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Abstract

Counting the number of berries per bunch is a key component of many yield1

estimation processes but is exceptionally tedious for farmers to complete.2

Recent work into image processing in viticulture has produced methods for3

berry counting, however these require some degree of manual intervention4

or need calibration to manual counts for different bunch architectures.5

Therefore, this paper introduces a fast and robust calibration-free algo-6

rithm for berry counting for winegrapes to aid yield estimation. The algo-7

rithm was tested on 529 images collected in the field at multiple vineyards8

at different maturity stages and achieved an accuracy of approximately 89%9

per bunch. As it would mostly likely be used to obtain an average value10

across a block, the low bias of this method resulted in an average accuracy11

of 99% and was shown to be robust from pea-sized to harvest and between12

both red and green bunches.13

Taking only 0.1 to 1 second per image to process and requiring only a14

smartphone and small backing board to capture, the algorithm can readily15

be applied to images which are captured in the field by farmers. This allowed16
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bunch weights to be estimated to within 92% accuracy and assisted larger17

scale yield estimation processes to achieve accuracies of between 3% and18

16%. The robustness of the method lays the foundation for fast fruit-set19

ratio determination and more detailed bunch architecture studies in-vivo on20

a large scale.21

Keywords: grape bunch, bunch reconstruction, image processing, berry

counting, bunch weight, yield estimation

1. Introduction22

Automating yield component analysis is vital for improving yield esti-23

mation in viticulture since the current manual approaches can not meet the24

requirements of fast measurement and large sampling scale to secure the25

accuracy of grape production forecasting. The small sample size and lack of26

objectivity in interpreting the state of vine development also leads to poor27

accuracy in yield estimation in the wine industry. State-of-the-art manual28

sampling immediately prior to harvest result in errors from 3 to 30% [1]29

(Table 6.9), which anecdotally matches industry experience. Subsequently,30

wineries are forced to bear the cost of suboptimal tank space allocation,31

oak barrel purchases and contract adjustments as well as undertake the32

challenging task of managing harvest logistics within a decreasing harvest33

window. Hence, researchers in viticulture have been seeking solutions from34

image processing and computer vision to accelerate crop yield forecasting.35

Nuske et al. [2] presented image processing methods which were able to36
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generate unbiased estimates notably smaller than manual estimates.37

38

Image processing has also been applied for grape bunch phenotyping39

in the context of breeding programs, and such phenotyping includes three40

quantitative methods of analysis [3]; the number of components, overall41

morphology of components and overall length of components, with compo-42

nents being berries, rachis internodes and other internodes etc. The number43

of berries remains stable after fruit set and it has vital impact on final yield44

for a bunch (Martin et al. 2003 [4]). Besides that, the ratio between bunch45

size and the number of berries per bunch is one of many factors governing46

the quality of the fruit at harvest. Given the number of berries per bunch47

and bunch weight are critical parameters for early forecasts of production48

we mainly focus on the yield component of berry number and its contribu-49

tion to bunch yield estimation in this paper.50

51

Currently, berry counting and bunch weighing across the grape growing52

season are accomplished by tedious and labour intensive manual measure-53

ments. To expedite this, two main approaches have been used: image based54

(2D, RGB images) berry counting and 3D point cloud sensor-based berry55

counting (by laser or RGB-D camera).56

57

Under the category of 3D point cloud sensor-based methods, initial work58

was conducted by Florian and Volker [3] who presented a fully-automated59

sensor-based 3D reconstruction approach to phenotyping grape bunches.60

The proposed approach is able to generate a comprehensive bunch struc-61

ture based on the 3D point cloud by iteratively optimizing parameters which62
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define the bunch structure. As to berry number estimation, their approach63

