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Abstract9

Integrated Pest Management (IPM) lies at the core of the current efforts

to reduce the use of deleterious chemicals in greenhouse agriculture. IPM

strategies rely on the early detection and continuous monitoring of pest pop-

ulations, a critical task that is not only time-consuming but also highly de-

pendent on human judgement and therefore prone to error. In this study, we

propose a novel approach for the detection and monitoring of adult-stage

whitefly (Bemisia tabaci) and thrip (Frankliniella occidentalis) in green-

houses based on the combination of an image-processing algorithm and ar-

tificial neural networks. Digital images of sticky traps were obtained via an

image-acquisition system. Detection of the objects in the images, segmenta-

tion, and morphological and color property estimation was performed by an

image-processing algorithm for each of the detected objects. Finally, classi-

fication was achieved by means of a feed-forward multi-layer artificial neural

network. The proposed whitefly identification algorithm achieved high pre-
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cision (0.96), recall (0.95) and F-measure (0.95) values, whereas the thrip

identification algorithm obtained similar precision (0.92), recall (0.96) and

F-measure (0.94) values.

Keywords: IPM, Early pest detection, Sticky trap, Insect identification,10

Image processing, Artificial neural network11

1. Introduction12

The rising public demand for food safety and quality is creating market13

opportunities for certified products, grown using Integrated Pest Manage-14

ment (IPM) practices (Anderson et al., 1996; Dhawan and Peshin, 2009).15

Controlling pests in greenhouses has become a complex task that requires16

an early and precise pest detection strategy (Zhao et al., 2011a). Various17

non-chemical control methods have been developed (Tang et al., 2005) to18

keep pest density to a minimum, such as insect-proof screens (Valera et al.,19

2006; López et al., 2013; Espinoza et al., 2015). In this context, the use20

of sticky traps to capture insects and monitor pest populations has become21

a key decision-making tool in a well-planned IPM strategy (Pinto-Zevallos22

and Vänninen, 2013). Pest population monitoring using sticky traps has tra-23

ditionally relied on a manual count based on human eyesight (Wise et al.,24

2015). Although various alternative manual counting strategies have been25

proposed to decrease the effort and time associated with counting small in-26

sects trapped on sticky traps (Heinz et al., 1992; Gerling and Horowitz, 1984;27

Steiner et al., 1999), the implementation of automatic pest identification28

systems has become a priority for the development of modern agricultural29

production systems (Xia et al., 2014).30
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An automatic pest identification system basically consists of two stages:31

image acquisition and the image processing algorithm (which, in turn, com-32

prises segmentation, feature extraction and feature classification).33

In the image aquisition stage, abiotic factors such as climatic conditions,34

and greenhouse characteristics and management have to be considered when35

collecting images from agrosystems, since they affect the efficiency of sticky36

traps (Isaacs and Byrne, 1998; Teitel et al., 2005; Biffi, 2009; Pérez et al.,37

2010; Pinto-Zevallos and Vänninen, 2013). Insect sampling has undergone38

certain innovative technological contributions, such as the mobile suction39

mechanism proposed by Bauch and Rath (2005) and the 3-degree of freedom40

robot with a sticky trap and a spray nozzle to remove insects from plants41

developed by Chung et al. (2014). With a different approach, Li et al. (2009)42

developed an algorithm to identify the 3-dimensional position of an exper-43

imental insect model on plant leaves, whereas Bechar et al. (2010) used an44

online-video camera for in-situ pest monitoring. The quality of the infor-45

mation in the acquired images is important for the performance of an insect46

identifiaction system. To obtain detailed information of the target insects,47

high-resolution images have been used (Qiao et al., 2008; Solis-Sánchez et al.,48

2009; Kumar et al., 2010). In a similar vein, Cho et al. (2007) and Xia et al.49

(2014) performed several evaluations to find out the optimum image resolu-50

tion and thus reduce computational cost, which is dependent on the image51

resolution to be processed. As an alternative, other authors (Huddar et al.,52

2012; Boissard et al., 2008) opted to acquire close-up images of the target53

insects. However, the use of close-up images implies an underestimation of54

the number of identified insects for the full-scale trap (Qiao et al., 2008),55
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thus requiring an approximation method (Gerling and Horowitz, 1984; Heinz56

et al., 1992; Steiner et al., 1999).57

A growing number of image-processing algorithms have been developed to58

identify small pests in sticky traps such as whiteflies and thrips. The segmen-59

tation process used to detect objects on the trap images was developed using60

empirical intensity thresholds (Cho et al., 2007; Qiao et al., 2008). These61

algorithms are simple and accurate. Nevertheless, the empirical parameter62

must be manually adjusted if the method is used in different image acqui-63

sition conditions. Solis-Sánchez et al. (2009) reduced the input empirical64

parameters used in the insect identification algorithm and used the auto-65

matic clustering-based image thresholding method proposed by Otsu (1979).66

In a similar fashion, Xia et al. (2014) used marker-controlled watershed seg-67

mentation.68

In the previously mentioned studies, color and shape features were used to69

identify the objects detected in the segmentation process. Solis-Sánchez et al.70

