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Abstract 13 

Modern industrial technology enables to collect and process large amount of data, providing valuable 14 

information for different industry activities. A representative case of this evolution is the Forest industry, since 15 

modern forest harvesters are equipped with automatic data collection devices. The collected data can be 16 

extracted and communicated to computers using special forestry protocols, as StanForD, where it can be 17 

analysed. This skill of modern harvesters allows to study harvest productivity with thousands of records, instead 18 

of having a few hundred as it would be possible by recording through traditional methods (visual inspection or 19 

filming). However, traditional analytical methods, as linear regression, are not capable to deal with this volume 20 

of data (or, at least, does not take full advantage of the data potential), consequently, new approaches must be 21 

considered.  Our proposal is to address this shortcoming using data mining methods, specially, we consider 22 

decision trees and k-means algorithms. We study how different variables (DBH, species, shift and operator) 23 

affect the productivity of a forest harvester considering real scenario data. The harvest data comes from 24 

Eucalyptus spp. plantations in Uruguay where the harvest system implemented is cut-to-length. To analyse the 25 

data, firstly, productivity is modelled in a categorical manner considering two different approaches: ranges of 26 

equal intervals and ranges calculated using k-means clustering algorithm. Then, Decision Trees methods are 27 

applied to analyse the influence of the mentioned variables in productivity. The results show that clustering is 28 

a proper approach to categorically model scalar productivity and that DBH is the most influential factor in 29 

productivity. Moreover, Decision Trees, after setting DBH values, allowed to use new variables to describe 30 

productivity, achieving very high levels of accuracy, in many cases greater than 90%. 31 

1. Introduction 32 

Forest industry plays an important role in the economic and social development of South American 33 

countries. In Uruguay for instance, this sector has grown considerably in the last few decades. The planted area 34 

with pine and eucalyptus used to be less than 100,000 hectares in 1990, and in 2012 the planted area rose to 35 

990,030 hectares (Boscana & Boragno, 2017). The management of forest operations in industrial plantations is 36 

an extremely complex decision-making process involving ecological, productive, and economic factors, among 37 

others (Broz et al. 2017a). This complexity is increased if the production cycle is considered (i.e. several years 38 
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from plantation to harvest), since the impact of bad decisions can be exceptionally costly and harmfully for the 1 

ecosystem. Thus, having proper and sound support for the decision-making process becomes crucial. 2 

The harvesting operations and transport of round wood are the most expensive activities of the forest 3 

value chain (Broz et al., 2016). Accordingly, the planning of these activities requires proficient decision support 4 

tools, where the input data for the decision-making process has a critical role (Broz et al., 2018). Modern 5 

harvesters and forwarders are often coupled with automatic data recording equipment, which can record several 6 

variables during normal operations. When harvester and forwarder work together, they do it in a Cut-to-Length 7 

(CTL) configuration or system (Figure 1) (Uusitalo, 2010). CTL system was developed in Scandinavian 8 

countries, and has been widely adopted in South America, where the mechanization of forest operations in 9 

countries like Uruguay is over 60% (Olivera [2016]; Viana Céspedes [2018]). The harvester fells, processes 10 

(delimbs and debarks) and cut the trees into logs in the stand, then, the forwarder extracts the logs to the roadside. 11 

The capacity of harvesters and forwarders of data recording is framed under a “de facto” standard called 12 

StanForD, which uses a series of specific files (Skogforsk, 2017). This standard enables to collect data from 13 

various machines and manufacturing control systems with a twofold purpose, to generate useful information for 14 

efficient forest management, and to follow up operations (Skogforsk, 2007). Typically, the data includes records 15 

of a working shift and from each single processed tree, these records sum, approximately, 500,000 single datum 16 

for machine and for operator in a single shift on an average day. Such sizable data set constitutes a typical big 17 

data problem; hence, to transform this data into meaningful information it is necessary to use an adequate 18 

approach, as Big Data (BD). 19 

BD is a concept that refers to such large data sets that traditional data processing applications are not 20 

enough to deal with them, and to the procedures used to find repetitive patterns within that data. Big data, in 21 

early 2000s was characterized by the 3V’s: Volume, Variety and Velocity (Laney 2001).  22 

 Volume (V1): the amount of data generated and saved. The size of the data determines the value 23 

and potential understanding, and if you can consider them as true big data.  24 

 Velocity (V2): in this context, the speed at which data is generated and processed to meet the 25 

demands and challenges of its analysis.  26 

 Variety (V3): the type and nature of the data, this helps people who analyse the data and use 27 

the results effectively. Type or nature of data is due to the different sources (e.g. images, videos, 28 

remote and field-based sensing data), or to different recording formats, among other aspects.  29 

Figure 1. Schematic representation of the Cut-to-length harvesting system showing a harvester a 

forwarder. Source: http://forestenergy.org 
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More recently, other characteristics have been identified on BD datasets, as Veracity (V4) and 1 

Valorization (V5) (Chi et al. [2016]; Kamilaris et al. [2017]).  2 

 Veracity (V4): the quality and reliability of the data captured can vary greatly and thus, affect 3 

the results of the analysis.  4 

 Valorization (V5): The ability to propagate knowledge and appreciation.  5 

As it is mentioned, our case requires a BD approach since the Volume and Variety of our datasets 6 

correspond to BD category. The harvest system considered for this work, generates about 500 thousand records 7 

for a single normal operation shift indicating that the Volume is a feature of our system. The other BD feature 8 

of the data considered in this work is the Variety, our data type includes: time registers (processing time stamps), 9 

metrics registers (trees diameters), categorical registers (tree species, shift class and operator ID) and volumetric 10 

registers (harvested wood). 11 

Data mining (DM) techniques arise as a solution to the problem of analysing large amount of data. DM 12 

is the process of applying Computer Based Information Systems (CBIS) for discovering knowledge from data 13 

(Vlahos et al. 2004). Thus, DM allows discovering patterns and trends, which would be useful to predict the 14 

behaviour of a system, and interesting interactions (Ahlemeyer-Stubbe & Coleman [2014]; Traub et al. [2017]). 15 

DM has been successfully applied to a wide variety of fields, as industrial processes manufacturing, marketing, 16 

sociology, for instance (Liao et al. 2012); however, limited research has been published on its application to 17 

forestry.  18 

The most meaningful of this few publications are reviewed here. Mohammadi et al. (2011) compared 19 

linear regression and regression tree analyses for forest attribute estimations and their spatial modelling. The 20 

results showed that, statistical models of stand volume, tree density, species richness and reciprocal of Simpson 21 

Indices using tree regression analysis had higher adjusted compared to linear regression models. Using DM 22 

techniques, Özbayoğlu & Bozer (2012) estimated the risk on forest fire and some of the methods analysed were 23 

multilayer perceptron, radial basis function networks, support vector machines and fuzzy logic. They used 24 

historical forest fire records, which contained parameters like geographical conditions of the existing 25 

environment, date and time when the fire broke out, meteorological data such as temperature, humidity and 26 

wind speed, and the type and tree stocking. Sanquetta et al. (2013) employed a DM methodology named 27 

Instance-based Classification for estimating carbon storage in Araucaria angustifolia (Bertol.) Kuntze 28 

plantation in Brazil. This technique outperformed the conventional methods. Lokers et al. (2016) examined and 29 

analysed three European projects as guidance to describe current possibilities and future challenges for 30 

deployment of BD techniques in the field of agro-environmental research, facilitating decision support at the 31 

level of societal challenges. They recommended the use of BD approaches to analyse data from various sources, 32 

e.g. harvesting, production, and meteorological records. Likewise, Li et al. (2017) analysed the relevant 33 

economic, social and ecological factors of China's forestry resources with a BD perspective. Firstly, they used 34 

the method of data envelopment analysis to investigate the forestry resources efficiency; then they analysed 35 

time series data using the Malmquist total factor productivity index method to determine which factors restrain 36 

forest resources efficiency for the studied region in China. Applying Neural network-based models Hlásny et 37 

al. (2017) presented a large-scale evaluation of climate effects on the productivity of three temperate tree species 38 

in Central Europe. Using this technique, they determined which among 13 tested climate variables best predicted 39 

the tree species-specific site index.  40 

Regarding harvest activities, Olivera et al. (2015) proved the usefulness of integrating Global 41 

Navigation Satellite System (GNSS) with forest harvester data to improve forest management. They retrieved 42 

data from a GNSS-enabled harvester working in Cut-to-length (CTL) operations in Eucalyptus spp. plantations 43 

in Uruguay. The dataset obtained comprised over 63,000 cycles of felled and processed trees. With this data, a 44 

mixed effects model was fitted to evaluate harvester productivity as a function of stem diameter at breast height 45 



4 

 

DBH), species, shift, slope and operator. On another study, Olivera (2016) used the same dataset to develop a 1 

method to map forest stand productivity based on the actual volume recovered by the harvesting operation. 2 