was shown to achieve 12.35% error (see Table 1 in that work [3]). Later on,64

the same research group extended this work by developing software called65

”3D-Bunch-Tool” based on new lightweight 3D scanner [5] which can be uti-66

lized in the field. That software achieved 78.83% accuracy with R2 = 0.9567

((see Table 2 in that work[5]) on lab-based berry counting and the process68

of scanning in the lab took approximately 1 minute. Field based scanning,69

observing only one side of a bunch meant approximately 50% of berries were70

observed, and these were correlated to the total number of berries from a71

360deg scan with an R2 value of 0.83; the actual error in terms of berry72

count was not presented in the paper.73

74

The intricacy of the 3D scanning approach and cost of the sensors has75

meant considerable focus has been given to the imagery based solution in76

the field. Liu et al. [6], Diago et al. [7] and Ivorra et al. [8] showed77

how yield component analysis could lead to more efficient forecasts using78

image processing. Kicherer et al. [9] presented the Berry Analysis Tool79

(BAT) for counting berry number, diameter and volume, which is reliant80

on destemming a bunch and arranging berries on a performated metal plate81

in laboratory conditions. Grossetete et al. [10] and later Diago et al. [7]82

processed RGB images to count berries using a photo of one side of a bunch,83

obtaining R2 values of 0.92 and 0.82 respectively between the real and de-84

tected number of berries. The work presented by Diago et al. [7] was tested85

with a dataset of ten images for each of seven varieties, with R2 values86

varying from 0.62 to 0.95 with an average of 0.82 across the seven cultivars.87

Aquino et al. [11] developed an algorithm to detect visible berries from a88
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single bunch photo in the field, achieving F1 score = 0.89 based on their89

best parameter settings. As for actual berry estimation, that paper showed90

results of R2 = 0.75 and an accuracy of 84.35% between estimated berries91

and actual berries. This work was extended into an app [12] which was92

not available online at the time of writing. However, the image processing93

algorithms proposed by Grossetete et al. [10] and Aquino et al. [11] rely94

on a specular reflection at a single point on each berry and are not robust95

following veraison since the surface of the berries may become matte and96

in some cases shrivelled.97

98

Besides estimating the number of berries by processing single 2D im-99

ages, 3D bunch reconstruction has also been achieved using stereo imagery100

[13]. There, two 3D bunch models were built with substantial manual input101

and the method achieved R2 = 0.797 using a point model and R2 = 0.778102

against a CAD model. This customized stereo camera arrangement also has103

a natural minimum range and limits applicability to ex-vivo1 analysis and104

maneuvering such a setup within a sprawling canopy is impractical.105

106

Commercial mobile solutions have became the main objective which is107

challenging the robustness of existing image processing algorithms [11]. A108

common approach relies on a backing board with contrasting color to the109

bunch. As for actual berry counting, the most common approach is to esti-110

mate the occluded berries based on the detected number of visible berries111

[11]. This needs calibration and varies between cultivars and lighting con-112

1in-vivo (also referred to as in-field) is used in this paper to refer to experimentation
done without removing bunches from the shoot while ex-vivo means the condition that
bunches are detached from the shoot
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ditions since most existing algorithms are sensitive to illumination changes.113

Cultivar dependency of this calibration has not been investigated to date114

given the tedious data collection procedure.115

116

In order to relieve the burden of building calibrations for each cultivar,117

Liu et al. [14] proposed a novel approach to count berries from a single118

image. Their method is limited to red grapes and can only deal with con-119

ical or cylindrically shaped bunches because the reconstruction procedure120

only follows the main branch of the bunch. A range of berry radii needs to121

be manual defined using their approach. The tested images were collected122

under laboratory conditions.123

124

Hence with the assistance of a backing board and under the condition125

that the bunch can be segmented out from a high contrast backing board126

by mature bunch segmentation solutions [15, 16, 17] this paper focuses in127

particular on the robust berry counting solutions for both red and green128

bunches and its contribution to bunch weight estimation.129

130

For direct comparison with other approaches, we provide the benchmark131

of collected bunch images and related metrics. The datasets are published2
132

on the Smart Robotic Viticulture group’s website3.133

134

In the remainder of this paper, Section 2 presents a field-robust algo-135

rithm for in-field berry counting based on a single RGB image, catering136

2http://www.robotics.unsw.edu.au/srv/datasets.html
3http://www.robotics.unsw.edu.au/srv
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for red and green bunches with a range of berry diameters. Section 3 de-137

scribes the experimental data and procedures used to validate the algorithm.138

Section 4 shows the accuracy of the results, as well as evaluating the robust-139

ness of the algorithm to differences in development stage, the contribution140

of berry counting to bunch weight estimation, and the possibility of yield141

estimation by image-based berry counting. Section 5 then draws conclu-142

sions and makes recommendations for future work.143

144

2. Methodology145

In general, berry counting is divided into three steps, Region of Interest146

(ROI) extraction, visible berry detection and actual berry count estimation,147

which are demonstrated in Figure 1. We propose a novel algorithm for 3D148

bunch reconstruction based on a single image for fast berry counting in vine-149

yards. According to the flowchart in Figure 1, the proposed approach starts150

with sub-bunch detection then processes each sub-bunch 4 before calculat-151

ing the bunch sparsity factor (mentioned in Section 2.4) and reconstructing152

the 3D bunch model (explained in Section 2.3).153

154

The proposed berry counting procedure is divided into two parallel steps155

once the sub-bunches are defined by color segmentation: on one hand, ob-156

taining the initial 3D bunch model to get a berry number (see Figure 2);157

on the other hand, calculating the sparsity factor based on the difference of158

two color channels. The final berry number is obtained by combining this159

4A sub-bunch refers to the separate sections of the bunches which are visually discon-
nected in the image other than by rachis structure

