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Abstract

Automatic animal monitoring can bring several advantages to the livestock sec-

tor. The emergence of low-cost and low-power miniaturized sensors, together

with the ability of handling huge amounts of data, has led to a boost of new

intelligent farming solutions. One example is the SheepIT solution that is being

commercialized by iFarmtec. The main objectives of the solution are monitoring

the sheep’s posture while grazing in vineyards, and conditioning their behaviour

using appropriate stimuli, such that they only feed from the ground or from the

lower branches of the vines. The quality of the monitoring procedure has a

linear correlation with the animal condition capability of the solution, i.e., on

the effectiveness of the applied stimuli. Thus, a Real-Time mechanism capable

of identifying animal behaviour such as infraction, eating, walking or running

movements and standing position is required. On a previous work we proposed

a solution based on low-power microcontrollers enclosed in collars wearable by
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sheep. Machine Learning techniques have been rising as a useful tool for dealing

with big amounts of data. From the wide range of techniques available, the use

of Decision Trees is particularly relevant since it allows the retrieval of a set of

conditions easily transformed in lightweight machine code.

The goal of this paper is to evaluate an enhanced animal monitoring mechanism

and compare it to existing ones. In order to achieve this goal, a real deployment

scenario was availed to gather relevant data from sheep’s collar. After this step,

we evaluated the impact of several feature transformations and pre-processing

techniques on the model learned from the system. Due to the natural behaviour

of sheep, which spend most of the time grazing, several pre-processing tech-

niques were tested to deal with the unbalanced dataset, particularly resorting

on features related with stateful history. Albeit presenting promising results,

with accuracy over 96%, these features resulted in unfeasible implementations.

Hence, the best feasible model was achieved with 10 features obtained from the

sensors’ measurements plus an additional temporal feature. The global accuracy

attained was above 91%. Howbeit, further research shall assess a way of dealing

with this kind of unbalanced datasets and take advantage of the insights given

by the results achieved when using the state’s history.

Keywords: Sheep, Animal behaviour, Machine Learning, Decision Trees,

Microcontrollers

1. Introduction

The Internet of Things (IoT) [1] has been reducing the gap between the

digital and physical worlds, leveraging powerful tools such as the miniaturisation

of electronic components and the democratization of computational resources

through the usage of cloud-based services. This has brought digital capabilities5

and transformation into a continuously growing number of societal sectors.

Monitoring and conditioning animal behaviour is a relevant task in the live-

stock sector, crucial for the sustainability [2] of the associated enterprises. On

the one hand, supervising animals allows the enhancement of the welfare control
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processes, avoiding unnecessary casualties and allowing a more efficient repro-10

ductive process [2, 3]. On the other hand, it provides a better management

of available pastures [4], and, consequently, natural resources. Typically, these

tasks are performed by a human operator, susceptible to several limitations [5]:

it is a scarce, expensive and jejune resource; it is prone to observation errors;

and its presence may clout animal behaviour. The emergence of low-cost and15

low-power sensing devices, and their ability to be connected to the Internet, al-

lowed the development of several commercial solutions [6, 7, 8, 9] that changed

the way the livestock sector operates. Hence, devices capable of detecting an-

imal behaviour and activity, started to be commonly available, allowing the

extraction of huge amounts of data from individual animals and, consequently,20

from the entire herd.

The SheepIT project [10], a R&D project, also addressed such an issue, par-

ticularly through the development of a solution capable of both monitoring and

conditioning the sheep’s posture. The main purpose of the system is to create

an automated mechanism that would allow sheep to weed vineyards without25

threatening the vines or fruits. The solution comprised the design of a complete

IoT system, from the sensing devices to the Cloud platform, including all the

infrastructural nodes needed to relay the data from sensors to the Cloud [11].

Regarding the sensing components of the system, monitoring and condition-

ing the sheep’s posture are fundamental. The monitoring capabilities of the30

system allow the distinction of the sheep behaviour. The conditioning capa-

bilities of the system stimulate sheep to revert from unwanted and threatening

behaviour, namely through the use of suitable stimuli 1 Regarding the monitor-

ing mechanism developed in the scope of the project, previous works explored

the use of Machine Learning (ML) techniques to analyze the data gathered,35

with the goal of defining a suitable and feasible monitoring mechanism capa-

ble of running on a low-power microcontroller [12, 13]. This mechanism allows

the distinction of a new behaviour, not previously addressed in the literature,

1The conditioning mechanism is out of the scope of the present paper.
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the infracting state. This state represents behaviours where a sheep is likely

to be feeding from higher branches of vines or fruits, which the system’s solu-40

tion intends to avoid. However, the reported mechanism assumes a simplified

behaviour model where, for instance, walking and running were identified as

being the same state [12]. Furthermore, the implemented mechanism presented

limitations when detecting the infracting state, incurring in a considerable num-

ber of false positives and false negatives. Such limitation represents a strong45

weakness of the system since it carries unpredictable consequences in animal

conditioning, particularly regarding the animal learning capabilities.

Therefore, the present paper explores and discusses the strategies towards

an enhanced monitoring mechanism through the use of ML techniques. We

focused on the use of Decision Trees (DT), due to their learning capabilities and50

readability. The DT model can be easily parsed into machine code, making it

ideal for running on energy and computational constrained devices. Particularly,

we targeted the differentiation of the following animal states: infracting (the

distinctive state), eating, moving, running and standing.

The remainder of the paper is organized as follows. Section 2 explores the55

state-of-art on animal monitoring platforms, with a special highlight on how

ML algorithms have been used on such context. Section 3 describes all the

material and methods used, detailing how the data was collected and classified,

which features were treated, selected and in which way, how models were built

and how the results were evaluated. Section 4 presents the results obtained. A60

critical reflection on all the experiments and respective results are presented in

Section 5, before concluding the paper in Section 6.

