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ABSTRACT 22 

 23 

The estimation of green citrus fruit yield is a key parameter for growers and the industry. 24 

The early estimation of orange yield at the immature green stage could influence the 25 

future market price and allow producers to plan the harvest in advance, thus reducing 26 

costs. This research can be considered as a preliminary step for designing low-cost 27 

spectral cameras capable of being mounted on unmanned aerial vehicles (UAVs) to 28 

estimate orange yield and defects. Images were acquired from oranges and leaves from 29 

an orchard in Jeju island (Jeju, Republic of Korea), using two hyperspectral reflectance 30 

imaging systems, one working in the range 400–1000 nm (visible/near infrared, Vis/NIR) 31 

and the other between 900–2500 nm (short-wave infrared, SWIR). The main objective of 32 

the research was to set up a methodology to select the relevant bands - from the two 33 

spectral ranges studied - to distinguish between green oranges and leaves and to detect 34 

defects, which will allow citrus yield to be estimated. Analysis of variance (ANOVA) and 35 

principal component analysis (PCA) were used to select the key wavelengths for this 36 

purpose; next, a band ratio coupled with a simple thresholding method was applied. This 37 

study showed that the Vis/NIR hyperspectral imaging correctly classified 96.97% and 38 

92.93% of the pixels, respectively, to distinguish between green oranges and leaves and 39 

to detect defects, while with the SWIR system, the percentage of pixels correctly 40 

classified for these two objectives were 74.79% and 89.31%, respectively. These results 41 

confirm that it is possible to use a low number of wavelengths to estimate harvest yield 42 

in oranges, which could pave the way for the future development of low-cost and low-43 

weight equipment for the detection of green and sound fruit. 44 

 45 

Keywords: Orange; Harvest yield; Defect detection; Hyperspectral and multispectral 46 

imaging   47 



1. Introduction 48 

 49 

The citrus sector is one of the most dynamic and important agricultural sectors. 50 

This sector is of considerable economic value to the countries of the Mediterranean Basin, 51 

China, Brazil, the United States and Southeast Asia (Republic of Korea), the main 52 

producers of citrus fruit, in general, and of oranges in particular (FAO, 2017). 53 

In the light of the economic importance of the orange on the international market, 54 

it is of particular interest to obtain an estimate of the crop yield prior to harvesting, which 55 

usually takes place when the fruits are of the same green colour as the leaves (Obenland 56 

et al., 2009). In oranges, the fruits often reach physiological maturity and present excellent 57 

eating quality while the peel is still green. Post-harvest de-greening practices are used to 58 

speed up the fruit colour change and to make the fruit more acceptable for marketing, 59 

since a shiny, yellow peel is what the market demands (Porat, 2008).  60 

Therefore, tools are needed to identify these green fruits on-tree, to make possibly 61 

decision on harvesting and to optimize the process, so that fruits of the highest quality are 62 

picked in keeping with their subsequent industrial use. 63 

Currently, the indexes used to determine quality in oranges are colour intensity 64 

and uniformity, firmness, size, shape, quality of flavour, lack of decay and lack of defects 65 

including physical damage (abrasions and bruising), skin blemishes and discoloration, as 66 

well as insect damage (Arpaia and Kader, 1999): this last quality index is one of the most 67 

influential factors on yield in fresh oranges (Leemans and Destain, 2004; Li et al., 2011).  68 

These days, the large-scale measurement of these production and quality 69 

indicators still constitutes a major difficulty for producers. On the one hand, it is believed 70 

that drones with a sensing unit may be used in the near future to achieve this aim due to 71 

the rise in their popularity for agricultural applications; on the other, hyperspectral 72 

imaging (HSI) and multispectral imaging (MSI) are two emerging techniques which 73 



could be used for this purpose, due to their ability to acquire both spectral and spatial 74 

information and thus assess quality indexes in agricultural products (Dale et al., 2013).  75 

As far as the present authors are aware, only two published studies have used HSI 76 

technology to distinguish between green oranges and leaves on-tree. In the first, Kane and 77 