Eriksson & Lindroos (2014) developed models to predict machine productivity in Sweden using linear 3 

regression based on ordinary least squares parameter estimation. This study constitutes the productivity models 4 

based on the largest sample of harvester and forwarder follow up dataset in CTL final felling and thinning 5 

operations considered to date.  6 

Various DM techniques have been applied in research for the agro-environmental sciences, including 7 

forestry. Prediction of forest fires, the effect of climatic variable on forest productivity, forests structure analysis 8 

and carbon storage are some of the case studies published. Techniques comprise mixed models, artificial neural 9 

network, association rules, and regression trees. However, there is still a gap in the literature regarding the use 10 

of DM techniques in forest operations, especially on harvesting operations using the automatic data collection 11 

system available on modern forest harvesters, this article presents a contribution to fill this gap. The first 12 

objective of this study is to evaluate the effect of the variables, diameter at breast height (DBH) as an indicator 13 

of piece (tree) size, species, shift (day/night) and operator, on the productivity of a harvester using the DT 14 

technique. The second is to compare the result of this analysis with the multiple regression analysis performed 15 

by Olivera et al. 2015. The DT technique could allow evaluating the performance of operators in different strata 16 

of pieces size (DBH) and its interaction with the other evaluated variables (including categorical ones, as tree 17 

species or operation shift). The results can be used as a planning tool to allocate workers according to their best 18 

performance in tree size range, shift or species by simple rules. Preliminary results of this work were published 19 

in (Broz et al. 2017b) and (Rossit et al. 2017). 20 

2. Methods and materials 21 

2.1. Data source   22 

 The studied data is part of the data set used by Olivera (2016). The data set was obtained from a single 23 

grip harvester Ponsse Ergo 8W equipped with a harvester head designed to process and debark eucalypts (Ponsse 24 

H7euca). The control system was Opti4G 4.715, StanForD (Standard) enabled. This machine harvested 25 

Eucalyptus ssp plantations in the western of Uruguay in the period between August and October of 2014. For 26 

this study, only records of Eucalyptus grandis Hill. ex Maiden and Eucalyptus dunnii Maiden were used. The 27 

operation developed from Monday to Friday in double shifts: the day shift from 7:00 a.m. to 5:30 p.m. and the 28 

night shift from 8:30 p.m. to 7:00 p.m. All harvested production was debarked for pulpwood and cut to a 29 

standard log length of 6.5 m and a second class of variable length between 4 m and 6.5 m. All diameter 30 

measurements and volume estimated presented in this work are debarked. The harvester was operated by two 31 

workers, Operator 1 and Operator 2. Operator 1 was more experienced (several years operating harvesters) than 32 

Operator 2 (ten months in the task) on operating forest harvesters. For more details, refer to Olivera (2016). 33 

For the analysis of the system 9,941 records of individual trees registered under the StanForD standard 34 

as .stm files were used. The .stm files contain compressed data from each individual tree processed, which 35 

include DBH (Diameter at Breast Height), volume, and log classification, among others. From .stm files, the 36 

following data was considered for each registered tree: tree ID, DBH, merchantable harvested volume, time 37 

stamp (year, month, day, hour, minute and second) when the tree was felled, and operator identification. A 38 

change attribute (day / night) was assigned to each tree according to the timestamp. The .stm files also contain 39 

input information, such as species and sites (denomination). Using the time stamp records, cycle time was 40 

calculated for each tree by determining the difference between two consecutive stem’s time stamps. Then, 41 

productivity in m3 h-1 (the dependent variable of the study) was calculated by dividing the volume by the cycle 42 

time.  43 
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2.2. DM tools 1 

We used DM tools to analyse the effect of the variables DBH, shift, species and operator on the 2 

productivity of a harvester working in Eucalyptus ssp plantations in Uruguay. The tools used are Decision Trees 3 

and the clustering k-means method. These methods are widely used in data mining applications and have proved 4 

to be versatile in addressing a variety of problems in diverse contexts (Wu et al. 2008).  5 

2.2.1. Cluster Analysis: k-means 6 

Cluster methods allow the generation of knowledge in an exploratory mode without using, a priori, 7 

labels or categories. This enable to explore a data set to evaluate its characteristics and to group data into clusters 8 

with similar characteristics. There are several methodologies and formats of clusters, the most widely used for 9 

different applications is the k-means algorithm (Jain 2010). Since we could not find in literature a similar 10 

implementation, we used the k-means algorithm to generate categories of the productivity variable. 11 

K-means is a clustering method, which aims to cluster a set of n observations in k groups, where each 12 

observation belongs to the group whose average value is closest to its own value. Given a set of observations 13 

(x1, x2,…, xj,…, xn), where each observation is a real vector of d dimensions, k-means constructs partitions of the 14 

observations in k sets (k ≤ n) to minimize the sum of the squares within each group S = {S1, S2, …, Si,…, Sk}, 15 

𝑎𝑟𝑔𝑚𝑖𝑛𝑆∑ ∑‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

 16 

Where 𝜇𝑖 is the average of points from 𝑆𝑖. 17 

2.2.2. Decision Trees 18 

Decision Trees (DT) are logical structures with wide use in decision making, prediction and data 19 

mining. From a set of observations, these models partition the space and predict the response through a model 20 

that is a constant function in each subset of the partitions or leaves. DT are strictly non-parametric and do not 21 

require assumptions of distributions of the input data (Kohavi 1996). An important characteristic of DT is its 22 

capability to break down a complex decision-making process into a collection of simpler decisions, thus 23 

providing a solution that is usually easier to understand (Safavian & Landgrebe 1991). Thereby, with the advent 24 

of Big Data Analytics, DT has become the most popular algorithm in the Big Data field as indicates Wu et al. 25 

(2008) in their Big Data algorithms ranking (k-means is the second one). DT can handle nonlinear relationships 26 

between features and classes, allow missing values and are able to handle numerical and categorical entries in 27 

a natural way; this last characteristic is a requirement of our problem. Despite DT are efficient methods, they 28 

depend significantly on their implementation; the different implementations consist on different settings in the 29 

validation method and in the branching procedure. The validation method evaluates the ability of the model to 30 

describe correctly values of the dependent variable analysed. While, the branching procedure guides the growth 31 

of the tree, it analyses how the dependent variable relates to the independent variables (Berry & Linoff, 2004). 32 

DT is fed, in a first stage, with a training data set S of already classified samples si. Each sample si is, 33 

in effect, a p-dimensional vector x, where the xp,i component represent the value of the attribute p of the sample 34 

si, and the class where si falls. At each node, DT algorithm chooses the attribute of the data that most effectively 35 

splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized 36 

information gain (difference in entropy). The attribute with the highest normalized information gain is chosen 37 

to make the decision. 38 
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2.3. Data analysis 1 

2.3.1. Categorization of the productivity  2 

DT are sensitive to the description and modelling of the dependent variable, in our case, how are defined 3 

and related the productivity categories. We use two techniques to categorize the productivity variable. The first 4 

technique was to divide the dataset into four categories of equal interval.  This is adopted since there are no 5 

references of categorization of it for harvester’s productivity assessment in Uruguay, and productivity is a 6 

continuous variable. The second technique was to implement the unsupervised learning methodology of clusters 7 

k-means, this method is implemented using the software Statistical Package for the Social Sciences (SPSS).  8 

2.3.2. Decision trees - Experimental design 9 

In order to assess harvest productivity, we design a series of experiments which go from the most 10 

general to the most particular insights (Figure 2). Firstly, we studied the productivity of the harvester for the 11 

whole dataset and obtained a general overview of the effect of the different variables on productivity considering 12 

all the variables (Test 1 of Figure 2). Then, a deeper analysis is performed by segregating the data by the other 13 

studied variables; namely operator, shift and species (Test 2 and 3 of Figure 2). This deepening is guided by the 14 

usefulness of the analysis for a forest harvest planner. If significant differences are found, such segregation 15 

would help the harvest planner to allocate the personnel according to their best performance in DBH strata and 16 

work shifts, in an efficient manner. It would also aid to solve different operative scenarios (which stands to be 17 

harvested and time horizons or deadlines). For Test 2 and 3 two different experiments are executed: one 18 

considers data from both tree species, and the other, discriminates by specie. 19 

 20 

Figure 2. Schematic representation of the experimental design 21 

 2.3.3. Validation 22 

The SPSS software offers three validation options for DT: i) no validation, ii) cross validation and iii) 23 

validation by sampling division. The method of no validation implies not making any validation. The cross 24 

validation works generating n equal partitions, where for each partition n generates a prediction model, leaving 25 

