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The present study provides a comparative assessment of non-invasive sensors as means of 

estimating the microbial contamination and “time-on-shelf” (i.e. storage time) of leafy 

green vegetables, using a novel unified spectra analysis workflow. Two types of fresh ready-

to-eat green salads were used in the context of this study for the purpose of evaluating the 

efficiency and practical application of the presented workflow: rocket and baby spinach 

salads. The employed analysis workflow consisted of robust data normalization, powerful 

feature selection based on random forests regression, and selection of the number of 

partial least squares regression coefficients in the training process by estimating the “knee-

point” on the explained variance plot. Training processes were based on microbiological 

and spectral data derived during storage of green salad samples at isothermal conditions 

(4, 8 and 12°C), whereas testing was performed on data during storage under dynamic 

temperature conditions (simulating real-life temperature fluctuations in the food supply 

chain). Since an increasing interest in the use of non-invasive sensors in food quality 

assessment has been made evident in recent years, the unified spectra analysis workflow 

described herein, by being based on the creation/usage of limited sized featured sets, could 

be very useful in food-specific low-cost sensor development.  

 

Keywords – microbiological contamination assessment, prediction model, regression, 

green salads, non-invasive sensors  
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1. Introduction 

In recent years, the production, sale and consumption of fresh raw fruits and vegetables, 

especially as pre-cut and ready-to-eat (minimally processed by washing, slicing or shredding 

and packaging) salads have undergone substantial increases in the European Union as well 

as the United States. This is the result of consumer preferences for fresher, more convenient 

and nutritious foods that meet the needs of busier lifestyles, at least in the developed 

countries. Vegetables are highly contaminated by nature due either to agronomic systems 

employed in their production (e.g., irrigation with contaminated water, organic fertilizers 

such as manure, etc.) or during processing, handling and marketing, (Francis et al., 2012; 

Skandamis & Nychas, 2011). Nonetheless, consumers demand fresh produce commodities, 

which should be not only perfectly safe for human consumption, but visually attractive as 

well.  

Over the past decade, a number of sensors based on vibrational spectroscopy or 

hyperspectral/multispectral imaging have been developed (Rateni, Dario, & Cavallo, 2017).  

Although such sensors have started gaining popularity as rapid and efficient methods for 

assessing food quality and/or food composition, their utilization in handling of 

microbiological issues related to the current EU legislation (Commission, 2005) still remains 

to be firmly established. Indeed, the challenge of using non-invasive sensors as sensible 

alternatives to the costly and time-consuming conventional microbiological techniques has 

not been adequately tackled yet.  

Spectroscopy which indeed allows rapid, non-invasive and non-destructive analysis 

(Nychas, Panagou, & Mohareb, 2016), cannot be considered as target-specific method and 

it must be associated with complex data analytics to extract the relevant microbiological 

and biochemical  information. This can be achieved by the selections of the wavelength 

range for source and detector, and of the measurement setup. It is evident that due to the 
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multi-dimensional nature of the data generated from such analyses, the output needs to be 

coupled with a suitable statistical approach or machine-learning algorithms before the 

results can be interpreted (Ropodi, Panagou, & Nychas, 2016). Choosing the optimum 

pattern recognition or machine learning approach for a given analytical platform is often 

challenging and involves a comparative analysis of various algorithms in order to achieve 

the best possible prediction accuracy (Estelles-Lopez et al., 2017; Tsakanikas, Pavlidis, & 

Nychas, 2015; Tsakanikas, Pavlidis, Panagou, & Nychas, 2016). 

Here in, we introduce a unified data analysis and prediction model building workflow 

for ready-to-eat green salads (specifically rocket and baby spinach). To the best of our 

knowledge this is the first attempt for a unified data analysis approach applied to a whole 

category of food. This unified approach by itself consists a major contribution to the field of 

microbial contamination assessment on food. In addition, coupled with the non-invasive 

sensors used (a nowadays necessity for food quality assessment and monitoring), namely 

FTIR, NIR and VIS, we further enhance its impact and applicability. Further aspects of 

possible contributions via the developed feature selection process (selection of specific 

wavelengths of the sensors) may lead to the development of sensors focus and targeted to 

specific food types offering optimized precision and maybe lower cost for the industry. 