(2011) took a different approach based on the use of Scale-Invariant Feature71

Transform developed by Lowe (2004) and determined that the properties of72

this feature are invariant to image scale and rotation, and provide robust73

matching across a substantial range of distortion, noise and illumination.74

Nevertheless, the classification process of color, shape and invariant features75

was still performed by comparing detected object features within an empirical76

domain.77

Classification of the extracted features is an important process in an insect78

identification algorithm. To perform this task, Kumar et al. (2010) proposed79

using Support Vector Machines to classify the features extracted from the80
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objects detected in sticky traps. Despite the fact that the segmentation81

algorithm was tuned to match the highly variable conditions in which video82

images were acquired, the authors obtained good results using the supervised83

learning model.84

Artificial neural network (ANN) is a supervised learning model that has85

been used successfully in numerous applications. The model consists of three86

elements: the set of synapses or connecting links, the adder and the activa-87

tion function or transfer function (Haykin, 1998). In vision systems, it has88

been used for image recognition and classification. ANN can be employed89

to classify the feature vectors extracted after the segmentation process in a90

variety of application domains. As an example, other supervised learning91

models have been used in the classification stage of the automatic identifi-92

cation of microorganisms and taxon identification. In the method developed93

by Ginoris et al. (2007) to identify micro-organisms, they used an ad hoc94

algorithm in the segmentation process to obtain morphological features used95

for the classification process. After evaluating three classification processes,96

they concluded that the discriminant analysis and the feed-forward artificial97

neural network results were similar, whereas the decision trees technique was98

less appropriate. Likewise, Yaakob and Jain (2012) investigated the use of a99

Quality Threshold ARTMAP (QTAM) artificial neural network for the classi-100

fication of six different types of moment invariant features for the recognition101

of the insect shapes. After comparing it with several Fuzzy ARTMAP neu-102

ral networks, they found that the highest insect recognition was achieved by103

classifying the Krawtchouk Moment Invariant features with a QTAM neural104

network enhanced with the Mahalanobis distance function. Although an un-105
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certainty factor was found when using normalised moment invariant features106

with these neural networks for the classification of 20 different types of insect107

shapes, the algorithm had a high performance.108

Artificial neural networks are a good strategy for the classification of109

insect features since, as opposed to ad hoc algorithms, they are not limited in110

the number of insects that can be classified, they do not require the empirical111

adjustment of constants, and the upgrade of the classification method is less112

complex. However, while ANN can be used to identify a wide spectrum of113

insects, no previous studies have used these models to identify small and less114

detailed insects on sticky traps.115

In this study, we propose to use feed-forward neural networks in combina-116

tion with an image processing algorithm to identify the most aggressive pests117

that affect the tomato-producing greenhouses of southern Spain (Acebedo,118

2004; CAPDR, 2014), i.e. the whitefly (Bemisia tabaci) and thrip (Frankli-119

niella occidentalis), both captured using sticky traps. Moreover, an object120

detection subroutine is proposed to reduce the amount of information to be121

processed during the segmentation subroutine of the insect identification al-122

gorithm. This paper is structured as follows: Section 2.1 and Section 2.2123

describe the data acquisition procedure and the developed insect identifica-124

tion algorithm, respectively. The results are then presented and discussed in125

Section 3. Lastly, our conclusions are drawn in Section 4.126
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2. Methodology127

2.1. Images acquisition128

To gather representative experimental data, sticky traps were homoge-129

neously set up in a tomato crop (Licopersicum sculentum L. cv Marenza)130

grown in three multi-span greenhouses and an Almeŕıa-type greenhouse lo-131

cated at the research farm of the University of Almeŕıa, Spain (36◦51′52.4′′132

N, 2◦16′58.5′′ W, 87 m.a.s.l). A detailed description of these greenhouses can133

be found in the studies conducted by López et al. (2012) and Valera et al.134

(2016).135

Adult-stage whitefly (Bemisia tabaci) and thrip (Frankliniella occiden-136

talis) were selected as the target species for identification. A selective capture137

of these two insects was performed by using two different models of sticky138

traps, yellow and blue, for whiteflies and thrips, respectively (Fig. 1). Solid-139

color traps were used to avoid noise in the digital images caused by grids, as140

previously reported by other authors (Cho et al., 2007; Xia et al., 2014), or by141

any other printed marks on the sticky traps. Traps were replaced and moved142

to the laboratory weekly for data retrieval during 21 weeks of the complete143

crop cycle (January 22rd to Jun 18th, 2014). As a result of this sampling144

strategy, we obtained a total of 1593 sticky traps, of which 903 were yellow145

sticky traps (YST) and 690 were blue sticky traps (BST).146

After manual counting was performed using a VTLAMP2WN (Velleman,147

Gavere, Belgium) magnifying lamp of 5 dpt, the sticky traps were digitalized148

using a Scoutbox sensor (Cropwatch Company, Wageningen, Netherlands)149

which consists of a closed box to insulate light conditions and an internal150

camera (Canon EOS 550D with EF 35 mm f/2 lens model). Thus, a total of151
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Figure 1: YST and BST used to capture whiteflies and thrips. a) and a’) steel frames for

the support of the sticky traps; b) and b’) area of interes for counting and tagging of target

insect and non-target objects; c) and c’) whitefly and thrip sample images, respectively;

d) and d’) non-target objects.