1 / n data out of the analysis. Then, it evaluates the prediction model in the 1 / n reserved data and elaborates 26 

the respective confusion matrix. This is repeated for each set n. The final confusion matrix of the model is the 27 

average of the n confusion matrices obtained. On the other hand, the method that works by sampling division 28 

divides the data set into two subsets, one subset of training and the other of evaluation. These subsets are defined 29 

based on a percentage of the total data or by choosing variables for each subset. The method works generating 30 

a model analysing the training subset, and then, it validates the model in the subset reserved for the evaluation. 31 
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The different options of tree growth or branching is another aspect to consider. The branch procedure 1 

analyses the predictive capacity of an independent or descriptive variable with respect to the dependent variable. 2 

These methods depend strongly on the dependent variable to be studied and on the modelling that is made of it, 3 

as well as on the statistical method used. In our case, the variable to be studied (productivity) and its modelling 4 

(categorically) are fixed conditions. But the statistical method that supports the branching procedure is not 5 

predefined by the problem. The methods offered by SPSS are 4: CHAID, exhaustive CHAID, CRT and QUEST. 6 

CHAID method (Chi-squared Automatic Interaction Detection) chooses the independent (predictor) variable 7 

that has the strongest interaction with the dependent variable. Categories of each predictor are merged if they 8 

are not significantly different with respect to the dependent variable. Exhaustive CHAID method is a 9 

modification of CHAID that examines all possible splits for each predictor. CRT method splits the data into 10 

segments that are as homogeneous as possible with respect to the dependent variable. QUEST method is fast 11 

and avoids other methods' bias in favour of predictors with many categories. We evaluated each of these four 12 

methods with their default formulation.  13 

2.4. Categorization of the productivity 14 

For productivity categorization a pre-process was performed in the dataset, basically, values below 6 15 

m3 h-1 were discarded because they were considered outliers. Then, we apply the technique of equal intervals, 16 

for this, we divided the range of productivity into four categories of equal range, by intervals of 14 m3 h-1 (Table 17 

1), except for the class with lower values which interval is lower than 14 m3 h-1. Each category was named like 18 

the upper bound of the range.  19 

Table 1. Productivity classes of equal interval. 20 
Category Range [m3 h-1] 

“<= 12” [ 6 – 12 ] 

“<= 26” ( 12 – 26 ] 

“<= 40” ( 26 – 40 ] 

“> 40” (40 - …) 

Table 2. Productivity classes resulted from clusters analysis for the whole dataset “global”. 21 

Category Range [m3/h] 

“<= 17” [ 6 – 17 ] 

“<= 29.6” ( 17 – 29.6 ] 

“<= 43.7” ( 29.6 – 43.7 ] 

“> 43.7” (43.7 - …) 

The second technique is based on k-means clustering. For this technique, also four categories were 22 

generated, to further compare results between both techniques. The k-means clusters method allows to generate 23 

k groups wherein deviations within each group are minimized. Therefore, although the conclusions from the 24 

results obtained based on cluster categorizations are more "dependent" on the sample of available data, they 25 

allow a deeper analysis of the relationships between the different variables. The results of k-means defined the 26 

centroids of the clusters (Categories), and the range of values of each cluster (Table 2). Again, the categories of 27 

the variable Productivity by clusters are named as the upper bound of the range of the category. 28 

Table 3. Productivity classes resulted from clusters analysis for E. dunnii. 29 

Category Range [m3/h] 

“<= 17.2” [ 6 – 17.2 ] 

“<= 29.5” ( 17.2 – 29.5 ] 

“<= 43.4” ( 29.5 – 43.4 ] 

“> 43.4” (43.4 - …) 

 30 

Table 4. Productivity classes resulted from clusters analysis for E. grandis. 31 

Category Range [m3/h] 
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“<= 16.9” [ 6 – 16.9 ] 

“<= 29.8” ( 16.9 – 29.8 ] 

“<= 43.9” ( 29.8 – 43.9 ] 

“> 43.9” (43.9 - …) 

Finally, other cluster categories were generated by discriminating the data according to tree species. These 1 

categorizations allow evaluating the variations in productivity for each species, E. dunnii and E. grandis (Tables 2 

3 & 4). For both species, the resulting categories were similar to the global ones generated by clusters.  3 

2.5. Tuning of decision trees 4 

Nextly, the analysis of the different settings configurations for DT is presented. In the implementation 5 

of the DT algorithm it was established that the smallest node must contains at least 1% of the data, since 6 

obtaining decision rules for sets representing less than 1% is meaningless for the problem addressed. Then, to 7 

analyze the setting configuration we run some preliminary DT with different settings options and evaluate which 8 

setting perform better for our data set. For this, we used a model similar to the one of Figure 4, where all 9 

variables are considered together. The different models generated from the different setting configurations were 10 

compared through their global predictive capacity. The variants analysed correspond to different validation 11 

options and different tree growth or branching options. The results of these evaluations are in Table 5. 12 

Table 5. Parameter tuning tests. 13 

 

Validation method Tree growth method 

none cross 
sample division 

CHAID 
Exhaustive  

CHAID 
CRT QUEST 

50% 60% 65% 

Correct 

percentage 
41.2 43.2 43.2 42.4 43.3 41.3 43.3 42.1 42.6 

From Table 5, the validation methods that obtained the best overall prediction values were the cross-14 

validation method and the sampling division method, considering 65% of the data for training. However, the 15 

sample validation method showed a strong volatility in the global prediction value, since it is very dependent 16 

on how the training and testing subsets are made up. These subsets are generated in a random mode, with the 17 

only condition that the number of cases included in each subset respect the percentage indicated. On the other 18 

hand, the cross-validation method was much more stable, and it was defined for n = 10. Regarding the method 19 

of tree growth, the method that obtained the best overall prediction value is the Exhaustive CHAID.  20 

3. Experiments 21 

3.1.  Test 1: General 22 

The first experiment describes the behaviour of the productivity variable depending on the main 23 

independent variable DBH in mm (Figure 3). Firstly, a DT is presented on Figure 3, where productivity is 24 

predicted considering only the DBH variable. In Table 6 the associated confusion matrix is presented. 25 

Table 6: Confusion matrix evaluating the DT of Productivity by DBH presented in Figure 3 26 

Observed 
Forecast 

Correct % 
<= 12 <= 26 <=40 > 40 

<= 12 0 1993 36 15 0.00% 

<= 26 0 2885 241 173 87.50% 

<=40 0 1517 389 297 17.70% 

> 40 0 1158 282 455 24.00% 

Global % 0.00% 80.00% 10.00% 10.00% 39.50% 
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Table 6 shows the total prediction level is 39.5%. In addition, for the category "<= 12", the model in 1 

Figure 3 fails to predict any case correctly. In Figure 3 there is not node with category "<= 12" highlighted (ref: 2 

highlighted categories in each node means the typical category of that node). 3 

4 
Figure 3. DT of productivity (m3 h-1) using DBH (mm) as independent variable 5 

The DT in Figure 4 based on the categorization of equal intervals (Table 1) describes the productivity 6 

variable through all the independent variables (DBH, Shift, Specie and Operator). It demonstrates that 7 

incorporating more variables improves the description of the variable productivity. For example, in node 13 the 8 

productivity for DBH between 102 and 106 mm, species E. dunnii, is "<= 12" for 91.8% of the cases. Whereas 9 

in the model of Figure 3, there is no node dominated by the category "<= 12"; moreover, in Fig. 3 there is no 10 

node with higher probability than 51%. Consequently, a contribution of this study is to identify scenarios where 11 

productivity can be predicted accurately. These scenarios are described through the values of the independent 12 

variables that define the node. In the confusion matrix for this DT (Table 6) it is possible to identify the global 13 

value of correct predictions is higher than the one of the model using only DBH (Figure 3), 42.4% Vs 39.5%. 14 

In addition, it improves prediction values of categories "<= 12" predicting the 18% of the cases. 15 

A new DT considering the k-means based categorization (Table 2) was created (Figure A.1, Appendix) 16 

with its corresponding confusion matrix (Table 8).  The higher value of the prediction of productivity 44.5% 17 

(Table 8) vs 42.4% (Table 7) shows that the implementation of clusters improves the global level of prediction. 18 

This improvement can be justified by cluster-based categories tend to be more compact than those of equal 19 

intervals.  20 

Table 7. Confusion matrix evaluating the DT of Productivity by DBH, Shift and Operator based on equal intervals 21 
classification presented in Figure 4. 22 

Observed 
Forecast 

Correct % 
<= 12 <= 26 <=40 > 40 

<= 12 374 1619 36 15 18.3% 

<= 26 97 2788 241 173 84.5% 

<=40 2 1515 389 297 17.7% 

> 40 0 1158 282 455 24.0% 

Global % 5.0% 75.0% 10.0% 10.0% 42.4% 

 23 
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 1 

If the DTs in Fig. A.1 (clusters) and Fig. 4 (equal intervals) are compared, it is clear that the DT based 2 

on clusters has a structure quite similar to the DT based on categories of equal intervals, although there are some 3 

Figure 4. Global DT based on equal intervals’ classification of productivity against all studied variables: 