7



Figure 1: The proposed fast berry counting approach by 3D bunch reconstruction

initial berry number and the sparsity factor. Figure 2 gives an overview160

and Section 2.3 and Section 2.4 give detailed explanations of these steps.161

For convenience, the list below provides the explanation of major variables162

referred to in this paper:163

164
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Nomenclature165

σ w/l, Bunch width / Bunch length166

ar Sum of areas in pixels calculated by Red channel from RGB color167

as Sum of areas in pixels calculated by Saturation channel from HSV168

color space169

av Sum of areas in pixels calculated by Value channel from HSV color170

space171

be; bgi Estimated berries at the bunch edge; Estimated berries in each group172

Bx Estimated Sub-bunch173

bwe Binary image of Bx’s edge174

C Histogram bin counts175

E The value of bin edge176

ep, ea The percentage error and absolute error, see Equations 3 and 4177

f Sparsity factor of a bunch or sub-bunch178

gi Groups of berries at the bunch edge179

Ig Grayscale image of Bx180

id Index181

k Curvature for each pixel182

L The set of edge line segments183
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ne, na Estimated and actual berry number per bunch/sub-bunch184

ni Initial berry number per bunch or sub-bunch185

P Points extract from L186

Po Fitted polygon187

R; R2 Radius of berries; R-square value, the goodness of fit188

r, c Row and column numbers of an image189

s Step size for 3D position adjusting of a berry along a track190

t Tolerance of berry overlapping191

tmp Temporary count192

v The metric value of detected berries by Hough Transform193

wb Weight of berry194

wBe , wBa Estimated bunch weight and actual bunch weight195

x, y, z Coordinates of a berry196
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2.1. Sub-bunch Segmentation197

A backing board is used during image collection to aid segmentation and198

is recommended to be of contrasting color with the berries. In this work, a199

black backing board was utilized for green bunches while a white backing200

board was used for red bunches. The backing board provides good contrast201

which leads to better bunch identification.202

203

Alternatively, bunch detection (Figure 2b) can be done by the methods204

described by Luo et al. [15, 16] or Perez-Zavala et al. [17] amongst many205

existing approaches. In this paper ROI extraction (Figure 2c) is conducted206

by Otsu’s method [18], which is commonly adopted for bunch segmentation207

[14, 11]. The non-connected ROIs are treated as sub-bunches and labelled208

as Bx, and for each ni and f are calculated individually.209

210

2.2. Robust Berry Detection211

A vital step in berry detection is that of initializing the range of ra-212

dius of berries for applying the Hough Transform. Approaches presented by213

Mirbod et al. [19] and Dahal et al. [20] could be applied on bunches with214

a high-reflection spot (from artificial lighting or under lab conditions), but215

this was not possible for the field-based datasets in this paper. For a more216

practical usage, we applied Sobel edge detection followed by several basic217

morphological operations [21], which includes removing small objects from218

binary image (in this case those less than 100 pixels in area) and connection219

checking between segmented lines (in this case those that have less than a220

5 pixel gap), to extract the edges of visible berries (Figure 3b).221
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(a) Original Photo (b) Detection (c) Segmentation

(d) Circle Detection (e) Berry Filling
(f) Berry Adjust-
ment (g) 3D Bunch

Figure 2: Steps in the detailed bunch reconstruction process, illustrated with an in-
vivo image of a Chardonnay bunch. The original photo (a) has been cropped (b) and
segmented from the background (c). From this segmentation outline, berries on the
exterior are fitted (d) where the outline has appropriate curvature. Where these berries
overlap (e), they are adjusted forwarded or backwards until there are no collisions (f).
Then the remaining berries are placed inside the hull formed from the segmented outline
as per Figure 4.
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222

We then propose a new algorithm (Algorithm 1) to estimate the ini-223

tial range of berry radii for edge berry and internal berry detection. Part224

curvature calculation is demonstrated in Figure 3c; showing that a large225

proportion of the edge points (k) have similar radii. This guides the choice226

of the initial berry radius range as described in Algorithm 1.227

228

Algorithm 1: Estimation of initial berry radius range

Data: Ig of Bx

Result: Radius range for berry detection, R
1 bwe ← edge detection by Sobel [21] ; // see Figure 3b

