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Abstract 21 

 22 

Green colour, texture and dry matter are important attributes to appreciate freshness and 23 

quality in spinach. However, there is currently no fast, economical and non-destructive 24 

method which allows producers to measure these parameters simultaneously in the plant, 25 

in a matter of seconds. However, Near-infrared (NIR) spectroscopy might bridge this gap. 26 

NIR spectra of intact spinach leaves and modified partial least square regression models 27 

were developed for colour (a* and b*), texture (maximum fracture force, toughness, 28 

stiffness and displacement) and dry matter. A calibration equation with a high prediction 29 

performance was devised for dry matter content (r2
cv = 0.74), while calibration models 30 

for all the textural parameters analysed were considered suitable for screening purposes 31 

(r2
cv > 0.6). For colour-related parameters, the models allowed test samples to be rough 32 

screened. We, therefore, suggest that the analysis of green colour, texture and dry matter 33 

of spinach leaves in situ on the plant using NIRS technology could prove to be a valuable 34 

tool for optimizing cultural practices such as fertilization and irrigation and to assess the 35 

quality of the spinach leaves when harvested. 36 

 37 
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1. Introduction 43 

 44 

In horticultural products, quality is the sum of the characteristics, attributes and 45 

properties that give the fruit or vegetable its food value. The relative importance of each 46 

quality component depends on the product itself and on the use for which it is intended, 47 

fresh vs. processed (Bruhn, 2002; Kader, 2002b). 48 

Colour is among the chief attributes used to assess the commercial quality of a 49 

horticultural product (Joseph et al., 2002). This is a physical concept that simultaneously 50 

involves observer psychology, the physiology of vision and the radiant energy emitted by 51 

the light source (Zelanski and Fisher, 1989). In the case of spinach, environmental factors, 52 

primarily temperature, humidity and light intensity, are essential for colour development 53 

(Fan et al., 2014). Optimum air temperatures for spinach growth range from 16 to 20ºC; 54 

low temperatures can damage the photosynthetic apparatus and thylakoid membranes and 55 

can inhibit protein synthesis (Decoteau, 2000), while Gruda (2005) reported that an 56 

increase in temperature during cultivation drastically alters plant development and 57 

negatively influences crop quality. Other contributory factors include soil type (Liu et al., 58 

2016).  59 

In fresh spinach, external colour is generally assessed visually, using standard 60 

colour-charts specific to this vegetable (Kader, 2002b). One drawback to the subjective 61 

appreciation of colour is that it is difficult to standardize; moreover, the shape, size and 62 

other superficial characteristics of the product can influence the effect produced by a 63 

colour on the observer (Francis, 1991). This method is also labour-intensive and time-64 

consuming and cannot be used for routine analysis, although nowadays, values such as 65 

colour parameters L* (from white to black or light to dark), a* (from green to red) and b* 66 

(from blue to yellow) can be measured using digital colorimeters (Barrett et al., 2007).  67 
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Leaf texture is fast becoming another of the key parameters in spinach quality 68 

control (Gutiérrez-Rodríguez et al., 2013). Senescence in vegetables is a degradation 69 

process whereby the cell walls are broken down, leading to cell death; water and solids 70 

are also released into the intercellular space, resulting in loss of texture (Toivonen and 71 

Brummell, 2008). The texture of spinach is measured using a punch test technique, which 72 

utilizes a rounded probe that distributes the force homogeneously across a given area. 73 

