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7 Abstract

8 To reduce the resistance and energy consumption of disc furrow openers, biomimetic 

9 coupling disc furrow openers (BCDFOs) that were inspired by digging animals (e.g., 

10 the convex hull of a dung beetle pronotum and the back-ridge scales of a pangolin) 

11 were designed as biomimetic coupling elements. The resistance of BCDFOs, analyzed 

12 by the discrete element method, was less than that of the common flat disc furrow 

13 opener (CFDFO). The effects of different structures on soil disturbances in the 

14 forward and lateral directions were analyzed. The soil swelling rate and soil 

15 disturbance coefficient were calculated to evaluate the soil disturbance characteristics. 

16 Three less resistant BCDFOs were manufactured and tested in soil bins with different 

17 working conditions (furrow speed = 0.6, 1 and 1.4 m/s; soil moisture contents = 18% 

18 and 22%). It was found that the furrow resistance of the BCDFOs was obviously less 

19 than that of the CFDFO under the same test conditions, thus indicating that the 

20 BCDFO concept was an efficient bioinspired design for efficient agriculture tillage.

21 Key words: biomimetic; disc furrow opener; resistance reduction; DEM; soil 

22 disturbance.

23 1. Introduction

24 No-tillage systems have been developed since the late 20th century to realize the 

25 sustainable and stable production of agricultural resources, protecting land resources 
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1 from soil erosion in the black soil zone of Northeast China. The furrow opener is the 

2 key working part of no-tillage seeders. Traditional openers often stick to soil during 

3 furrow operations, which changes the working trajectory and increases the traction 

4 resistance. The seeding furrows often fail to meet seed requirements, which reduces 

5 crop emergence rates. Operating a traditional agricultural tillage system (e.g., furrow 

6 opener and tillage blade) uses 30%-50% of its total energy to overcome sliding 

7 resistance between the soil and tillage surface due to soil adhesion and friction (Zhang 

8 et al., 2016). 

9 In furrowing with a double disc furrow opener, the furrow resistance is mainly 

10 generated by its interaction with soil. Specifically, the disc cuts soil while crushing, 

11 lifting and turning the cut soil, so the furrowing resistance is influenced by three 

12 processes: disk cutting soil, soil movement, and soil-disc slip (Ahamad and Amran, 

13 2004). There are several types of openers that are adaptive to varying crop demands 

14 and soil types. The main furrow openers include the double-end pointed shovel type, 

15 shoe type, pointed bar type, and runner/sword type, which are feasible for light-to-

16 modest soil, black soil, heavy soil, and shallow sowing, respectively (Mkomwa et al., 

17 2015). The energy required to pull a tool through soil is a function of tool geometry 

18 and soil conditions (Chi and Kushwaha, 1990). Resistance due to soil adhesion can be 

19 reduced by various methods (Sakane and Maeyama, 1993), such as surface-modified 

20 material (Salokhe and Gee-Clough, 1987, 1988, 1989, Jia, 2006), lubrication (Tong et 

21 al., 1999), electro-osmosis (Ren et al., 2001, Spagnoli et al., 2011) and vibration 

22 (Wang et al., 1998). New opener structures with inverted “T” shapes (Chaudhary, 

23 1988, Khan et al., 1990), arc cutting edge shapes (Gou et al., 2012), duckbill shapes 

24 (Zhao et al., 2013) or mole shapes (Deng et al., 1986) have been explored in 

25 combination with soil and climate conditions to meet the special seeding requirements 

26 in different planting areas. The groove created by an inverted-T-shaped opener is 

27 narrow at the top and wide at the bottom. Despite the large tillage resistance, field 

28 tests show that new openers noticeably accelerate seed emergence compared with 

29 traditional openers. No-tillage seeding openers with arc cutting edge shapes have high 

30 passing ability, with a high corn stubble cutting rate of 86%. The limited soil 
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1 disturbance is applicable to no-tillage wheat seeding in the hilly areas of Southwest 

2 China. The duckbill shaped opener with a duckbill-like head and a sword-like tip is 

3 suitable for soil cutting. The entire head buries in soil with high penetrability, and it is 

4 not easily jammed by grasses during ditching. The overall structure of the mole 

5 shaped opener is approximately columnar with a soil cutting edge at the front. In 

6 operation, the entire opener buries into the soil and raises the soil in situ. The mole 

7 shaped opener, a simple structure, is able to robustly prepare the soil, but it is 

8 unsuitable for heavy clay soils. Moreover, seeds and fertilizers cannot be 

9 simultaneously applied.