2 Li ← bwe ; // The set of edge line segments

3 tmp← 0;
4 for i← 1 to findNum(Li) do
5 Pj ← discrete(Li);
6 for j ← 2 to findNum(Pj)-1 do
7 tmp ← tmp+ 1;
8 Poj ← fit(Pj−1, Pj, Pj+1);
9 ktmp ← cur(Poj) ; // Curvature from the fitted

polygon

10 end

11 end
12 k ← k(abs(k)> 0 AND abs(k) < Inf); // Filter curvature

13 R← 1./k; // Calculate radii for each edge pixel

14 [C,E]← histcounts(R); // Histogram of radii

15 id← FindMax(C); // Find the bin with maximum counts

16 R← Round([E(id− 1), E(id+ 1)]); // Specify a range of

radii from bin widths

2.3. Sub-bunch Reconstruction229

Figure 4 shows the process of how each sub-bunch, Bx, is reconstructed230

to give an initial berry number.231
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(a) Gray Bunch (b) Edge Detection (c) Curvature (d) Detail of curvature

Figure 3: Estimation of initial berry radius range. Cyan lines indicate the magnitude
and direction of the normal of each edge pixel.

232

The berries at the edges are detected by the Hough transform [21](Figure233

2d), aided by the algorithm in Section 2.2. Those berries are defined as be234

and the diameter and location of each one are used to place correspond-235

ing spheres in a plane parallel to the image sensor as shown in Figure 2e.236

Neighbourhood searching [22] using a threshold of the largest estimated237

berry radius is applied for grouping the overlapping berries in our proposed238

edge berry adjusting algorithm 2. For each group, berries are sorted based239

on the likelihood of being a circle, as calculated by the Hough transform.240

The berry with largest likelihood is moved closer the camera (along the z-241

axis) while the berry with smallest metric is moved further from the camera242

until there is no overlap (Figure 2f). The overlap has an additional toler-243

ance, t, added as a proportion of the berry radius.244

245

Once the edge berries have been positioned, the Bx is divided into two246

parts if the ratio between the width and length of a bunch is larger than247

3 : 4. A watershed point of the divided bunch is formed 3/4 of the way248
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Algorithm 2: Berry adjustment at bunch edges

input : A binary image bwe of bunch with size r× c, step size s,
tolerance t

output: 3D location (Xe, Ye, Ze) of detected berries at a bunch
edge

1 bwe ← bunch segmentation;
2 be[x, y, R, v] ← hough(bwe);
3 gi ← be ; // Nearest Neighbor Search[22]

4 for i← 1 to findNum(gi) do
5 bgi ← sort(gi(v));
6 vm ← findMedian(gi(v));
7 bgim ← Find(gi(v) = vm);
8 for j ← 1 to findNum(bgi) do
9 down ← moving berry backward along the z-axis by s;

10 up ← moving berry forward along the z-axis by s;
11 stay ← don’t move;
12 keep ← save current bgij (x, y, z) in a stack (Xe, Ye, Ze);

13 if bgij (v) < bgim (v) then

14 while bgij (x, y, z) collides with (Xe, Ye, Ze) by t do

15 down (bgij (x, y, z))

16 keep bgij (x, y, z)

17 else if bgij (v) > bgim (v) then

18 while bgij (x, y, z) collides with (Xe, Ye, Ze) by t do

19 up (bgij (x, y, z))

20 keep bgij (x, y, z)

21 else
22 stay (bgij (x, y, z))
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Figure 4: Flowchart of the proposed 3D bunch reconstruction algorithm based on a single
sub-bunch

down the length of the longitudinal axis. This value has been defined em-249

pirically, based on the available data. Then, virtual tracks are formed to250

place berries by finding the first and last pixel of a section through the width251

of the Bx. This section is revolved about the longitudinal axis through its252

middle, forming the virtual track. If the Bx has been divided into two parts,253

the upper part is revolved as an ellipse whereas the lower part is revolved254

as a circle. This provides the z value for each berry candidate. The video255

attached to this article simulates this process.256

257

The next step is detection of all visible berries from the gray image of the258

Bx, again using the Hough transform. Berries at the edges are subtracted259

and the remaining berries are placed where they are detected. Their z po-260

sition is provided by virtual track generated in the proposed algorithm to261
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form the three dimensional position for each berry.262