DBH, Shit, and Operator. 
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differences. One of them is that the DT based on clusters uses 22 leaves nodes to describe productivity, while 1 

the DT model based on categories of equal intervals uses 18. Other subtler differences, but which mark the 2 

impact of categorization by clusters, are for example: the cases of nodes 31 and 32 of the DT based on clusters, 3 

and nodes 27 and 28 of the DT based on equal intervals. These pairs of nodes represent the same scenario, 4 

defined by DBH between 122 and 162 mm, and individuals of species E. dunnii, and where each node 5 

corresponds: the first to operator 1 and the second to operator 2 in each DT, respectively. If the nodes of operator 6 

1 in both DTs (nodes 31 and 27, respectively) are considered, the purity of the nodes are quite similar and they 7 

are approximately 57%. While the nodes relative to operator 2, nodes 32 and 28 respectively, the purity is quite 8 

different, being in the case of clusters greater than 78%, while in the DT based on equal intervals it barely 9 

exceeds 50%. 10 

1. Table 8. Confusion matrix evaluating the DT of Productivity by DBH, Shift and Operator based on k-means 11 
clustering classification presented in Figure A.1. 12 

Observed 
Forecast 

Correct % 
<= 17 <= 29.6 <= 43.7 > 43.7 

<= 17 3022 347 58 23 87.6% 

<= 29.6 1750 584 269 69 21.9% 

<= 43.7 1054 356 378 137 19.6% 

> 43.7 780 120 279 215 15.4% 

Global % 70.0% 14.9% 10.4% 4.7% 44.5% 

3.2. Test 2: By Operator 13 

Nextly, we generate a more detailed analysis on the influence of the operators on productivity. For that 14 

we will analyse in isolation the work of operator 1 and 2. 15 

 3.2.1. Operator 1 16 

In this section the productivity of operator 1 is assessed. For this, only the records generated by the 17 

activity of operator 1 are considered. In turn, given that the records include harvest of individuals of the two 18 

species, three separate studies are performed: i) considering the two species together, ii) considering only 19 

individuals of E. grandis species and iii) considering only individuals of E. dunnii species. Also, for each study 20 

the different categorizations of the productivity variable are analysed, considering the clusters of Table 2 for 21 

case i), categories from Table 4 for the case of E. grandis ii), and the categories of Table 3 for E dunnii iii). In 22 

all cases, categorization by equal interval is also used (Table 1). 23 

Global 24 

As already mentioned, in this case the performance of operator 1 is studied considering the global set 25 

of records. For this study, 2 possible categorizations of the productivity variable are considered: by equal 26 

intervals and by global clusters. 27 

Table 9 summarizes and compares the results of the DT models based on categorizations by "Equal 28 

intervals" and by "Clusters". The columns associated with the results of the categories by Clusters are 29 

highlighted in gray. From Table 9 it can be seen that, as in the case of Table 8, clustering achieves an 30 

improvement in the overall effectiveness of the models for describing the productivity variable.  31 

 32 



12 

 

 1 
Figure 5. Operator 1 productivity Forecast model considering DBH, shift and specie as independent variables. The 2 
productivity classes are based on cluster analysis. 3 

Regarding the DT models, both categorizations generated the same models, that is, the ramifications 4 

followed the same pattern and in the same descriptive variables. Therefore, we show only the model that 5 

obtained the best global performance according to their confusion matrices, that is, the model based on 6 

categories by clusters as shown in Figure 5. Something relevant to delimit the coinciding format of the DTs, is 7 

the sensitivity to how the dependent variable is defined and modelled. In this case, the same divisions are 8 

generated, and with the same levels, but by modifying the categorization of the dependent variable, the overall 9 

performance of the model is improved.  10 

Table 9. Confusion matrix resume for Operator 1 comparing equal intervals and clusters productivity categorization. 11 
Category Equal intervals Clusters 

Equal intervals Clusters Correct % Correct % 

<= 12 <= 17 20.9% 88.5% 

<= 26 <= 29.6 85.9% 16.5% 

<=40 <= 43.7 18.1% 20.1% 

> 40 > 43.7 24.1% 26.4% 

Global % 42.2% 43.9% 

Specifically, from Figure 5, for individuals with DBH greater than 150 mm, operator 1 tends to obtain 12 

productivities proportional to the size of the individuals it harvests: as the DBH grows, the node typical category 13 

grows, as appears in nodes 3, 4 and 5. Regarding the species, operator 1 is indifferent for the case of large 14 

individuals, since the variable species does not improve the purity of nodes 3, 4 and 5. In contrast, for individuals 15 

with DBH lower than 150mm, the specie is an influential variable. Mainly, for individuals of specie E. dunnii, 16 

the typical productivities are "<= 17" but with more than 65% of the cases (nodes 6 and 8), reaching 95% for 17 

small individuals (DBH lower than 119 mm). While, for individuals of E. grandis species, they have the same 18 
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typical productivity of "<= 17", but the nodes are not as pure, for example for node 9 the 29% of cases have 1 

productivity of "<= 29.6" 2 

E. grandis 3 

In this new case, the productivity of the operator 1 is studied, limiting the analysis to the records of E. 4 

grandis species. For this purpose, the data is filtered considering only the records of E. grandis. 5 

The three models are generated considering the three categorizations established: by equal intervals, by 6 

global clusters and by E. grandis clusters. The results of the confusion matrices of the three models are presented 7 

in Table 10. In this table, the white columns are associated to the equal interval categorization, the clear-coloured 8 

columns to global clusters, and the dark-coloured columns to the E. grandis clusters. From Table 10, it can be 9 

seen that all the models exceed 50% of efficiency, where the best models are the ones based on clusters. 10 

Categorization by species-specific clusters slightly improves global clusters categorization. In turn, 11 

categorizations by clusters achieve a more even model with respect to the different categories than the model 12 

based on equal interval criteria. In the categorization by equal intervals the class with the least number of correct 13 

predictions is the "<= 40" with 14.9%, while in the categorizations by clusters has 18.2% ("<= 43.7"). 14 

Table 10. Confusion matrix resume for Operator 1 comparing equal intervals, global clusters and E. grandis Clusters 15 
productivity categorization. 16 

Category Equal intervals C_Global C_Grandis 

Equal 

intervals 
C_Global C_Grandis Correct % Correct % Correct % 

<= 12 <=17 <=16.9 60.40% 77.00% 77.20% 

<= 26 <=29.6 <=29.8 58.40% 42.90% 43.50% 

<=40 <=43.7 <=43.9 14.90% 18.20% 18.40% 

> 40 >43.7 >43.9 70.30% 53.40% 53.60% 

Global % 51.80% 51.90% 52.20% 

Figure A.2 (Appendix) shows the best of the three models generated, the clusters-based model for the 17 

species E. grandis. In Figure A.2 it can be seen that operator 1 has a productivity proportional to the size of the 18 

individual based on the DBH, as the DBH increases the typical class of productivity increases. A special case 19 

are individuals with DBH between 174 and 205 mm (nodes 5 and 6), since for that DBH the shift becomes an 20 

influential variable. For example, in nodes 13 and 14, although the typical productivity of both nodes is "<= 21 

29.8", in node 13 (corresponds to the night shift) the distribution of the percentages is concentrated between the 22 

classes "<= 16.9 "and" <= 29.8 ", with the 66.7% of the cases. On the other hand, in the day shift, node 14, the 23 

typical productivity is also "<= 29.8" but with 44% of the cases, and adding the class "<= 43.9" they group 73% 24 

of the cases. In this sense, since the harvested trees are of equal size at least in DBH, it is possible to affirm that 25 

operator 1 has a higher processing speed in the day shift than in the night shift. 26 

E. dunnii 27 

Like for the E. grandis species, the performance of operator 1 is analyzed with respect to the harvest of 28 

E. dunnii type trees. Again, the three different categorizations of the productivity variable are used for the DT: 29 

by equal intervals, by global clusters, and by E. dunnii clusters. The results of the confusion matrices for each 30 

categorization are shown in Table 11. Once more, the white columns and clear gray correspond to 31 

categorizations by equal intervals and global clusters, respectively. While the dark gray columns correspond to 32 

the E. dunnii cluster-based categorization. 33 

From Table 11 it is observed that the prediction models for Operator 1 in harvesting of trees of species 34 

E. dunnii have greater precision than the analogous models for the species E. grandis. For the E. dunnii the 35 

global accuracy exceeds 55% while for E. grandis it hovered around 52%. On the other hand, it is possible to 36 

identify that categorizations by clusters do not improve the prediction for E. dunnii records. For example, in the 37 

categorization by equal intervals the model achieves a predictive capacity of 55.7%, while when using 38 
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categorization by global clusters, it decreases slightly to 55.4% and for the categorization of the species cluster 1 

decreases to 55.2%. It is also interesting to note, that the differences between the models do not exceed 0.5%. 2 