3185 digital images were acquired, of which 1806 were YST images and 1380152

were BST images. The images were 5184 × 3456 pixels (72 dpi) in the RGB153

color model.154

2.2. Insect identification algorithm155

The insect identification algorithm was applied in three stages. First, the156

algorithm preformed the detection of the objects by processing the region157

of interest of the trap image and returned a sample image for each object158

(Section 2.2.1). After this stage, the algorithm computed the subsequent pro-159

cesses, depending on the target insect. A segmentation algorithm processed160

each sample image (Section 2.2.2) to obtain an isolated object. Subsequently,161
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the morphological and color features of the isolated object were calculated.162

Finally, a feature classification was performed by a feed-forward artificial163

neural network (Section 2.2.3).164

2.2.1. Algorithm to detect objects in trap images165

Object detection in the digital images of the sticky trap was performed166

with a series of subroutines (Fig. 2). First, the region of interest (Fig. 1) was167

cropped from the sticky trap image. Next, the histogram for each channel of168

the RGB image within the region of interest was calculated. For each channel,169

intensity values of the pixels with a frequency greater than 10,000 were set170

as trap background (Fig. 3). As a result of the weekly sampling strategy, the171

frequency of the intensity values of pixels in the digital images for the target172

insects and other non-target objects never reached the predefined threshold of173

10,000 in this experiment. Based on the frequency threshold value, intensity174

threshold values for each channel were determined to detect the background175

in the image.176

Next, a binary image was created from each RGB channel based on the177

previously calculated intensity threshold values. Pixels on the channel out-178

side the background intensity range were classified as objects. A logical179

disjunction was performed with the three binary channels to obtain a back-180

ground mask image. Regions of pixels in the complementary image of the181

mask were filled up to obtain solid objects. Based on the distribution of the182

sampled areas for whiteflies and thrips (Fig. 4), only solid objects with an183

area from 50 to 2000 pixels were selected.184

For each of the detected objects, a rectangular region of interest mea-185

suring 41 × 41 pixels was cropped by using the calculated centroid of the186

9



a) b) c) d) e) f)

g) h) i) j) k) l)

Figure 2: Object detection by image processing. a) RGB image of the region of interest;

b), d) and f) R, G and B channels of the image, respectively; c), f) and g) segmentation of

the R, G and B channels, respectively, based on pixel frequency; h) disjunction operation

of c), e) and g); i) complementary image of h); j) image after filling-up object gaps for

each region of pixels; k) selected objects by areas; l) calculated centroids for each object.

detected object as the center of the region of interest. This cropped im-187

age was then refferred to as sample image. After this process, two sets of188

randomly permuted sample images (32,844 and 32,700 from yellow and blue189

sticky trap, respectively) were divided in half to train the ANN and validate190

the insect identification algorithm.191

2.2.2. Image segmentation and features extraction of the sample images192

To identify whiteflies on the yellow sticky trap, an image segmentation193

algorithm (Fig. 5) was used to process each sample image. First, images194

were converted from RGB to Lab model (lightness (L) and the a and b color-195
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Figure 3: Histogram of the region of interest of a YST image. a), b) and c) Histograms of

the R, G and B components, respectively. a’), b’) and c’) Details of the frequency thresh-

old for each corresponding color component. ( ) and ( ) frequencies values of the pixel

intensities classified as background and objects, respectively; ( ) frequency threshold

value for the classification of background pixels and objects on the trap image.
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Figure 4: Histogram of target insect areas. Histogram of whitefly areas and histogram

of thrip areas.

opponent dimensions). Then, for the a and b channels, a contrast stretch196

was performed by mapping the intensity values so that 1 % of the data at197

low and high intensities of the channels was saturated. Second, since the198

body and wings of the whitefly are mainly brown and white, respectively,199

separate segmentations were performed. The body was identified by using200

the a channel, while the wings were identified via the b channel. Automatic201

identification of the intensity threshold values was then implemented (Otsu,202

1979) on each channel and a logical conjunction operation was performed.203

The connected components were then calculated with the previously com-204

puted binary image by using a 4-connected neighborhood pixel connection205

algorithm to obtain labeled regions of pixels. Subsequently, the morphologi-206

cal features (area, convex area, eccentricity, equivalent diameter, major axis207
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length, minor axis length, perimeter, centroid, solidity and extent) were cal-208

culated for each region of pixels. If more than one region was found in the209

sample image, only the region of pixels with the greatest area was considered210

as the object of interest. This last binary image of the resulting object was211

also used as a mask to determine the color features and the mean intensity212

value in each channel of the Lab color space.

a) b) c) d) e) f)

g) h) i) j) k)

Figure 5: Image processing for whitefly identification. a) Original image in the RGB

color model; b) Lab color model image; c) a component; d) contrast stretched image; e)

binarization by using the Otsu Method; f) b component; g) contrast stretched image; h)

complement of the image; i) binarization using the Otsu Method; j) logical conjunction

operation of components a and b; k) selection of the objects with maximum area.