10 Animals living in moist soil develop special geometric features that are 

11 advantageous to reduce soil adhesion after years of evolution. They have the most 

12 efficient digging action with the lowest energy consumption in soil, and they rarely or 

13 never experience soil adhesion to ensure free movement (Tong et al., 2009). The 

14 seeder opener always adheres to soil during the interaction with soil, which increases 

15 energy consumption and damages of the ditch shape to slow crop emergence. 

16 Therefore, it is practically significant to simulate the surficial structures of animals 

17 adapted to living in soil, and design biomimetic ditching parts based on them with 

18 reduced drag properties.

19 During the furrowing process, the disc cutting edge of a double disc opener first 

20 cuts soil and then pushes the soil away from its surface to form a groove (Ahmadi, 

21 2017). In this process, its surface is squeezed and rubbed by soil. Similar to the 

22 ditching of a disc, dung beetles and pangolins use their pronotum and back scales, 

23 respectively, to squeeze and push away soil, forming a passage or cave upon moving. 

24 After long-term natural selection, the pronotum of the dung beetle and the back scales 

25 of the pangolin have formed excellent body surface structures to adapt to movement 

26 in soil. The nonsmooth body surface structures effectively reduce the soil adhesion 

27 area and limit water film continuity, improving the interfacial lubrication against soil 

28 resistance (Ren, 2009a).

29 In this study, the microconvex structure of the dung beetle head and the 

30 protruding structure of the pangolin back scales were used as biomimetic coupling 
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1 elements to design biomimetic coupling disc furrow openers (BCDFOs). Then, 

2 resistance simulation was carried out by the discrete element method (DEM), and the 

3 optimal BCDFO and a common flat disc furrow opener (CFDFO) were compared in 

4 soil bin tests.

5 2. Materials and Methods

6 2.1 Design of BCDFOs 

7 BCDFOs were designed by adding a biomimetic coupling structure onto the 

8 surfaces of CFDFOs. The microconvex structure of the dung beetle head and the 

9 protruding structure of the pangolin back scales are shown in Fig. 1. First, 3D models 

10 of CFDFOs were established in SolidWorks 2014. The whole structure of CFDFOs 

11 was generated with the extrude command with hollow cylinders, and the cutting edge 

12 of the furrow disc was generated using the scan-cut command. According to the 

13 working characteristics of no-tillage disc furrow openers in Northeast China, a 

14 commercial CFDFO was chosen with a diameter = 300 mm, a thickness = 3 mm, an 

15 intersection angle of double discs = 11.5°, and a rake angle = 10.21°. 

16

17 Fig. 1. Two types of biomimetic structural elements.

18 The biomimetic coupling elements were regularly or irregularly arranged on the 

19 matrix. The machining accuracy of irregular arrangements was uncontrollable and 

20 high-cost, so regular arrangements were selected. The two coupling elements were 

21 alternatively arranged in a ring on the disc surfaces. 

22 The appropriate arrangement of biomimetic coupling elements on the disc was 

23 an important controlling factor on the biomimetic effect. If the number of arranged 

24 elements was too small, the most soil contacted the disc and the limited convexity 

25 hindered the soil movement, which increased the furrowing resistance. If the number 
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1 of arranged elements was too large, the moisture tension was almost unchanged, and 

2 the water film at the contact interface was more likely to be continuous, which was 

3 unfavorable for reducing resistance (Jia, 2006). 

4 Biomimetic coupling elements were arranged circularly around the disc center, 

5 and the rest of their characteristics could be generated by the circle array method. The 

6 arrangement of biomimetic coupling elements on the furrow disc is shown in Fig. 2, 

7 with the following structural parameters: biomimetic coupling element angle with a 

8 ring θ=7.2, 9 and 12°; element spacing between different rings S1= 2, 4 and 6 mm; 

9 distance from the outmost biomimetic unit to the disc edge S2=5 mm; layer number of 

10 ring coupling element n=3; and wedge height h2=3 mm, wedge weight d=6 mm, and 

11 wedge length L= dimension of convex hull D. There were four factors, each with 

12 three levels.