From punch tests, force-displacement curves are generated and used to derive the 74 

mechanical properties of the material being evaluated: these include firmness, toughness, 75 

stiffness and displacement of the probe (Read and Sanson, 2003; Schopfer, 2006). The 76 

degree of firmness is usually associated with ripeness, freshness, retention of good quality 77 

and, therefore, with saleability, since firmness gradually declines during ripening and 78 

subsequent shelf storage (Blankenship et al., 1997; Kader 2002a). Moreover, in this crop, 79 

excessive nitrogen fertilization, which is generally used to achieve increased production, 80 

causes a drop in cell wall strength due to rapid growth, diminished macro- and 81 

micronutrient absorption and greater allocation of N to the cell wall (Reeve, 1970; Wright 82 

and Cannon, 2001; Onoda et al., 2004).  83 

Another texture-related parameter measured in spinach is water content, as an 84 

indicator of succulence or turgidity (Kader, 2002b). Leafy vegetables are highly 85 

susceptible to water loss after harvest. 86 

In spinach, colour, texture and water content have traditionally been assessed 87 

using destructive instrumental or sensory techniques (Conte et al., 2008; Gutiérrez-88 

Rodríguez et al., 2013), thus permitting the quality evaluation of only a small number of 89 

samples from any given batch. To address this issue, numerous efforts have been made 90 

over recent years to develop non-destructive, environmentally-friendly analytical 91 

methods that will neither damage nor spoil the product, which can subsequently be sold 92 
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or used for other measurements (Nicolaï et al., 2007; Saranwong and Kawano, 2007; 93 

Teixeira Dos Santos et al., 2013; Yan and Siesler, 2018). Rapid and non-destructive 94 

techniques permit the constant monitoring of spinach leaves directly on the plant and 95 

enable action to be taken immediately when any deviation from the product standard is 96 

observed at any point in the growing process.  97 

Measuring the optical properties of food products has always been one of the most 98 

successful non-destructive techniques for quality assessment and is able to provide a 99 

number of quality readings simultaneously. In this area, NIR spectroscopy has shown 100 

great potential for the non-invasive measurement of quality parameters in horticultural 101 

products (Nicolaï, et al., 2007; Sánchez and Pérez-Marín, 2011; Magwaza et al., 2012). 102 

It combines fast, accurate measurement with considerable versatility, simplicity of sample 103 

presentation, speed of data (spectrum) collection and low cost, making it one of the 104 

approaches best suited to the needs of the horticultural sector (Walsh et al., 2000). The 105 

technology is simple, so fewer errors are introduced than in conventional analytical 106 

techniques (Osborne et al., 1993). Moreover, the use of NIR spectroscopy for quality 107 

control and assurance purposes during spinach growth and in the fresh spinach industry 108 

enables greater quantities of this vegetable to be analysed and also allows for large-scale 109 

individual analysis. At the same time, NIR spectroscopy is a powerful tool for general 110 

process monitoring in real time (De la Roza et al., 2017; Zhang et al., 2017); this is of 111 

particular interest for many agro-industrial applications such as quality control systems 112 

or for making real-time decisions during spinach cultivation.  113 

Hence, the objective of this study was to evaluate the feasibility of NIR 114 

spectroscopy for predicting in-situ colour, texture and dry matter content of intact spinach 115 

at harvesting using a low-cost miniaturised, handheld, near-infrared device based on 116 
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micro-electrical-mechanical system (MEMS) technology, ideal for measuring in-situ the 117 

quality of the plants. 118 

 119 

2. Material and methods 120 

 121 

2.1. Sampling 122 

 123 

A total of 149 spinach plants (Spinacia oleracea L, cv. 'Solomon', 'Novico', 124 

'Meerkat' and 'Gorilla'), grown outdoors on different farms in the provinces of Cordoba 125 

and Seville (Spain) were used in this study. The spinach plants were harvested during the 126 

months of January, February and March 2017. 127 

The harvested spinach was kept in refrigerated storage at 4°C and 85% RH until 128 

the following day, when laboratory testing was performed. Prior to each test, the spinach 129 

was allowed to reach room temperature. Both the NIR spectral acquisition and the 130 

reference analyses were carried out using a single leaf chosen from each plant registered 131 