263

The next step is to fill non-visible or interior berries in a shell of tracks264

that is generated based on image processing. The radius for each populated265

berry is chosen according to the distribution of radii detected from all vis-266

ible berries and assumes the berries are all spherical. Starting at the top267

detected berry and moving around the circumference of each virtual track,268

placement of a new berry is attempted at regular intervals (1 degree is used269

in this work) and is considered successful if no collision with any existing270

sphere is detected.271

272

The berry placement moves down the bunch by a step size defined as s273

(chosen to be two pixels in this work) and repeats the placement attempts274

on the track below until the bottom of the bunch is reached and the model275

is complete. The number of berries placed is tallied to form the Initial Berry276

Number (ni).277

278

2.4. Sparsity Factor Calculation279

The initial 3D model is built based on the assumption that the processed280

bunch is healthy and compact. When berries fill the convex hull estimated281

from a single image there are no concerns about the ‘empty space’. This282

means that berries are tightly packed in the initial 3D bunch model and283

does not allow for any of the rachis structure, resulting in an overestimate284

of berry number. An extended sparsity factor (f) is proposed to process285

both red and green grapes according to the visible proportion of berries286

17



within the bunch area — a proxy for bunch compactness:287

f =

(ar − as)/ar red

(as − av)/as green

(1)

288

289

2.5. Berry Count Estimation290

The estimation of the number of berries is improved through the appli-

cation of the extended sparsity factor according to the following formula:

ne = (1− f)× ni (2)

where ne is the final estimate of the berry number per sub-bunch. This is291

then tallied across the sub-bunches to give the final number of berries in292

the entire bunch. Both of the equations above were determined empirically,293

and found to be appropriate for all the datasets tested.294

295

3. Data Scope and Experimental Design296

In total, 529 bunch images from two cultivars were tested and the de-297

tails of each dataset are illustrated in Table 1 including whether in-vivo or298

ex-vivo1 and which model of smartphone was used. All bunches were pho-299

tographed in the field (whether in-vivo or ex-vivo) without artificial lighting,300

replicating end-user usage, the only requirement being the use of a back-301

ing board to aid segmentation. The proposed 3D reconstruction algorithm302
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and sparsity factor calculation was implemented in Matlab (R2018b, Math-303

works, MA, USA) and a PC with Intel Core i5-6500 and 16 GB RAM was304

used to process all the images to obtain the final estimates of the number305

of berries (ne).306

The proposed method was validated in two aspects regarding berry num-307

ber and one aspect regarding bunch weight as well as in application to yield308

estimation:309

• A1, the accuracy of the berry counting algorithm for bunches of dif-310

ferent colours311

• A2, the robustness of the algorithm to different development stages of312

bunches313

• A3, the accuracy of bunch weight estimation, derived from fast berry314

counting315

• A4, the accuracy of yield estimation from bunch weight estimates316
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Table 1: Details of datasets D1 to D8 used in this paper

Data-
set

Num.
of
images

in/ex-
vivo1 Cultivar Color

Development
(E-L) Stage
[23]

Location
Date Im-
aged

Smart-
phone

Resolution
[pixels]

Aims

D1 94
ex-vivo

Chardonnay
green
/ light
yellow

38 Harvest

Clare Valley,
SA, Australia

28/02/2017
LG G3 4160*2340

A1,
A3,
A4

D2 73 Shiraz
red /
light
yellow

28/03/2017

D3 86 Chardonnay
green
/ light
yellow

Orange, NSW
Australia

02/03/2017
Google
Nexus
5X

4032*3024

D4 44

in-vivo
Shiraz

red
Clare Valley,
SA, Australia

10/02/2015
iPhone 5

2448*3264

A1,
A2

D5 56
Orange, NSW
Australia

23/02/2015 1536*2048

D6 63
green

31 Berries
pea-sized Clare Valley,

SA, Australia

30/12/2014
iPhone 4S 2448*3264

D7 56
Chardonnay

33 Berries
still hard and
green

29/12/2014

D8 57 green
34 Berries be-
gin to soften

05/01/2015
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Each photographed bunch was deconstructed and the number of berries317

counted manually with shrivelled or substantially smaller berries being ex-318

cluded from the count.319

For comparison of the bunch weight, this was calculated using the estimated320

berry number and average berry weight: wBe = ne ∗wb and then compared321

with the measured bunch weight. In this dataset, the average berry weight322

was calculated by weighing five berries individually from each bunch; in323

practice a number of alternate methods are available to determine average324

berry weight.325

With reference to the nomenclature section above, the evaluation indicators326

used in this paper are:327

• The R2 value, based on a linear correlation between the actual and328

estimated number of berries, which can be used to reflect the goodness329

of fit between these two groups of numbers.330

• The percentage error ep(%), which is defined as:

ep(%) =

(ne − na)/na ∗ 100 berry counting

(wBe − wBa)/wBa ∗ 100 bunch weight estimation

(3)