213

The image enhancement of the segmentation of the blue sticky trap image214

in Fig. 6 was performed by transforming the RGB image into an HSV color215

model. The same segmentation and morphological feature extraction was216

performed for the yellow sticky trap process, with the difference that only217

the saturation channel was segmented. In addition, the color features were218

extracted from the HSV image.219

At the end of this process, the algorithm returned a vector containing 15220

morphological and color features for each object. These were filtered based221
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a) b) c) d) e) f)

Figure 6: Image processing for thrip identification. a) Original sample image in the

RGB color model; b) HSV image; c) saturation channel; d) contrast stretch image; e)

binarization using the Otsu method; f) selection of the object with maximum area.

on the mutual information (Amjady et al., 2011) and only 14 were selected.222

Thus, the 14 elements in each vector, used as input of the neural network,223

were: area, convex area, eccentricity, equivalent diameter, major axis length,224

minor axis length, perimeter, solidity, extent, two components of the centroid225

and three mean color intensity values. On the one hand, each set of vectors226

(from yellow and blue sticky trap images, respectively) were manually and227

randomly permuted and divided in halves. The first half was used to design228

the neural network, while the validation of the automatic identification of the229

target insect from the sample images was performed based on the other half.230

For practical purposes, the two sets were referred to as Network Design Set231

(NDS) and Algorithm Validation Set (AVS). On the other hand, during the232

identifiaction of the target insect from the traps, the algorithm automatically233

used the resulting features of the segmentation process as input for the neural234

network.235

2.2.3. Classification by a neural network236

A multilayer feed-forward neural network (see Fig. 7) was used in this237

study to classify the detected objects using the extracted morphological and238

color features vector pγ of length R = 14. The network consisted of a two-239
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layer perceptron (the input γ = 1 and the output γ = 2 layer) that processed240

the input signal with the log-sigmoid fγ=1(n) = 1
1+e−n

and the line fγ=2(n) =241

n transfer functions, respectively. In order to find the optimum network242

configurations, 28 network configurations were trained. Thus, the number243

of nodes tested in these configurations was Sγ=1/Sγ=2 = [1 to 28]/2. In the244

network training, the output signal for a target insect vector and a non-target245

object were aγ=2 = [1, 0] and aγ=2 = [0, 1], respectively.

Input γ = 1 γ = 2 Output

aγ = fγ (Wγ,p + bγ) aγ = fγ (Wγ,a + bγ)

pγ

R× 1
Wγ,p

Sγ ×R +

bγ

Sγ × 1
1

nγ

Sγ × 1
fγ

Sγ

aγ

Sγ × 1 Wγ,a

Sγ ×R +

bγ

Sγ × 1
1

nγ

Sγ × 1
fγ

Sγ

aγ

Sγ × 1

Figure 7: Multilayer artificial neural network architecture for whitefly and thrip features

classification.
246

The NDS was randomly set aside in 70 % for training, 15 % for testing247

and 15 % for validation of the neural network. The Levenberg-Marquardt op-248

timization method (Marquardt, 1963) was used to update weight W and bias249

b values in the training process. A bias enhanced the net input of the trans-250

fer function, depending on whether it is positive or negative, respectively251

(Haykin, 1998). The process was stopped if the validation error increased252

after 10 iterations, or if the mean square error of the validation reached a253

minimum of 0.01. Then, the weights W and biases b calculated at the min-254

imum error of the validation were used as values for the network validation255
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with a new set of input vectors.256

The balance of the elements in the output signal aγ=2 was measured by257

using the expression ab = aγ=2 (1) − aγ=2 (2), resulting in a new ab output258

signal. In this signal, the positive values are considered the target insects and259

the negative values are the non-target objects. In this paper, this qualitative260

classification output is refferred to as ac for practical purposes.261

The networks were first validated with the qualitative output signal ac

using AVS to find the optimum neural network. After the analysis of all the

samples Sa in AVS, ac contained the identified target insects Iti and non-

target objects Int of length Sti and Snt, respectively. With these parameters,

the mean absolute error (MAE) was estimated and the precision Pnn of the

neural network was calculated as:

Pnn =
Sa −MAE

Sa
× 100 (1)

The identification error, false negative rate (FNR) and false positive rate

(FPR) were:

FNR =

∑
Iti−nn
Sti

× 100 (2)