2. Related Work

Machine Learning (ML) has been used in different domains such as crop man-

agement, water management, soil management and livestock management [14].65

In the latter, animal welfare monitoring [15], reproductive cycles optimiza-

tion [16, 17, 18] and pasture management [19] are just some examples where
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ML already plays an important role.

Many of these applications gather data from sensing devices placed on an-

imals, capable of identifying behaviours (mainly using accelerometry) or loca-70

tions (mostly using GPS). Regarding behaviour monitoring, despite some so-

lutions that allow an almost Real-Time monitoring [20, 21] (transmitting the

sensing data to computational platform), most employ an off-line monitoring,

storing the sensing data in the memory of devices for further analysis using

powerful computers [22].75

This kind of monitoring platforms have been applied to different animals, as

for instance horses [23], goats [24], sheep [25, 26, 27, 22, 28, 29, 30, 31, 32, 33],

and cattle [34, 35, 36, 37], just to cite a few. Among these, solutions for cattle

stand out, much due to the economic impact of that sector. As a consequence,

several commercial solutions have already penetrated the market, as in the cases80

of CowScout [6], Cowlar [7] and MooMonitor [38], whose main goal is cattle

activity monitorization towards improved lactation and insemination processes.

Albeit not being as popular as cattle monitoring platforms, sheep monitoring

has gained a fresh impetus with some relevant works. These works differ mainly

in how the monitoring device is coupled to sheep (ear tag, collar, leg tag or85

halter), the number and type of states to be classified, the features used in the

model and the sampling rate of sensors.

In [28], the authors aim at monitoring jaw movements in order to detect

grazing, ruminating and resting states. For that, they resort on a halter coupled

to the sheep containing an accelerometer operating at a frequency of 62.5Hz and90

considering an observation window of 60s. To model the predicting system, they

employed Discriminant Analysis (DA) using 12 different features, achieving an

overall accuracy of 92,90%. Still related with this work, in [29], an evaluation

of different observation window sizes was discussed, being the 30s window size

the one that presented the best results for that particular system.95

Walking, standing and lying were the states evaluated in [30, 31]. Accelerom-

eter and gyroscope measurements were considered, using either a collar or an

ear tag. In the former work, different frequencies (8Hz, 16Hz and 32Hz) and
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different observation window sizes (3s , 5s and 7s) were assessed applying Ran-

dom Forest (RF) models. The best results were achieved both for ear tag and100

collar for the 32Hz and 5/7s configurations, with an overall accuracy of 95%.

However, the authors concluded that, for Real-Time applications, the config-

uration of 16Hz and 7s configuration would be preferable due to the energy

expenditure associated (overall accuracy of 93%). In the latter work, having

as starting point the 16Hz and 7s configuration, a discussion on the impact of105

using different features (from a list of 44 features) and different ML algorithms

was done, being the best results achieved with the RF algorithm and for the

collar use case (overall accuracy of 92%).

The differences on using a collar, an ear tag or a leg tag were examined

in [32]. Using only accelerometer measurements with a frequency of 12Hz and110

observation windows of 10s, 4 states were considered: grazing, walking, standing

and lying. A Quadratic Discriminant Analysis (QDA) was employed using 14

features, being obtained overall accuracies of 86,83% for the collar use case.

In [33], the authors applied Linear and Quadratic Discriminant Analysis

(LDA and QDA) to predict 5 different states (lying, standing, walking, running115

and grazing), achieving an overall accuracy of 89.69%. They also resorted on

accelerometer data gathered with a frequency of 100Hz and observation windows

of 5.12s.

Also considering the same 5 states tackled in [33], the work presented in [22]

explored the use of DT to predict those states. The data was gathered through120

accelerometers placed under the sheep’s jaw, operating at three different fre-

quencies: 5Hz, 10Hz and 25Hz. Besides presenting a total of 44 features, the

top-5 features were selected during the construction of the model. In the end,

the overall accuracies reached from 82.9% for observation windows of 3s, to

85.5% for 5s and to 83.4% for 10s.125

From the reported works, the ones that present solutions that could be even-

tually transposed to a low-power micro-controller, have limited their analysis

to a low number of states (3). Contrary, the works that widen their analysis

to more states, exploited algorithms that are computationally more demand-
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ing and hence not suitable to be employed in low-power microcontrollers. The130

exception is the work of [22], that explored the use of DT for differentiating 5

different states but, as all the other works, it did not distinguish the infracting

state, a critical element in the SheepIT project. In [12], a first approach based

in ML techniques was presented to tackle such an issue. In brief, the prob-

lem was pruned to a binary classification problem, being the two states defined135

as infracting and not infracting. The work explored different ML algorithms

(including DT), being the accuracies obtained between 95% and 97%.

However, besides reporting a poor dataset, its feasibility when taken to a

real implementation has revealed critical drawbacks. As detailed in [13], the

resulting models were only based in the angle of the sheep’s neck, which may140

entail significant problems. Two examples are: i) the sheep is standing, with

its head up but without eating; and ii) the sheep is moving or running with its

head up. To minimize this concern, the work presented in [13] split the problem

into three binary classification problems. Specifically, the authors provided a

different model for each of the following binary classifications: i) infracting and145

not infracting - active state; ii) resting and not resting ; and iii) running and

not running. Implementing DT, they achieved individual accuracies of 96%,

81% and 96%, respectively. In the end, the models were merged to construct

an unique DT.