Considering the case of categorization by equal intervals, the best of the three, it is seen that for all the categories 3 

the prediction capacity is notoriously superior than it is to the case of E. grandis shown in Table 10. In this case 4 

the third class, "<= 40 ", is the least effective predictor and has 45.5% of the correct cases while in Table 10, 5 

the worst of the classes does not exceed 20%. 6 

Table 11. Confusion matrix resume for Operator 1 comparing equal intervals, global clusters and E. dunnii Clusters 7 
productivity categorization. 8 

Category Equal intervals C_Global C_E. dunnii 

Equal intervals C_Global C_E. dunnii Correct % Correct % Correct % 

<= 12 <= 17 <= 17.2 73.1% 73.3% 72.4% 

<= 26 <= 29.6 <= 29.5 54.0% 36.0% 35.7% 

<=40 <= 43.7 <= 43.4 45.5% 52.2% 52.1% 

> 40 > 43.7 > 43.4 55.1% 56.4% 56.2% 

Global % 55.7% 55.4% 55.2% 

With respect to the prediction models, we present in Figure A.3 (Appendix) the model based on the 9 

categorization of the equal intervals as the one that best describes the productivity of operator 1 in individuals 10 

of E. dunnii species. In this DT, the operator tends to have matched productivities according to DBH, as the 11 

DBH increases, the nodes tend to be dominated by higher productivities categories. However, this relationship 12 

is clearer seen in extreme cases, that is, for low values of DBH the dominance of low productivity categories is 13 

marked in those nodes. The same for the opposite case, high DBH imply a clear dominance of the nodes by high 14 

productivities. In the middle area of the DBH, [201, 216] mm, in node 7, we see that the dominant productivity 15 

is "<= 40" with 41.8% of the records. However, if the shift is incorporated as a descriptive variable, operator 1 16 

achieves typical productions of "> 40" in 52.9% of the cases, and in the night shift "<= 40" in 43.8%. 17 

3.2.2. Operator 2 18 

In this case we will analyse the performance of the operator 2. As for operator 1, the records of the 2 19 

species are initially worked together, to then disaggregate their performance for each species. 20 

Global 21 

Next, the results of the productivity of operator 2 are presented considering the global set of records. 22 

For this study, 2 possible categorizations of the productivity variable were considered: by equal intervals and 23 

by global clusters. In Table 12 the results of the confusion matrices are presented for each categorization of the 24 

productivity variable, the results of the categories by clusters are highlighted in gray. 25 

Table 12. Confusion matrix resume for Operator 2 comparing equal intervals and clusters productivity categorization. 26 

Category Equal intervals Clusters 

Equal intervals Clusters Correct % Correct % 

<= 12 <= 17 18.3% 88.1% 

<= 26 <= 29.6 84.5% 27.8% 

<=40 <= 43.7 17.7% 17.5% 

> 40 > 43.7 24.0% 0.0% 

Global % 42.4% 45.7% 

From Table 12 the cluster categorization manages to improve the overall accuracy of the prediction 27 

model (45.7% versus 42.4%). However, a striking case is that the model based on categories by clusters, fails 28 

to predict any correct case for high productivities. While the model based on equal intervals’ categorization 29 

manages to predict at least 24% of cases of high productivity. For this reason, both models are presented on 30 

figures, since one achieves better prediction of high productivity categories (based on equal interval criteria, 31 

Figure A.4), and the other, better global efficiency (based on clusters, Figure 6). 32 
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 1 

Figure 6. Operator 2 productivity Forecast model considering DBH, shift and specie as independent variables. The 2 
productivity classes are based on cluster analysis. 3 

When comparing both DTs it is possible to see that the one based on categories by equal intervals 4 

(Figure A.4, Appendix) generates a more detailed division of the productivities according to DBH, generating 5 

8 nodes against 6 generated by the DT that uses clusters categorization (Figure 6). In turn, the model with 6 

categorization by equal intervals, shows a high incidence of the species variable, which branches the 5 nodes 7 

with DBH less than 162 mm, while in the cluster model the species variable branches only 2 nodes with lower 8 

DBH to 134. In both models, it is observed that the operator 2 for trees with low DBH, has a very precise 9 

productivity for the species E. dunnii. This is evident in the degree of purity of nodes 9, 11, 13, 15 and 17 of 10 

Figure A.4, with purities greater than 50%, and in many cases higher than 90%. For the model of Figure 6, the 11 

same behavior is observed, purity greater than 90% for terminal nodes of the species E. dunnii. Although in the 12 

first model (Figure 6) the shift variable is not determinant to predict productivity, in the second (Figure A.4) it 13 

collaborates in the description, mainly, for high DBH values (greater than 162 mm). 14 

E. grandis 15 

In this section the performance of operator 2 for individuals of the species E. grandis is detailed. Again, 16 

as in the case of operator 1, the 3 categorizations of the productivity variable are used: based on equal intervals, 17 

based on global cluster and based on E. grandis clusters.  18 

The results of the confusion matrices are shown in Table 13. It can be observed that all the prediction 19 

models achieve a predictive capacity of around 50%, where the ones based on cluster categorizations are higher. 20 

Among the categories based on global clusters and on E. grandis clusters no differences in overall effectiveness 21 

are observed, and between the categories the differences are very subtle, less than 1%. As for the format of the 22 

DT, those based on clusters have the same branch structure and the DT based on equal intervals’ categories, it 23 

is also quite similar. Figure 7 shows the model based on global clusters. 24 

 25 
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 1 
Figure 7. Operator 2 productivity Forecast model for E. grandis specie considering DBH and shift as independent 2 
variables. The productivity classes are based on global clusters. 3 

What can be seen in Figure 7 about operator 2 for the species E. grandis and individuals with DBH less 4 

than 201 mm, is that it tends to have low typical productivities with a considerable purity in the nodes. 5 

Meanwhile for large individuals, with DBH greater than 201 mm, it tends to have high typical productivities, 6 

but the purity of the nodes drops considerably. Regarding the influence of the shift, it is not such as decisive on 7 

productivity. 8 

Table 13. Confusion matrix resume for Operator 2 comparing equal intervals, global clusters and E. grandis Clusters 9 
productivity categorization. 10 

Category Equal intervals C_Global C_Grandis 

Equal intervals C_Global C_Grandis Correct % Correct % Correct % 

<= 12 <= 17 <= 16.9 70.7% 72.8% 73.0% 

<= 26 <= 29.6 <= 29.8 48.2% 36.9% 36.7% 

<=40 <= 43.7 <= 43.9 45.7% 48.0% 48.6% 

> 40 > 43.7 > 43.9 29.3% 30.1% 30.4% 

Global % 50.0% 52.5% 52.5% 

E. dunnii  11 

In this new section we analyse the performance of operator 2 considering only individuals of the species 12 

E. dunnii. Prediction models are generated for each of the categorizations: equal intervals, global clusters and 13 

clusters considering only E. dunnii.  14 

Table 14 shows the results of the confusion matrices using each possible categorization. The columns 15 

are associated by colours, the white columns correspond to categorization by equal intervals, clear-coloured by 16 

global cluster and dark-coloured by clusters of E. dunnii. From Table 14, is observed that the productivity 17 

prediction models of operator 2 for E. dunnii individuals are around 50% of accuracy. The categorizations by 18 
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cluster manage to improve this accuracy in values of 1% and 1.4% for global clusters and clusters of the species 1 

E. dunnii, respectively. However, the clusters-based models fail to predict productivities between 29.6 m3/h and 2 

43.7 m3/h for global clusters, and between, 29.5 m3/h and 43.4 m3/h for E. dunnii clusters. Given that the 3 

differences between global efficiencies for different models do not exceed 2%, we will choose the model based 4 

on categorizations by equal intervals as the one that best describes the performance of operator 2 with 5 

individuals of the species E. dunnii. The model is presented in Figure A.5 (Appendix). 6 

Table 14. Confusion matrix resume for Operator 2 comparing equal intervals, global clusters and E. dunnii Clusters 7 
productivity categorization. 8 

Category Equal intervals C_Global C_E. dunnii 

Equal 

intervals 
C_Global C_E. dunnii Correct % Correct % Correct % 

<= 12 <= 17 <= 17.2 38.4% 66.6% 66.5% 

<= 26 <= 29.6 <= 29.5 56.6% 74.7% 75.0% 

<=40 <= 43.7 <= 43.4 33.6% 0.0% 0.0% 

> 40 > 43.7 > 43.4 66.6% 29.4% 29.6% 

Global % 49.2% 50.4% 50.6% 

In Figure A.5 (Appendix), from node 0 it can be seen that productivities tend to concentrate on 9 

productivities between higher than 12 m3/h and lower or equal than 40 m3/h, by 60%. A striking aspect is that 10 

the only variable that allows predicting productivity is the variable DBH. This implies an indifference of the 11 

operator 2 in its operation to the different shifts. Regarding the productivity according to the DBH, is evidenced 12 

the relation: the higher the DBH, the higher the typical productivity. 13 

3.4. Test 3: By Shift 14 

In the study of Test 3, the influence of the different shifts on productivity is analyzed. To improve the 15 

understanding of this operative aspect we will analyze each shift in isolation. 16 