Lee (2007) used an InGaAs camera with a spectral range of 900 to 1700 nm to identify 78 

green oranges in the field. They applied a combination of three different spectral band 79 

images to identify the green orange and achieved an accuracy of 84.5% in terms of 80 

correctly classified pixels. In the other, Okamoto and Lee (2009) using a CCD 81 

hyperspectral camera in the 369–1042 nm range applied stepwise forward variable 82 

selection method and linear discriminant analysis was then developed with selected 83 

variables ̠  between 10 and 14 ̠  to identify green citrus fruits in the field at different stages, 84 

with detection accuracies for complete fruit ranging between 80 to 89%. 85 

As regards detecting external defects in oranges, a number of studies have been 86 

published to date, all of which were carried out under laboratory conditions, with the aim 87 

of selecting the optimal wavelengths for this application with a multispectral system (Li 88 

et al. 2011; Bulanon et al., 2013; Lorente et al., 2013; Li et al., 2016). 89 

In addition, the recent development of small-sized hyperspectral and multispectral 90 

sensors has enabled them to be attached to UAVs in order to obtain images with a high 91 

spectral and spatial resolution (Dale et al., 2013). The use of multispectral instead of 92 

hyperspectral cameras would reduce the cost of the system and would speed up the data 93 

analysis (Kim et al., 2011), although it would be necessary to make a prior selection of 94 

the optimal spectral bands for each particular objective. 95 

Likewise, it is important to consider that the HSI measurement devices can affect 96 

the quality of the image data, so the selection of the instrument and the wavebands play 97 

an important role in optimising the performance of the application (Kim et al., 2011). 98 



Most of the research carried out using multi and hyperspectral cameras to measure quality 99 

attributes (sweetness and acidity, firmness, stage of maturity or detection of defects) in 100 

fruit and vegetables have been carried out in the Vis/NIR region (400–1000 nm) (Kim et 101 

al., 2011; Li et al., 2018), although other studies have also used instruments in the SWIR 102 

range (1000–2500 nm) (Gowen et al., 2007). This spectral range is of particular interest 103 

to the citrus sector, since it not only allows us to differentiate between specific areas of 104 

the fruit (i.e. for detecting defects), but also includes the most suitable wavelengths for 105 

measuring the chemical parameters, such as soluble solid content and acidity (Williams, 106 

2001).  107 

Thus, given the numerous options available in terms of equipment, the successful 108 

implementation of hyperspectral or multispectral reflectance technology in-situ for crop 109 

yield estimation requires the instrument to be selected previously and the correct 110 

waveband combination to be found for this specific application. Although this aspect is 111 

hugely relevant when designing low-cost and low-weight cameras, to our knowledge 112 

there are no reports in the literature regarding the comparison between Vis/NIR and SWIR 113 

HSI systems to identify green citrus fruits and to pick out defective ones. 114 

The objective of this work was to evaluate – at the laboratory scale – two line-115 

scan hyperspectral reflectance imaging systems working in the Vis/NIR and SWIR 116 

ranges, respectively, to estimate the crop yield of oranges based on the distinction 117 

between green oranges and leaves and the detection of external defects (abrasions and 118 

bruising, skin blemishes and discoloration) in the oranges. The performance of these two 119 

systems was also compared and the optimal wavelengths were selected for the further 120 

development of a low-cost and low-weight MSI system which could be mounted on 121 

drones. 122 

 123 



2. Material and methods 124 

 125 

2.1. Sampling 126 

 127 

The oranges and leaves were obtained from an orchard in Jeju island (Jeju, 128 

Republic of Korea) in autumn 2017.  129 

For the first of the objectives – to differentiate green oranges from leaves – 20 130 

leaves and 24 green oranges were placed in plastic bags and immediately taken to the 131 

laboratory. In the case of the leaves, wet tissues were put into the bags to maintain the 132 

moisture content of the leaves. Once in the laboratory, images of the leaves and green 133 

oranges were taken. Next, a set made up of 5 samples of green oranges together with their 134 

leaves was measured to validate the model obtained. 135 

For the second objective – to identify oranges with defects – a total of 20 oranges 136 

with some external defects (abrasions and bruising, skin blemishes and discoloration) 137 

were measured. 138 

Although the number of samples available in this study could appear to be limited, 139 

it is enough to evaluate the potential of the developed methodology. 140 

 141 

2.2. Hyperspectral imaging systems and image acquisition 142 

 143 

Two laboratory-based push-broom Vis/NIR and SWIR systems were used to 144 

obtain the hyperspectral images of oranges and leaves. Details of both imaging systems 145 

are given in Table 1.  146 

The Vis/NIR system was made up of an Electron Multiplying Charge Coupled 147 

Device (EMCCD) camera (Luca R DL-604M, 14-bit, Andor Technology, South Windsor, 148 