FPR =

∑
Int−nn
Snt

× 100 (3)

After finding the best network with the previous analysis, a quantitative262

analysis with the ab output signal was performed. Subsequently, the root263

mean square error (RMSE), the RMSE-observations standard deviation ratio264

(RSR), the percentage of the error bias (PBIAS), the absolute error (MAPE)265

and the linear correlation (Kobayashi and Salam, 2000; Moriasi et al., 2007)266
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were calculated to compare both networks designed to identify whiteflies and267

thrip.268

2.3. Validation of the algorithm269

Two types of evaluations of the identification system were performed to270

measure the performance of the algorithm: identification of the target insect271

from the trap images and from the sample images.272

The identification of the target insects from trap images was performed273

using traps with low insect density per trap. It is important to analyze the274

performance of the automatic identification system in this domain because275

maintaining low infestation is a crucial objective in an IPM system. Park276

et al. (2007) suggested an economic threshold of 5.7 thrip per four-day sticky277

trap count, whereas Ellsworth and Mart́ınez-Carrillo (2001) reported a max-278

imum threshold of 10 whiteflies per leaf to perform corrective actions and279

prevent crop infestation. As a result of the implementation of pest man-280

agement in the experimental greenhouses, mean target insects captured per281

trap were 3.7 for YST and 2.7 for BST. Thus, we processed 1731 YST im-282

ages and 1348 BST images that provided a density below 30 insects per trap.283

The procedure proposed by Altman and Bland (1983) was used to assess the284

magnitude of disagreement (both error and bias) between the identification285

system and the measured values.286

The performance of the algorithm to identify the target insect in the

sample images was measured calculating the precision, the recall and the

F-measure for both target insects, whitefly and thrip. To determine these

parameters, the number of observed target insects was used as our reference

(N) and the number of automatic identified target insects as our hypothesis
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(M). These values were determined as follows (Makhoul et al., 1999):

N = C +B +D (4)

M = C +B + I (5)

where C is the number of correctly identified target insects, B the number287

of substitutions, I the number of deletions and D the number of insertions.288

Precision P and recall R are commonly used to measure the performance

of information retrieval and information extraction systems (Makhoul et al.,

1999) as well as in those algorithms developed for pest identification (Kumar

et al., 2010; Zhao et al., 2011b; Xia et al., 2014; Yan et al., 2015). Precision is

related to substitution and insertion errors and can be considered a measure

of exactness or fidelity, while recall is a measure of completeness that is

related to substitution and deletion errors. These parameters were calculated

as (Makhoul et al., 1999):

P =
C

M
(6)

R =
C

N
(7)

Subsequently, the weighted harmonic mean of the precision and recall

(F-measure) was determined (Makhoul et al., 1999) to determine the overall

performance of the insect identification algorithm, including miss detection

and false alarms:

F =
2 × P ×R

P +R
(8)
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3. Results and discussion289

The experimental results are based on two main analyses. First, the290

results of the three image processing stages (object detection, segmentation291

and features extraction) will be reviewed, followed by an analysis of the292

feature classifications using a neural network. Both processes are important293

because they contribute to the final efficiency of the insect identification.294

Although the purpose of this paper is not to evaluate the effect of abiotic295

factors and agrosystem management in the performance of the insect identifi-296

cation algorithm, the sampling methodology or to analyze insect population297

dynamics, it is important to note that the insect sampling methodology and298

the image acquisition system provided a large quantity of representative ex-299

perimental data.300

3.1. Object detection subroutine301

As an alternative to the methods used to optimize the information to be302

processed discussed in Section 1, we found that by using the object detec-303

tion subroutine proposed in this study, most information in the trap images304

refered to the background (95.13 %), which is not relevant in the insect identi-305

fication process and can be neglected. An average of 268.78 ± 195.76 objects306

per trap represented 4.87±3.55 % of the trap image that contained informa-307

tion about the objects stuck to the trap and this fraction of data was used to308

identify the target insects. In the most infested trap (1414 detected objects)309

the extracted information was 25.60 %, while the percentage for the minimum310

infestation (10 objects) was 0.18 %. Considering that in an agrosystem man-311

aged with an early pest detection strategy, high infestation is prevented by312
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increasing pest population monitoring frequency (Pinto-Zevallos and Vänni-313

nen, 2013), the density of the captured objects in the sticky trap will also314

be lowered. Thus, the fewer objects captured in the trap, the more back-315

ground information that can be neglected. The object detection subroutine316

used in this study was effective in detecting the target classes, i.e. white-317

flies, thrips and other objects, but it can also be applied to the detection318

of other insect species. Nevertheless, improvements are still needed, since in319

some cases regions of pixels with areas greater than 800 pixels were detected,320

