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A B S T R A C T   

Calving is one of the most critical moments during the life of a cow and their calves. Timely supervision is 
therefore crucial for animal welfare as well as the farm economics. In this study, we propose a framework to 
predict calving within 24 h, 12 h, 6 h, 3 h and 1 h of dairy cows using sequential sensor data. In particular, data 
were extracted from 2363 cows coming from 8 commercial farms between August 2016 and November 2020. 
Two sensors attached to the neck and leg of each cow measured rumination, eating, lying, standup, walking and 
inactive behavior on a minute basis. A novel methodology was used to impute the missing values in the sensor 
sequences by leveraging the observed values of all the behavioral activities recorded by the sensors. A deep 
learning model was then used to predict the moment of calving on an hourly basis using the imputed sensor 
sequences. Results show that 65% of the calvings within 24 h can be detected with a precision of 77%, while 57% 
of calvings occurring within 3 h can be identified with a precision equal to 49%. Moreover, we find that using the 
missing value imputations significantly improves the predictive performance for observations containing up to 
60% of missing values. The framework proposed in this study can be used by farmers to optimize their calving 
management and hence improve animal monitoring.   

1. Introduction 

Calving is one of the most critical moments of both the cow’s and the 
calf’s life (Barrier et al., 2013; Mee, 2013). Dystocia, i.e. difficulties or 
abnormalities encountered during calving, can severely affect health 
and welfare of dairy cattle (Barrier and Haskell, 2011). In particular, 
dams that experience dystocia can be at increased risk of injury as well 
as contracting uterine diseases such as metritis and endometritis (Rutten 
et al., 2017). Moreover, it is reported that dystocia is one of the most 
painful conditions for dairy cows (Laven et al., 2009). Dystocial calves 
on the other hand can experience many physiological problems such as 
prolonged hypoxia and significant acidosis (Lombard et al., 2007) as 
well as physiological stress and internal injuries (Berglund et al., 2003). 
This in turn can reduce the calf’s long-term survival or even result in 
stillbirth (Lombard et al., 2007). In fact, 7% of all the calves born in the 
United States die directly within 48 h and 50% of the stillbirths can be 
directly attributed to dystocia (Meyer et al., 2000). Difficulties with 

calving can therefore negatively affect animal welfare as well as farm 
economics (Mee, 2004). Specifically, dystocia can be very costly to dairy 
farmers as it is associated with a lower fertility, milk production and 
survival rate of the dam (Tenhagen et al., 2007). Additionally, the need 
for veterinary assistance contributes to the economic cost of dystocia. In 
particular, the total cost associated with a difficult calving has been 
estimated at €500 (McGuirk et al., 2007). The financial losses related to 
stillbirth even average $938 per case (Mahnani et al., 2018). Reducing 
difficulties with calving is therefore crucial to the dairy producer. 

Several risk factors causing dystocia include parity, calf weight, sex, 
body size and pelvic diameters of the dam as well as seasonal effect and 
environmental stress (Tenhagen et al., 2007). Yet, farm management 
such as breeding decisions and human supervision can strongly influ-
ence calving difficulties as well (Rutten et al., 2017; Van Pelt and de 
Jong, 2011). More specifically, it has been shown that providing timely 
human intervention reduces the risk of dystocia, the pain experienced 
during labor and the reproductive decline of the dam (Borchers et al., 
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2017). Individual animal monitoring, however, becomes increasingly 
more difficult as the number of cattle per farm globally increases over 
time (Raussi, 2003). In fact, even with intensive monitoring, it remains 
difficult to forecast the moment of calving correctly (Lange et al., 2017). 
One way to organize human supervision more efficiently is by employ-
ing models that are able to accurately predict the moment of parturition. 
Such models can automatically alert farmers of an imminent calving and 
hence facilitate timely calving supervision (Ouellet et al., 2016). Phys-
ical and behavioral changes may provide clues to detect when cows are 
about to calve (Huzzey et al., 2005). More specifically, it has been shown 
that behaviors such as eating, rumination and grooming decrease, while 
restlessness and lying bouts increase during the period around calving 
(Miedema et al., 2011; Jensen, 2012; Schirmann et al., 2013). Visually 
assessing these behavioral changes, however, is subjective, time 
consuming and prone to human error (Ouellet et al., 2016). Several 
frameworks were, therefore, presented to predict the onset of calving by 
automatically processing these changes in behavioral patterns. Ouellet 
et al., 2016, for example, constructed three different models to predict 
the moment of calving based on four calving indicators, i.e., vaginal 
temperature, rumination time, lying time and lying bouts. More spe-
cifically, three logistic regression models were built that predicted the 
start of parturition within 24 h, 12 h and 6 h based on the optimal 
combination of the four aforementioned indicators. Similarly, Fadul 
et al., 2017 trained a logistic regression model with a stepwise selection 
procedure to predict the onset of calving within the next 3 h based on 
rumination time and chews, lying bouts, boluses as well as other ac-
tivities not related to ruminating, feed intake or drinking. Whereas the 
two previously mentioned studies removed missing data, all observa-
tions with missing values were assigned to the training set in the study 
presented by Zehner et al., 2019. A Naive bayes model was then trained 
and evaluated on a validation set, which exclusively consisted of ob-
servations with complete information. Rutten et al., 2017 on the other 
hand, presented a methodology to impute the missing values by a 
weighted average of sensor data recorded during the previous three days 
at the same time period. A logistic regression model was then trained on 
the imputed data to generate the calving predictions. Borchers et al., 
2017 applied more complicated machine learning techniques such as 
random forests, linear discriminant analysis and neural networks to 

predict the start of calving. The same dataset was used in a subsequent 
study conducted by Keceli et al., 2020 who applied a Bidirectional Long 
Short-Term Memory (Bi-LSTM) to process the data sequentially. 