In the present study for the first time, to our knowledge, three sensors of which two 

are commercially available and one developed within the frame of PhasmaFOOD EU project 

(http://www.phasmafood.eu/ further details are provided in the Materials & Methods 

section) were used for the assessment of microbiological quality and freshness (storage 

time) of fresh produce commodities. The acquired measurements for the three 

abovementioned sensors were analyzed using advanced data analysis to predict bacterial 

counts of selected vegetable products (i.e. rocket and baby spinach salads), with the latter 

being stored under aerobic isothermal as well as dynamic temperature conditions. Towards 

http://www.phasmafood.eu/
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a meaningful predictive model, although trained and build at isothermal storage conditions 

dataset, the testing has been performed on samples stored at storage temperatures with 

dynamic variations, and thus simulating real life conditions. 

 

2. Materials & Methods 

2.1. Green salad samples and storage conditions 

Fresh and ready-to-eat rocket and baby spinach salads (i.e. sealed plastic bags each one 

containing 85 g or 125 g of fresh-cut, washed and drained rocket or baby spinach leaves, 

respectively) were obtained from a local manufacturer and transported to the laboratory 

within 24 h from production. The salads were stored in their original packages (i.e. aerobic 

storage) at three different isothermal conditions (4, 8 and 12°C), as well as at dynamic 

storage conditions with periodic temperature changes from 4 to 12°C (8 h at 4°C, 8 h at 8°C 

and 8 h at 12°C). Sample storage took place in high-precision (±0.5°C) programmable 

incubators (MIR-153, Sanyo Electric Co., Osaka, Japan) for a maximum time period of 

approximately 11 days (i.e. 254 h), and the incubation temperatures were recorded at 15-

min intervals throughout storage using electronic temperature-monitoring devices (COX 

TRACER®, Cox Technologies Inc., Belmont, NC, USA). On the day of arrival to the laboratory 

(time-zero) and at regular time intervals during storage, depending on the applied storage 

temperature, duplicate salad samples (originating from different packages) were subjected 

to the following analytical procedures: (i) microbiological analyses and pH measurements; 

(ii) Fourier transform infrared (FTIR) spectroscopy measurements; (iii) near infrared (NIR) 

spectroscopy measurements; and (iv) visible (VIS) spectroscopy measurements. Two 

independent experiments (i.e. different time instances and different salad batches) were 

conducted, and a total of 217 rocket salad and 212 baby spinach salad samples were 
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subjected to the aforementioned analyses during storage at the different temperature 

conditions. 

 

2.2. Microbiological analyses 

A 25-g portion of the content of a salad package was transferred aseptically to a 400-ml 

sterile stomacher bag (Seward Medical, London, UK) containing 225 ml of sterilized quarter-

strength Ringer’s solution (Lab M Limited, Lancashire, UK), and homogenized in a Stomacher 

apparatus (Lab Blender 400, Seward Medical) for 60 sec at room temperature. For the 

enumeration of the total mesophilic microbial populations (total viable counts, TVC), 

appropriate serial decimal dilutions in Ringer’s solution were surface plated on tryptic 

glucose yeast agar (Plate Count Agar; Biolife, Milan, Italy), and colonies were counted after 

incubation of plates at 25°C for 72 h. The obtained microbiological data were converted to 

log (colony forming units) per gram of vegetable salad (log CFU/g). Upon completion of the 

microbiological analyses, the pH values of the samples also were measured using a digital 

pH meter (RL150, Russell pH, Cork, Ireland) with a glass electrode (Metrohm AG, Herisau, 

Switzerland). 

 

2.3. Sensors 

2.3.1. FTIR spectroscopy 

FTIR spectral data were collected using a ZnSe 45° HATR (Horizontal Attenuated Total 

Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, USA), and an FTIR-6200 JASCO 

spectrometer (Jasco Corp., Tokyo, Japan) equipped with a standard sample chamber, a 

triglycine sulphate (TGS) detector and a Ge/KBr beamsplitter. A small portion from each 

salad sample was cut in small pieces and transferred to the crystal plate, covered with a 

small piece of aluminum foil, and then pressed with a gripper to ensure the best possible 
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contact with the crystal. The crystal used has a refractive index of 2.4 and a depth of 

penetration of 2.0 μm at 1000 cm-1. Using the Spectra Manager™ Code of Federal 

Regulations (CFR) software version 2 (Jasco Corp.), spectra were collected over the 

wavenumber range of 4000 to 400 cm-1, by accumulating 100 scans with a resolution of 4 

cm-1 and a total integration time of 2 min. Prior to the measurements of the tested samples, 

reference spectra were acquired using the cleaned blank (no added salad sample) crystal. 