Besides solving some of the identified issues, this latter work still presented150

several limitations. On the one hand, it was also based in a poor dataset,

with information about a single sheep. On the other hand, it did not allow

the identification of moving behaviours, particularly when sheep move between

different grazing areas. Such behaviour also presents (as the running state)

characteristics that can approach the infracting state features, thus, being a155

potential point of failure of the system. Henceforth, the present work aims at

minimizing the limitations of the current posture monitoring implementation,

also taking advantage of ML techniques.
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Figure 1: Overall system architecture [11]

3. Material and methods

The present section describes the experimental methodology, starting from160

the devices used, to the procedures followed to reach the identified goal: provide

an enhanced monitoring mechanism, to be implemented in a low-power micro-

controller, and that shall be capable of a Real-Time detection of different sheep

behaviours such as infracting, grazing, moving, running and standing.

3.1. The monitoring platform165

The present work was based in a platform that is being commercialized by

iFarmTec [39] for sheep monitoring and control. This solution was based in the

prototype developed in the scope of the SheepIT project [10], although several

improvements were added.

As depicted in Figure 1, the system’s architecture is composed of three main170

modules. A Wireless Sensor Network (WSN) responsible for the implementation

of all the required local tasks (e.g. monitoring sheep, triggering the conditioning

mechanism when necessary and uploading the sensing data), a Computational

Platform (CP) able to be hosted in the cloud and that is responsible for receiv-

ing, storing and analysing the data sent by the WSN; and a User Interface (UI)175

for a smooth interaction with end users. For the purpose of the present work,

it only becomes relevant to review the architecture and operation of the WSN.

The devices that implement the sheep monitoring feature are called collars,

being placed around sheep’s neck. Such devices are composed by a set of sensors
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and actuators controlled by a microcontroller. They are powered by a Li-Ion180

battery and communicate with the remaining WSN devices through a free-

licensed radio The main sensor included is a three-axial accelerometer [40] that,

besides being capable of measuring both static and dynamic acceleration in all

the three axis, it also includes filtering capabilities, sampling configuration and

an internal buffer for storing temporary measurements. In addition to the the185

accelerometer, the collar also implements a ultrasound transducer responsible

for the measurement of the distance from the sheep’s neck to the ground.

The relationship between sensors and actuators is defined by a posture con-

trol algorithm that may be seen as two interacting algorithms: a monitoring al-

gorithm, whose performance is intended to be improved with the present work;190

and a conditioning mechanism. This posture control algorithm is continuously

running in the microcontroller, ensuring a prompt and correct sheep monitoring

and conditioning. However, the report of all the data generated in the collars

is unattainable, both in terms of energy and bandwidth expenditure. In fact,

the system’s communication network was designed following a Time-Triggered195

paradigm [41], which means that all communications are executed following a

predetermined scheduling. Hence, the gathered data is only periodically sent

from collars to a set of statically placed devices (called beacons), that hence-

forth relay the data through the network towards a gateway. A more detailed

description of the communication network can be found in [11].200

3.2. The experiment

To gather the necessary data towards an improved behaviour monitoring

mechanism, the existing monitoring platform was used, with the data was

fetched from a deployed system in a livestock farm of a client of iFarmTec.

The sheep were recorded using a video camera at the same time the data was205

being collected.

The grazing area was a vineyard of the Bairrada’s region (center of Portugal)

with around 2.5ha, with the vine lines separated by around 3m and with a fence

surrounding the whole area, ensuring adequate and secure grazing. Typically,
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sheep graze on this parcel throughout all the year and are only taken out for a210

few weeks during the budburst phase, i.e., in the beginning of spring, to prevent

the destruction of the fragile vine buds.

The experiment was conducted over a period where the flock grazed under

daily conditions and lasted for 3 days (from the 15th to the 17th of May 2019,

hence, well after the budburst phase). Furthermore, each testing day was split215

into two test windows: morning (from 09:00 to 12:00) and afternoon (from 13:00

to 17:00). During these periods, sheep were grazing as usual with the iFarmtec

system incorporated, with one different animal being video-recorded per test

window to simplify the classification process. To ensure a correct synchroniza-

tion between the timestamp of the video and the gateway responsible for storing220

the data, the video recording device and the gateway were temporally synchro-

nized. This procedure allowed to have a perfect match between each sensing

data entry and the video frames filmed.

3.3. Data collection

The collection of data was done using the monitoring platform described in225

Section 3.1. The configuration of the system deployed on the livestock farm

allows the collection of a new trio dynamic acceleration values (each trio is

composed by the x, y and z components of the dynamic acceleration vector)

every 20ms (i.e. with a frequency of 50Hz). Nevertheless, each new value is not

immediately sent through the wireless network, but stored in the internal buffer230

of the accelerometer until it gets completely filled (the buffer allows the storage

of 25 trios). Whenever the buffer is filled, the stored data, that included the

data concerning the dynamic acceleration measurements, a sample of the static

acceleration on the three axis (and the respective pitch, roll and yaw angles) and

the distance from the sheep’s neck to the ground, were sent through the wireless235

network until reaching the system’s gateway. Here, the data was decoded and

stored for further processing.
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3.4. Data classification

To enable the implementation of supervised learning techniques, it was nec-

essary to create conditions for classifying the generated data. Hence, all test240

windows were video-recorded using a open source camera application for An-

droid [42] that automatically generates a subtitle file with the associated current

timestamp.

Concluded all the data collection proceedings, the resulting files (one per test

window) were downloaded from the gateway. The subsequent phrase concerned245

the data classification procedure, where the videos associated with each test

windows were watched and the observations classified following the dictionary

described in Table 1. Dubious observations or observations that couldn’t be

classified (e.g. an animal out of sight) were classified with an X to be ignored.

The summary of the observations can be found in Table 2. Most of the250

dataset observations are of the type eating (70%), which was expected since

animals tend to be grazing most of the time. The less representative states

are infracting (3%), running (2%) and standing (2%), which was also expected

since sheep were free to pasture on a area with a lot of edible weed and without

being exposed to external dangers (and thus not having the need to run away).255

Summing up, we are in the presence of an unbalanced dataset with a total of

12968 valid experiments, being 1675 observations discarded (approximately 12

%).