CT, USA), a C-mount objective lens (F1.4 28-mm compact lens, Schneider Optics, 149 

Hauppauge, NY, USA), a line scan imaging spectrograph (Vis/NIR, Headwall photonics, 150 

Fitchburg, MA, USA) and halogen light sources (4 x 2 sets of 100 W) at a 45° angle to 151 

the sample. Next, in order to reduce specular reflection, the system was equipped with a 152 

glass rotating polarizer available for Vis/NIR region. The nominal reflectance range was 153 

approximately 400 to 1000 nm, with a spectral resolution of 4.7 nm. In order to capture 154 

the actual shape of samples by keeping the pixels shape nearly square, the number of lines 155 

was set at 1200 and 1080, with the distance between the lines set at 0.250 and 0.278 mm 156 

for the oranges and the leaves, respectively. Spectral data was stored on a 1200 x 502 x 157 

128 hypercube for the oranges and a 1080 x 502 x 128 hypercube for the leaves.  158 

For the SWIR system, a 384 x 256 pixel InGaAs camera (MCT, Headwall 159 

Photonics, Fitchburg, MA, USA) with spectrograph (Headwall Photonics, Fitchburg MA, 160 

USA) and C-mount 1.4/25 mm focal length lens (Navitar, Inc., Rochester, NY, USA) was 161 

used to collect images over a wavelength range of 900 to 2500 nm with 6 nm spectral 162 

resolution. The illumination for reflectance imaging was provided by six tungsten halogen 163 

lamps (100 W) connected by optical fibres and set up at a 45º angle. Line-by-line images 164 

were collected by a conveyor unit enable to cover the spatial shape of the samples; it was 165 

set to move at a 0.328 mm/scan for oranges and a 0.364 mm/scan for leaves. 166 

To obtain the imaging using each hyperspectral system, 3 oranges were placed on 167 

a tray (30 x 12.5 cm) in a single row, while for the leaves, a batch of four samples on a 168 

30 x 14 cm tray was imaged with a single take. The sound, green orange samples were 169 

arranged so that the stems pointed upwards, whereas the defective oranges were manually 170 

arranged to present the defects for imaging. As for the leaves, these were arranged with 171 

the adaxial side facing upwards. 172 



Tablet movement was controlled by the step interval and the number of steps. 173 

Visual Basic 6.0 (Microsoft, Seattle, WA, USA) was used to run the HSI system and to 174 

control both conveyor and motor speed (0.25 mm/s for Vis/NIR and 8 mm/s for SWIR), 175 

instantaneous field of view (IFOV) and exposure time (Table 1). The two-dimensional 176 

spectral and spatial data were captured by the EMCCD and InGaAs cameras and stored 177 

in raw format as a 3D hypercube (two spatial and one spectral dimension), which 178 

comprised each spatial location and spectral information at each wavelength (λ).   179 

Due to the heterogeneous intensities of the light source across the whole 180 

wavelength range, reflectance calibration was performed before each measurement by 181 

taking dark and white reference images. The dark reference was obtained by covering the 182 

camera lens with a black cap (0% reflectance) and the white reference by using white 183 

Teflon (99% reflectance). The reflectance value (R) of the raw images (R0) was calculated 184 

using the dark (D) and white (W) reference and taking into account the correction factor 185 

for the reference panel (C) as in following equation (Kim et al., 2001):  186 

𝑅 =  
𝑅଴ − 𝐷௜

𝑊௜ − 𝐷௜
 𝑥 𝐶௜ 187 

where i is the pixel index (i = 1, 2, 3, …, n) and n is the total number of pixels and the 188 

correction factor (C) of 1 was used. 189 

 190 

2.3. Image processing and analysis 191 

 192 

The steps followed in the full procedure of image processing and analysis for both 193 

instruments are shown in Figure 1. To achieve this aim, Matlab software (version 2015a, 194 