After each measurement, the crystal’s surface was cleaned, first with detergent and distilled 

water and then with analytical grade acetone, and dried using lint-free tissue. The FTIR 

spectra that were ultimately used in further analyses were in the approximate wavenumber 

range of 2700 to 900 cm-1. 

 

2.3.2. NIR spectroscopy 

Spectra from the green salad samples were acquired using a NIR spectrometer (SGS1900), 

developed by Fraunhofer IMPS (Institute für Photonische Mikrosysteme, Dresden, 

Germany). The NIR spectrometer covers a wavelength range from 1000 to 1900 nm, and it 

is comprised of a MEMS-based scanning grating for spectral dispersion and an uncooled 

InGaAs diode for detection (Pügner, Knobbe, Grüger, & Schenk, 2012). A halogen light 

source providing illumination (in-house constructed by IPMS) was coupled via SMA 905 

connector into an Ocean optics Y-shaped fiber bundle (QR400-ANGLE-VIS). The fiber bundle 

comprises of a probe tip with a window, which is set at 30° to the front face of the fiber. 

During measurement, this window is placed in direct contact with the sample. Light from 

the halogen source is fed to the sample and the diffuse reflectance from the sample is 

collected back into a 400 µm core optical fiber in the center of the fiber bundle. This fiber 

then transmits the collected light to the SGS1900 spectrometer via SMA connector. The 

software “Quickstep” (Hiperscan GmbH) served as operation software for the NIR 
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spectroscopy measurements. For each salad sample, ten (10) spectral measurements 

(absorbance values) were acquired by placing the fiber’s probe tip on different spots of the 

vegetable leaves’ surface, and then their average value was used in order to combat and 

embed the inherent large diversity of the samples’ absorbance values.    

 

2.3.3. VIS spectroscopy 

The VIS spectrometer sensor used in this study was the Hamamatsu C12880MA 

(Hamamatsu Photonics K.K., Shizuoka, Japan). The device has a spectral range from 340 to 

850 nm, high sensitivity and spectral resolution of 15 nm. It should be noted that only visible 

range spectroscopy has been used, and in order for this to be ensured, a UV filter with a 

cutoff at 400 nm was introduced in front of the spectrometer aperture to avoid any signal 

interference. The salad samples were placed in Petri dishes, and, similarly to the NIR 

measurements, ten (10) different spectral measurements (absorbance values) were 

acquired at different spots of the samples and their average value was used in order for the 

inherent absorbance diversity to be taken into account. 

 

2.4. Data analysis methodology 

This section provides a detailed description of the data analysis workflow, which is, more or 

less, common for all studied sensors. The processing pipeline consists of feature selection 

(specific wavelengths/wavenumbers) on the basis of random forests (RFs) regression 

ensemble (Breiman, 2001) followed by partial least squares (PLS) regression coupled with 

automated selection of number of components.  

Prior to feature selection, spectra were normalized under the Standard Normal Variate 

(SNV) normalization scheme (Barnes, Dhanoa, & Lister, 1989) and more specifically its 

robust version RNV (Guo, Wu, & Massart, 1999) (Eq. 1). In addition to enhancing data 



9 
 

quality, reducing the correlated information across the different 

wavelengths/wavenumbers and eliminating the inherent (due to the acquisition process) 

multiplicative noise, the robust version of SNV also gives more reasonable results (i.e. 

without artifacts) and leads to improved analysis: 

     (1) 

where S is the ensemble of all spectra, and si and si
snv the ith and the corresponding 

normalized spectra, respectively. Median Absolute Deviation (𝑚𝑎𝑑) (Hoaglin, Frederick 

Mosteller, & Tukey, 2000), is a robust measure of the variability of a univariate sample of 

quantitative data 𝑠1, 𝑠2,…, 𝑠𝑛  computed as:  

𝑚𝑎𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑠𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆)|)    (2) 

After the spectra normalization and prior to regression of microbial contamination (TVC) 

and storage time, a feature selection step was introduced. This is considered critical not 

only in this specific case but in every regression/classification problems where small 

amounts of samples in high dimensional space (i.e. large number of variables) are available. 