1.1.1.  Night Shift 17 

In this section the prediction models considering only the night shift is analyzed. As in the case of 18 

operators, the study is divided into three cases: I) considering the two species together, II) considering only E. 19 

grandis records and III) considering only E. dunnii records. In each case the different categorizations of the 20 

productivity variable are considered.  21 

Global 22 

In this first study, both species are considered together, thereby the intervening categorizations are: 23 

based on equal intervals and based on global clusters. 24 

Table 15. Confusion matrix resume for Night Shift comparing equal intervals and clusters productivity categorization. 25 

Category Equal intervals Clusters 

Equal intervals Clusters Correct % Correct % 

<= 12 <= 17 28.9% 90.9% 

<= 26 <= 29.6 82.1% 17.8% 

<=40 <= 43.7 21.1% 19.8% 

> 40 > 43.7 23.2% 26.1% 

Global % 43.8% 45.4% 

Table 15 presents the results of the confusion matrices considering only the night shift and 26 

categorizations based on equal intervals and global clusters. The results of global clusters are in the gray 27 

columns. Table 15 shows that the overall accuracy for each prediction model has values similar to the rest of 28 

the results that consider both species together (Tables 2, 3, 7 and 12), and these are between 40% and 45% 29 

efficiency. In Table 15, it is shown that cluster categorization improves the global level of prediction, and, 30 
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punctually, a significant fact is that for the smallest category of the clusters ("<= 17"), the model manages to 1 

predict 90.9% of the values correctly.  2 

Figure A.6 (Appendix) shows the model based on categorization by clusters. In it, it can be observed 3 

that in several cases the species and operator variables are influential regarding the level of productivity in the 4 

night shift. In the case of large individuals, DBH greater than 199 mm, it is manifest that operator 1 achieves 5 

superior productivities to those of operator 2. An example of this difference are nodes 15 and 16, node 15 6 

corresponds to operator 1 and shows that it manages to obtain productivities superior to 29.6 m3/h in 72% of 7 

the cases, being the category "<= 43.7" the most probable with 46.5% of the cases. While operator 2, achieves 8 

productivities higher than 29.6 m3/h in 48% of cases, and the most likely productivity is "<= 29.6" with 38% of 9 

cases. Regarding the species, it is identified that the species E. dunnii, at least for DBHs smaller than 167 mm, 10 

tends to have more distributed productivities within the same range of DBH. This is evidenced in the purity of 11 

nodes 7, 9 and 11, reaching a purity of 99% for node 7. 12 

E. grandis 13 

In this case we will consider the harvest in the night shift considering only individuals of the species E. 14 

grandis. Therefore, equal intervals based, global clusters and E. grandis clusters are considered as possible 15 

categorizations. 16 

Table 16. Confusion matrix resume for Night Shift comparing equal intervals, global clusters and E. grandis Clusters 17 
productivity categorization. 18 

Category Equal intervals C_Global C_Grandis 

Equal intervals C_Global C_Grandis Correct % Correct % Correct % 

<= 12 <= 17 <= 16.9 64.8% 84.5% 74.0% 

<= 26 <= 29.6 <= 29.8 58.7% 26.4% 41.6% 

<=40 <= 43.7 <= 43.9 35.9% 38.2% 38.7% 

> 40 > 43.7 > 43.9 26.2% 28.5% 28.8% 

Global % 49.3% 51.7% 51.8% 

Table 16 presents the results of the confusion matrices for the models based on the three possible 19 

categorizations of productivity. The columns are associated by colours, white considers categorization by equal 20 

intervals, light gray by global clusters, and gray-dark by E. grandis clusters. The three models have efficiencies 21 

of around 50%, where models based on categories by clusters are better. In turn, the model that uses E. grandis 22 

clusters is the best in the overall value, and in terms relative to the categories, it also achieves a greater proportion 23 

of efficiency among the different categories. The best predicted category is the lowest productivity category 24 

“<= 16.9” with an efficiency of 74%. 25 

Figure 8 shows the model based on categories by E. grandis clusters, because it best describes the 26 

productivity in the night shift considering individuals of E. grandis. In the model it can be observed that for 27 

small individuals, productivity tends to be consistently low. Proof of this is the purity of nodes 7 and 8, where 28 

productivity "<= 16.9" exceeds 80% of cases. On the other hand, the operator factor is significant for individuals 29 

with a diameter between 146 and 179 mm, where operator 2 is regular in its productivity, sustaining low 30 

productivity categories "<= 16.9", with purities at nodes 10 and 14 of 76% and 57%, respectively. In contrast, 31 

operator 1, for the same cases, also has a typical productivity of "<= 16.9", however, it does it in a smaller 32 

percentage. This implies that, for those diameters, operator 1 achieves higher productivities implying a greater 33 

speed in the processing of individuals. 34 
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 1 
Figure 8. Night Shift Productivity Forecast model for E. grandis specie considering DBH and operator as independent 2 
variables. The productivity classes are based on E. grandis clusters. 3 

E. dunnii 4 

In this case, the harvest of individuals of E. dunnii in the night shift is analyzed. For this, the three 5 

options of the productivity variable categorization are considered: by equal intervals, global clusters and E. 6 

Dunni clusters. The results of the three models are presented in Table 17, where again the columns 7 

corresponding to each categorization of productivity are associated by colours. 8 

Table 17. Confusion matrix resume for Night Shift comparing equal intervals, global clusters and E. dunnii Clusters 9 
productivity categorization. 10 

Category Equal intervals C_Global C_E. dunnii 

Equal 

intervals 
C_Global C_E. dunnii Correct % Correct % Correct % 

<= 12 <= 17 <= 17.2 71.7% 71.9% 71.4% 

<= 26 <= 29.6 <= 29.5 54.1% 23.9% 24.0% 

<=40 <= 43.7 <= 43.4 50.0% 64.3% 60.0% 

> 40 > 43.7 > 43.4 43.7% 49.0% 55.0% 

Global % 54.1% 53.4% 53.4% 

From Table 17 the general level of prediction is above 50%. With respect to the three categorizations, 11 

it can be observed that for the night shift and with individuals of the species E. dunnii, the one that best predicts 12 

is the categorization by equal intervals. This is also the most stable categorization regarding the different 13 

categories, since the category with the lowest prediction efficiency is "> 40" with 43.7%. Cluster categorizations 14 

have similar overall performance, but their prediction level is more disproportionate between categories. 15 
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 1 
Figure 9. Night Shift Productivity Forecast model for E. dunnii specie considering DBH and operator as independent 2 
variables. The productivity classes are based on equal intervals. 3 

The prediction model shown in Figure 9 is the most effective one, which is the model based on the equal 4 

interval criteria. In the model it can be seen in node 0 that the relations between the productivities is fairly even, 5 

ranging from 19.2% for "<= 12" to 31.9% for "<= 26". As a general comment it is possible to identify that the 6 

productivity in the night shift of individuals with DBH greater than 175 mm tends to be quite uneven among 7 

operators. For example, in trees with DBH between 175 and 203 mm, operator 1 achieves productivities superior 8 

to 26 m3/h in 57.2% of the cases (adding the two superior categories). On the other hand, operator 2 achieves 9 

this in 29.6% of cases. A particular case is for individuals with DBH greater than 234mm, for these cases both 10 

operators achieve productivities superiors to 26 m3/h for 80% of the cases, only that operator 1 in almost 58% 11 

of the cases achieves productivity "> 40" while that the operator 2 does it only in 38.1% of the cases. 12 

1.1.2. Day Shift 13 

In contrast to the previous study, in this case only harvest records made in day shift are considered. As 14 

in the previous studies, first a global study including both species is carried out, and then the study for each 15 

species is particularized. 16 

Global 17 

In this first study of the day shift, the records of both species are considered and as possible 18 

categorizations of the productivity variable, we have those based on equal interval criteria and on global clusters. 19 

Table 18 presents the results of the confusion matrices for the models based on both categorizations. The 20 

columns associated with each model are distinguished by colours. 21 

When analysing the efficiencies of the prediction models in Table 18, it is observed that the global level 22 

is 41%, being a little better for the case of using categorizations by global clusters. However, this categorization 23 
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has a very different precision among the different categories, reaching 90% accuracy for the category "<= 17" 1 

and falling to 5.6% for "> 43.7". In this sense, the model based on categories by equal intervals is slightly better, 2 

although the global level of prediction decreases a little, between the categories it has a better precision. 3 

Table 18. Confusion matrix resume for Day Shift comparing equal intervals and clusters productivity categorization. 4 