The Mathworks, Natick, MA, USA) was used. In the case of the SWIR system, the 195 

spectral range used was 900 to 1900 nm due to the fact that there was no signal beyond 196 

this wavelength. 197 



After reflectance correction, the region of interests (ROIs) for sound green oranges 198 

and leaves were manually selected using a reflectance image. The spectra of all pixels in 199 

each ROI was extracted and averaged to obtain the mean intensity value for each 200 

wavelength.  201 

For the identification of oranges, the selection of the most significant wavelengths 202 

for the distinction of green oranges and leaves was based on F-values of the analysis of 203 

variance (ANOVA) between the two groups (i.e. green oranges versus leaves). The higher 204 

the F-value, the more statistically significant the mean separation between groups (Neter 205 

et al., 1996; Cho et al., 2013). In the case that only one wavelength could be extracted 206 

from the ANOVA analysis, PCA was also used to determine the other wavelength needed 207 

to obtain the ratio. Thus, the wavebands which presented the greatest difference were 208 

used in the application of the ratio image.  209 

For the detection of defects, PCA was used for all the hyperspectral data sets, 210 

including the spatial and spectral dimensions. This algorithm reduces the spectral 211 

dimensionality, since it converts the huge amount of data from the hypercube into a 212 

limited set of scores and loadings. In this work, the PC images and the loading vectors 213 

for the first three principal components (PC1, PC2, PC3) were used to select robust 214 

wavelengths for the proposed objectives; for this goal, the mean centre was performed as 215 

a pre-processing method (Wise et al., 2006).  216 

Prior to using the PCA, a binary mask image was generated in order to avoid 217 

interferences from background that could decrease the accuracy of the method. To 218 

achieve this, the images at wavelengths 712.5 nm and 1065.11 nm were used for the 219 

segmentation for the Vis/NIR and SWIR hyperspectral images, respectively, since they 220 

showed the best contrast between the sample and the background. The background was 221 



removed by setting a simple threshold value (R < 0.045 for Vis/NIR and R < 0.073 SWIR) 222 

for these wavelengths, respectively, which was then applied to all the hypercubes. 223 

Because the band-ratio can enhance the contrast between different regions (Vargas 224 

et al., 2005), two different band-ratios were used to distinguish between the green oranges 225 

and the leaves and to detect external defects in the oranges. The two-band ratio was 226 

performed as the following equation: 227 

𝑄௧/௞ =
𝑅௧

𝑅௞
 228 

where Qt/k represents a quotient of spectral reflectances, and Rt and Rk are the 229 

reflectance intensities at t nm and k nm. 230 

The frequency histograms of the ratio values were recorded in order to select the 231 

optimal threshold values. Finally, the accuracy of the models was calculated as the 232 

percentage of correctly classified pixels. 233 

To ensure the robustness of the models developed, their external validation was 234 

carried out. To achieve this, for differentiating between the leaves and the green oranges, 235 

the 5 samples of oranges attached to leaves were used, while to detecting the defects, 25% 236 

of the total defective samples (i.e. 5 fruits not used to develop the model) were randomly 237 

selected for validation.  238 

 239 

3. Results and discussion  240 

 241 

3.1. Spectral analysis 242 

 243 

Representative mean reflectance spectra of green oranges and leaves after 244 

normalization, calculated from the pixel values of the ROIs for each system, are shown 245 

in Figure 2.  246 



Fig. 2a shows the mean spectra obtained using the Vis/NIR system in the spectral 247 

region 400–1000 nm. Although the spectral patterns for both – green oranges and leaves- 248 

were fairly similar, in the green-yellow area of the spectrum (500~600 nm) the average 249 

reflectance obtained from the green oranges samples was higher than that obtained from 250 

the leaves. This makes sense, since in the visible range, the dominant process taking place 251 

is pigment absorption; in particular, the peak around 530 nm is due to β-carotene (Keᶊan 252 

et al., 2016). In addition, one dominant spectral feature observed in both spectra is the 253 

absorption of chlorophyll a at approximately 680 nm (Cho et al., 2013), whereas in the 254 

range between 900 and 1000 nm, corresponding to the water band (Williams, 2001), the 255 

oranges display lower intensity than the leaves.  256 

The mean spectra obtained using the SWIR system in the spectral region 900–257 

1900 is shown in Fig. 2b. As in the case of the Vis/NIR system, the characteristic shape 258 

of both spectra is very similar, with peaks and valleys in the same wavelengths. Here, the 259 

greatest difference in reflectance values occurred mainly around 1100 nm and 1400-1600 260 

nm. These values were related to the molecular vibrations corresponding to the C–H and 261 