(Gutiérrez-Rodríguez et al., 2013). 132 

 133 

2.2. NIR spectrum acquisition 134 

 135 

Spectra were collected on spinach leaves in reflectance mode (Log 1/R) using a 136 

handheld MEMS spectrophotometer (Phazir 2400, Polychromix, Inc., Wilmington, MA, 137 

USA). The instrument scans at non-constant intervals of approximately 8 nm across the 138 

range of NIR wavelengths 1600–2400 nm, with a scan time per sample of 3 s. Instrument 139 

performance was checked every 10 min, following the diagnostic protocols provided by 140 

the manufacturer, and white reference measurement was carried out using Spectralon as 141 
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the reference. Using the MEMS-NIR instrument and in order to assess the spinach leaves 142 

analysed, four spectral measurements were made on each spinach leaf in two locations 143 

(distal and proximal), on both sides (right and left) of the leaf blade relative to the main 144 

vein, on the adaxial side. In all evaluations the NIRS spectra were collected on blade 145 

tissue without conspicuous veins. The average distance between measurements was 3 cm. 146 

The four spectra were averaged to provide a mean spectrum for each plant. 147 

 148 

2.3. Reference data 149 

 150 

Leaf colour was measured with a Minolta CR-400 chroma meter (Konica Minolta 151 

Sensing INC., Osaka, Japan), using illuminant C as an illuminant (Glowacz et al., 2015) 152 

with an observation angle of 2º (CIE, 2004). Leaf colour changes were quantified for the 153 

leaf chosen from each sample following the same procedure previously described for the 154 

NIR spectra acquisition, in the a* (−a* = greenness and +a* = redness) and b* (−b* = 155 

blueness and +b* = yellowness) colour space (Koukounaras et al., 2009). 156 

 Later, the leaves were analysed using the punch test to assess their textural 157 

properties. This procedure involves forcing a probe of known cross-sectional area through 158 

a section of a leaf, as described by Read and Sanson (2003). The punch test was conducted 159 

at room temperature using a universal testing machine (Model 3343, Single column, 160 

Instron Corporation, Norwood, MA, USA), fitted with a 1000N load-cell. 161 

 A 6 mm diameter probe was used to penetrate the spinach leaf, using a pre-test 162 

speed of 2 mm s-1, a test speed of 1 mm s-1 when the probe came into contact with the 163 

leaf and a post-test speed of 10 mm s-1. Each leaf was placed between two clamped metal 164 

plates with coinciding holes (area of 0.95 cm2) to keep the leaf flat. The probe moved a 165 
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standard distance of 8 mm. The clearance between the probe and the hole in the plates 166 

was 0.15 mm, following the protocol of Gutiérrez-Rodríguez et al., (2013). 167 

 A force-displacement graph for each selected spinach leaf was generated from this 168 

test and the fracture properties (1) maximum force required to puncture the leaf, (2) 169 

toughness, (3) stiffness, and (4) the displacement of the probe necessary to fracture each 170 

leaf were recorded. The maximum force was measured as the force needed to puncture 171 

the leaf, toughness as the area under the force-displacement curve and stiffness as the 172 

slope of that curve. Punch test measurements were performed at the same locations on 173 

the leaf as for NIRS analysis. The four measurements were averaged to provide mean 174 

data of the texture parameters selected for each plant. 175 

Dry matter (DM) content was determined gravimetrically by desiccation at 105ºC 176 

for 24 h (AOAC, 2000), and the final dry weight was calculated as a percentage of the 177 

initial wet weight. 178 

 Samples were analysed in duplicate and the standard error of laboratory (SEL) 179 

was estimated from these duplicates (Table 2). All measurements were performed 180 

immediately after NIRS measurements. 181 

 182 

2.4. Data analysis: definition of calibration and validation sets 183 

 184 

Prior to carrying out NIR calibrations, the CENTER algorithm included in the 185 

WinISI II software package ver. 1.50 (Infrasoft International LLC, Port Matilda, PA, 186 

USA) was applied to ensure a structured population selection based solely on spectral 187 

information, for the establishment of calibration and validation sets (Shenk and 188 