3.5. Feature transformation

All data processing and analysis was carried out using RStudio [43].The first260

step consisted of importing the data and verifying its integrity. For that purpose

all features were summarized and their type, minimum, average and maximum

values were checked. The available features were: i) timestamp - added in the

gateway; ii) classification - added manually during the data classification; and

iii) distance measured using the ultrasounds transducer (dist.mm), the static265

acceleration on axis x, y and z (acc x, acc y and acc y), the respective angles
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Table 1: States differentiated during sheep behaviour classification

State Description

Infracting (I) Eating from branches above a certain height. For this test,

it was defined the height of the irrigation tubes (˜50cm)

Eating (E) Sheep is eating with its head down. Smooth movements were

allowed since typically they seek for grass while moving

Moving (M) There is a notorious and intended movement from one place

to another. Typically, while this happens, the sheep is not

seeking for food. Trotting was considered moving.

Running (R) Sheep was running (running away from an obstacle or trying

to reach the remaining herd)

Standing (S) The head is still, i.e., sheep is steady and still

Invalid (X) Dubious observations or unclassifiable observations

Table 2: Dataset summary

State E M I S R X Total

Number of observations 10305 1686 488 260 229 1675 14643

(pitch, roll and yaw) and the 25 measurements of the dynamic acceleration (on

all the 3 axis) - coming directly from the collar.

Two distinct types of features are hence identified: static and dynamic.

Static features are single values, i.e., for each timestamp the features take a sin-270

gle value. Dynamic features are a sequence of values, i.e., for each timestamp,

the features have a sequence of values. This latter kind of features was added

to capture the impact of movements and rapid accelerations. Although the dy-

namic features could be used as a whole, there are several benefits to summarize

them into single values. Firstly, it enables the control of the number of features.275

Secondly, it enables the reduction of the size of the resulting model. In this

specific scenario, the ML model has to run on a low-power microcontroller, thus

constraining the complexity of the resulting model.

Taking advantage of the provided state-of-the-art, 8 main features were se-
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lected for application, both to the magnitude (Equation 1) of each dynamic280

acceleration vector and to the rate of change (1st derivative) of that magnitude

(Equation 2)2. The description and formulas of all the features are detailed in

Table 3.

∀i ∈ [1, N ] , |dynAi| =
√

dyn x2
i + dyn y2i + dyn z2i (1)

∀i ∈ [1, N − 1] , |DdynAi| = dynAi+1 − dynAi, (2)

where N is the number of measurements per observation.

As identified in Section 3.4, the dataset is clearly unbalanced due to the285

sheep natural behaviour. Additionally, a preliminary analysis of the dataset

revealed a potential spatial and temporal relationship between states. Therefore,

there was a need for seeking for additional features that, firstly, could confirm

such relationship and secondly, that could support the model for identifying

such relationships. Thus, three additional features were added to the already290

identified 24 features: i) the previous state (prevState); ii) the identification if

there was a transition in the previous state (transition); and iii) the number of

consecutive and equals states (nEqualStates). In short, the dataset ended up

with a total of 27 different features.

3.6. Feature Selection295

The use of a high number of features is nowadays possible due to the avail-

able increased computational capability, either as standalone machines or using

distributed computation. Nonetheless, the same is not true when dealing with

constrained devices such as the microcontroller incorporated into the system’s

collar. Hence, it wouldn’t be reasonable or even feasible to implement all the fea-300

2The movement variation was calculated directly using the dynamic acceleration compo-

nents (x,y and z axis), being the unique feature that was neither related to the magnitude,

neither related to the 1st derivative.
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Table 3: Features added to the existing dataset. The shown formulas are applied to accel-

eration magnitude values. A similar approach is followed for the 1st derivative, being only

necessary to change N by N-1 and dynAi by DdynAi. N is the number of measurements.

Feature Formula

Minimum Minimum value within the observation

Maximum Maximum value within the observation

Average
1

N

(
N∑
i=1

dynAi

)

Variance σ2 =
1

N − 1

N∑
i=1

(dynAi − µ)2

Standard Variation σ =
√
σ2 =

√√√√ 1

N − 1

N∑
i=1

(dynAi − µ)2

Zero Crossing Number of crossings through zero after subtracting each

observation value by the observation mean

Dominant frequency Powerful frequency after appyling Fourier Transformation

Movement variation 1

1

N
(

N−1∑
i=1

|dyn xi+1 − dyn xi|+
N−1∑
i=1

|dyn yi+1 − dyn yi|+

+
∑N−1

i=1
|dyn zi+1 − dyn zi|)

tures herein described in the collar. Consequently, feature selection represents

a specially relevant task in the present work.

Different feature selection methods can be found in the literature [44], most

of them with existing implemented solutions. Thereupon, the approach followed

in the present work was based in two main phases. Firstly, the correlation305

between the features was evaluated such that the most correlated ones could be

removed. Then, some algorithms available on the FSelector package [45] were

used to identify the most promising features. This referred package contains

several functions that enable an easily processing of feature selection. From the

available list, the ones selected are described in Table 4. The evaluation of such310

feature selection mechanisms was based in two different tasks:

1. Repercussion in the total accuracy: the repercussion on using each

one of the techniques on the accuracy of a model was evaluated;
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Table 4: Feature selection functions selected from the FSelector package [45]

Function Name Description

CFS Filter Resorts on the correlation and entropy measurements

Chi-squared filter Weights discrete features using a chi-squared test

Consistency-based filter Measures the consistency of the features

OneR algorithm Associates rules between features and the class feature

RandomForest filter Weights features applying the RandomForest algorithm

RReliefF filter Weights features through the distance between instances

2. Consistency of the selected attributes between techniques: after

discarding some techniques that could have negative impact, the repeata-315

bility of the most important features between techniques was assessed.