corresponding to insects that were degraded, overlapping, or located close to321

the frame shadow. Moreover, any object near a target insect appeared as a322

similar sample image because of the proximity of their centroids.323

Since the object detection algorithm detected the background in accor-324

dance with a pixel frequency threshold, it was not sensitive to the color325

differences that it was evaluating (yellow and blue sticky traps). This also326

holds true for the variations in trap color intensity due to different condi-327

tions: light conditions in the acquisition system, trap degradation or trap328

manufacture. Using this subroutine, 662,011 and 194,060 objects were de-329

tected in the YST and BST images, respectively. From this amount, 6498330

image samples of whiteflies and 26,346 image samples of non-whitefly ob-331

jects, which included other insect species as well as other non-insect objects,332

were selected manually from the YST images. Likewise, 3589 image samples333

of thrips and 29,111 image samples of non-thrip objects were also selected334

manually from the BST images.335
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3.2. Image-processing subroutine336

The sample image segmentation for whitefly identification was precise337

despite changes in color background, orientation or positioning of insect body338

parts (Fig. 8 a and b). Nevertheless, segmentation of detected objects located339

next to the boundary of the trap, near the steel frame (Fig. 1), generated340

erroneous results (Fig. 8 c’), due to the fact that the shadow produced by341

the frame changed the background color of the sample image (Fig. 8 c).342

In addition, if overlapping occurred (Fig. 8 d), both the whitefly and the343

other object were classified as a unique region of pixels (Fig. 8 d’). It is344

difficult to measure insect degradation, but also it affects insect identification345

performance.

a) b) c) d) e) f)

a’) b’) c’) d’) e’)
f’)

Figure 8: Main sample anomalies for whitefly identification. a) and b) background and

body position and orientation differences; a’) and b’) image segmentation of images a)

and b), respectively; c) and c’) sample showing a frame shadow and the corresponding

image segmentation, respectively; d) and d’) sample showing a whitefly close to other

non-target insect and its corresponding image segmentation; e) and e’) non-target insect

and its segmentation; f) and f’) clean sample and its segmentation, respectively.

346

On the other hand, image segmentation for thrip identification was mostly347

a less challenging task. Background color differences, variation in orientation348
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and position of the insects, boundary shadows and overlapping were, in most349

cases, correctly segmented (see Fig. 9).

a) b) c) d) e) f)

a’) b’) c’) d’) e’)

f’)

Figure 9: Main sample anomalies for thrip identification. a) and b) background and

body position and orientation differences; a’) and b’) image segmentation of images a)

and b), respectively; c) and c’) sample showing a frame shadow and the corresponding

image segmentation, respectively; d) and d’) sample showing a thrip close to other non-

target insect and its corresponding image segmentation; e) and e’) non-target insect and

its segmentation; f) and f’) clean sample and its segmentation, respectively.

350

As in previous studies, the automatic identification of thrips was based351

on the use of blue sticky traps. We obtained satisfactory results by using352

the saturation channel of the HSV color model to identify thrip on the blue353

sticky trap. On the other hand, we proposed whitefly identification on the354

yellow sticky traps to be carried out in the a and b channels of the Lab color355

model. In other studies, whitefly identification on yellow sticky traps was356

performed on the Cb of the Y CbCr color model (Xia et al., 2014) by using an357

ad hoc transformation from RGB to gray (Qiao et al., 2008; Solis-Sánchez358

et al., 2009; Bechar et al., 2010) or by processing the YUV color model (Cho359

et al., 2007).360

By using the selected channels, the segmentation in both algorithms was361
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based on contrast adjustment and on the Otsu method (Otsu, 1979). This362

method was also used by Solis-Sánchez et al. (2009) to identify whitefly on363

yellow sticky traps. Both the whitefly and the thrip identification algorithms364

also segmented those pixel regions that were not objects of interest for the365

identification (i.e., sample images c and d in Fig. 8 and Fig. 9). Nevertheless,366

the overall performance of the algorithm depended not only on the morpho-367

logical features used to classify the object, but also on color properties. As in368

recent studies (Barbedo, 2014; Xia et al., 2014), in this work, we demonstrate369

that morphological and color features are effective parameters to classify pest370

species captured in sticky traps. Main color component features calculated371

for whiteflies (Table 1) were similar to those reported by Cho et al. (2007),372

except in the green component, where these authors used 214 ± 13 as the373

domain to classify a whitefly, while this component was 117 ± 3 in our sys-374

tem. The eccentricity and solidity domains obtained with our system are375

similar to the values reported by Solis-Sánchez et al. (2009, 2011) to classify376

whitefly and thrip (0.85 ± 0.10 and 1, respectively). In our system, most377

of the calculated mean features (Table 1) were similar between target and378

non-target insects, and the dispersion of the values for each feature is high.379

A single feature could not be used in the classification process due to the fact380

that the separation between its values was not significant. This means that381

there was a high correlation between some classes. Under these conditions,382

artificial neural networks can be used to identify target insects.383

3.3. Neural network for the classification of target insects384

The results obtained for the 28 neural network procedures that were stud-385

ied allowed the identification of the optimum neural network to identify each386
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Table 1: Mean observed features. TI and NTO are target insect and non-target object,

respectively. Values are expressed as mean value ± standars deviation. * Mean component

of the Lab color model calculated for whitefly or HSV color model calculated for thrip.

