entry task, by allowing him/her
to navigate in the hierarchy of symbolic concepts belonging to
the Biorefinery ITTR. For instance, in Fig. 13, the expert may navi
gate into the Biomass concept hierarchy from the Biorefinery
ITTR and see the labels of the selected concept in the upper right
corner of the snapshot.

In the fifth and last step of annotation. called Sto rage, the anno 
tated data tables are stored in a RDF triple store which can be quer 
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Fig. 12. Selection of several relevant n-ary relation concepts from the Biorefinery OTR in order to annotate experimental data associated with a complete pre-treatment 
process. 
ied through either an end user querying interface or a SPARQL end 
point for open data access. 

The data annotated by the annotation sub system of@Web may 
be queried through an end user interface, whieh implements func 
tional specification 3 presented in Section 3. A detailed presenta 
tion of the flexible bipolar querying method whieh has been used 
to implement the querying sub system of @Web is given in 
(Destercke et al., 2011, 2013). It should be notieed that this query 
ing method simultaneously performs three kinds of reasoning: (1) 
inference using specialization relation defined in the Biorefinery 

OTR, (2) ranking according to fuzzy pattern matching between 
preferences expressed in the query and imprecise data, (3) ranking 
according to preferences expressed about data source reliability. In 

this paper, we present the implementation of the querying sub 
system through an example whieh illustrates the way data needed 
for Efactor indicator computation are extracted from the RDF triple 
store. For instance, the query presented in Fig. 14 has been built in 
order to compute the Efactor indicator assoàated with pre 
treatment processes of type Organosolv pre treatment for riee 
straw. First, the user selects the ontology IC2ACV which is the 
name associated with the Biorefinery OTR in @Web. Secondly, 
the user selects one of the concept relations defined in IC2ACV to 
build the query. In the example of Fig. 14, the Physicochemical 
pre treatment solid quantity output relation has been selected
because its arguments allow the elaboration of the matter balance 
required to compute the Efactor. Selection criteria can be 
expressed on relation arguments. They may be mandatory or desir 

able. Mandatory means that only instances of relation Physico 
chemical pre treatment solid quantity output relation whieh fulfil
the selection criterion will be retrieved. In the example of Fig. 14, 
only results assoàated with Riee straw will be retrieved. Desirable 
criteria allow the ranking of results to be refined. 

In Fig. 14, instances of Physicochemical pre treatment solid quan 
tity output relation whieh correspond to Organosolv treatment will
be ranked first. Fig. 15 presents the results associated with the 
query expressed in Fig. 14. We can see that the first four results 
correspond to the 4 experimental settings presented in Fig. 9 for 

Amiri et al. (2014). Biomass (resp. solvent chemieal reagents) 
quantity which is required to compute Efactor is presented in the 

Biomass quantity column (resp. Aàd quantity). Results may be 
downloaded in a CSV file for Efactor computation. 
5.2. Eco design indicator computation and visualization 

In this section, we present the implementation of Efactor corn 
putation and visualization which corresponds to the second step of 
the pipeline presented in Fig. 3. In Section 4.2, we have defined 
three kinds of Efactor indicators for a given set of n documents 
o1 , . . .  , On , and for each document oi , m experimental settings which 
are described in oi denoted eil , ... , e"" : 

• Efactol''st (oi,P, b) computes Efactor for the best experimental set
ting in document Oj. 

• Efactor'n (oi,P, b) computes Efactor for ail settings in document Oi,
• Efactor(p, b) computes Efactor for the entire set of settings of the

entire set of documents.

In the implementation, we consider that the set of documents 
on whieh Efactor has been computed corresponds to a tapie in 
@Web. In this article, we have considered four tapies, each of them 
associated with one of the four pre treatment processes presented 

in Fig. 2. We have seen in the previous section that we use @Web 
queries to extract csv data files in order to compute the Efactor 
associated with a given tapie. We have implemented the computa 
tion of the three Efactor indicators in an Excel file in whieh have 
been previously stored data extracted from @Web. Graphical rep 
resentations are generated in VBA programming language 
executed in an Excel file to display an X Y plot for a given tapie 
and a given biomass where X corresponds to Efactor and Y to glu 
cose yield. For instance, in Fig. 16, we show a ranking of pre 
treatments based on Efactor computation for the best experiment 
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of considered documents. Each point corresponds to a given pre
treatment of rice straw presented in a given document. For each
point, the category of pre treatment is represented by geometric
symbol (for instance � for PM UFM, see the legend of Fig. 16).