O–H bonds (Williams, 2001). 262 

 263 

3.2. Optimal wavelengths selection to distinguish between green oranges and leaves 264 

 265 

Figure 3 shows F-values for the ANOVA analysis between the two groups (i.e. 266 

green oranges versus leaves) for each wavelength and the two systems tested. 267 

With the Vis/NIR system, the F-values of each waveband in the range 400–1000 268 

nm obtained from the ANOVA analysis for distinguishing oranges and leaves are 269 

displayed in Fig. 3a. The highest F values were obtained for the bands 941.7 nm and 951.2 270 

nm. Since these two bands were fairly close to each other, the band that yielded the highest 271 



F-value was selected; in this case, the band 951.2 nm was chosen as one of the dominant 272 

bands. This wavelength is very close to one of those chosen (967.2 nm) by Okamoto and 273 

Lee (2009) to fulfil this objective using a sample group consisting of 3 varieties of green 274 

oranges. This band corresponds to water absorption, which is the main component in 275 

oranges (Williams, 2001). 276 

Since only one wavelength could be extracted from the ANOVA analysis, PCA 277 

had to be used to determine the other wavelength needed to obtain the ratio. 278 

It was visually determined that the PC2 image (with 1.07% of the explained 279 

variance) appeared to provide the best discrimination between green oranges and leaves. 280 

The PC2 weighting coefficients showed high positive values in the red region and 281 

negative values in the NIR region related to the O-H bond (Williams, 2001); the 698.2 282 

nm wavelength, related to the absorption of chlorophyll a, was taken as the maximum, 283 

dominant wavelength (Cho et al., 2013). 284 

Based on these results, the 698.2 nm and 951.2 nm bands, obtained from the PCA 285 

and ANOVA analyses, respectively, were selected for the MSI design. The raw and 286 

binary images, as well as the image obtained after the application of band ratio Rλ698/ 287 

Rλ951 and its corresponding frequency histogram, are shown in Fig. 4.  288 

To obtain the global classification capacity of the model, this band ratio was 289 

applied to the validation set. The results indicated that for the Rλ698/ Rλ951 band ratio, the 290 

highest classification accuracy (96.97%) for oranges versus leaves was obtained using a 291 

threshold value of 1.00, which was obtained from the frequency histogram (Fig. 4d), in 292 

which two clearly differentiated populations can be observed, with an overlap between 293 

the intensity values of 0.90 and 1.00. 294 

In the same way as in the Vis/NIR system, when using the SWIR system, the 295 

dominant bands were selected from the F-values of ANOVA between the groups of green 296 



oranges and leaves (Fig. 3b). The results showed that the wavelengths which gave rise to 297 

a more significant separation were 1165, 1259 and 1471 nm. 298 

Since the purpose of this study was to minimize the number of spectral bands so 299 

that the measurement system to be developed would be as light weight, simple and 300 

economical as possible, only two of these wavelengths were selected, those whose ratio 301 

provided the greatest differentiation between leaves and fruits. Thus, from all the two-302 

band combinations available, the ratio of wavebands at 1165 and 1471 nm (Rλ1165/ Rλ1471), 303 

which corresponded to the molecular bonds C-H and the molecular vibrations caused by 304 

O-H bonds, respectively (Williams, 2001), produced the clearest separation, as shown in 305 

Fig. 5. These wavelengths coincide with two of those selected by Kane and Lee (2007) 306 

for on-tree green citrus fruit identification, which is the only work with this objective 307 

found in the literature. 308 

The validation results showed that by applying a simple threshold value (2.60), 309 

obtained from the frequency histogram (figure not shown), the classification accuracy 310 

was about 74.79%. 311 

The accuracy obtained using the SWIR system was around 22% lower than that 312 

yielded with the Vis/NIR system. In Fig. 5, it can be seen that when applying the band-313 

ratio to the image with the SWIR equipment, not only is there a less distinct separation 314 

between the leaf and the green orange than with the Vis/NIR system (Fig. 4c), but there 315 

is also an area in the centre of the fruit with less intensity which corresponds to the 316 

specular reflection caused by the geometry of the orange (Garrido-Novell et al., 2012). 317 