In many cases, the user would desire an average berry count per bunch331

over a number of samples in the block, so this metric is used as an332

estimate of the bias of the average value and thus the robustness of333

the approach in practice.334
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• The percentage of the absolute error ea(%), which is defined as:

ea(%) =

|ne − na|/na ∗ 100 berry counting

|wBe − wBa|/wBa ∗ 100 bunch weight estimation

(4)

This measure is best suited for determining the accuracy of the method335

for a single image as errors are not balanced out when averaged over336

a large number of bunches.337

4. Experimental Results and Discussion338

Using the computer described above, each image took 0.1 seconds to339

be processed, without any code optimisation. Qualitatively, manual obser-340

vations of the real and reconstructed bunches matched quite well, as the341

proposed method fits berries around the outer profile of the bunch, similar342

to common bunch architectures. Figure 5 demonstrates some 3D bunch343

models reconstructed by the proposed method. Note the variation in the344

illumination conditions and bunch structure that exists among the origi-345

nal photos and thereby the robustness of this method to handling both346

symmetric and non-symmetric bunches. It should be emphasised that the347

reconstruction is an estimate and the berries may appear smaller due to348

the shading used. The results clearly show (Figure 6) the number of berries349

calculated is reasonably accurate. The exact positioning of berries not de-350

tected from one view is only an estimate.351

352
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(a) Green bunches

(b) Red bunches

(c) Looser bunches

Figure 5: Reconstructed 3D models of bunches for both green and red bunches. Images were collected in the field by smartphones
and the variation in lighting conditions and bunch architecture can be seen.
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4.1. Accuracy of Berry Counting (A1)353

Figure 6 represents the quantitative relationship between estimated and354

actual berry numbers found from the processed images of both red and355

green cultivars. Eight datasets (Table 1) were tested and the detailed re-356

sults are illustrated in Table 2. R2 values varied from 0.82 to 0.95 (average357

0.91), along with the percentage of absolute error 10.2% ∼ 15.26% (aver-358

age 11.85%) and the percentage of error −6.0% ∼ 8.16% (average 3.1%),359

indicating the good performance of the proposed fast berry counting al-360

gorithm. A slight decrease in the performance of the algorithm was seen361

in-vivo (datasets D4-D5) as opposed to ex-vivo (datasets D1-D3), most362

likely due to more variable illumination and a smaller datasets more prone363

to outliers.364

365

Table 2 compares the proposed method with five state of the art methods366

presented in the literature. The methods proposed by Diago et al. [7]and367

Aquino et al. [11] require calibration of the relationship between visible and368

non-visible berries, which varies between cultivars and development stage.369

The approaches presented by Herrero-Huerta et al. [13], Schőler et al. [3]370

and Rist et al. [5] need human interaction with software or at least the371

tuning of parameters. Alternatively, the method presented in this paper is372

not-cultivar or development stage specific and requires no human interac-373

tion once the image has been acquired. Furthermore, the proposed method374

works accurately with both red (Shiraz) and green (Chardonnay and pre-375

veraison Shiraz) cultivars and is able to achieve R2 values on par with the376

existing work without the drawbacks mentioned above. In addition, direct377

comparison of the accuracy (ep(%) and ea(%)) shows that the accuracy is378
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at least as high as the existing work as shown in Table 2. Results pre-379

sented in the original papers are directly provided for comparison, as the380

corresponding datasets have not been made available5.381

5Our data: http://www.robotics.unsw.edu.au/srv/datasets.html
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Figure 6: The accuracy of actual berry counting both for green and red grapes (A1).
The red line indicates a 1:1 relationship.
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Table 2: Comparing existing algorithms with the presented algorithm for berry counting

Method Cultivar Color
Number of

Bunches

Process

Time per

Bunch

R2 ea(%) ep(%)

Schőler et al. [3] Riesling Green 4 > 10m NA 12.35 3.30

Rist et al.
[5]

Calardis Blanc, Dornfelder, Pinot

Noir and Riesling
Red and Green

12 per culti-

var
≈ 1m 0.94

NA
NA

Calardis Blanc Green 222 0.95 -21.47

Diago et al. [7] 7 common

European

cultivars

Red
10 per culti-

var
≈ 2s 0.82 NA

NA

Aquino et al.