Yet, in most of the previously mentioned studies, the proposed 
frameworks disentangle the temporal information in the sensor se-
quences. As result, these models are not able to leverage the sequential 
patterns in the behavioral changes, which can negatively affect model 
performance. Additionally, the previously presented frameworks are 
difficult to generalize and may not be suitable for practical applications. 
In particular, in most studies, observations with missing values are 
removed (Fadul et al., 2017; Ouellet et al., 2016; Borchers et al., 2017; 
Zehner et al., 2019; Keceli et al., 2020). As a result, these models won’t 
be able to generate reliable calving predictions when missing values are 
present in the observed sensor sequences. In one study, however, 
missing values were imputed by the moving averages of sensor re-
cordings observed at previous time steps (Rutten et al., 2017). Yet, in 
case of large periods with missing data, this approach will also not be 
able to impute the missing values in a reliable way. Furthermore, all of 
the previously mentioned studies were conducted on datasets with a 
limited number of recorded calvings, mostly coming from one herd. 
Hence, the reported performance scores of these models were obtained 
on very limited test observations and are thus difficult to generalize 
towards calving events not observed in the data. 

In order to fill this gap in literature, we present a framework that is 
generalizable and suitable for practical implementations. More specif-
ically, this study was conducted on a large dataset containing sensor 
data coming from 2363 animals from 8 different herds (Hut et al., 2021). 
Additionally, we propose a novel methodology to infer missing values by 
leveraging the values recorded by all the sensors. Finally, we present a 
model that accurately predicts the moment of calving by sequentially 
processing the multivariate sensor sequences. There are several reasons 
why we believe that the proposed framework can be valuable for calving 
management. First, human supervision for calving can be organized 
better as farmers are automatically alerted when a cow goes into labor. 
This way, stock personnel does not need to permanently supervise their 
cattle. Second, cow welfare can be drastically increased as timely su-
pervision significantly reduces the negative consequences of dystocia 
(Borchers et al., 2017; Schuenemann et al., 2011; Schuenemann et al., 
2013; Szenci et al., 2012). Finally, we propose a model that generates 
reliable predictions, irrespective of the data quality of the recorded 
sensor data. This is a valuable tool as missing values and outliers 
frequently occur in sensor sequences due to faulty data transmission or 
malfunction of the sensors. 

2. Materials and Methods 

2.1. Data 

For this study, data was collected from 2363 cows coming from 8 
commercial dairy farms with freestall barns in the Netherlands between 
August 2016 and November 2020. No external personnel was employed 
by the farms. From the 8 farms, 6 farms were Holstein Friesian, 1 were 
Fleckvieh and 1 farm were crossbreeding Holstein Friesian, Fleckvieh 
and Scandinavian Red. From the moment the Nedap infrasture (Nedap, 
Groenlo, The Netherlands) was completely implemented at a farm, each 
cow was equipped with the Nedap Smarttag Leg and Nedap Smarttag 
Neck sensor for the entire period of this study. The sensors were attached 
to the front legs and the neck of the cow with the former recording the 
number of steps, standing time, walking time and lying time and the 
latter recording the eating time, rumination time and inactive time, i.e., 
time not spend eating and ruminating. Sensor data was recorded every 
minute. Hourly as well as daily measurements were obtained by sum-
ming all the values of each activity recorded during each hour and day 
respectively. For the data aggregated on a daily basis, the data supplier 
provided some additional features, e.g., the number of bouts, the 
average bout length as well as the average length between different 

Table 1 
The sensor activities and their corresponding features recorded on an hourly and 
daily basis.  

Activity 1 h features 24 h features 

Walking minutes    
minutes 

Standing minutes    
minutes   
number of bouts 

Eating minutes    
minutes   
number of bouts   
avg bout minutes   
avg inter bout minutes 

Rumination minutes    
minutes   
number of bouts   
avg bout minutes   
avg inter bout minutes 

Lying minutes    
minutes   
number of bouts   
avg bout minutes 

Inactivity minutes    
minutes   
number of bouts   
avg bout minutes   
avg inter bout minutes 

Leg activity number of steps    
number of steps  
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bouts for several activities. Additionally, the parity, i.e. the number of 
different times a dam has had an offspring, and the season of calving 
(summer, spring, autumn, winter) were provided for each calving event. 
Table 1 shows the raw sensor recordings as well as the derived features 
on an hourly and daily basis obtained from the data provider. 