Reliability scores associated with each document, whose com
putation has been presented in Section 4.1.2, have been repre
sented in two colors for each point. The surrounding (resp. inner)
color corresponds to the upper bound (resp. lower bound). For
instance, the point ‘‘CM then dry BM”11 (corresponding to pre
treatment category PM UFM) has a glucose yield around 90% and a
low Efactor. It is associated with reliability scores which correspond
to an imprecise assessment due to disagreeing meta information
represented by an external circle painted in red and an internal
one in green (see Reliability index in Fig. 16).

Fig. 17 presents a ranking of pre treatments realized on rice
straw based on Efactor computation for all experimental settings
of four topics. Each point corresponds to a given rice straw pre
treatment studied in the entire set of documents. For instance,
the point PM PC PS corresponds to the Efactor associated with
topic PM PC PS computed using Efactorall indicators presented in
Table 4. It integrates 23 experimental settings extracted from 6
documents. For each topic, reliability scores associated with each
document have been merged into a global reliability score, as
defined in Section 4.1.2.

5.3. DSS assessment and discussion

Results obtained on rice straw with the DSS have been pre
sented to 3BCAR experts in biorefinery. Those results have been
positively assessed by experts who used tables and graphics asso
ciated with Efactor indicators produced by the DSS to perform the
following analysis. Fig. 17 shows that the highest glucose yield
(86% ± 2%) from rice straw was obtained after wet disk milling
(PM PC UFM PS). Nitric acid, oxidizing and ionic liquid pre
treatment (PM PC PS) also achieves a good glucose yield
(72.03% ± 3.32%). But these experimental conditions result in a
high Efactormin estimated to about 70.6 (resp. 33.90) for PM PC
UFM PS (resp. PM PC PS). In Fig. 16, it must be noticed that a
low Efactor (2.03 ± 0.14) was estimated for Cutting Milling (CM)
coupling to Ball Milling (BM) with about 90% of glucose yield
(89.4% ± 2%) even if data source reliability is not fully established
(see reliability indicator in Fig. 16 and associated metadata in
Fig. 11). In general, water or chemical pre treatments of rice straw
produced more glucose compared to mechanical or dry pre
treatment (mechanical, torrefaction . . .), but also generated more
effluents with a high Efactor. Results presented in Fig. 16 clearly
show that dry pre treatments (milling, torrefaction . . .) are simpler
technologies which are in general less effective in the production
of glucose, but without the need of any chemical or water inputs.
They have a low environmental impact (low Efactor), thus mini
mizing waste generation while maximizing value of the lignocellu
losic biomass.

The results obtained on the Rice straw use case demonstrate the
usefulness of the DSS data treatment pipeline feasibility. In this
experimentation, users have particularly appreciated the following
functionalities:

� The DSS permits to enrich continuously the RDF database with
new scientific data and gives the possibility to compare them
with already stored scientific data.

� The OTR provides a simple reading grid to homogenize hetero
geneous textual data, even if the annotation remains manual.
11 which means Cutting Milling then dry Ball Milling.
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• The DSS pennits to easily navigate from a graphical representa
tion of indicators (see Section 5.2) to detailed annotated data
stored in the RDF database. It has been recognized to be useful

to design new experimental study protocols. For instance,

Fig. 16 made biorefinery experts think of designing a new
experimental protocol to study more precisely the impact of

torrefaction and particle size on the glucose yield. The range

of particle sizes is easily available by consulting the annotated
tables (see Table 5, Output solid constituent size column) or 
by running queries on the concept relations which provide this 
information. 

• The DSS is a collaborative platform which can be easily shared

by a community of researchers. Ontology and annotated tables
are available in open access mode. Researchers who want

to enrich the RDF database just need to obtain a login to the

DSS.
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The current version of Efactor computation step remains partly 
manual as data extracted from the database using @Web queries 
(see Section 5.1) must be put in an Excel file to compute the indi 
cator. We are currently working on an advanœd version which will 
extract the data directly from the RDF database. 