So, in order to surpass this issue and not fall into overfitting, variable/feature set has to be 

decreased in a way that meaningful features are preserved while irrelevant (to the 

prediction of microbial contamination and storage time) and redundant ones are excluded. 

Several algorithms exist for feature selection, with most of them lying into the concept of 

feature ranking (James, Witten, Hastie, & Tibshirani, 2013) and selecting a user-defined 

number of features. Nevertheless, no adequate prior knowledge from the current scientific 

literature exists on wavelengths/wavenumbers indicative for microbial contamination of 

vegetables. Hence, apart from the fact that feature ranking algorithms do not perform well 

in terms of computational time and that the resulting feature subsets are redundant, it is 

also difficult to set a specific, even intuitive, threshold for the number of features to keep. 
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In this context, RFs were selected to be employed for regression (Breiman, 2001), which are 

an ensemble learning method for regression that constructs a multitude of decision trees 

at training time while provides as output the mean prediction (regression) of the individual 

trees. One justification for this selection is that RFs correct decision trees' habit of 

overfitting to their training set, something which is needed here as stated earlier. In 

addition, RFs under boosting (Duffy & Helmbold, 2002) scheme was employed for learning 

which has the advantage over averaging (Breiman, 2001) or bagging (Tin Kam, 1998), since 

boosting algorithms consist of iteratively learning weak classifiers with respect to a 

distribution and adding them to a final strong classifier. Then, the data are reweighted: 

examples that are misclassified gain weight and examples that are classified correctly lose. 

Thus, future weak learners focus more on the examples that previous weak learners 

misclassified, thus boosting their performance. Having in mind the aforementioned 

advantages of RFs, their application on the selected data is expected to output concrete and 

representative (yet not redundant) features from each sensor that best represents the 

samples in terms of discriminating the inherent microbial burden. Herein, the regression 

tree ensemble was trained using LSBoost (gradient boosting strategy applied for least 

squares) (Friedman, 2001) and 100 learning cycles, with all constant temperatures (i.e. 4, 8 

and 12 0C) being used as training set and the set of samples stored at dynamic temperature 

conditions being utilized as external test set. To justify and support this data partitioning for 

training and testing: our aim is to develop temperature-agnostic prediction models that 

perform well in real life applications, meaning dynamically changing temperatures of 

storage.  

Finally, after the selection of features (i.e. spectra wavelengths/wavenumbers) and 

using only the resulted reduced in dimensions datasets, PLS regression (Wold, Sjöström, & 

Eriksson, 2001) was performed, since this method is a popular method in food quality 
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applications (Panagou, Papadopoulou, Carstensen, & Nychas, 2014; Papadopoulou, 

Panagou, Tassou, & Nychas, 2011). A significant issue concerning PLS modeling, and 

specifically the optimum number of components selection, is the variation of the irrelevant 

to the phenomenon under study data, causing the inclusion of components that may have 

negative impact on the model. The selection of the optimum number of PLS components is 

made using the plot of variance to number of model coefficients at the “knee-point”. The 

“knee-point” is defined as the intersection of two lines that are obtained as a result of an 

iterative curve fitting procedure. Specifically, by "walking" along the curve (a fitted 

smoothing spline (Chapra & Canale, 2006) to the posteriors data) from left to right one 

bisection point at a time and fitting two lines, one to all points to the left of the bisection 

point and another to all points to the right of the bisection point, the knee is the bisection 

point for which the sum of the Root Mean Square Errors (RMSE) for the two lines is 

minimized. The training process is performed on the dataset of samples stored at constant 

temperatures (for each produce commodity type independently), while 10-fold cross 

validation and 10 Monte-Carlo repartitions of the data were performed for model 

calibration. At this point we should state that the aforementioned procedure was applied 

not only for microbial contamination but also for “time-on-shelf” estimation and prediction. 