Category Equal intervals Clusters 

Equal intervals Clusters Correct % Correct % 

<= 12 <= 17 13.4% 90.2% 

<= 26 <= 29.6 83.4% 17.3% 

<=40 <= 43.7 13.3% 17.8% 

> 40 > 43.7 26.8% 5.6% 

Global % 41.3% 41.6% 

The model shown in Figure 10 is the one obtained by considering the productivity variable by the equal 5 

interval categories. In the same it is observed that the operator has a strong influence on the prediction, and this 6 

influence depends on the size of DBH. The higher DBH, the greater the differences between operators. For 7 

DBH greater than 195 mm, operator 1 achieves productivities clearly superior to operator 2. For example, for 8 

DBH between 195 and 233 mm, operator 2 has a typical productivity of "<= 40" and in 60% manages to 9 

overcome the 26 m3/h. And the operator 1, has a typical productivity "> 40" and in 83% of the cases it exceeds 10 

26 m3/h. 11 

 12 
Figure 10. Day Shift Productivity Forecast model considering DBH, specie and operator as independent variables. The 13 
productivity classes are based on equal interval criterion. 14 

E. Grandis 15 

In this case the impact of the day shift when harvesting individuals of E. grandis is studied. The 16 

categorizations considered are based on equal intervals, global clusters and E. grandis clusters. Table 19 shows 17 

the results of the models based on the three possible categorizations. The columns that present the results of 18 

each categorization are distinguished by colours. 19 
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From the precision data of the prediction models in Table 19, it is observed that clustering allows to 1 

slightly improve the overall predictive capacity of the model, and among cluster categorizations, the clusters of 2 

the species have the best result. However, the most even performance in predicting the different categories is 3 

the one based on equal interval criteria. Therefore, the latter is chosen to show and analyze the study of the 4 

impact on productivity of the day shift in individuals of the species E. grandis. 5 

Table 19. Confusion matrix resume for Day Shift comparing equal intervals, global clusters and E. grandis Clusters 6 
productivity categorization. 7 

Category Equal intervals C_Global C_Grandis 

Equal intervals C_Global C_Grandis Correct % Correct % Correct % 

<= 12 <= 17 <= 16.9 62.5% 66.3% 66.5% 

<= 26 <= 29.6 <= 29.8 49.9% 62.9% 63.3% 

<=40 <= 43.7 <= 43.9 33.5% 19.7% 19.9% 

> 40 > 43.7 > 43.9 60.3% 41.1% 41.4% 

Global % 51.0% 52.2% 52.6% 

The prediction model shown in Figure A.7 (Appendix) is obtained by modelling the productivity 8 

variable through the categories defined by equal intervals. The other two models have a very similar structure 9 

and coincide in the branching of the first level according to DBH and in the same intervals. Specifically, from 10 

the model presented in Figure A.7, it can be observed that in the day shift the productivity of individuals of E. 11 

grandis species is particular for each operator. All DBH intervals are branched according to the operator. As in 12 

the previous cases, for the same type of individual to be harvested, the operator 1 tends to achieve better 13 

productivities and these improvements are accentuated as the individual has a larger DBH. As is the case of 14 

individuals with DBH between 193 and 224 mm, nodes 17 and 18, in which the operator 1 achieves 15 

productivities exceeding 26 m3/h in 62% of cases, and operator 2 only in 32%, that is, it practically doubles in 16 

productivity. For individuals with larger DBH it is maintained that operator 1 achieves higher productivities 17 

than operator 2. 18 

E. dunnii 19 

In this last study, the impact of the diurnal shift in individuals of the E. dunnii is analyzed. The 20 

categorizations considered are based on equal intervals, global clusters and E. dunnii clusters. Table 20 shows 21 

the results of the models based on the three possible categorizations. The columns that present the results of 22 

each categorization are associated by colours. 23 

From Table 20, it is observed that the models generated have an efficiency in the prediction of daytime 24 

productivity of the species E. dunnii of approximately 50%, being slightly better for clusters categorizations. 25 

Nonetheless, when considering the ability to describe the different categories, the model based on equal interval 26 

criteria performs better than the cluster-based models. Therefore, to describe the productivity in individuals of 27 

E. dunnii in the day shift, the model based on categories by equal intervals is used. 28 

Table 20. Confusion matrix resume for Day Shift comparing equal intervals, global clusters and E. dunnii Clusters 29 
productivity categorization. 30 

Category Equal intervals C_Global C_E. dunnii 

Equal 

intervals 
C_Global C_E. dunnii Correct % Correct % Correct % 

<= 12 <= 17 <= 17.2 38.9% 77.6% 77.6% 

<= 26 <= 29.6 <= 29.5 59.4% 48.8% 49.2% 

<=40 <= 43.7 <= 43.4 36.1% 12.4% 12.1% 

> 40 > 43.7 > 43.4 63.4% 52.6% 52.5% 

Global % 50.6% 51.7% 52.1% 

Figure 11 shows the model based on equal interval criteria. In this model it can be observed that the 31 

productivities tend to be well proportional to the DBH, as the DBH increases, the typical productivity of the 32 

different nodes also increases. On the other hand, there is a clear differentiation between operators’ productivity 33 
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for individuals with DBH greater than 164mm. In all these cases operator 1 has greater productivity than 1 

operator 2, in some cases directly the typical productivity of operator 1 is higher than that of operator 2, as in 2 

nodes 10 and 11. In other cases, although they have the same typical productivity, the distribution of cases per 3 

node is different, as in nodes 12 and 13.  4 

 5 

 6 
Figure 11. Day Shift Productivity Forecast model for E. dunnii specie considering DBH and operator as independent 7 
variables. The productivity classes are based on equal interval criterion 8 

4. Discussion 9 

In this section, both, the implementation of the methodologies and the results obtained are discussed. 10 

First, it is discussed whether the methodologies are adequate and effective for the proposed study and, then, the 11 

most important results of the study of productivity in CTL forest harvesting systems are discussed. 12 

4.1. Discussion of the Methodologies used 13 

The Big Data approach used consists on the implementation of DT and classification by clusters. 14 

Regarding DT, it turned out to be a useful method for a study of this type. Since the study sought to describe 15 

the influence factors of productivity in forest harvest, and these factors had different natures: scalar, nominal or 16 

categorical. In this sense, DT allow an integral analysis incorporating and combining the influence of different 17 

independent variables on a dependent. This allowed to describe scenarios or situations in which productivity 18 

can be described or predicted with a high level of precision, as was the case of high purity nodes throughout the 19 

study. By analyzing all the results from a more generic perspective it is possible to establish that the general 20 

prediction capacity was approximately 50%. In this sense, our results agree with others in the literature such as 21 

(Erikson & Lindroos 2014). Erikson & Lindroos (2014), used a large amount of data collected in Sweden's 22 

forest systems, where they are identified by statistical models at 55%. However, these authors focused their 23 

study on the impact of the characteristics of the machinery on productivity, such as the load capacity of the 24 
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machine or the type of head, and in our case, we analyze factors that are more related to the management of 1 

operations. In order to establish some precise criterion on whether this value is high or low, it would be necessary 2 

to contrast it with other values of the literature, which is not possible due to the lack of this type of study as 3 

mentioned in the introduction.  4 

Regarding the use of classification by clusters, it can be mentioned that, in general terms, it collaborates 5 

to improve the performance of DT. This improvement validates, at least for this study, k-means as a proper 6 

method for modelling productivity classes. Even more, k-means has the great advantage of enabling the 7 

automation of this categorization process if necessary. However, further studies should be considered for 8 

confirming this primary result. In general terms, the models based on clusters tended to be a little more precise, 9 

without this gain in precision being overwhelming. When considering our classification in the range of 10 

productivity, it can be noted that our productivity levels are similar to others found in the literature. Gerasimov 11 

et al. (2012a) and Gerasimov et al. (2012b) analyze the productivity of the CTL system in Russian forests, and 12 

find that, together with the size of the log, the species of the harvested tree are the main factors that describe the 13 

level of productivity. In their studies they determined that on average the productivities vary between 16 and 14 

49.5 m3 h-1, ranges similar to those found in the analyzed systems of Uruguay. 15 

 16 

4.2. Results Discussion  17 

The first significant conclusion about the results is the strong dependence of productivity on the variable 18 

DBH. This dependency is expected, since it is a direct estimator of the amount of wood that each harvested 19 

individual contains. Results that are very frequent in the literature of the subject (Strandgard et al. [2013]; 20 

Gerasimov et al. [2012a]; Tolan & Visser [2015]; Strandgard et al. [2017]). However, by being able to analyse 21 

productivity by DT, relationships of other variables could be discovered from different DBH ranges. In this 22 

sense, the descriptive capacity of other variables was improved with respect to productivity. For example, in 23 

Figure A.1 nodes 17, 29 and 30, allow to identify relationships between productivity and tree species with a 24 

very high precision (higher than 90% in node 17) when limiting the study to individuals with DBH between 111 25 

and 122. Which in turn manages to improve up to 98% efficiency in node 30, by linking the operator variable. 26 