The moment of calving was manually recorded by the farmer. In 
total, the day of calving was registered for 3902 different calvings. For 
572 of these calvings, the exact timestamp was registered by the farmer 
at the moment the farmer visually observed the parturition. In total, 159 
calvings were registered in the morning (from 6am to 12 pm), 170 in the 
afternoon (from 12 pm to 6 pm), 178 in the evening (from 6 pm to 12am) 
and 65 at night (from 12am to 6am). For each calving event, the daily 
features observed during the 21 days before calving were extracted. In 
order to extract the features and labels, a sliding window of 14 days was 
shifted over the sequences by one day. This resulted in 8 observations for 
each calving event, with one observation containing the sensor se-
quences observed the day before calving, and 7 observations with sensor 
sequences observed 2 or more days before calving. For calving events 
with an exact time stamp, the hourly sensor values were extracted from 
the day before calving until the moment of parturition. A sliding window 
of 24 h was then shifted over the sequences by one hour. In total, 31216 
sequences of daily data Xd and 8275 sequences of hourly data Xh were 
extracted. For the sensor data aggregated on a daily basis, each obser-
vation Xd

i contained 14 recordings Xd
it , with each recording comprising 

19 sensor values. For the sensor data recorded on an hourly basis, every 
observation Xh

i consisted of 24 recordings Xh
it of 7 sensor values. Outliers 

were removed by the median absolute deviation method (Leys et al., 
2013). This method consists of removing observations according to the 
absolute difference between the observation and the median value. 
Hence, it is more robust for extreme outliers. In total, 4783 outlying 
sensor recordings were replaced by missing values, which comprises 
0.3% of the data. After the removal of the outliers, sensor values were 
normalized between 0 and 1. Finally, a training, validation and test set 
was constructed by randomly sampling 60%, 20% and 20% of the ob-
servations respectively. Table 2 gives an overview of the data used in 
this study. 

2.2. Deep Learning Models 

Mutlilayer Perceptron Models (MLP) are a type of neural networks 
and consist of an input layer, one ore more hidden layers and an output 
layer. In each hidden layer, every neuron is a linear combination of all 
the neurons from the previous layer, followed by a non-linear activation 
function. In particular, if hj represents the outputs of layer j, then the 
output of layer j+1 can be calculated as follows: 

hj+1 = f (hj⋅Wj+1 + bj+1)

with Wj+1 and bj+1 being the weights matrix and biases corresponding to 
layer j + 1, and f being a non-linear activation function, commonly a 

ReLU function. The activation function of the final layer is generally a 
sigmoid, softmax or identity function, depending on whether the label is 
binary, multiclass or continuous respectively. In general, MLPs are 
suitable for any supervised learning task. In practice, however, MLPs are 
rarely used when temporal or spatial dependencies exist among the 
features of the input data. Long Short-Term Memory Models (LSTM) on 
the other hand, have been specifically designed to process time-series 
data as they have recurrent connections between the different inputs 
(Hochreiter and Schmidhuber, 1997). In particular, information from 
each time step t is fed to an LSTM unit, which is composed out of four 
units: a memory cell ct, an input gate it with the corresponding weight 
matrices Wi

R,W
i
I and bi, an output gate ot with the corresponding weight 

matrices Wo
R,W

o
I and bo and a forget gate ft with the corresponding 

weight matrices Wf
R,W

f
I and bf , as shown by the following equations: 

it = σ
(
Wi

Rht− 1 + Wi
Ixt + bi)

ft = σ
(
Wf

Rht− 1 + Wf
I xt + bf )

ct = ct− 1 ⊙ ft + it ⊙ tanh
(
Wc

Rht− 1 + Wc
I xt + bc)

ot =
(
Wo

Rht− 1 + Wo
I xt + bo)

ht = ot ⊙ tanh(ct)

where xt represents the observed features at the current time step, ht− 1 
represents the output of the previous time step, ct− 1 represents the cell 
state of the previous time step and σ and tanh represent the sigmoid and 
hyperbolic tangent function respectively. The memory cell ct stores in-
formation extracted from the previous time steps and the gates deter-
mine the information flow between the cells. The output at the last time 
step represents a compact summary of the entire observed sequence. 
Sometimes, however, one LSTM layer is insufficient to compress all the 
observed data into one single feature vector. In such cases, more infor-
mative vectors can be obtained by stacking multiple LSTM layers on top 
of each other. In contrast to LSTMs, Convolutional Neural Networks 
(CNN) were originally developed for computer vision applications 
(LeCun et al., 1998; Krizhevsky et al., 2012; Szegedy et al., 2015). 
Lately, however, they have also shown great performance on time series 
data as they can extract time-dependent features in parallel (Zhao et al., 
2017). In general, a CNN exists of multiple convolutional blocks, with 
each block typically comprising a linear transformation and a non-linear 
activation stage for feature extraction. In particular, for a time series 
with K features and T time steps, a filter of size KxS with S < T is slided 
over the sequential data along the time dimension. Each time the filter is 
shifted one position, the filter weights are multiplied with the elements 
of the data that are covered by the filter at that point. Subsequently, a 
non-linear activation function, such as ReLU, is applied to the sum of the 
outputs of the multiplication and results in a new time series of the 
features extracted by that filter. In order to downsample the output and 
to make the model invariant to small translations in the input, a pooling 
stage or strided convolution is used at some of the layers to summarize 
the presence of the feature in every specific time window. By applying 
multiple convolutional blocks and flattening the output of the last layer, 
a vector is obtained representing all the features extracted from the 
input data. By altering the number of filters of the filter size, or by 
adding convolutional blocks, the model can learn more complex pat-
terns. Finally, hybrid approaches are now also used to leverage the 
unique capabilities of different models. C-LSTM models that combine 
CNNs with LSTMs for example, have been successfully used to process 
time-series data (Alhussein et al., 2020; Pak et al., 2018). In these ar-
chitectures, a CNN first extracts a set of time-dependent features from 
the input data, while an LSTM then sequentially processes these features 
and encodes them into a one-dimensional feature vector. The motivation 
to use this kind of architecture is that the CNN is able to extract mean-
ingful features in parallel from the multivariate timeseries, while the 
LSTM can extract temporal patterns from long-term sequences. 