3.7. Modelling

Implementing a continuous monitoring mechanism on a low-power and low-

processing microcontroller restrains the kind of ML algorithms that can be used.

Thus, the present work focused entirely on the application of DT algorithms.320

On one hand, because they allow the extraction of a set of conditions, easily

transposed to a set of if ’s and elses’s, that can be efficiently incorporated in

a constrained device, such as the system’s collar. On the other hand, they

allow a straightforward human interpretation. This latter condition is particu-

larly relevant in the present use case since the animal behaviour is not always325

straightforward and predictable as it seems, thus requiring further human anal-

ysis.

As several tests were performed, a methodical strategy was followed, simpli-

fying the collection and comparison of results. The following list describes such

steps:330

1. Preparation of the training dataset: two different strategies were

followed, accordingly to the stage of the ML process. During the feature

selection phrase, where several tests needed to be performed, a simple
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random split was done in a proportion of 70% for training and 30% for

testing. This simplistic process, allowed a faster identification of the sce-335

narios with the highest potential to be carefully evaluated. Then, after

having selected the most promising scenarios (from the feature selection

phrase), their evaluation was done employing a split of data that could

enable the use of a cross-validation strategy. Particularly, a 10-fold cross-

validation was implemented, which means that the entire dataset was split340

into 10 subsets of similar size. Additionally, it shall be noted that the dis-

tribution of the classification labels was maintained roughly the same as

the existing on the original dataset;

2. Selection of features to be used by the model: the feature selection

techniques described in Section 3.6 were experienced;345

3. Application of sampling techniques: as the dataset is unbalanced,

upsampling and downsampling techniques were experimented;

4. Model training: the model was trained using the training dataset and

the features selected. The rpart package was used;

5. Model tuning: the rpart function has two main tuning parameters, the350

complexity parameter (cp) and the max depth parameter. The former,

represents how much the relative error is incremented when splitting a

node. The later, represents the maximum number of split levels;

6. Prediction evaluation: to assess the prediction model, several metrics

were used, being described in Section 3.8.355

3.8. Prediction evaluation

To evaluate models, two types of tools were used. Firstly, the construction

of a confusion matrix to easily visualize and interpret the prediction summary,

namely the number of True negatives, False Negatives, False Positives and True

Positives. Secondly, the evaluation of some performance metrics commonly360

used in classification problems in ML, for instance, accuracy, micro and macro

averages of the F1 score [46] and the K-category correlation coefficient [47], a

multiclass extension of the Matthews Correlation Coefficient [48]. The accuracy
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is used since it is a general and very common metric used in ML problems, found

in almost every works of the state of art. However, as the dataset discussed is365

particularly unbalanced, there are two metrics that assume a higher importance,

namely the macro-average F1 Score and the K coefficient. Both provide a

more credible performance of a model in an imbalanced dataset. The respective

equations are illustrated in Equations 3, 4, 7 and 10.

The most promising scenarios identified through the feature selection phase,370

were modeled using 10-fold cross validation. The goal with this strategy was to

test if the model being tested would be capable of being generalized to other

datasets, minimizing the chances of creating bias points in the dataset. This

technique has natural consequences on the evaluation phase since, when imple-

menting crossing validation, we need to model and test the same number of375

times as the number of folds. This means that when testing a scenario that

implements a 10-fold crossing validation, it results in 10 confusion matrices and

10 values for the same metric. To summarize the results associated to each

scenario, the confusion matrices were summed and the average of the values for

each metric were considered.380

OverallAccuracy =

N∑
k=1

TPk

TPk + TNk + FPk + TNk
(3)

were N is the number of classes, i.e., animal states.

F1micro = 2
Pmicro ×Rmicro

Pmicro + Rmicro
(4)

where Pmicro and Rmicro are given by equation 5 and equation 6, respec-

tively.

Pmicro =

∑N
k=1 TPk∑N

k=1 TPk + FPk

(5)

Rmicro =

∑N
k=1 TPk∑N

k=1 TPk + FNk

(6)

17



F1macro =
2× Pmacro ×Rmacro

Pmacro + Rmacro
(7)

where Pmacro and Rmacro are given by equation 8 and equation 9, respec-

tively.385

Pmicro =
1

N

N∑
k=1

TPk

TPk + FPk
(8)

Rmicro =
1

N

N∑
k=1

TPk

TPk + FNk
(9)

RK =

∑
klm CkkClm − CklCmk√∑

k (
∑

l Ckl)
(∑

l′,k′ 6=k Ck′l′

)√∑
k (
∑

l Clk)
(∑

l′,k′ 6=k Cl′k′

) (10)

where C is the confusion matrix, Ckk is the number of correctly predicted

observations concerning class k and Ckl are the observations predicted as k but

belonging to class l (l 6= k).

4. Results and discussion

To achieve the desired goal, several tests were made following the methodical390

approach described in Section 3.7. As it is impracticable to present and discuss

all of them in the scope of the present paper, we focused on the ones that

could provide improved monitoring capabilities to the system. Henceforth, the

present section presents and discusses the main results of the feature selection

techniques as well as the most relevant models tested and obtained.395

4.1. Feature Selection

The dataset available and described on the later section presents a total

of 27 features, 7 directly generated by the collar, 2 added in the gateway, 15

obtained after feature transformation of dynamic acceleration measurements,

and 3 additional features added during data processing regarding state’s history.400
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The first approach to reduce the number of attributes was an evaluation of

the correlation between attributes, since some redundancy was expected. The

correlation matrix obtained is represented in Figure 2. From the results ob-

tained, the features whose correlation module scored above 0.9 were selected

for isolation. A lower value would also be acceptable but, as additional feature405

selection techniques were projected to be further applieded, a conservative value

was chosen. From the most correlated features, an individual analysis was per-

formed, being removed the features that presented a higher number of correlated

features (e.g. stdDeviationD is highly correlated with varianceD, maxD, minD,

stdDeviationM, meanM and maxM, hence it was removed). This process culmi-410

nated with the removal of the following features: static acceleration on x-axis

(acc x ), maximum value of the dynamic acceleration magnitude (maxM ), stan-

dard deviation of the first derivative (stdDeviationD), variance of the dynamic

acceleration magnitude (varianceM ) and movement variation (MV ).
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Figure 2: Correlation between features obtained after feature transformation
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The second phase comprised the consistency evaluation of the feature se-415

lection techniques selected and described in Section 3.6. For that, the overall

accuracy of the models obtained using the different techniques was assessed.