13

14 Fig. 2. Structural parameters of the BCDFO design

15 An orthogonal experimental optimization design, which reduced the number of 

16 tests and controlled the test variables, was used to simplify the analysis (Ren, 2009b). 

17 In this paper, the furrow resistance in the horizontal direction F was used as the test 

18 index, and the independent variables D, h1, S1 and θ were used to design the 

19 orthogonal experiment. The test factor level of disc furrow resistance is shown in 

20 Table 1.

21 Table 1. Test factor level of disc furrow resistance
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factor

level

h1

(mm)
D (mm) S1 (mm) θ (°)

1 1 6 2 12

2 3 10 4 9

3 4 14 6 7.2

1 BCDFOs composed of biomimetic coupling elements of multiple sizes in 

2 different arrangements were studied to optimize the scheme of low-adhesion and low-

3 resistance biomimetic opener discs. These BCDFOs provided a reference for 

4 designing low-energy and low-adhesion furrow opener discs. According to L(34) by 

5 the optimization design method, 9 kinds of BCDFO models were built, numbered 

6 DISC 1 to 9. The common flat disc furrow opener (CFDFO) was numbered DISC 10 

7 (as shown in Fig. 3).

8

9 Fig. 3. BCDFO models (DISC 1-9) and CFDFO model (DISC 10).

10 2.2 DEM simulation

11 The interaction between the furrow opener disc and soil was simulated by DEM, 

12 which is a useful tool to examine the dynamic behavior of granular media and 

13 optimize the disc design (Ucgul et al., 2014). As soil is a complex inhomogeneous 

14 material, the reliability of simulation results was decided by the selection of the 

15 constitutive relation. The Hertz-Mindlin contact model was chosen for the DEM 

16 simulation. In Northeast China, the tillage soil is primarily sticky black soil that easily 

17 agglomerates. Based on the soil cutting of an opener disc and the entire furrow time, 
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1 the soil model was created with 1500 (length) ×400 (width) ×430 (height) mm3

2 dimensions. 

3 The setting of parameters was closely related to the soil adhesion. Stacking angle 

4 test was used to calibrate discrete element parameters of soil. The geometric model of 

5 virtual test of stacking angle was established in EDEM software according to the 

6 measurement method of soil stacking angle to obtain the stacking angle regression 

7 model by multivariate regression fitting analysis of test results (Barr et al., 2018). The 

8 optimized parameters could be used to simulate the sample soil with discrete element 

9 between the clay soil and the contact soil parts. In this paper, according to the relevant 

10 references (Barr et al., 2018, Ucgul et al., 2014, Barr and Fielke, 2016, Asaf et al., 

11 2007, Das, 2008, Budynas and Nisbett, 2012), some experiments have shown that 

12 these parameters were consistent with the characteristics of northeast black soils, as 

13 shown in Table 2.

14 The setting of soil particle size also had a significant effect on the simulation 

15 results and simulation time. If the particle size was too small, the simulation 

16 calculation time would be greatly increased, and if too big, it would be affect the 

17 authenticity of the simulation. In order to balance the calculation time and the 

18 authenticity of the simulation results, the particle size was usually scaled up. 

19 According to the relevant references, the radius of 4-6 mm can meet the performance 

20 requirements of simulation calculation and make the simulation results without 

21 obvious distortion (Barr et al., 2018). In this paper, the soil particles were randomly 

22 generated in a soil bin with a radius of 4-6 mm. 

23 Table 2 Main material properties used in the DEM simulation

Property Value

Density of soil particles (kg/m3) 1350

Density of steel (kg/m3) 7865

Poisson’s ratio of soil 0.3

Poisson’s ratio of steel 0.3

Shear modulus of steel (MPa) 7.9×104
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Shear modulus of soil (MPa) 1×106

Coefficient of static friction of soil-soil 0.5

 Coefficient of static friction of soil-steel 0.5

Coefficient of rolling friction of soil-soil 0.3

 Coefficient of rolling friction of soil-steel 0.4

Coefficient of restitution of soil-soil 0.2

Number of soil elements 516000

1 2.3 Testing parameters in the soil bin

2 The soil bin test was carried out from July to September 2016 at the College of 

3 Biological and Agricultural Engineering, Jilin University. The soil bin was 30 m 

4 (length) 3 m (width) 0.8 m (height) and filled with black soil. The soil was treated × ×