Westerhaus, 1991). This algorithm performs an initial principal component analysis 189 

(PCA) to calculate the centre of the population and the distance of samples (spectra) from 190 
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that centre in an n-dimensional space, using the Mahalanobis distance (GH); samples with 191 

a statistical value greater than 3 were considered outliers or anomalous spectra. 192 

 The CENTER algorithm was applied in the spectral region 1600–2400 nm. The 193 

mathematical treatments SNV (Standard Normal Variate) and DT (De-trending) were 194 

applied for scatter correction (Barnes et al., 1989), together with the mathematical 195 

derivation treatment ‘1,5,5,1’, where the first digit is the number of the derivative, the 196 

second is the gap over which the derivative is calculated, the third is the number of data 197 

points in a running average or smoothing, and the fourth is the second smoothing (Shenk 198 

and Westerhaus, 1995b; ISI, 2000). 199 

 Once spectral outliers had been removed (i.e., 4 of the original 149 samples), a set 200 

consisting of 145 samples was used to build the calibration models. These samples were 201 

selected following the method outlined by Shenk and Westerhaus (1991), using the 202 

CENTER algorithm included in the WinISI software package to calculate the Global 203 

Mahalanobis distance (GH). Samples were ordered based on the Mahalanobis distance to 204 

the centre of the population, where three of every four were selected to be part of the 205 

calibration set (N = 109 samples) and the test set was made up of the remaining 25% (N 206 

= 36 samples). 207 

 Modified partial least squares (MPLS) regression (Shenk and Westerhaus, 1995a) 208 

was used to obtain equations for predicting colour, texture and dry matter content. Six 209 

cross-validation steps were included in the process in order to avoid overfitting (Shenk 210 

and Westerhaus 1995a). For each analytical parameter, different mathematical treatments 211 

were evaluated. For scatter correction, the standard normal variate (SNV) and detrending 212 

(DT) methods were tested (Barnes et al., 1989). Additionally, four derivative 213 

mathematical treatments were tested in the development of NIRS calibrations: 1,5,5,1; 214 

2,5,5,1; 1,10,5,1; 2,10,5,1 (Shenk and Westerhaus, 1995b).  215 
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Best equations were selected according to the following statistics: coefficient of 216 

determination for calibration (r2
c), Standard Error of Calibration (SEC), coefficient of 217 

determination for cross-validation (r2
cv) and Standard Error of Cross-validation (SECV). 218 

However, in order to standardize the SECV value; other statistic such as the Residual 219 

Predictive Deviation (RPDcv), calculated as the ratio between the standard deviation (SD) 220 

of the calibration set to the SECV, was also calculated (Williams, 2001).  221 

The best models obtained for the calibration set, as selected by statistical criteria, 222 

were subjected to evaluation using samples not involved in the calibration procedure and 223 

evaluated following the protocol outlined by Windham et al. (1989). 224 

 225 

3. Results and discussion 226 

 227 

3.1. Population characterization 228 

 229 

Calibration and validation set characteristics, i.e. number of samples, mean, range, 230 

SD, and CV for the parameters analysed, are shown in Table 1. Structured selection based 231 

wholly on spectral information, using the CENTER algorithm, proved suitable, in that the 232 

calibration and validation sets displayed similar values for range, mean and SD for all 233 

study parameters; moreover, the ranges of the validation set lay within those of the 234 

calibration set. 235 

 Table 1 shows how the parameters with the greatest variability were those linked 236 

to leaf texture (CV for calibration = 58.52–77.85%; CV for validation = 58.80–81.76%), 237 

while the parameters with the least variability were those related to colour (CV for 238 

calibration = 10.57–15.44%; CV for validation = 9.22–12.26%), because, as shown in 239 
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Table 1, the SD values for the colour parameters are negligible compared to their mean 240 

value, due to the great uniformity in colouration shown by the plants analysed. 241 