For a better understanding of the effects of using the three features related to

the state’s history, the feature selection techniques were experimented with and

without these three features. Table 5 presents the order and features selected420

for each technique and the respective global accuracy (using equation 3), after

running a decision tree algorithm and not considering the historical features.

The analysis of the results allows the following conclusions:

• The results obtained using the consistency-based filter were automatically

discarded since the order of the features obtained was exactly the same as425

the input order of the attributes, thus, not entailing valuable information;

• The dist.mm and pitch features are the most important features for mod-

elling the system. Besides being always in the top four features among

Table 5: Feature Selection evaluation without stateful features

Technique/order CFS Chi Squared oneR Random Forest RReliefF

1 dist.mm meanM dist.mm pitch pitch

2 pitch pitch pitch dist.mm zeroCrossingM

3 - dist.mm meaM meanM dominantFreqD

4 - varianceD varianceD varianceD dominantFreqM

5 - stdDeviationM stdDeviationM stdDeviationM meanM

6 - minD minM minD zeroCrossingsD

7 - minM minD maxD acc z

8 - maxD maxD minM stdDeviationM

9 - acc z acc y acc z acc y

10 - yaw acc z yaw varianceD

11 - acc y yaw acc y maxD

12 - roll meanD roll roll

13 - dominantFreqD roll meanD yaw

14 - meanD zeroCrossingsM zeroCrossingsD dist.mm

15 - zeroCrossingsD dominantFreqM zeroCrossingsM meanD

16 - dominantFreqM zeroCrossingsD dominantFreqM minD

accuracy 88.51% 90.4% 90.46% 90.46% 90.46%
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all feature selection techniques, it is visible that the CFS algorithm only

chooses these two features, neglecting all the remaining ones and main-430

taining an accuracy of 88.51%, only 1.94% below the best case;

• Splitting the features list into four groups (named from now on, tiers of

features), it is possible to verify that the Chi Squared filter, the oneR al-

gorithm and the Random Forest filter, present nearly all the same features

inside the four tiers, although feature permutations may be found within435

them. These results show potential consistency between these methods;

• Regarding the RReliefF algorithm, a different distribution of features

throughout the four tiers can be observed when comparing to the re-

maining ones, including in the top five features. Here, three of them

(zeroCrosingsM, dominanteFreqD and zeroCrossingsD) were in the end of440

the list obtained for the other techniques/algorithms. This situation did

not affect the global accuracy, probably because despite being selected by

the feature selection techniques they were being disregarded by the model.

However, this algorithm presented a higher variability when compared to

the remaining ones, i.e, when considering different samples from the train-445

ing dataset, relevant changes were noted in the feature ranking. Thus,

considering the referred issue, together with the strong computational de-

mands required to implement features such as the dominantFreqD, led to

the disregard of the RReliefF algorithm;

• From the analysis of the ranking list of features obtained using the re-450

maining algorithms (discarding the results from the RReliefF algorithm),

a high level of concordance was detected in all top ten features. Thus, the

total accuracy obtained when using the top ten features resulting from

implementing the oneR algorithm was assessed to evaluate the impact of

reducing the number of features. The result was 90.43%, only 0.03% below455

the best value obtained using all features. Consequently, hereinafter, only

the top ten features selected by the oneR algorithm were used.
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To evaluate the effects of using the three features related to the state’s

history, the top ten features resulted from the previous test were taken along

with the referred three features. The procedure used was the same as the one460

applied to select the top ten features, with the results summarized in Table 6.

Its analysis allows the following conclusions:

• The prevState feature becomes the most relevant. In fact, comparing the

results obtained using the CFS filter (96.27%) with the remaining ones

(98.50% and 98.37%), it seems that the model resorts almost exclusively465

on that feature. Such situation may indicate overfitting, which must be

confirmed with a detailed analysis of the models (Section 4.2);

• The transition feature seems to be irrelevant to the model, and thus it

won’t be used in further tests;

• The nequalStates feature is highly ranked when using the Random Forest470

filter but it is poorly ranked when using the CFS filter and Chi Squared

filter. Despite this, it was maintained to build the models;

• Albeit the prevState feature predominates, the main features of the pre-

vious analysis (pitch and dist.mm) are still well ranked.