5 by rotary tillage, repression and water spray to meet the requirements of the soil 

6 moisture and firmness of 262.5 in 50 mm for testing. The actual furrow speed was 

7 approximately 0.5-2 m/s. Therefore, three speeds of 0.6 1.0 and 1.4 m/s were tested in 

8 the soil bin with the test vehicle operating smoothly. The moisture content was 

9 important to the disc resistance (Ren, 2009b). The suitable moisture content for seeds 

10 was approximately 20%. In this paper, the resistance of the disc was tested at soil 

11 moistures of 18% and 22%. The furrow depth was set at 70 mm.

12 3. Results and Discussion

13 3.1 DEM simulation 

14 Taking DISC 10 as an example, the interaction between the disc and the soil 

15 proceeded through four main stages: A, the opener just contacting the soil; B, the 

16 opener fully immersing in the soil; C, the opener just leaving the soil; and D, the 

17 opener fully out of the soil (Fig. 4). The furrow resistance increased gradually from A 

18 to B and then fluctuated along a constant value from B to C. When the disc just left 

19 the soil, the furrow resistance increased suddenly, which was due to the broken soil 

20 (Ahmadi, 2017). When the disc left the soil, the microcrack in front of the disc did not 

21 exist, which would increase the furrow resistance. From C to D, the furrow resistance 

22 decreased gradually. The average value of the stable fluctuation stage from B to C 

23 was used as the furrow resistance. Generally, a smaller furrow resistance represented 
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1 a better performance, which meant less energy consumption.

2

3 Fig. 4. Four stages of the interaction between the opener disc and the soil. A, the disc 

4 just contacting the soil; B, the disc fully immersed in the soil; C, the disc just leaving 

5 the soil; and D, the disc fully out of the soil.

6 Ten discs and soil interactions were simulated and analyzed. The results are 

7 shown in Table 3. BCDFOs showed a better furrow resistance performance than the 

8 CFDFO. The data were tested via range analysis according to extreme differences, 

9 and the factors were ordered based on importance (Ren, 2009a). The primary and 

10 secondary relationships of the test factors can be judged by the magnitude of the range 

11 Rj. Rj is the extreme difference of the j-column, which reflects the variation in the 

12 level of the j-column and the range of the test index. The larger the value is, the more 

13 important the factor is for the test results. The optimal level of test factors is 

14 determined by the average value of Kj, which represents the average value of the test 

15 index corresponding to the j-column factor under its level. The range analysis results 

16 of the above four factors were 29.77, 21.77, 68.13, and 83.33. With the furrow 

17 resistance as the evaluation index, θ was the key factor, followed by S1, h1 and D. The 

18 minimum resistance was found in DISC 3 (260.1 N) with θ=7.2°, S1=6 mm, h1=1 mm, 

19 D =14 mm and was approximately 45.43% less than the resistance of DISC 10. The 

20 resistance of DISC 2 and DISC 4 was 41.52% and 44.36% less than that of DISC 10, 

21 respectively. 
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1 Table 3 Furrow resistance of ten disc models simulated by DEM

Disc model 1 2 3 4 5 6 7 8 9 10

Resistance 

(N)
398.6 278.7 260.1 265.2 380.3 346.1 304.7 300.6 297.0 476.6

2 The disturbance and movement of soil were generated by the force exerted on 

3 the soil by the opener disc (Sun et al., 2018). The proper soil disturbance could 

4 improve the soil structure and control soil water loss (Rusinamhodzi, 2015). The 

5 structures of the disc affected the performance of the soil disturbance. The effects of 

6 different structures on soil disturbances in the forward and lateral directions of DISC 

7 2, DISC 3, DISC 4 and DISC 10 are shown in Fig. 5. The soil swelling rate and soil 

8 disturbance coefficient are important indexes to evaluate the soil disturbance 

9 characteristics (Francetto et al., 2016). The soil swelling was the elevation area 

10 generated by the increase in voids between the soil. The soil swelling rate was equal 

11 to the ratio of the soil elevation area to the soil area before furrow. A lower soil 

12 swelling rate resulted in better soil backfill. The soil disturbance coefficient was equal 

13 to the ratio of the disturbed soil area to the soil area before furrowing. Less soil 

14 disturbance was required for conservation tillage; that is, the soil disturbance 

15 coefficient should be small, which would preserve the soil moisture and reduce the 

16 furrow resistance (Yao et al., 2007). 