The term “time-on-shelf”, is used to denote the time of the products’ disposal after their 

production and which, in the context of the present study, is approximated by the storage 

time of the green salads. 

  

3. Results & Discussion 

As described in section 2.4, the training of the proposed data analysis workflow was 

performed on the samples stored at constant temperatures, i.e. 4, 8 and 12 0C, while the 

test of the resulting prediction model on the data corresponding to the dynamic 
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temperature storage conditions. Figure 1 shows the box plots corresponding to the spread 

of the TVC values for rocket (1A) and spinach (1B) respectively, throughout the storage 

experiment. 

 

3.1. Dimensionality reduction – feature selection 

The results of the methodology outlined earlier for all the studied sensors towards a unified 

feature selection scheme for spectral data analysis via the current state-of-art method for 

food quality assessment as the final step, i.e. PLS regression, are presented in this section. 

Following the RFs-based procedure for feature selection, as delineated in section 2.4, we 

get feature sets that are very limited compared to the original number of variables (Table 

1). The reduced data dimensionality is to the profit of model robustness since the number 

of features are less/comparable to the number of samples, overfitting is avoided and also 

features that do not correlate to the microbial population increment along storage time are 

excluded from analysis, eliminating the bias of other than microbiological factors into the 

model. Thus, the resulting model is less sensitive to sample diversity. On the other hand, 

this increased generalization property of the model is reflected to the regression accuracy 

(as discussed next) mainly due the non-overfitting to the data. 

 

3.2. Rocket salad case study 

Concerning the rocket case study conducted in the framework of this research, the linear 

regression in terms of  first order polynomial fitting between the predicted and 

the actual TVC values determined by classical microbiological analysis is presented in Table 

2 and Figure 2. This type of regression is used in order to evaluate and quantify the 

performance of the prediction models. As mentioned earlier, the developed PLSR model for 

each sensor (and case study) takes as inputs, i.e. predictors, the limited/decreased features 

y ax b 
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resulting from RFs application during the training process. Figure 2 (A1, B1, C1) displays the 

regression line for each sensor spectral data where the dashed lines exhibit the 95% 

prediction boundaries. The slope parameter a for all sensors shows a good 

correlation/correspondence between predicted and actually measured TVC values (ranging 

from 0.73 to 0.82) which is also suggested by the goodness-of-fit measure of R-square. 

These results suggest that the phenomenon under study, i.e. microbial contamination of 

rocket salad, can be assessed by sensors at the spectral range from visible to infrared, while 

information fusion across those wavelengths may result to improvement of model accuracy 

and robustness. It should also be mentioned that the RMSE values for every sensor is below 

1 log CFU/g, which is a good result and acceptable for application in food microbiology, since 

deviations in TVC of approximately 0.5 log cycles is rather common even within the same 

laboratory.  

In addition, analysis concerning the TVC values without the RFs feature selection step, but 

keeping the other processing steps introduced in the developed analysis workflow, also was 

performed. In the context of this analysis, data normalization with robust SNV and selection 

of the number of PLS components via the “knee-point” estimation were performed, as 

described in section 2.4. The results of this analysis clearly demonstrated the performance 

boost of the models developed after efficient features extraction (Table 2).    

Apart from the analysis in terms of TVC prediction, we also performed an analysis in order 

to predict the “time-on-shelf”, which is approximated by the storage time as defined earlier. 

Again, the same pipeline of analysis has been applied and followed, only this time the 

response values were the storage time sampling (i.e. measurement) intervals (please refer 

to Table 2 and Figure 2 (A2, B2, C2)). Here, the main result was that the FTIR sensor exhibited 

the best prediction with a deviation of approximately 17 h, while the slope a and the R-
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square value were rather close to the ideal 1-to-1 relationship between actual and predicted 

storage time. 