4.2. Modelling tests475

Following the strategy described in Section 3.7, several models were built, all

resorting in DT and following a 10-fold cross validation approach. Moreover, the

results were evaluated using the techniques described in Section 3.8. Considering

the results of the feature selection procedures, three main study cases were

considered, being evaluated and discussed in the following sections, particularly:480

1. Using the top ten features obtained after feature selection, without using

the state’s history;

2. Using the same top ten features plus the prevState;

3. Using the same top ten features plus the prevState and nEqualStates.
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Table 6: Feature Selection evaluation with stateful features

Technique/order CFS Chi Squared oneR Random Forest

1 prevState prevState prevState prevState

2 - meanM dist.mm nequalStates

3 - pitch pitch pitch

4 - varianceD meanM meanM

5 - dist.mm varianceD stdDeviationM

6 - stdDeviationM stdDeviationM varianceD

7 - minD minM maxD

8 - minM minD dist.mm

9 - maxD maxD minD

10 - nEqualStates acc z minM

11 - acc z transition acc z

12 - transition acc y acc y

13 - meanD nequalStates transition

accuracy 96.27% 98.50% 98.50% 98.37%

4.2.1. Case 1: Using the top ten features, without using the state’s history485

The confusion matrix obtained using the top ten features is illustrated in Ta-

ble 7. The most critical situations for the posture control mechanism and which

number is intended to be minimized, are signalled in bold and underlined. These

observations correspond to missclassfied observations related to the infracting

state, corresponding both to False Positives and False Negatives. Since both490

cases have a negative impact, a sum of all these situations was considered when

comparing such results. In this case, a total of 366 situations were registered.

Table 11 summarizes the metrics calculated to evaluate the model. This

model achieved a global accuracy of 90.53% with an average of a total of 25

splits. Analysing the results, the micro average F1 score presents a value very495

close to the accuracy. This means that the model performs well in overall,

which was expected due to the imbalanced dataset and due to a high level of

prediction correctness of the eating state, the predominant one. Contrary, the

macro average F1 score presented a lower value, revealing the limitations of the
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Table 7: Confusion matrix when modelling with the top-10 features

Reference

E I M R S Total

Predicted

E 10023 43 355 4 40 10465

I 46 313 123 4 30 516

M 158 109 1102 84 54 1507

R 3 0 57 135 0 195

S 16 11 19 0 120 166

Total 10246 476 1656 227 244 12849

model to correctly classify individual classes. The same conclusion is given by500

the RK coefficient.

As the eating states predominates, the model gives a higher importance to

the pitch angle and to the distance to the ground (dist.mm) features. However,

for the remaining states, the values for these two features are equivalent or at

least very close to each other. Thus, to differentiate those states, the dynamic505

acceleration related features should be vital. However, the use of the dynamic

acceleration measurements also presented some limitations when applied to this

use case, particularly due, on the one hand, to the very smooth boundaries

between states, and, on the other hand, to the unbalanced dataset. Conse-

quently, strategies of downsampling and upsampling were tested, but without510

any relevant improvement.

Additionally, as a high number of misclassifications were detected in situ-

ations of transition between states and as, theoretically, there are transitions

that are more likely to occur than others, the prevState feature was added. The

idea was to introduce a temporal feature that could help the model to find515

relationships between transitions of states.

4.2.2. Case 2: Using the same top ten features plus the prevState

As it can be inferred trough the analysis of the confusion matrix represented

in Table 8, adding the prevState feature allowed the decrease of a high number of
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Table 8: Confusion matrix when using the top-10 features plus the prevState feature

Reference

E I M R S Total

Predicted

E 10119 23 111 7 27 10287

I 2 423 29 2 2 458

M 102 27 1479 23 18 1649

R 2 1 23 194 0 220

S 211 2 14 1 197 425

Total 10436 476 1656 227 244 13039

false positives and false negatives of the infracting state. The sum of those cases520

is 88, with a total average of only 5 splits in the decision tree. Consequently, the

evaluation metrics presented notorious improvements as it can been in Table 11.

However, after evaluating an example of a DT obtained during the modelling

phrase, a set of unfeasible and unrealistic conditions for practical implementa-

tions was detected. A crass example is the existence of infinite loops, as it is525

exemplified in Figure 3. As it can be observed, the algorithm would stuck in

Figure 3: Example of a loop in the Decision Tree
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the eating state whenever the prevState was eating. This undesirable behaviour

may be explained because of the common sheep behaviour, i.e., they typically

stay in the same state for a considerable amount of time. Thus, for minimizing

the error, the model assumes that it is better to predict the next state as being530

the same as the previous one. In brief, besides promising results, this model did

not bring any value to the mechanism.

4.2.3. Case 3: Using the top ten features plus the prevState and nEqualStates

The previous test exposed a critical limitation of using the prevState fea-

ture for modelling the sheep behaviour: the creation of infinite loops within the535

same state, i.e., in a real implementation scenario, the algorithm would stuck

in the initial state defined. Aiming at overcoming this issue, the nEqualStates

feature was added to the model. The justification for this choice was to pro-

vide additional information to the model about the transition between states,

particularly, information that could avoid dead end conditions.540

The obtained confusion matrix is depicted in Table 9. The number of false

positives decreased again when comparing to the first two tests and the evalu-

ated metrics also presented better results (Table 11). However, and again after

analysing the DT obtained, a critical limitation was again found. Albeit direct

infinite loops were avoided, hidden infinite loops were detected. For example,545

the conditions for being in the eating state are two: the prevState is eating and

the nEqualStates is greater or equal to 2. This means that if an animal stays

in the eating state more than one sample, it will be stuck forever in such state.

Besides presenting only the specific case of the eating state, similar situations

occur to the remaining states.550

Downsampling and upsampling techniques were also tested in the present use

case, being applied both to the classified behaviour states and to the number

of transitions (trying to balance the number of transition and not transitions).

Notwithstanding, no relevant changes or enhancements were detected.
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Table 9: Confusion matrix when using the top-10 features plus the prevState and the nEqual-

States features

Reference

E I M R S Total

Predicted

E 10219 2 42 5 7 10275

I 2 436 17 3 9 467

M 24 35 1589 13 34 1695

R 0 0 5 206 0 211

S 1 3 3 0 194 201

Total 10246 476 1656 227 244 12849

4.2.4. Using the same top ten features plus the nEqualStates555

Albeit the use of the prevState feature has revealed itself to be a misstep, at

least with the present dataset, the existing improvements from case 2 to case 3

led to the consideration of a fourth use case, joining the top ten features with

the nEqualStates feature. The obtained confusion matrix is detailed in Table

10. Comparing to the ones obtained for case 1, a decrease of 20 missclassified560

cases regarding the infracting state is observed (a decreasing of almost 5%).