Table 2 
Overview of data used in this study.   

Hourly Prediction Daily Prediction 

Calving events 572 3902 
Farms 8 8 
Parity 1 110 782 
Parity 2 148 927 
Parity 3+ 314 2193 
Recording interval 1 h 24 h 
Sliding window size 24 h 14d 
Number of sequences 8275 31216 
Features 7 19 
Training size 4896 18728 
Validation size 1721 6240 
Test size 1658 6248  
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2.3. Missing Value Imputation 

A major concern regarding the data quality of sensor data is the 
frequent occurrence of missing values. Missing gaps in sensor sequences 
can occur due to several reasons such as malfunction of the sensors and 
faulty transmission of data. One way of dealing with missing values 
present in the data sequences is by imputation by the mean, whereby the 
missing values of a certain feature are replaced by the feature mean. For 
time series data, however, this often results in unrealistic realizations of 
sequences, as the imputed value does not take into account the values 
observed before or after the missing value (Liseune et al., 2020). In 
contrast, linear and spline interpolation impute missing values by 
interpolating between known data points. While the linear interpolant 
equals a straight line between two known points, the spline interpolant 
is a piecewice polynomial fitted to a small subset of known values. 
However, in case of a multivariate time series, correlation may exist 

among the different sequential features, which can not be leveraged by 
linear or spline interpolation. Hence, in addition to the three previously 
mentioned imputation methods, a model was also built to impute the 
missing values for each of the behavioral sequences (e.g. eating) based 
on the values observed in that behavioral sequence as well as the values 
recorded in the other behavioral sequences, hereinafter referred to as 
the dependent and independent sequential features. More specifically, a 
CNN was used to obtain a one-dimensional vector from the independent 
sequential features. In order to leverage the values that were observed in 
the dependent sequential feature, the sequence was used as input as 
well. During the training stage, observed values of the dependent 
sequential feature were randomly set to missing to obtain a set of 
missing and true values. This vector was then concatenated with the 
CNNs output and was subsequently fed to an MLP which predicted the 
entire dependent sequential feature. Finally, the mean squared error loss 
between the values of the dependent sequential feature that were set to 

Fig. 1. Schematic overview of the missing value imputation model.  

Fig. 2. Deep learning architectures used in this study.  
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missing and the corresponding predictions was calculated and back-
propagated through the entire network. For each feature of the daily and 
hourly data, a missing imputation model was trained and was used to 
impute all the missing values. An example of how one particular 
sequential feature is imputed by a missing value imputation model is 
given in Fig. 1. 

2.4. Predictive Models 

In order to predict the moment of calving, two machine learning 
models and three deep learning models were trained on the sensor data. 
For predicting the moment of parturition within 24 h, the sensor data 
aggregated on a daily basis Xd was used as input. The hourly sensor data 

Xh was used to predict calving within 12 h, 6 h, 3 h and 1 h. For the 
machine learning models, the data was flattened to obtain non- 
sequential observations. In particular, for the daily data Xd, each 
observation Xd

i was flattened by concatenating each of the 14 recordings 
Xd

it of 19 sensor values into a one-dimensional vector: Xd
i11
,Xd

i12
, …, Xd

i1419
. 

Likewise, the hourly data was flattened by concatenating each obser-
vation’s recording into a one-dimensional vector: Xh

i11
,Xh

i12
, …, Xh

i247
. For 

every prediction window, each model was trained on the imputed data 
as well as the raw data with the missing values. Like most of the previous 
studies, a logistic regression model was trained on the flattened daily 
and hourly sensor data as this model is not able to sequentially process 
the input features. For the daily and hourly predictions, the logistic 
regression model can be expressed as follows: 

yd
i =

1

1 + exp
(− β0+β1 ∗ Xd

i11
+β2 ∗ Xd

i12
+…+β266 ∗ Xd

i1419
)

yh
i =

1

1 + exp
(− β0+β1 ∗ Xh

i11
+β2 ∗ Xh

i12
+…+β168 ∗ Xh

i247
)