 242 

3.2. Prediction of quality parameters using MPLS regression and NIR spectra 243 

 244 

Table 2 shows the results of the best prediction models obtained for each 245 

parameter analysed (colour, texture and dry matter content) using different pre-treatments 246 

of the spectral signal. For each of the parameters studied, a total of 4 calibration models 247 

were obtained, the best of which was selected by statistical criteria: priority was given to 248 

those with lower SECV and CV values and higher r2
cv and RPDcv values. 249 

As regards the predictive capacity of the models designed for colour, it is worth 250 

noting that for parameter a* (green-red variation), the model (r2
cv = 0.47; RPDcv = 1.36) 251 

allowed spinach leaves to be separated into high and low values, as indicated by Shenk 252 

and Westerhaus (1996) and Williams (2001). It is also important to note that the plants 253 

were mature and ready for sale, with their characteristic deep-green leaf colour and with 254 

parameter a* showing a low standard deviation.  255 

Fearn (2014) points out, while the r2
cv statistic can be a useful measure of the 256 

performance of a calibration, it does have its limitations. One major constraint is its 257 

dependence on the range of values of the calibration set, as well as on the standard 258 

deviation (SD) of the reference values. 259 

No articles have been found in the scientific literature which deal with using NIR 260 

spectroscopy to measure this parameter in spinach, despite the fact that predicting the 261 

colour parameter in this vegetable is of great importance, since it is a highly influential 262 

parameter in consumer choice (Ferrante et al., 2004).  263 
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It should be stressed that the accuracy of the model obtained for parameter a* is 264 

limited, since the working range of the MEMS-NIR equipment does not include 265 

wavelengths in the visible region, which is important when measuring parameters related 266 

to colour, although the results do allow us to distinguish between two types of values for 267 

parameter a* measured in situ on the plant, which is particularly useful for spinach 268 

growers. Greenness intensity related with parameter a* in leafy vegetables is attributed to 269 

chlorophyll pigmentation, which is a measure of the photosynthetic potential and of plant 270 

productivity (Xue and Yang, 2009; Gilbert and Martin, 2015), as well as being a direct 271 

measure of the nutrient status, because much of the leaf nitrogen is contained in 272 

chlorophyll (Filella et al., 1995). Xue and Yang (2009) show that chlorophyll pigments 273 

in green plants are gaining increasing importance in the human diet, not only as food 274 

colorants, but also as healthy food ingredients, and so the in-situ measurement of 275 

parameter a* linked to the presence of chlorophyll would seem to be of major importance 276 

when deciding on the best time to harvest spinach. 277 

It is also important to note that during postharvest senescence, the green 278 

chlorophyll pigments are oxidized into colourless substances, revealing yellow 279 

carotenoids (Toivonen and Brummell, 2008), so the non-destructive measurement of 280 

parameter b* would be of great use when measuring the different stages of the plant’s 281 

senescence. Here, the model designed allows to distinguish between high and low values 282 

of this parameter, following Shenk and Westerhaus (1996) and Williams (2001), which 283 

shows that this model could be considered acceptable for screening purposes. 284 

These colour measurements (a* and b*) can therefore be made using a rapid, non-285 

destructive hand-held sensor over the whole spinach plant, thus giving the farmers an 286 

instant response and allowing the spinach harvest to be started at the optimum time. 287 
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Texture is an important point in the eating quality of spinach. The textural 288 

properties can include several parameters, such as maximum force required to puncture 289 

the leaf, toughness, stiffness and the displacement of the probe necessary to fracture each 290 

leaf. All of these are closely correlated between each other, meaning that any of these 291 

physical measurements could be effectively used for texture evaluation.  292 

To measure parameters related to texture, the models developed for maximum 293 

force to puncture the leaf (r2
cv = 0.67; RPDcv = 1.72), toughness (r2

cv = 0.62; RPDcv = 294 

1.62), stiffness (r2
cv = 0.69, RPDcv = 1.79) and the displacement of the probe necessary 295 

to fracture each leaf (r2
cv = 0.62, RPDcv = 1.61) allow to discriminate between low, 296 

medium and high values for these parameters, following Shenk and Westerhaus (1996) 297 

and Williams (2001). 298 

The results obtained can be considered as satisfactory, given that various authors 299 