Whitefly Thrip

Feature TI NTO TI NTO

Area 953 ± 512 868 ± 506 688 ± 442 698 ± 448

Centroid X 20.59 ± 4.67 20.40 ± 4.78 21.18 ± 5.93 21.21 ± 5.67

Centroid Y 19.75 ± 6.78 18.34 ± 7.35 23.62 ± 7.53 20.66 ± 8.03

Convex Area 1209 ± 559 1117 ± 567 933 ± 545 951 ± 558

Eccentricity 0.55 ± 0.27 0.60 ± 0.28 0.72 ± 0.19 0.70 ± 0.21

Equivalent diameter 33.10 ± 10.84 31.44 ± 10.82 27.65 ± 10.52 27.88 ± 10.53

Extent 0.70 ± 0.18 0.67 ± 0.18 0.62 ± 0.14 0.62 ± 0.15

Major axis length 44 ± 9 43 ± 9 41 ± 12 41 ± 11

Minor axis length 34 ± 14 32 ± 14 27 ± 13 27 ± 13

Perimeter 195 ± 77 186 ± 77 168 ± 78 173 ± 82

Solidity 0.77 ± 0.13 0.76 ± 0.13 0.74 ± 0.12 0.73 ± 0.12

Color component 1* 201 ± 14 183 ± 27 0.54 ± 0.15 0.52 ± 0.15

Color component 2* 117 ± 3 115 ± 4 0.08 ± 0.12 0.07 ± 0.09

Color component 3* 199 ± 7 193 ± 11 0.75 ± 0.07 0.73 ± 0.09

target insect. We found that the best network setup for the whitefly identifi-387

cation was 16/2 and 9/2 for the thrip identification. It was observed that for388

this particular application, neural network precision remained stable even if389

more neurons were added at this layer. Hence, more neurons in γ = 1 did not390

result in a considerable decrease in error but caused, however, an increase of391

computational costs. The 16/2 network for whitefly identification obtained392

a calculated precision Pnn = 98.21%, FNR = 5.02%, FPR = 0.99% and393
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MAE = 1.790%. On the other hand, in the 9/2 network for thrip iden-394

tification we obtained Pnn = 98.65%, FNR = 3.99%, FPR = 1.03% and395

MAE = 1.352%. These detection rates are satisfactory compared with the396

(97.0 ± 0.4) % obtained in the algorithm developed by Qiao et al. (2008)397

and the 97 % obtained by Solis-Sánchez et al. (2009). In these analyses we398

also considered the identification of non-target objects. The FPR in the399

identification of these objects was smaller than the FNR calculated for the400

identification of the target insect because during the training of the neural401

network the synapsis weights and bias were adjusted not only following the402

more homogeneous set, but also the greater set. As can been seen in Ta-403

ble 1, most of the features in both sets (TI and NTO) overlap. In order404

to avoid false fositive results, the AVS input set used to train the network405

contained more non-target objects than target insects. As regards whitefly406

identification, the set had 3266 target insects and 13,156 non-target objects,407

while the thrip identification set was 1778 and 14,572 target and non-target408

objects, respectively. Therefore, the network provided a better performance409

when avoiding false positive results.410

With the proposed neural network architecture we found that the opti-411

mum number of neurons S in γ = 1 was 16 and 9 for the identification of412

whitefly and thrip, respectively. The RMSE accomplished by these networks413

were 0.253 and 0.221, respectively. These results are admissible because they414

are less than half the standard deviation of the measured data, 0.399 and415

0.311 for whitefly and thrip, respectively. If we compare these parameters416

based on the measured standard deviations (Singh et al., 2005), the RSR for417

network for whitefly identification was lower (0.316) than the network used418
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for classification of thrips (0.355). Nevertheless, the output signal in the419

whitefly identification indicated overestimation bias (PBIAS of −1.012 %),420

while the network for thrip identification is more accurate and has a low un-421

derestimation bias (PBIAS of 0.309 %). Moreover, this overestimation bias422

resulted in a MAPE of 11.366 %. On the other hand, the thrip identification423

MAPE was 7.93 %. Simulation of the network model showed that the linear424

correlation for whitefly identification is slightly greater (R2 = 0.900) than for425

thrip identification (R2 = 0.874).426

The distribution of the ab output for each neural network can be seen427

in Fig. 10. Output of the neural network for whitefly identification was428

0.830 ± 0.378, while the output identified as non-target object was −0.965 ± 0.189.429

A similar distribution was found for the output of the neural network for thrip430

identification, 0.799 ± 0.337 and −0.973 ± 0.187 for target insect and non-431

target object, respectively. Since we declare positive values of ab as the target432

insect, negative values in the histogram are FNR. In the negative output433

declared as non-target object, positive values are FPR.434

3.4. Validation of the algorithm435

Results of the target insect identification in the traps are shown in Fig. 11.436