with yd
i being the predicted probability of calving the next day for 

observation i of the daily data and yh
i being the predicted probability of 

calving the next 1 h, 3 h, 6 h or 12 h for observation i of the hourly data. 
Additionally, a random forest model was trained on the flattened data as 
this model does not assume a linear decision boundary, unlike the lo-
gistic regression model. In contrast to the machine learning models, 
three deep learning models that are able to sequentially process the 
sensor data were used to predict calving. A CNN model was imple-
mented by applying multiple convolutional layers on the time series 
data. In each layer, several filters were shifted along the time dimension 
to extract different sets of time-dependent features. Pooling stages were 
used to downsample the feature space. The output of the last layer was 
flattened to obtain a vector comprising all the extracted features. For the 
LSTM model, the sensor values observed at each time step were pro-
cessed sequentially by one or two LSTM layers. The output of the last 
LSTM cell was used as a compact summary of all the observed sensor 
sequences. Finally, the C-LSTM model comprised a CNN and LSTM unit, 
with the CNN extracting several time-dependent feature vectors by 
applying multiple convolutional blocks, and the LSTM processing these 
features sequentially and obtaining a compact feature representation. 
The feature representations obtained by the LSTM, CNN and C-LSTM 
models were passed to an MLP with a sigmoid activation function in the 
final layer to predict the probability of calving. An overview of the three 
deep learning models applied in this study are shown by Fig. 2 

Fig. 3. Overview of methodology.  

Table 3 
Performance in terms of the AP of the models on test set for the different prediction windows.  

Prediction window 
Non-Imputed Imputed 

LR RF LSTM CNN C-LSTM LR RF LSTM CNN C-LSTM 

24 h 0.32 0.65 0.72 0.75 0.73 0.52 0.76 0.79 0.77 0.78 
12 h 0.89 0.89 0.89 0.90 0.88 0.86 0.89 0.90 0.90 0.89 
6 h 0.65 0.68 0.64 0.66 0.66 0.62 0.68 0.64 0.65 0.68 
3 h 0.41 0.46 0.41 0.47 0.44 0.41 0.46 0.44 0.49 0.44 
1 h 0.18 0.21 0.21 0.24 0.19 0.19 0.21 0.23 0.24 0.29  

Table 4 
Performance of the best performing models in terms of Sensitivity, Specificity 
and Precision for different thresholds.  

Prediction Window Threshold Sensitivity Precision Specificity 

24 h 0.8 0.65 0.77 0.97  
0.5 0.79 0.53 0.90  
0.3 0.87 0.40 0.81  
0.1 0.93 0.28 0.67 

12 h 0.8 0.57 0.89 0.79  
0.5 0.89 0.81 0.39  
0.3 0.98 0.77 0.15  
0.1 1.0 0.75 0.01 

6 h 0.8 0.43 0.66 0.85  
0.5 0.77 0.58 0.63  
0.3 0.91 0.52 0.43  
0.1 1.00 0.42 0.09 

3 h 0.8 0.12 0.67 0.99  
0.5 0.57 0.49 0.85  
0.3 0.80 0.37 0.65  
0.1 0.95 0.26 0.32 

1 h 0.8 0.30 0.31 0.95  
0.5 0.66 0.16 0.75  
0.3 0.88 0.13 0.55  
0.1 0.99 0.09 0.21  

Table 5 
Performance of the C-LSTM model for the different imputation techniques in 
terms of the AP.  

Prediction 
Window 

Mean 
Imputation 

Linear 
Interpolation 

Spline 
Interpolation 

Model 
Imputation 

24 h 0.16 0.27 0.36 0.78 
12 h 0.81 0.82 0.86 0.89 
6 h 0.56 0.59 0.50 0.68 
3 h 0.31 0.29 0.27 0.44 
1 h 0.09 0.11 0.10 0.29  
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2.5. Model Training 

All the deep learning models were trained by using the back-
propagation algorithm (Rumelhart et al., 1986). In this algorithm, the 
gradient with respect to loss is calculated and propagated through the 
network by using the chain rule. The Adam gradient-based optimization 
algorithm was then used to update the weights (Kingma and Ba, 2014). 
For the missing value imputation model, the mean squared error be-
tween the values of the dependent sensor that were randomly set to 
missing and the corresponding predictions was calculated and back-
propagated through the entire network. The negative log-likelihood 
between the predicted probabilities and the true calving observations 
was used to train the prediction models. All the models were trained on 
the training set by using the early stopping procedure in which model 
training continues as long as the performance on the validation set im-
proves in order to avoid overfitting. The hyperparameters of all the 
prediction models were tuned using a random search. More specifically, 
for each training cycle of a model, a hyperparameter setting was 
determined by randomly sampling values from the model’s predefined 
hyperparameter space. After a predefined number of training cycles, the 

optimal hyperparameter setting was determined by obtaining the model 
with the highest validation performance. For the logistic regression 
model, the regularization method and strength as well as the number of 
training iterations were optimized. The number and depth of trees as 
well as the number of samples required to split an internal node and to 
be at a leaf node were set as hyperparameters for the random forest 
model. For the deep learning models, the number of layers, the number 
of neurons in each layer, the activation function, the dropout rate as well 
as the inclusion of batch normalization were all considered as tunable 
parameters. Finally, for every prediction model, the inclusion of the 
static data features, i.e. the parity and season of calving, as well as the 
balancing scheme was considered as a hyperparameter as well. In 
particular, the data could be upsampled or downsampled, the loss 
function could be weighted with respect to the class proportions or no 
adjustment could be made to the data. An overview of all the hyper-
parameters that were assessed for each of the different models is pro-
vided in A. In Fig. 3, a schematic overview of the methodology for each 
prediction model is given. 