(Pérez-Marín et al., 2007; Flores-Rojas et al., 2009) have already shown the difficulty and 300 

complexity of predicting physical parameters related to texture in other vegetables. 301 

As it has already been pointed out, the texture of a product is not a single, well-302 

defined attribute, but encompasses the structural and mechanical properties of a food item 303 

and the sensory perception of that food in the hand or mouth (Abbott and Harker, 2016). 304 

Generally, assessment of texture is based on the measurement of firmness, which is in 305 

turn linked to the resistance of fresh produce to mechanical stress during transport and 306 

distribution (Thompson, 2002).  307 

However, the use of NIR spectroscopy allows us to measure not just one textural 308 

parameter but several at the same time, which means that spinach texture can be better 309 

defined, and measurements taken directly on the plant. 310 

No references have been found in the scientific literature on measuring texture in 311 

spinach leaves using NIR spectroscopy. 312 
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For the dry matter parameter, the calibration model showed a good predictive 313 

capacity (r2
cv = 0.74; RPDcv = 1.96) when interpreting the coefficient of determination 314 

and RPDcv values, as proposed by Shenk and Westerhaus (1996) and Williams (2001). 315 

The non-destructive measurement of this parameter in situ is, in fact, of great importance 316 

both for growers and for the later handling of the post-harvest crop, since DM values of 317 

around 10-12% fw ensure a good resistance to handling and allow maintenance of visual 318 

quality at a high standard during storage (Conte et al., 2008). In addition, Bergquist et al. 319 

(2006) have underlined the positive correlation between the high content of DM and 320 

vitamin C at harvest time and the visual quality retention of spinach leaves during storage. 321 

This again reveals the importance of measuring the DM content in a non-destructive way 322 

in order to decide on the best time to harvest and ensure that the spinach has a high vitamin 323 

content. 324 

No publications have been found in the scientific literature which deal with using 325 

NIR spectroscopy to measure this quality parameter in spinach. There are other studies 326 

on the prediction of dry matter in leaves of other vegetables (Steidle et al., 2017), although 327 

these leaves (sunflower) have very different characteristics to spinach leaves. 328 

 329 

3.3. External validation 330 

 331 

Validation statistics for the prediction of the quality parameters analysed in intact 332 

spinach are shown in Fig. 1. 333 

 The models constructed for predicting all the textural parameters analysed, with 334 

the exception of the displacement, and also for the prediction of dry matter in intact 335 

spinach, met the validation requirements in terms of r2
p (r2

p > 0.6) and both the SEP(c) 336 

and the bias were within confidence limits: the equations thus ensure accurate prediction, 337 
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and can be applied routinely. For the parameter ‘displacement of the probe necessary to 338 

fracture the leaf’, it should be stressed that the SEP(c) and bias lay within the confidence 339 

limits, although r2
p = 0.5 did not attain the recommended minimum value.  340 

 However, the models predicted colour parameters in validation-set samples with 341 

low values for r2
p, in neither case meeting the recommendations of Windham et al., 342 

(1989). These models are thus not suitable for routine applications. The comparatively 343 

low r2
p value displayed for a* and b* may be due to the narrower range and lower SD 344 

recorded for these parameters (Table 1). This is also clearly illustrated in Fig. 1, where it 345 

is evident that the a* and b* exhibited by most samples lie in the ranges of -12–(-14) for 346 

parameter a* and 16-20 for parameter b*, with very little coverage of the range for other 347 

values. These results highlight the importance not only of ensuring a sufficient number 348 

of samples in the calibration set, but also of guaranteeing the adequate distribution and 349 

structure of the sample set. 350 

The SEL values for the parameters tested are shown in Table 2. For the parameters: a*, 351 

b*, maximum puncture force, toughness and stiffness, SEP fell between 3 and 4 SEL, 352 

indicating acceptable performance of the NIRS models developed. For the displacement, 353 