17



11

1 Fig. 5. Effect of different structures on soil disturbances in the forward and lateral 

2 direction. A, E: DISC 2, B, F: DISC 3, C, G: DISC 4, D, H: DISC 10.

3 The simulation results were loaded into Auto CAD software to calculate the soil 

4 swelling rate and soil disturbance coefficient, as shown in Fig. 6. The soil swelling 

5 rate of DISC 3 was the lowest, at 2.86%, followed by DISC 4, DISC 2 and DISC10 

6 with swelling rates of 3.78%, 4.33% and 4.49%, respectively, which illustrated that 

7 the soil backfill of DISC 3 was best. The soil disturbance coefficient produced by 

8 DISC 3 was the lowest, at 3.91%, followed by DISC 4, DISC 2 and DISC10 with soil 

9 disturbance coefficients of 5.90%, 6.28% and 6.81%, respectively. This indicated that 

10 the size of biomimetic elements would affect the soil performance of cutting, shear 

11 and compaction, as described by Francetto (Francetto et al., 2016). Less soil 

12 disturbance could maintain greater soil moisture to facilitate seed growth. At the same 

13 time, it required less furrow resistance. Therefore, the furrow resistance of DISC 3 

14 was the lowest, which was consistent with the simulation of furrow resistance.

15

16 Fig. 6. Soil swelling rate and soil disturbance coefficient of DISC 2, DISC 3, DISC 4 

17 and DISC10.

18 3.2 Analysis of the mechanical model

19 The whole opener process was divided into three steps: soil cutting, soil 

20 movement and slippage between the soil and opener disc. 

21 3.2.1 The force produced by cutting the soil

22 Soil failure occurs during the movement process. According to the passive soil 

23 pressure model, the angle between the failure surface and horizontal plane was 
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1 , where φ was the soil internal friction angle, as shown in Fig. 7. The force 
�

4
‒
�

2

2 analysis of the soil wedge showed that it was subjected to three forces: the soil shear 

3 resistance d , the soil wedge gravity dW and the disc cutting force dP. �

4

5 Fig. 7. Soil wedge model

6 According to the force balance equation, it is satisfied with formula 1 at the instant of 

7 failure as follows:

8             1��cos （
π

4 -
φ

2） - ��sin
�

4 -
φ

2
= dτ

9 Therefore, the soil wedge gravity dW satisfied formula 2 as follows:

10  2�� = ����� × � × ������ = ����� × � × �� × ����� = ����� × � × �� ×
ℎ 2
ℎ��ℎ

2tan
�

4
‒
Φ

2

11 Data: —soil density; —acceleration of gravity; —volume of the basis ����� � ������

12 soil wedge; —lateral area of soil wedge;  —soil wedge width; —soil ����� �� hh��h

13 wedge height.

14 Shear resistance satisfied formula 3:dτ

15                    3�� = � × �� + �� × ��� �

16 Data: dF—normal positive pressure on the failure surface, �� = �����
�

4 -
�

2
+ ��

17 ; c—soil cohesion; A—contact area between the soil and disc.���
�

4 -
�

2

18 Therefore, the disc cutting force dP was related to the soil cohesion, soil density, soil 

19 wedge width and soil wedge height.

20 3.2.2 The force produced by soil displacement

21 In the operational process, the opener disc advanced at a constant speed to cut 

22 the soil continuously, and the soil moved along the disc surface. Since soil movement 
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1 was a continuous process, the force acting on the disc could be calculated by the 

2 momentum impulse principle (Beer, 1965).

3 According to the momentum impulse principle, the equilibrium equation of the 

4 soil on the control body in the X and Y directions can be obtained as described below.

5 In the X direction, the equilibrium equation is as follows:

6                   4- ∆� � + �� = ‒ ∆� ���� �

7 In the Y direction, the equilibrium equation is as follows:

8                       5�� = ‒ ∆� �sin �

9 In the above equations, ; v—∆� = ������∆� = �������������∆� = ������cos �cos ��∆�

10 relative velocity of soil to the disc; —the angle between displacement soil and �

11 horizontal plane; —the front angle of opener disc; —the disc angle of opener �

12 disc.