 

3.3. Baby spinach salad case study 

In the case of the baby spinach case study, the results from the aforementioned analysis 

are summarized and presented in Table 3 and Figure 3, showing again the linear regression 

in terms of  between the predicted and the measured TVC values by classical 

microbiological analysis. Figure 3 (A1, B1, C1) displays the regression line for each sensor’s 

spectral data where the dashed lines exhibit the 95% prediction boundaries. A major issue 

in the baby spinach samples, not encountered in the rocket salad case, was the considerably 

narrow TVC range (Figure 1B). Indeed, the spinach samples (even the ones corresponding 

to the beginning of the product’s commercial shelf life and to the time-zero of 

microbiological analysis) had a high microbial concentration, frequently exceeding 7 

logCFU/g, with the vast majority of values lying in a range of less than 1 log CFU/g. The high 

prevalence of microbial contamination in fresh spinach has been frequently reported in the 

scientific literature, not only in the case of raw produce but also in minimally-processed 

ready-to-eat salads (Mritunjay & Kumar, 2017; Oliveira, Maciel de Souza, Morato Bergamini, 

& De Martinis, 2011). However, as anyone can argue the acquired narrow-ranged dataset 

is not ideal for regression purposes or even for any other type of analysis since an estimation 

of a fixed TVC value for every new sample at ca. 8 log CFU/g would be a “safe” and not far 

from reality guess. Nevertheless, herein the data were analyzed as described previously. 

The outcomes concerning the slope parameter a for FTIR indicated a good 

correlation/correspondence between predicted and actually measured TVC (~0.74), while 

in the case of the NIR and VIS sensors the slope was inferior. It should be also mentioned 

that the RMSE values for all the studied sensors were below 0.5 log CFU/g which is a rather 

y ax b 
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acceptable result for food microbiology applications as discussed previously. These results, 

although poor in terms of prediction to measured (actual) values apart from the FTIR sensor, 

normally would not suggest an acceptable predictive model for microbial contamination of 

baby spinach salad. Taking into account the limited range of TVC values where the 

regression line is very difficult to fit well on the data, and the fact that the RMSE values were 

less than the deviation of microbiological measurements within the laboratory 

measurements, we can argue that the models are at least better than an estimation of 0.8 

log CFU/g for all samples, as stated earlier. So, it can be acclaimed that in the strict context 

of microbiology, the developed data analysis methodology not only is optimum (for such a 

limited TVC values’ range) but also is applicable as a predictive model. To further support 

such arguments, the residuals of the predicted minus measured TVC values were also 

analysed (Fig. 4), and a distribution with mean value in the range (-0.01, 0.01) and a 

standard deviation in the approximate range (0.3, 0.5) was exhibited. Again, as when RMSE 

is considered, if the residuals’ standard deviation is taken into account, it can be safely 

supported that the developed models can be used in practice, since the deviation within 

the laboratory measurements for TVC values is expected to be ±0.5 log cycles. Again, as in 

the previous subsection, the regression results of the model developed with the 

intermediate step of features selection (but with the rest processing steps introduced 

herein being maintained) is presented (Table 3).  

Similarly to what was the case for the rocket salad case study, the same analysis was applied 

in order to predict the ”time-on-shelf” as defined earlier. The results clearly support the 

justification and the argument made concerning the TVC prediction results. Here the range 

of responses for the regression is not limited as in the TVC case, and the correlation between 

predicted “time-on-shelf” and the actual storage time sampling interval is almost perfect. 

This can be assessed by both the slope parameter, which was >0.7 for all studied sensors, 
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and the goodness-of-fit as this is demonstrated by the R-square values (please refer to Table 

3 and Figure 3 (A2, B2, C2)).  

 

4. Conclusions 

The significance of an efficient variable decrement is of crucial importance for model 

training, especially when sample size is much smaller but it is also very significant for several 

other purposes. The reduced set of features, if efficiently extracted, is considered as de-

correlated not only among the features but also to the phenomenon under study. Also the 

inherent redundant information is minimized. All the above result to more robust and 

accurate regression model development than using the full list of features. In addition, the 

creation/usage of limited sized featured sets could be very useful in food-specific low-cost 

sensor development since limited range of wavelengths would be required.  

Apart from reduction of the number of the wavelengths needed for a robust and accurate 

prediction of microbial contamination and “time-on-shelf” estimation, another major 

outcome of the presented study is that not only we used different batches of samples (i.e. 

biological variability is taken into account), the testing of the models was performed on 

samples that were stored in dynamic temperature conditions, a simulation of what is really 

happening to ready-to-eat salads during their disposal in the food supply chain. So, it is 

justifiable to argue that the proposed workflow is applicable to real life, after succeeding in 

“difficult” data (simulating real life), and is expected to provide fruitful insights, via the in 

depth analysis of the wavelengths/wavenumbers selected into food microbial 

contamination evolution during storage.     