2.6. Model Evaluation 

The performance of the prediction models was evaluated by five 
metrics that are widely accepted as appropriate evaluation metrics for 
binary classification algorithms, namely the AUC (Area Under ROC 
Curve), the Sensitivity (Se), the Precision or Positive Predicted Value 
(PPV), the Specificity (Sp) and the Average Precision (AP). The Sensi-
tivity equals the proportion of correctly classified positive examples. The 
Precision measures how much positive examples were retrieved from 
the positive predictions. The Specificity calculates the proportion of 
negative examples that were identified by the model. In contrast to the 
aforementioned evaluation metrics, the AUC and AP are not dependent 
on a specific threshold, i.e. the cutoff point above which a predicted 
probability is considered as a positive prediction and a negative pre-
diction otherwise. Hence, these metrics allow to compare how well 
models are ordering the predictions, without considering any specific 

Fig. 4. AUC of the C-LSTM models trained on the data with missing values as well as imputations on subsets of test observations with increasing amounts of missing 
values. Purple solid line  = AUC of model trained on data with missing values, Green solid line  = AUC of model trained on data with imputed missing values. 

Fig. 5. Visualization of the imputation model’s predictions of missing sensor values for two random sensor sequences of the test set. Blue solid line  = true sensor 
sequence, Pink dots  = sensor values randomly set to missing, Green dots  = observed sensor values, Orange dashed line  = predicted sensor values. 

Fig. 6. The predicted probabilities of the 12 h, 6 h, 3 h and 1 h calving models 
for different time periods until calving. 
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decision threshold. The AUC can be interpreted as the probability that a 
random positive observation gets a higher score than a random negative 
observation (Schetgen et al., 2021). An AUC score of 0.5 represents a 
model that does not perform any better than random, while an AUC 
score of 1 is obtained by a perfect model. In case of imbalanced data, 
however, it has been shown that the AP is more informative than the 
AUC when evaluating binary classification models (Saito and 
Rehmsmeier, 2015). The AP is the area under the precision recall curve 
(PRC) and indicates how well the model can correctly identify all the 
positive examples without predicting too much negative examples as 
positive. A random classifier has an AP equal to the proportion of pos-
itive examples while a perfect model has an AP equal to 1. 

2.7. Model Selection 

Each missing value imputation model comprised 5 convolutional 
layers, with 32, 64, 64, 128 and 128 filters respectively. In each layer, a 
filter size of 3 and a ReLU activation function was applied. The output of 
the second and fourth layer was downsampled by applying a stride of 2. 
The output of the last layer was flattened and passed to an MLP with one 
hidden layer of size 100 and a ReLU activation function. Each imputa-
tion model was evaluated in terms of the RMSE on the validation set 
every 5000 training iterations with a batch size of 32. Every time the 
validation RMSE decreased, the model’s weights were saved. Training 
was terminated when the performance did not improve for 5 consecutive 
times. For each of the predictive models, 50 random hyperparameter 
configurations were assessed. After convergence on the training set, the 
AP of the machine learning models on the validation set was calculated. 
Every deep learning model was evaluated on the validation set in terms 
of the AP after 1 training epoch. Model weights were saved when the AP 
on the validation set increased. Training was terminated when the 
validation AP did not increase for 5 consecutive times. For each pre-
dictive model, the parameter configuration that rendered the highest 
validation performance was retrained on the combination of the training 
and validation set and was evaluated on the test set. The learning rate 
applied for the Adam optimization algorithm was 0.001 for both the 
missing value imputation as well as the deep learning predictive models. 

2.8. Programming Tools 

All data processing and analyses were done in Python 3.9 (Python 
Software Foundation, https://www.python.org/) with the add-on 
packages Pandas (pandas development team, 2020) and NumPy (Har-
ris et al., 2020) for data preprocessing, scikit-learn (Pedregosa et al., 
2011) for machine learning modeling and model evaluation, Tensor-
Flow (Abadi et al., 2015) and Keras (Chollet, 2015) for deep learning 
modeling and Matplotlib (Hunter, 2007) and seaborn (Waskom, 2021) 
for data visualization. 

3. Results 

3.1. Model Performance 

The performance of the models in terms of the AP on the test set for 
each prediction window is presented in Table 3. For the daily pre-
dictions, the deep learning models clearly outperformed the machine 
learning models on the data with missing values. While the logistic 
regression and random forest model achieved an AP of 0.32 and 0.65, 
the LSTM, CNN and C-LSTM obtained AP scores of 0.72, 0.75 and 0.73 
respectively. The highest scores, however, were obtained on the imputed 
data. While the performance of the CNN and C-LSTM increased by 3% 
and 7% respectively, the AP of the LSTM increased by 12.5% to 0.79, 
resulting in the best performance on the daily predictions. Likewise, the 
performance of the LSTM and C-LSTM improved considerably when 
trained on the imputed data for the smallest prediction window. More 
specifically, the LSTM’s performance increased by 0.02 when trained on 

the imputed data. The C-LSTM on the contrary, improved its perfor-
mance from 0.19 to 0.29, which resulted in the highest score for the 1 h 
prediction interval. The added value of the imputations with respect to 
the predictive performance is also visible for the other prediction in-
tervals. The CNN trained on the imputed data obtained the highest 
performance scores for the 3 h prediction window with an AP equal to 
0.49, thereby outscoring the best performing model trained on the 
missing data with 0.02. For the 6 h prediction interval, the best per-
formance was obtained by the C-LSTM and random forest model trained 
on the imputed data as well as the random forest model trained on the 
data with missing values. 