Regarding the analysis of the operators, the general conclusion is that operator 1 has higher 27 

productivities than operator 2, and that this superiority is more noticeable for individuals with higher DBH. 28 

When considering the influence of the shifts, the operator 1 manages to greatly exceed the productivity of 29 

operator 2 in the night shift. Analyzing punctually the operator 1, it was noted that its productivity in the day 30 

shift was clearly superior to that of the night shift for individuals with intermediate DBH (Figure A.3 nodes 11, 31 

12, 13 and 14, and Figure 6 nodes 11 and 12). The reason for this must be that during the day, operator 1 has a 32 

higher processing speed than at night. On the other hand, operator 2 has more similar productivities during both 33 

shifts. The notorious differences in productivity rate between operators match to similar studies in literature, 34 

where the experience of the operator is a determining factor in the level of productivity (Purfürst [2010]; Hiesl 35 

& Benjamin [2013]). Moreover, Purfürst (2010) carried out an in-depth study on the impact of training on the 36 

productive capacity of workers, indicating that at the end of the training process they double their initial 37 

production capacity, this trend is evident in our case. 38 

Considering the shift studies, it was discovered that in the night shift for the species E. dunnii and DBH 39 

greater than 175 mm, the operator 1 produces much more than the operator 2 (Figure 10 nodes 9, 10, 11, 12, 13 40 

and 14). While in the day shift the differences between operators were noted in the species E. grandis, operator 41 

1 achieved better productivity for virtually all DBH ranges. Although the study of shifts is not one of the classic 42 

aspects when analyzing productivity in the literature, recently (Häggström & Lindroos 2016) proposed a 43 

framework to carry out future studies from which it is possible to analyze new aspects in the productivity of the 44 
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forest harvest. In that framework it is inferred that the shift scheduling is a factor that should not be ignored. 1 

Our results support this inference. 2 

Table 21. Summary of rules with purity level over 80%. 3 

Test Conditions Rule 
Purity 

% 
Figure 

1 

Prod. Class: equal interval 

DBH ≤ 94 and Specie E. dunni:  

Productivity “≤ 12” 
90.7% 

4 
DBH (94, 102] and Specie E. dunni: 

Productivity “≤ 12” 
82% 

DBH (102, 106] and Specie E. dunni: 

Productivity “≤ 12” 
91.8% 

Prod. Class: Global cluster 

DBH ≤ 94 and Specie E. dunni:  

Productivity “≤ 17” 
96% 

A.1 

DBH (102, 106] and Specie E. dunni: 

Productivity “≤ 17” 
97.9% 

DBH (106, 111] and Specie E. dunni: 

Productivity “≤ 17” 
91.4% 

DBH (111, 122] and Specie E. dunni: 

Productivity “≤ 17” 
93.5% 

2: Op. 1 

Prod. Class: Global cluster 
DBH ≤ 119 and Specie E. dunni:  

Productivity “≤17” 
95% 5 

Prod. Class: E.grandis cluster, 

only E. grandis Records 
DBH ≤ 116: Productivity “<= 16.9” 90% A.2 

Prod. Class: equal interval,  

only E. dunni Records 
DBH ≤ 109: Productivity “≤ 12” 86.6% A.3 

2: Op. 2 

Prod. Class: Global cluster 

DBH ≤ 111, and Specie E. dunni: 

 Productivity “≤ 17” 
91% 

6 
DBH (111, 134] and Specie E. dunni: 

Productivity “≤ 17” 
93% 

Prod. Class: equal interval 

DBH ≤ 94, and Specie E. dunni: 

 Productivity “≤ 12” 
90.7% 

A.4 
DBH (94, 102] and Specie E. dunni: 

Productivity “≤ 12” 
82% 

DBH (102, 106] and Specie E. dunni: 

Productivity “≤ 12” 
91.8% 

Prod. Class: Global cluster,  

only E. grandis Records 

DBH ≤ 129: Productivity “≤ 17” 

(Including Shift variable, DBH ≤  129 and Shift 

Night, the purity rises to 89%) 

84% 7 

3: Shift 

Night 

Prod. Class: Global cluster 

DBH ≤ 102 and Specie E. dunni:  

Productivity “≤ 17” 
99% 

A.6 
DBH (102, 129] and Specie E. dunni: 

Productivity “≤ 17” 
90.5% 

Prod. Class: E.grandis cluster, 

only E. grandis Records 
DBH ≤ 146: Productivity “≤ 16.9” 84.2% 8 

Prod. Class: equal interval,  

only E. dunni Records 
DBH ≤ 113: Productivity “≤ 12” 86.6% 9 

 4 
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In Table 21 all the rules with a precision over 80% are presented. This rules are related to which Test 1 

they belong, the conditions of the experiments and in which Figure they are. As a general comment from Table 2 

21 is possible to identify that the harvest system considered for this study tends to have a very regular 3 

productivity for small trees, as most of the DBH involved in these rules are lower than 130 mm. This shows that 4 

the studied CTL system produce in a regular rate for trees that are not large. This can be justified by the fact 5 

that harvesting and managing small trees can be a more regular operation, than dealing with big and heavy trees. 6 

Another consideration from these rules, is that Operator do not seem to be an important factor, both operators 7 

can have good productivity (regarding Table 21 data). About the Shift, a similar appreciation can be done, 8 

however for the case of the Rule of Figure 7 (i.e. considering only operator 2 and E. grandis records), shift tends 9 

to have impact on productivity.  The specie influence productivity, at least for our case of study, since in every 10 

rule of Table 21 it appears as a descriptor variable (in the rule enunciation or in the data filtering).  11 

When considering the general forestry system to which this harvest system belongs, we can say that the 12 

main production line tends to consider small trees, since most of the harvested wood is used for pulp production. 13 

In this scenario, our approach contributes to orientate the forest planner in how to assign the resources for the 14 

harvesting, and on which factors it should pay attention and on which it could be indifferent.  15 

On the other hand, it is interesting to comment on the enormous potential of having automatic data 16 

collection, since as studied Strandgard et al. (2013) and Brewer et al. (2018), these data allow us to analyze 17 

(contemplating the necessary precautions) the harvest systems in terms of productivity and operational aspects 18 

in a more flexible and accessible way than conducting studies through video or timing. At the same time, when 19 

the data collection is automatic, the "Hawthorne effect" is avoided (which implies the change of attitudes of a 20 

person by the mere fact of being observed by another person). Even, these data collected in the StanForD format 21 

allow to establish a common base for the comparison of the studies based on them, making comparable the case 22 

studies from Austraila (Strandgard et al., 2013), Russia (Gerasimov et al., 2012), Uruguay (Olivera et al., 2016) 23 

or South Africa (Brewer et al., 2018), to mention a few examples. 24 

 25 

5. Conclusions 26 

In this work, a big data-based approach is proposed to analyze and generate valuable information from 27 

the large amount of data stored by forest harvesting teams. In this sense it was possible to verify that the decision 28 

trees and the k-means algorithm are suitable methods for this type of problems. On the other hand, it was 29 

possible to study the relationship of different factors with the productivity of the harvest. Of these factors, the 30 

DBH stands out as the most significant, but the species and the operator also showed significant influences. 31 

In turn, the advantages of DT were used to study particular situations defined when setting values for 32 

each variable. This makes possible to identify important prediction rules for harvest planners who must face 33 

specific and concrete situations. In many of those cases, the predictive capacity was very good. However, there 34 

were other cases in which no. This may be due to other factors that influence the analysis that are not 35 

contemplated in the formation of the data set. 36 

Therefore, as a future line of research, it is proposed to evaluate other forest production environments 37 

in order to analyze if the predictive capacity of these methods can be improved.  38 
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Appendix 1 

 2 

Figure 5. Productivity Forecast model considering DBH, operator, shift and specie as independent variables. The 3 
productivity classes are based on cluster analysis. 4 
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 1 

Figure 7. Operator 1 productivity Forecast model fory E. grandis specie considering DBH and shift as independent 2 
variables. The productivity classes are based on cluster analysis for E. grandis registers. 3 
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 1 

Figure 8. Operator 1 productivity Forecast model for E. dunnii specie considering DBH and shift as independent variables. 2 
The productivity classes are based on equal intervals’ criterion. 3 
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 1 

Figure 10. Operator 2 productivity Forecast model considering DBH, shift and specie as independent variables. The 2 
productivity classes are based on equal intervals’ criterion. 3 
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 1 

Figure 12. Operator 2 productivity Forecast model for E. dunnii specie considering DBH and shift as independent 2 
variables. The productivity classes are based on equal interval’s criterion. 3 

 4 
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 1 

Figure 13. Night Shift Productivity Forecast model considering DBH, specie and operator as independent variables. The 2 
productivity classes are based on cluster analysis for global registers. 3 

 4 



36 

 

 1 
Figure 17. Day Shift Productivity Forecast model for E. grandis specie considering DBH and operator as independent 2 
variables. The productivity classes are based on equal interval’s criterion. 3 