[11]
Green

11 per culti-

var
≈ 0.0407s 0.75 15.65

Herrero-Huerta

et al. [13]
Tempranillo Red 20 slow 0.78 NA

Proposed

Method

Chardonnay, D1 Green / Light Yellow 94

≈ 0.1s

0.92 10.77 -1.35

Shiraz, D2 Red 73 0.95 10.53 1.98

Chardonnay, D3 Green / Light Yellow 86 0.92 10.20 -0.57

Shiraz, D4
Red

44 0.88 15.26 -6.00

Shiraz, D5 56 0.91 11.72 -3.76

Shiraz, D6

Green

63 0.95 11.93 8.16

Chardonnay, D7 56 0.82 13.85 -1.79

Chardonnay, D8 57 0.89 10.52 -1.27
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In addition, the code was converted into an iOS app (3DBunch) tested382

on an iPad mini 4 with an Apple A8 processor, PowerVR GX6450 GPU, 2G383

LPDDR3 RAM using iOS version 12.3.1. 100 photos were tested on that384

device and the average processing time for each image was approximately 1385

second (excluding human interaction). The average absolute error of berry386

counting for those 100 images is around 8% and the average percentage387

error is 2.6%. Discrepancies between the desktop and mobile versions of388

these results are only due to limited image processing library functions on389

mobile operating systems. Detailed experimental results from the mobile390

platform are expected to be provided in future work.391

4.2. Robustness to Development Stage (A2)392

Since the compactness or sparsity of the bunches varies as they grow,393

the accuracy of the 3D reconstruction method was examined in the con-394

text of these different growth stages and the results are shown in Table 3.395

Datasets D4 to D8 were of images captured in-field and their development396

stage varied from E-L stage 31 (Pea-size stage) to E-L stage 38 (Harvest)397

following the Modified E-L naming convention [23]. The absolute average398

error from lag-stage to harvest stage for the green bunches was in the range399

of 10.20% — 15.26% with an average of 12.66%, very similar to the harvest400

stage results. Hence, this method is robust to different development stages,401

back as far as pea-sized bunches.402

403

The ability of the proposed method to accurately estimate the berry404

number in the early stages of development allows the user to rapidly esti-405

mate current bunch weights non-destructively.406
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Table 3: Performance of the algorithm for bunches at different development stages (A2)

Dataset Cultivar Color E-L Stage R2 ea(%) ep(%)

D4

Shiraz
Red 38 Harvest

0.88 15.26 -6.00

D5 0.91 11.72 -3.76

D6

Green

31 Berries pea-size 0.95 11.93 8.16

D7
Chardonnay

33 Berries still hard and green 0.82 13.85 -1.79

D8 34 Berries begin to soften 0.89 10.52 -1.27

407

4.3. Accuracy of Bunch Weight Estimation (A3)408

Figure 7 and Table 4 show the results of the algorithm being applied409

to estimate bunch weights. The results demonstrate high correlation (R2
410

ranges from 0.83 — 0.92) between estimated bunch weight and measured411

bunch weight. For an individual bunch, the errors were larger than by412

direct comparison with berry number, but this is to be expected given the413

uncertainty in berry weight. Averaged over several dozen bunches, the error414

reduced to less than 8%, suggesting this is a feasible method for farmers to415

rapidly obtain a measure of average bunch weight non-destructively.416

4.4. Yield Estimates Utilising Berry Counts (A4)417

We then applied the algorithm along with a shoot counting method [24]418

to assist grape yield estimation in 2017 at two different vineyards, using the419

yield estimation method and data specified in Whitty et al. [1]. In summary,420

shoots were counted from a mobile camera across the whole block, then in421
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(a) D4, Shiraz (b) D5, Shiraz

(c) D6, Shiraz (green) (d) D7, Chardonnay (e) D8, Chardonnay

Figure 7: A3, the accuracy of bunch weight estimation based on the proposed berry
counting algorithm. The red lines indicate 1:1 relationships.

Table 4: Performance of the reconstruction algorithm when comparing estimated and
actual bunch weights

Dataset Cultivar Color E-L Stage R2 ea(%) ep(%)

D4

Shiraz
Red 38 Harvest

0.87 16.63 7.93

D5 0.83 15.04 -6.21

D6

Green

31 Berries pea-size 0.89 11.13 4.61

D7
Chardonnay

33 Berries still hard and green 0.85 14.13 -6.14

D8 34 Berries begin to soften 0.92 10.60 -5.65
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Table 5: Yield estimation assisted by the proposed berry counting method in 2017 for
three blocks. Two methods of determining berry weight at harvest are compared, along
with a standard industry approach for yield estimation.