In contrast to the AP, the Se, Sp and PPV are dependent on the chosen 
threshold. For each prediction interval, the values of these metrics are 
therefore shown for different thresholds in Table 4 for the best per-
forming model, i.e., the C-LSTM model trained on the imputed data for 
the 6 h and 1 h prediction interval, the CNN model trained on the 
imputed data for the 12 h and 3 h prediction interval and the LSTM 
model trained on the imputed data for the 24 h prediction interval. As 
expected, the Se increases for lower thresholds, as more observations are 
classified as positive. Yet, as more observations are predicted as being 
positive, the number of false positives will increase as well, hence 
resulting in lower levels of Precision. For a threshold equal to 0.8, the 
daily prediction model is able to detect 65% of calvings that will occur in 
24 h with approximately 77% of the positive predictions being correct. 
When the threshold is lowered to 0.3, almost 90% of all calving events 
are identified but with a lower PPV being equal to 0.4. For the same 
threshold, the model predicting a calving event within 1 h is comparable 
to the model predicting the moment of calving within 24 h in terms of 
the Se. The PPV of the 1 h model, however, is 0.13 and, therefore, 
considerably lower than that of the 24 h model. 

Furthermore, Table 5 shows the performance of the C-LSTM model 
for the different imputation strategies in terms of the AP. Regarding the 
traditional imputation methods, the spline interpolation renders the 
highest performance for the 24 h and 12 h prediction interval, with an 
AP equal to 0.36 and 0.86 respectively. Imputations made by linear 
interpolation on the contrary, achieve the highest results for the 6 h and 
1 h interval, with AP scores equal to 0.59 and 0.11 respectively. Yet, for 
every prediction window, using the imputations inferred by the deep 
learning model clearly results in better performance with respect to 
predicting the moment of calving than using the imputations made by 
the more traditional imputation methods. In particular, for the 1 h in-
terval, the C-LSTM model trained on the model imputations outperforms 
the C-LSTM model trained on the imputations made by linear in-
terpolations by 0.18. For the 24 h interval, the C-LSTM model leveraging 
the model imputations even outperforms the best performing model 
using a traditional imputation method by 0.42. Additionally, the per-
formance of the models trained on the data with missing values as well 
as the missing values imputed by the imputation model is visualized in 
more detail in Fig. 4. More specifically, the AUC of the C-LSTM model 
trained on the missing and imputed data for the smallest and largest 
prediction interval are compared for different subsets of test observa-
tions comprising a minimum percentage of missing values. As expected, 
the AUC of the models decreased when more missing values were pre-
sent in the observations. For observations with at least 20% of the sensor 
values missing, the AUC of both models for the 1 h prediction interval 
decreased by 0.05 compared to the AUC obtained on observations with 
no missing values. For the 24 h prediction interval, the AUC of the model 
trained with missing data decreased by 0.17 while the AUC of the model 
trained on the data with imputations only decreased by 0.13. Yet, while 
the performance of all the models steadily decreased for increasing 
amounts of missing values, the models trained on the imputed data 
clearly outperformed the models trained on data with missing values for 
observations with a tolerable number of missing values. In particular, for 
sensor sequences with at least 30% of the values missing, the model 
leveraging the imputations scored an AUC of 0.73 and 0.76 on the 1 h 
and 24 h prediction interval respectively. In contrast, the models that 
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didn’t have access to the imputations obtained an AUC score of 0.68 for 
the same subset on both prediction intervals. However, when approxi-
mately 60% or more of the sensor values were missing, the AUC of the 
models trained on the imputed data started to decrease rapidly, resulting 
in higher performance scores obtained by the models trained on the 
missing data. This could be explained by the fact that for these obser-
vations, the imputations only rely on a small subset of recorded values, 
hence resulting in less qualitative estimations. Yet, for more reasonable 
amounts of missing data, imputations are far more precise and therefore 
the resulting calving predictions as well. 

An example of how the imputation model infers the missing values of 
two different sensor sequences recorded on an hourly basis is visualized 
in Fig. 5. For the sensor sequence measuring Inactivity, 10 of the 24 
values were randomly set to missing. By observing the remaining Inac-
tivity values as well as the sequences representing the 6 other behavioral 
activities, the imputation model is capable of accurately approximating 
the true sensor values. For time step 6 for example, the model correctly 
infers a strong decrease in Inactivity, before increasing back to a local 
maximum. For time step 11 and 23, the model also correctly identifies 
the true direction of the sensor activity, yet slightly underestimates the 
true increase and decline of the sensor values. For the sequence repre-
senting Leg Activity behavior, 14 values were randomly set to missing. 
Again, the imputation model is able to correctly infer the direction of the 
sensor values for most of the time steps. From time step 2 to 5, the model 
rightly predicts a slight increase followed by strong decrease. Likewise, 
the model is able to detect an increase in sensor values for time steps 7, 
11, 18 and 23. For time step 21 however, the model assumes an increase 
in Leg Activity behavior while a decrease in sensor activity was truly 
observed. 