The global accuracy obtained (Table 11) was 91.78% with a total average of

Table 10: Confusion matrix obtained when using the top-10 features plus the nEqualStates

feature

Reference

E I M R S Total

Predicted

E 10043 13 287 16 29 10388

I 36 330 130 4 32 532

M 142 118 1176 88 58 1582

R 2 0 42 119 0 163

S 23 15 21 0 125 184

Total 10246 476 1656 227 244 12849
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Table 11: Results of the metrics evaluated for the four cases tested during the modelling

phrase. Case 4 is next to Case 1 since it is an enhancement of it.

Case 1 Case 4 Case 2 Case 3

Accuracy 0,9100 0,9178 0,9660 0,9840

microF 0,9100 0,9178 0,9660 0,9840

macroF 0,7031 0,7086 0,8947 0,9359

RK 0,7314 0,7571 0,9010 0,9536

25 splits, more than 1% above the global accuracy obtained for case 1. Also,

some relevant improvements are observed in the remaining metrics evaluated,

including in the macro average F1 Score and RK coefficient.565

5. Discussion

All the experiences and tests herein presented were mainly aimed to investi-

gate models that could contribute to the development of an enhanced monitoring

mechanism, more efficient and less prone to errors than the existing ones. Addi-

tionally, despite the distinctive requirements of the work, namely the existence570

of a different set of behaviour states and the need of presenting a feasible set of

conditions to be implemented on a constrained micro-controller, a comparison

with the state of the art works is also pertinent.

After pre-processing the data collected by a customer of iFarmtec, the ex-

istence of an unbalanced dataset was noticed. This is the result of the natural575

behaviour of sheep that naturally feed/eat for long periods of time, being the

remaining states mainly transient. Albeit upsampling and downsampling tech-

niques have been evaluated without success, the relevant point is that real imple-

mentations need to deal with this issue because it is an inherent and continuous

condition of the application scenario.580

With the goal of minimizing such concern, additional features regarding the

state’s history were added. The objective was to give as input, additional in-
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formation about the refereed natural behaviour of sheep. Although the metrics

obtained for these cases were very promising, the truth is that the results were

impracticable in terms of real implementations, particularly when resorting to585

the prevState feature. The appearance of infinite loops within the same state

revealed that these states do not solve the issue. In fact, the number of transi-

tions between states is not relevant comparing to the total number of samples.

Hence, the model presents a lower error by classifying the next state as the

previous. This fact precludes the model to seek for other kind of relationships.590

Nonetheless, these results may give good insights for future works. For

instance, solutions for forcing the models to break the loops shall be investigated

as well as other features that could give better insights to the model about the

transitions between states. Furthermore, even through in practical use cases,

a imbalanced dataset will also be found, bigger and richer datasets would be595

important to provide a deeper study on this issue.

Taking advantage of the improvements observed from Case 2 to Case 3, a

final test using the top ten features plus the feature containing the number of

samples on which no changes in the state are registered (nEqualStates) was

considered. This case not only allowed an improvement of the global accuracy600

(reaching values similar to the state of the art) but also a reduction of the

number of total of false positives and false negatives associated to the infracting

state. The analysis of the DT obtained did not show any restriction for its

implementation in real scenarios, presenting a total of 25 splits.

Comparing the presented results with the ones from previous works that605

also considered the infracting state, the discussed model includes all the states

that are relevant to implement the posture control algorithm and that were not

considered previously, while maintainig the levels of accuracy. However, future

work is required. Besides studying the phenomena observed when using the

prevState feature on a bigger, richer and more balanced dataset, future work610

shall include the evaluation of the mechanism developed in a real scenario with

different animals.
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6. Conclusion

ML is a powerful tool for extracting information that may be hidden in vast

and complex datasets. Sheep behaviour monitoring is one application where615

ML has been increasingly used for predicting behaviour states resorting on the

data gathered by tri-axial accelerometers. In the present paper, a specific set of

behaviours that are crucial for the SheepIT solution were considered, including

the typical eating, moving, running and standing states but also a original one,

namely the infracting state.620

Previous works that have already addressed this challenge, present several

limitations. Besides considering a small set of states (which entail significant

practical operational limitations), they supported their conclusions in a very

limited dataset, not exploring all the potentialities of the accelerometer module

incorporated. Thus, the present study aimed at providing an improved algo-625

rithm for the posture control algorithm, taking advantage of the data gathered

on a real application scenario.

The data collection phase resulted in an unbalanced dataset, consequence

of the natural sheep behaviour. That led to the consideration of the state’s

history features (temporal features) in complement to the features based on the630

accelerometry measurements. In the former group, three different features were

considered while in the latter, a set composed by the top-10 ranked features

after feature selection were contemplated.

The modelling phase was summed up to the application of DT due to simple

implementation on constraint hardware. From the modelling phase, two impor-635

tant conclusions can be taken. Firstly, using temporal features has revealed very

promising results, although resulting in unpractical implementations. Even so,

those results provided good insights for future research, that shall be focused

on understanding how to deal with naturally unbalanced datasets from animal

monitoring and more particularly, how can we take advantage of the presented640

temporal features to improve the posture control algorithm without losing the

feasibility of the solution. Secondly, the final feasible model considered accu-
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racies in the same order of the previous works, although it considered more

states. For this latter scenario, although being conceptually validated, a field

trial version shall be evaluated in future work.645
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[12] L. Nóbrega, A. Tavares, A. Cardoso, P. Gonçalves, Animal monitoring
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