13 Combining the above formulas results in the following:

14            6Fx = Acos αcos δρsoilv
2(1 ‒ cos η)

15                 7Fy = Acos αcos δρsoilv
2sin η

16 According to Newton’s Third Law, action and reaction forces are equal in size 

17 and opposite in direction. Therefore, the force produced by soil displacement was 

18 related to the contact area between the soil and disc, the front and disc angle of the 

19 opener disc, the soil density, the relative velocity of the soil to the disc, and the angle 

20 between the displacement of soil and the horizontal plane.

21 3.2.3 Sliding resistance between soil and opener disc

22 The sliding resistance produced by the interaction of the opener disc and soil 

23 could be divided into two parts: the sliding resistance between the disc surface and 

24 soil during disc rotational and forward motion during ditching, and the friction force 

25 between the disc cutting edge and the soil. During the interaction process between the 

26 disc surface and the soil, in addition to the friction force, the adhesion force of the 

27 disc surface was also caused by the physical and chemical properties within the soil. 

28 The change in the adhesion force could affect the normal load of the contact interface. 

29 Therefore, the friction force of the disc surface was divided into two parts, friction 
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1 force and adhesion force, which were related to the absorption load caused by the 

2 water film, the attached area of the water film, the dynamic friction coefficient 

3 between the soil and the opener disc, and the quality of the opener disc (Gill and 

4 Vandenberg, 1983).

5 In summary, without considering the inherent characteristics of the soil, the 

6 opening resistance was related to the soil wedge width and height, contact area 

7 between the soil and disc, and the attached area of the water film, which all depended 

8 on the structures of the opener disc. When the biomimetic structural elements were 

9 applied to the opener disc, the disc structure could reduce the contact area between the 

10 soil and disc and the attached area of the water film, which reduced the effect of drag.

11 3.3 Soil bin test

12 According to the DEM simulation results, DISC 2, DISC 3 and DISC 4 had 

13 relatively low furrow resistance. Given possible calculation error, these three discs 

14 and CFDFO (DISC 10) were manufactured, as shown in Fig. 8. To investigate the 

15 tillage performance of furrow discs under different furrow speeds and soil moisture 

16 contents to verify the reliability of the simulation, soil bin tests of DISC 2, DISC 3, 

17 DISC 4 and DISC 10 were carried out. 

18

19 Fig.8. BCDFOs were manufactured according to DEM simulation. A: DISC 2, B: 

20 DISC 3, C: DISC 4, D: DISC 10 (CFDFO)

21 The test data were collected and arranged using a sensor built into the test 

22 vehicle and a data processing system. However, unstable signals were inevitable. 

23 Therefore, the force measuring system was calibrated and zero-set before formal test 

24 and pretesting. The data were collected and processed smoothly. In addition to 

25 erroneous individual data points (data with sudden increases or zero values), most of 

26 the remaining data points were relatively uniform and stable. Abnormal points were 
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1 removed from subsequent data processing. The furrow resistances of DISC 2, DISC 3, 

2 DISC 4 and DISC 10 under different conditions (soil moisture content = 18% and 

3 22%; furrow speed = 0.6, 1 and 1.4 m/s) are shown in Fig. 9.

4

5 Fig. 9. Soil bin resistance tests of DISC 2, DISC 3, DISC 4 and DISC 10 under 

6 different test conditions. A: soil moisture contents of 18% and B: soil moisture 

7 content of 22%.