With the Vis/NIR system, this difference was reduced by using the polarizer, whose 318 

function is to reduce specular reflection in samples with curved or shiny surfaces; 319 

however, this was not possible with the SWIR system, as this accessory is not easily 320 



available for the SWIR spectral range. Thus, the problem is not the range of the camera 321 

used, but the lack of a polarizer to reduce the effect of specular reflection on the fruit. 322 

 323 

3.3. Optimal wavelengths selection to detect external defects in oranges 324 

 325 

Fig. 6 shows the score images and loadings plots for the first three PCs obtained 326 

in the calibration set of hyperspectral images of defective oranges after background 327 

removal using the Vis/NIR system. The first three PCs accounted for 99.92% of the 328 

explained variance, and it was found that the PCs above the third did not provide any 329 

useful information for detecting defects (data not shown). In the image corresponding to 330 

PC1 (96.37%), the areas of the oranges which especially stood out are those where, due 331 

to the spherical shape of fruit, higher intensities were produced because they were closer 332 

to the camera (Lee et al., 2008). Subsequent PC images represent other features ordered 333 

according to variations in spectral responses. In general terms, PC2 images exhibit the 334 

greatest contract between the sound and defective areas of the oranges, and so appear to 335 

have high discrimination power for identifying the defective areas. In PC3, the defects 336 

can be observed, and the stem of the fruit can clearly be seen, although no visual 337 

differences between these two features were recognized. 338 

In addition, Fig. 6 also shows the loadings for the PC images (PC1–PC3) obtained 339 

from the hyperspectral images across the Vis/NIR region. The peaks and valleys show 340 

the dominant wavelengths, with maximums of 760 nm observed in PC1, 679 nm in PC2 341 

and 665 nm in PC3, and minimums around 755 nm and 693 nm in PC2 and PC3, 342 

respectively, with no minimum of note observed in PC1. In view of these results, it can 343 

be stated that within the visible spectrum range, the red region and, in particular, those 344 



wavelengths related to the absorption of chlorophyll a, are predominant (Martínez-345 

Valdivieso et al., 2014; Garrido et al., 2016).  346 

Based on the visual aspect, PC2 is the component which seems to provide the best 347 

detection of defective areas in oranges. Thus, based on the loading plot obtained for this 348 

PC, the two most powerful spectral bands (679 and 755 nm) in PC2 were selected.  349 

The resultant band ratio (Rλ679/ Rλ755) was applied to the reflectance images, with 350 

which the contrast between the sound surface and defects was more noticeable. After the 351 

application of the mask, the threshold was established to isolate the defective surface.  352 

However, given the high level of heterogeneity present in the samples, when the 353 

validation of the model was carried out, the threshold value with which the highest 354 

accuracy was reached was not the same for all the samples. As a result, to find an optimal 355 

threshold value for separating sound from defective areas in oranges, the classification 356 

accuracy was calculated with threshold values within the range 0.23–0.35 in an increment 357 

of 0.02. 358 

Fig. 7 shows the classification accuracy as a function of the threshold value 359 

established. After analysing the results shown in Fig. 7, it can be concluded that the 360 

highest accuracy (92.93% of the correctly classified pixels) was reached with a threshold 361 

value of 0.35. These results were similar to those obtained by Li et al. (2011), who 362 

selected bands 630 and 687 nm by analysing the principal components to detect 9 types 363 

of defects in 'Navel' oranges, and, after applying the ratio, obtained a precision of 98.2% 364 

in terms of correctly classified pixels. 365 

To discriminate between defective and sound areas using the SWIR system, the 366 

optimal wavebands were investigated using the same methodology used with the Vis/NIR 367 

system. Thus, from the loading plot for PC2, the 1206 and 1518 nm wavebands were 368 



selected, which are related with C–H y O–H absorptions, respectively (Williams, 2001). 369 