As discussed in Section 2, the complete automation of experi 
mental data extraction from textual documents is still a challenge 
to be met. We believe that the combination of KE and text mining 
methods will permit to make essential advanœs. In the short term, 
our approach will focus on adding assistants in the @web software, 
in order to speed up manual annotation guided by the OTR. In the 

very near future, we will implement an assistant based on the cou 
pling of ITTR and text mining approaches, to complete n ary rela 
tion annotation by suggesting the more relevant sentences in 
which a given argument of the n ary relation appears. Moreover, 
time cost necessary to annotate experimental data should be corn 
pared to the one required to produce similar data in the laboratory. 

In our experimentation, it took the annotators about 80 days to 
design the ontology, select and read scientific papers and to man 
ually enter more than 400 experimental results concerning 4 bio 
masses and 6 pre treatment processes described in 32 
publications. This cornes to an average time of 0.2 day per experi 
mental result. It must be put in perspective with the time spent to 
produce experimental results in the laboratory. In our experiment, 
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Fig. 17. Efactor associated with rice straw for ail experimental settings of each topic. 
the annotators who also made experimentations in the laboratory 
made 36 laboratory experiments in 160 days. This represents an 
average of 4.4 days per experimental result. The time spent for 
manual entering of an experimental result from the literature 
was considered by end users smalt enough compared to the time 
spent to produœ a similar experimental result at lab scale (ratio 
1/22i Moreover, the DSS design is envisioned in an iterative 
approach in which annotated data will be reused to develop new 
functionalities as the one presented in Section 6. 
6. Conclusion and prospect 

ln this paper we have proposed a decision support system for 
eco efficient biorefinery process selection based on an ontology 
based semantic approach. The ontology is used to guide the anno 
tation of potentially incomplete or imprecise experimental data 
retrieved from the bibliography in order to store them in a struc 
tured database. Moreover a model has been used to assess the reli 
ability of data sources. Finally, a ranking of biorefinery processes 
has been computed in terms of glucose yield and Efactor indicators 
taking into account data imprecision and reliability. 

The interest of Efactors is to give an overview of the process 
mass balance. lt may be considered as a "local" indicator (because 
it is based on data at process scale) and "inventory level" indicator 
(because it uses physical tlows). lt completes the classical process 
yield in order to rank different options. The less input consuming 
and waste generating process is generally preferred. Used with 
the reliability indicators, Efactor gives interesting information at 
an early deàsion stage at research or laboratory scale. Other indi 
cators could be considered regarding the environmental balance. 
Therefore, a perspective of our work will be to compute life cycle 
indicators to complete the list of assessment criteria for decision 
makers. The application of life cycle assessment (LCA) according 
to the ISO 14040 standards (ISO, 2006) would deepen the analysis 
through the system boundaries extension (inclusion of inputs life 
cycle with the use of life cycle inventory databases) and through 
the potential environmental impacts calculation. Impact assess 
ment aims at transforming inventory results into environmental 
indicators (also called impacts ca tegories). To compute those envi 
ronmental indicators, we will have to deal with the lack of data in 
the literature concerning the energy consumption and energy effi 
ciency of chemical, physicochemical and mechanical treatment of 
rice straw for example. ldeally, these indicators will complete the 
Efactor and glucose yield. More generally, this approach may be 
applied to any kind of biomass (food or no food) transformation 
process. Consequently, the number of publications which could 
be valorized using this approach is potentially very high. Moreover, 
it must be noticed that the first step of the treatment pipeline (data 
integration) may be applied to a lot of kinds of scientific data in 
order to perforrn numerical treatments (meta analysis, decision 
support tools ... ). For example, we already use this approach to 
create decision support systems which determine optimal selec 
tion and dimensioning of food packagings (Guillard et al., 2015), 
by reusing literature data about matter transfer. Another exàting 
perspective would be to develop interoperability between @Web 
and Rosanne, to take the best of both tools in order to improve 
automatic annotation of relevant information from scientific 
documents. 
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