Future research goals include in depth analysis of the selected wavelengths in order to 

correlate them with metabolites associated with the spoilage of fresh green salads, as well 

as exploration of data fusion strategies integrating the studied sensors. Finally, the potential 
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application of the developed spectra analysis workflow to other types of food (e.g., animal 

origin foods) could also be assessed in the context of future research.  
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Sensor Wavelength/wavenumber Resolution  # 

variables 

# selected 

features 

FTIR [1000-3000] cm-1 4 cm-1 2075 
87 (rocket) 

95 (spinach) 

NIR [1000-1900] nm 1 nm 901 
94 (rocket) 

91 (spinach) 

VIS [340-850] nm 15 nm 288 
78 (rocket) 

74 (spinach) 

 

 Table 1. Summary of the sensors’ properties, total number of variables and number of 

variables resulting after RFs-based feature selection. 
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Microbial 

Contamination 
a B R-square RMSE 

FTIR 0.822 1.215 0.511 0.758 

NIR 0.792 1.564 0.945 0.315 

VIS 0.730 1.530 0.946 0.330 

Microbial Contamination - No Feature Selection Performed 

FTIR 0.633 2.485 0.416 0.687 

NIR 0.570 3.067 0.118 0.865 

VIS 0.420 4.086 0.944 0.249 

 

Time-on-shelf a b R-square RMSE 

FTIR 0.984 14.490 0.958 16.920 

NIR 0.825 11.670 0.942 33.140 

VIS 0.732 3.344 0.936 38.820 

 

Table 2. Summary of linear regression for the rocket salad samples in terms of microbial 

contamination (with and without feature selection) and “time-on-shelf” between the actual 

measurements and the predictions. Parameters a, and b are the slope and bias (offset) of 

the linear regression (y=ax+b) between predicted and measured values, RMSE is the root 

mean square error of the fit, and R-square is the he coefficient of determination, showing 

the goodness-of-fit.   
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Microbial 

Contamination 
a b R-square RMSE 

FTIR 0.741 1.978 0.468 0.359 

NIR 0.335 5.397 0.239 0.272 

VIS 0.544 3.699 0.474 0.261 

Microbial Contamination - No Feature Selection Performed 

FTIR 0.630 2.903 0.377 0.367 

NIR 0.292 5.751 0.151 0.316 

VIS 0.535 3.770 0.532 0.229 

 

Time-on-shelf a b R-square RMSE 

FTIR 0.730 -1.480 0.565 40.690 

NIR 0.801 19.8 0.675 30.620 

VIS 0.909 4.523 0.799 29.250 

 

Table 3. Summary of linear regression for the baby spinach salad samples in terms of 

microbial contamination (TVC) (with and without feature selection) and “time-on-shelf” 

between the actual measurements and the predictions. Parameters a, and b are the slope 

and bias (offset) of the linear regression (y=ax+b) between predicted and measured values, 

RMSE is the root mean square error of the fit, and R-square is the he coefficient of 

determination, showing the goodness-of-fit. 
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Figure 1. Boxplots of the TVC values log CFU/g for A) rocket samples and B) spinach samples. 

  



23 
 

 

Figure 2. Rocket salad samples: A1) FTIR TVC prediction, A2) FTIR “time-on-shelf” prediction, 

B1) NIR TVC prediction, B2) NIR “time-on-shelf” prediction, C1) VIS TVC prediction, C2) VIS 

“time-on-shelf” prediction. 

 
  



24 
 

 

Figure 3. Baby spinach salad samples: A1) FTIR TVC prediction, A2) FTIR “time-on-shelf” 

prediction, B1) NIR TVC prediction, B2) NIR “time-on-shelf” prediction, C1) VIS TVC 

prediction, C2) VIS “time-on-shelf” prediction. 
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Figure 4. Baby spinach salad samples, residual analysis: A1) FTIR residuals, A2) FTIR 

residuals’ histogram, B1) NIR residuals, B2) NIR residuals’ histogram, C1) VIS residual, C2) 

VIS residuals’ histogram. 

 