The Bland-Altman analysis for the identification of whitefly showed a mean437

bias of −1.84 ± 11.60 between the estimated values using the automatic iden-438

tification and the manually measured values. This meant that, on average,439

the proposed algorithm overestimated the score by −1.84 ± 11.60, as regards440

the number of insects per trap. The limits of agreement were also wide, from441

7.92 to −11.60, which meant an increase in the potential of a wrong insect-442

per-trap count. However, the method used to identify thrip only increased443

26



−1 0 1
0

2

4

6

8

10
·102

−
σ
′

µ
′

+
σ
′

−
σ

µ +
σ

ab

T
a
rg

et
in

se
ct

fr
eq

u
en

cy

a)

−1 0 1
0

1

2

3

4
·102

−
σ
′

µ
′

+
σ
′

−
σ

µ +
σ

ab

b)

0

20

40

60

·102

0

50

100

·102

N
o
n

-t
a
rg

et
o
b

je
ct

fr
eq

u
en

cy

Figure 10: Neural networks validation results. a) and b) are the histograms of the

whitefly and thrip identification, respectively; Target insects frequency; Non-target

objects frequency; (µ, σ) and (µ′, σ′) are the mean and the ab standard deviation output

for target insect and non-target object, respectively.

the count on average by −0.59 ± 4.15, which indicates that this method is444

more trustworthy due to the narrow limits of agreement, from 3.56 to −4.74.445

446

The performance parameters for target insect identification from the sam-447

ple images are summarized in Table 2. The algorithm to identify whiteflies448

on the yellow-sticky traps provided higher precision (0.96) than the algo-449

rithm to identify thrips on the blue sticky traps (0.92). However, recall was450

marginally greater for identification of thrip (0.96) than for whitefly (0.95)451

as a consequence of a slightly greater tendency of the thrip identification452

algorithm to identify non-target objects as target insects. Both whitefly and453

thrip identification algorithms scored high F-measures, 0.96 and 0.94, re-454

spectively, indicating that correct identification instances exceeded incorrect455
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Figure 11: Mean-difference counting in traps with insect density < 30. a) and b) are the

data () of whitefly and thrip identification, respectively; µ is the mean difference and σ is

standard deviation.

identifications.

Table 2: Performance parameters for the insect identification algorithm.

Whitefly Thrip

Observed value 3266 1778

Forecast 3232 1857

Correct forecast 3102 1707

Incorrect forecast 130 71

Insertions 34 0

Deletion 0 79

Precision 0.96 0.92

Recall 0.95 0.96

F-measure 0.95 0.94

456

Although the proposed identification system performs well when the iden-457

tification of the target insect is performed from sample images, performance458
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quality drops in the object detection subroutine when it is used to identify459

the target insect from the traps. However, the insect identification system460

has a good correlation with the measured data when insect-per-trap density461

is low.462

A comparison of these results with other published studies demonstrates463

that the combination of an image-processing algorithm with neural networks464

is a promising method for the future development of early pest detection465

systems using sticky traps. Barbedo (2014) reported for the identification of466

whitefly an F-measure value of 0.95 by using an image-processing algorithm.467

In another study, Yan et al. (2015) obtained an F-measure value of 0.89 for468

the in situ identification of whitefly by means of a multi-fractal minimal469

algorithm. Finally, Xia et al. (2014) reported a precision value of 0.96 in470

their image-processing algorithm for the identification of whitefly and thrip.471

In this study, we have found that neural networks can be used to identify472

whitefly and thrip in sticky traps by using only 14 morphological and color473

features. Since the employed subroutine was designed to segment whitefly474

and thrip, the identification of further species requires a modification of the475

segmentation process. The improvement of the algorithm in terms of object476

detection and the segmentation process to identify a wider range of pest477

species will be the focus of a future work.478

4. Conclusions479

This study proposed a novel approach for the detection and quantification480

of adult-stage whitefly (Bemisia tabaci) and thrip (Frankliniella occidentalis)481

on sticky traps installed in greenhouses. The combination of the proposed482
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image-processing algorithm and the classification through artificial neural483

networks was explored as an algorithm model for the early detection and484

classification of the target insects. The identification system was based on485

the use of sticky traps, a commonly used physical method for capturing and486

monitoring pests in agriculture.487

According to the experimental results, the developed algorithm model for488

adult whitefly identification from the sample images resulted in high precision489

(0.96), recall (0.95) and F-measure (0.95). Similar good performance was490

attained for the identification of adult thrip, with a value of 0.92 for precision,491

0.96 for recall and 0.94 for F-measure.492

Nevertheless, the proposed object detection subroutine caused a drop in493

the performance of the identification of the target insects from the trap.494

Future work will focus on the development of this subroutine, the detection495

of a wider range of insect species and the reduction of manual intervention.496
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