Block 40A 47A B12

Actual yield (t) 33.50 106.09 45.27

Estimated yield (t)
Using historical berry weight 34.12 77.99 50.43

Measured berry weight 35.56 88.99 46.77

Manual yield Estimate (t) 30.04 80.17 43.97

Yield estimation error (%)
Using historical berry weight 1.84 -26.49 11.39

Measured berry weight 6.16 -16.11 3.31

Manual yield estimate error (%) -10.34 -24.43 -2.88

30 sample locations the number of bunches per shoot was measured and the422

bunches were photographed using a smartphone. The average berry weight423

at harvest was calculated by two different methods, either using historical424

averages for each block or by direct measurements of berry weight. The425

combination of shoot counts, bunches per shoot, berries per bunch (from426

the method in this paper) and harvest berry weight, along with correction427

factors such as harvester efficiency were used to predict the yield in each428

block, as shown in Table 5. Manual yield estimation results using industry429

standard approaches are also provided for comparison, see Whitty et al. [1]430

for further details.431

432

The data demonstrated in Table 5 presents an encouraging application433
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for the proposed berry counting algorithm. Given automated image-based434

shoot counts from over 65km of vine rows in three blocks, combined with435

253 smartphone images of bunches and average berry weights from a subset436

of bunches, the yield close to harvest was estimated within 6%, 16% and437

3% of the actual yield respectively. This was generally better than industry438

standard manual yield estimates of the same blocks, despite shoot counts439

being taken five months prior to harvest and a substantially reduced require-440

ment for manual labour. The result for block 47A was noticeably poorer441

due to an unexpectedly large drop in shoot number between the shoot and442

harvest stage.443

When the historical berry weights were used, the error increased sub-444

stantially, as there was a notable variation in average berry weight in this445

season for the blocks tested. Hence a reliable measure of berry weight is446

required to improve the yield estimation.447

5. Conclusions448

This paper has presented a novel and fast algorithm which is able to449

count berries and estimate the 3D structure of both red and green grapes450

in-field from pea-sized to harvest development stages from a range of bunch451

architectures. Using only a single image from a smartphone and no cali-452

bration or prior information, the accuracy of the method was 89% when453

directly compared to the number of berries on a bunch. When averaged454

across 50-80 images, the accuracy was over 99%, showing the limited bias455

present in this uncalibrated approach.456

The algorithm was found to be robust to different bunch architectures457

qualitatively as well as give consistent results from pea-sized to harvest458
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development stages. The rapid processing time of 0.1 seconds per image459

is dramatically faster than manual counting and faster than existing ap-460

proaches in the literature as well as requiring no human interaction once461

the image has been captured. When implemented on a mobile operating462

system, the processing time was within one second per image, allowing it463

to be used in the field.464

When the proposed method was used to estimate bunch weights, an465

accuracy of more than 92% was found on average over several dozen bunches466

in each dataset. Furthermore, the algorithm was applied to yield estimation467

and found to have an error of between 3% and 16% when compared directly468

to measured tonnes at harvest, using automated shoot counting [24] and a469

berries per shoot method [1]. Hence, the algorithm has applicability in field470

scenarios and the potential to speed up and improve the accuracy of yield471

estimates for farmers using smartphones.472

Given the location of each image from a smartphone, this could be di-473

rectly applied to map bunch weight and yield variation across a block. In474

addition, by combining with existing work on flower counting [25, 26, 27],475

the possibility of efficient determination of fruit set ratios on a large scale476

is envisaged.477

Some varieties of grape berries elongate noticeably following véraison,478

and this method could be extended to fitting ellipses to each berry [28] and479

reconstruction using corresponding ellipsoids. Improvements could be made480

to the determination of the extended sparsity factor however this has been481

left to future work and to aid the generalisability of the algorithm. The re-482

construction also provides opportunities for estimating more detailed bunch483

parameters, which are left for future work. Converting this algorithm into484
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an app for farmers would allow rapid and non-destructive estimates of berry485

counts and bunch weights with limited bias. Further research is currently486

conducted on the bunch segmentation step with the aim of removing the487

need for the high-contrast back board. This would make it easier for farm-488

ers to adopt the method in the field.489
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