The ratio image (Rλ1206/ Rλ1518) was created, using 1206 nm and 1518 nm images. 370 

According to Fig. 7, which shows the accuracy obtained for each threshold value, 371 

the threshold value that yielded the best classification accuracy (89.31%) for the 372 

validation set was 0.29.  373 

For this second objective, the difference in the accuracy obtained by both systems 374 

was not as great as in the differentiation between green leaves and oranges, and, the 375 

Vis/NIR system enabled to obtain the model with the greatest accuracy. 376 

 377 

4. Conclusions 378 

 379 

The results obtained in this study indicate the feasibility of using HSI technology 380 

to measure crop yield in oranges. The HSI systems can also potentially be developed 381 

further as a low-cost multi-spectral imaging system using the key wavelengths identified 382 

with the PCA method together with a simple ANOVA analysis from the calibration sets. 383 

Four wavelengths (679, 698, 755 and 951 nm) could potentially be implemented as MSI 384 

systems to differentiate green oranges from leaves and to detect orange peel defects, 385 

respectively, in the Vis/NIR system, and four wavelengths (1165, 1206, 1471 and 1518 386 

nm) could also be used for the same purpose using the SWIR device. 387 

For the two objectives proposed in this study (identification of fruits and detection 388 

of defects) in green orange, after using a two-band ratio coupled with a simple threshold 389 

method, a comparison of the two hyperspectral devices produced a better classification 390 

performance with the Vis/NIR system than with the SWIR system, with an accuracy of 391 

96.97% when distinguishing between green oranges and leaves and an accuracy of 392 

92.93% when detecting defects. Therefore, it could be concluded that Vis/NIR was the 393 

most suitable system for this application, with the added advantage of the equipment 394 



being more economical than the SWIR. However, it must be highlighted that the use of 395 

the polarizer with Vis/NIR system improved the signal reducing the specular reflection 396 

in samples, while for the SWIR system this accessory is not easily available. In addition, 397 

it must be added that if, as well as estimating the crop yield, certain chemical quality 398 

parameters in oranges also need to be measured simultaneously, it would be of great 399 

interest to incorporate a band related to the absorption of water or glucides, which would 400 

require the use of the spectral range of the SWIR system. 401 

This work can be considered as a feasibility study and further studies are needed 402 

for in field application of these systems. In this study samples were measured in 403 

laboratory conditions using halogen lights and for remote sensing, under sun-light 404 

illumination, other factors must be taken into account. 405 

 406 
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Table 1 511 

Details of the two hyperspectral cameras used. 512 

Wavelength range Vis/NIR (400–1000 nm) SWIR (900–2500 nm) 

Manufacture Andor Technology (South 

Windsor, CT, USA) 

Headwall Photonics 

(Fitchburg MA, USA) 

Sensor EMCCD InGaAs 

Bit depth  14 bits 12 bits 

Spatial resolution 8 µm 24 µm 

Number of bands 128 275 

Spectral resolution ~ 4.7 nm  ~ 6 nm 

Illumination Eight 100 W tungsten 

halogen lamps 

Six 100 W tungsten 

halogen lamps  

Exposure time 10 ms 50 ms 
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Fig. 1. Comprehensive flow for data analysis. 515 
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Fig. 2. Spectral features for leaves and green oranges obtained using the Vis/NIR (a) 522 

and SWIR (b) hyperspectral imaging systems. 523 
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Fig. 3. F-values obtained for the distinction between green oranges and leaves using the 527 

Vis/NIR (a) and SWIR (b) hyperspectral imaging systems. Loading plots for the first three 528 

principal components for the Vis/NIR (c) and SWIR (d) data sets. 529 
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Fig. 4. (a) Reflectance image, (b) Binary image (mask), (c) Ratio image, (d) Histogram 532 

of frequencies. 533 
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Fig. 5. Band ratio image (Rλ1165/ Rλ1471) for the differentiation between green oranges and 537 

leaves using the SWIR system.  538 
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Fig. 6. PCA score images and loadings plot for the first three principal components 541 

using the Vis/NIR system.  542 
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Fig. 7. Accuracy (%) for each threshold value applied using the Vis/NIR and SWIR 545 

based generated ratio images. 546 
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