SEP fell between 2 and 3 SEL, showing good performance of the NIRS model and for 354 

dry matter, SEP was between 1 and 2 SEL, showing excellent predictive capacity of the 355 

NIRS model (Westerhaus, 1989, Williams, 2001). 356 

 357 

4. Conclusions 358 

 359 

It should be stressed that the NIR equations constructed should be regarded as a 360 

first step in the fine-tuning of NIR spectroscopy for the in situ monitoring of quality 361 

parameters in intact spinach. Given the general importance in the eating quality of spinach 362 
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and consumers’ general acceptance of dry matter content and textural properties, the use 363 

of the MEMS-NIR portable NIR device tested here, which is rapid, lightweight and user-364 

friendly, should be considered for use in the routine, non-destructive analysis of spinach 365 

on the plant. 366 
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Table 1. 527 

Range, mean, standard deviation (SD) and coefficient of variation (CV) for the 528 

parameters of colour, texture and dry matter content studied in the calibration and 529 

validation sets 530 

Parameter Set N Range Mean SD CV (%) 

a* Calibration 109 -18.33– (-8.66) -13.05 1.38 10.57 

Validation 36 -17.32– (-10.78) -13.34 1.23 9.22 

b* Calibration 109 11.55–26.40 17.94 2.77 15.44 

Validation 36 13.77–23.02 17.94 2.20 12.26 

Maximum 

puncture force 

(N) 

Calibration 109 0.20–4.98 1.98 1.29 65.15 

Validation 36 0.37–4.51 1.99 1.37 68.84 

Toughness (mJ) Calibration 109 0.16–10.79 2.98 2.32 77.85 

Validation 36 0.38–8.73 3.18 2.60 81.76 

Stiffness 

(N/mm) 

Calibration 109 0.09–1.30 0.55 0.34 61.81 

Validation 36 0.09–1.03 0.52 0.33 63.46 

Displacement 

(mm) 

Calibration 109 0.32–6.58 2.58 1.51 58.52 

Validation 36 0.57–6.05 2.67 1.57 58.80 

Dry matter 

content (% fw) 

Calibration 109 6.14–19.67 12.50 3.10 24.80 

Validation 36 7.35–18.83 12.60 2.91 23.09 

 531 

  532 
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Table 2.  533 

Statistics of best calibration models to predict colour, texture and dry matter content and 534 

standard error of laboratory 535 

Parameter Mathematic 

treatment 

N Range Mean SD r2
vc SECV RPDcv SEL 

a* 2,10,5,1 108 -18.33-(-8.66) -13.06 1.38 0.47 1.01 1.36 0.29 

b* 1,5,5,1 105 11.55-25.71 17.89 2.56 0.38 2.02 1.26 0.62 

Maximum 

puncture force 

(N) 

2,5,5,1 105 0.20-4.62 1.93 1.26 0.67 0.73 1.72 0.23 

Toughness (mJ) 2,5,5,1 107 0.16-10.79 2.92 2.26 0.62 1.39 1.62 0.44 

Stiffness 

(N/mm) 

2,5,5,1 105 0.09-1.30 0.55 0.34 0.69 0.19 1.79 0.06 

Displacement 

(mm) 

2,5,5,1 103 0.32-6.58 2.54 1.50 0.62 0.93 1.61 0.51 

Dry matter 

content (% fw) 

2,5,5,1 105 6.14-19.67 12.43 2.98 0.74 1.52 1.96 0.90 

 536 
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Fig. 1. Reference values versus NIR-predicted data for the validation set. 538 
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