8 Under the same test conditions, the furrow resistance of BCDFOs was obviously 

9 smaller than CFDFO. Under the condition of 18% soil moisture content, the furrow 

10 resistances of DISC 2, DISC 3, DISC 4 and DISC 10 increased by 15.96%, 23.89%, 

11 20.19% and 21.37%, respectively, with the furrow speed increasing from 0.6 to 1.0 

12 m/s and by 15.20%, 18.85%, 16.35% and 17.26%, respectively, and the furrow speed 

13 increasing from 1.0 to 1.4 m/s. However, under the condition of 22% soil moisture 

14 content, the furrow resistances of DISC 2, DISC 3, DISC 4 and DISC 10 increased by 

15 10.24%, 22.42%, 19.13% and 13.07%, respectively, with the furrow speed increasing 

16 from 0.6 to 1.0 m/s and by 11.69%, 9.64%, 11.29% and 12.52%, respectively, with 

17 the furrow speed rising from 1.0 to 1.4 m/s. The resistance of all discs increased with 

18 increasing speed under the same soil moisture. This occurred because the higher 

19 speed of the disc would increase the accelerated soil mass and the rate of shear by the 

20 disc, which produced a higher resistance (Swick and Perumpral, 1988). With the 

21 increase in soil moisture content from 18% to 22% under the same speed, the furrow 

22 resistance of each disc increased. The soil condition affects the cutting, shear, 

23 compaction and flow performance of soil behavior (Collins and Fowler, 1996). This 
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1 occurred because the soil cohesion generated by water in the soil with higher 

2 gravimetric moisture content was increased. At the same time, the surface tension of 

3 the water film increased, which made the adhesion between the soil and disc greater, 

4 which led to decreasing the furrow quality and increasing the furrow resistance (Yao 

5 et al., 2007). 

6 To compare the resistance reduction among the three BCDFOs, the drag 

7 reduction rate (DR) of BCDFOs was calculated as DR (%) = (furrow resistance of 

8 CFDFO –furrow resistance of BCDFO)/(furrow resistance of CFDFO) ×100%. The 

9 DRs of the three BCDFOs under different furrow speeds and moisture contents are 

10 shown in Table 4. The BCDFOs showed great drag reduction, of which the average 

11 DR of DISC 3 was 8.76% and that of DISC 2 was the lowest (3.14%). In summary, 

12 DISC 3 had the best drag reduction under different furrow speeds and soil moisture 

13 contents, which was consistent with the DEM simulation.

14 Table 4. DR of three BCDFOs under different test conditions 

DR (%)Soil moisture 

content (%)

Furrow 

speed (m/s) DISC 2 DISC 3 DISC 4

0.6 -2.61 9.95 2.99

1 1.97 8.08 3.9218

1.4 3.69 6.83 4.67

0.6 3.41 13.21 8.69

1 5.83 6.04 3.8122

1.4 6.53 8.44 4.85

Average DR 3.14 8.76 4.82

15 4. Conclusions

16 The convex hull of the dung beetle pronotum and the back-ridge scales of the 

17 pangolin were used as biomimetic prototypes to improve and analyze the drag 

18 reduction of the disc furrow opener with non-smooth surfaces using an orthogonal 

19 experimental optimization design. The interactions of the discs and soil were 

20 simulated with DEM. Range analysis with resistance as the evaluation index indicated 
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1 that θ was the key factor, followed by S1, h1 and D. DISC 3 had the minimum 

2 resistance with θ=7.2°, S1=6 mm, h1=1 mm, D =14 mm. 

3 The soil swelling rate and soil disturbance coefficient were important indexes to 

4 evaluate the soil disturbance characteristics. DISC 3 with a lowest soil swelling rate 

5 and soil disturbance coefficient required least furrow resistance, followed by DISC 4, 

6 DISC 2 and DISC10, which was consistent with the simulation of furrow resistance. 

7 Through the analysis of the mechanical model, the disc structure could reduce the 

8 contact area between the soil and disc and the attached area of the water film, which 

9 reduced the effect of drag.

10 Three BCDFOs (DISC 2-4) and one CFDFO were manufactured for soil bin tests 

11 under different conditions with the soil moisture contents of 18% and 22% and furrow 

12 speeds of 0.6, 1 and 1.4 m/s to investigate the relationships between surface structures 

13 and resistance. Under the same test conditions, the furrow resistance of BCDFOs was 

14 obviously smaller than that of the CFDFO. DISC 3 showed a maximum DR of 

15 13.21% under a furrow speed of 0.6 m/s and a moisture content of 22%, and the 

16 maximum average DR of BCDFO was 8.76% under different furrow speeds and 

17 moisture contents. In summary, DISC 3 demonstrated the best drag reduction under 

18 different furrow speeds and soil moisture contents. These results will be helpful to 

19 design efficient disc furrow openers for resistance reduction with low soil disturbance.
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