Finally, an example of how the hourly calving models change their 
predicted probabilities according to the time until calving is shown by 
Fig. 6. For one animal, the probabilities are generated by the models by 
observing the sequence of sliding windows of sensor data before calving. 
As the moment of calving approaches, the predicted probabilities of the 
4 models increase. For the model trained to predict calving within 12 h, 
the probabilities become considerably larger than 0.5 when calving 
starts in 9 h. The 6 h model on the other hand, only starts generating 
probabilities larger than 0.5 when the moment of parturition is in 6 h or 
less. The predictions made by the 3 h model start to increase rapidly 
when calving approaches within 4 h, while the 1 h model only predicts 
probabilities larger than 0.5 when calving starts within 2 h. 

4. Discussion 

The results depicted in Table 3 clearly indicate that the deep learning 
models, which are able to leverage the sequential patterns in the sensor 
data, perform better than the more traditional machine learning models, 
which used the flattened sensor data as input. Except for the 6 h pre-
diction interval, the highest AP was always obtained by one of the deep 
learning algorithms, irrespective of the data preprocessing method. This 
indicates that the temporal patterns in the sequences of sensor data 
contain valuable clues regarding the moment of calving. Traditional 
machine learning models are not able to leverage sequential information 
as they do not process the time series in a sequential fashion. 

Furthermore, it is also clear from Table 3 that the models trained on 
the data imputed by the imputation model predict calving more accu-
rately than when the data with missing values was used. For every 
prediction window, the best performing model trained on the data 
imputed by the deep learning model performed as well or better than the 
best performing model trained on the missing data. For predicting 
calving within 24 h and 1 h, the missing value imputations had the 
largest impact, with an increase of 0.04 and 0.05 in terms of AP 
respectively. Additionally, Table 5 shows how the predictions with 
respect to the moment of calving were considerably more accurate for 
every prediction window by using the imputations made by the deep 
learning model than by using the imputations made by the more 

traditional imputation methods. Moreover, the results from Tables 3 and 
5 indicate that imputation by the mean, linear interpolation or spline 
interpolation even harm performance, as the C-LSTM model trained on 
the non-imputed data obtains higher AP scores for every prediction 
window. This can be attributed to the fact that entire gaps of missing 
values are more present in the sequences than single missing data points, 
which in turn may be the result of sensors not transmitting data for a 
certain period, rather than a single moment. For such large gaps of 
missing data, the imputations made by the more traditional imputation 
methods will likely be unrealistic. In particular, imputations generated 
by the mean and linear interpolation will lie on a horizontal and linear 
line respectively, while the imputations generated by spline interpola-
tion will lie on a parabolic line. The deep learning imputation model, 
however, is able to leverage all the information available in the data, 
including the observed values of other features, and is able to generate 
more complex patterns for the gaps of missing data. The added value of 
the imputations was also visualized by Fig. 4. In particular, it was 
demonstrated that for observations with reasonable amounts of missing 
values, the models trained on the imputed data perform consistently 
better than the models trained on the missing data. For test observations 
with 1% to approximately 60% of missing values, the 1 h as well as the 
24 h predictions were more accurate when the missing values were 
imputed. However, for more missing values, the accuracy of the impu-
tations starts to decrease rapidly and hence results in even worse per-
formance than using the raw data as input. These results suggest that as 
long as no more than half of the data is missing, using intelligent 
imputation methods can considerably increase the predictive perfor-
mance to predict the moment of calving. 

In order to investigate the added value of using sequential deep 
learning models for imputation as well as prediction in further detail, the 
results from this study are compared with the results obtained by similar 
studies. In the study presented by Rutten et al., 2017, a logistic regres-
sion model that used the relative differences in sensor values to predict 
calving within 1 h obtained a Se of 0.21 with a PPV of 0.05. For 
approximately the same level of Precision, the Naive Bayes model pre-
sented by Zehner et al., 2019 obtained a much higher Se of 0.82. In this 
study, the C-LSTM trained on the imputed data was able to detect more 
positive calving events at a higher precision. More specifically, for a 
threshold of 0.3, 88% of the true calving events were detected with a 
PPV of 0.13, while for a threshold of 0.1, the model was able to detect 
99% of positive cases with a PPV of 0.09. The logistic regression model 
was also used by Rutten et al., 2017 to predict the start of calving within 
3 h. For this prediction interval, they reported a Se and a PPV of 0.42 and 
0.09 respectively. In this study, a Se of 0.95 with a PPV equal to 0.26 was 
achieved by the CNN trained on the imputed data, given a threshold of 
0.1. A logistic regression model using the relative changes in sensor 
values was also proposed by Fadul et al., 2017 to predict calving for a 3 h 
interval. For multiparous cows, they reported a Se of 0.85 in corre-
spondence to a Sp of 0.74. In this research, a similar Se of 0.8 was ob-
tained for a slightly lower level of Sp equal to 0.65, given a threshold of 
0.3. Yet, the results presented by Fadul et al., 2017 were obtained on the 
same 9 observations which were used to fit the model parameters and 
therefore could be biased. For predicting the start of calving within 6 
and 12 h, a logistic regression model was also used by Rutten et al., 2017 
and Ouellet et al., 2016. For the 6 h predictions interval, Ouellet et al., 
2016 reported a Se of 0.71 and a PPV of 0.17, while for the 12 h interval, 
a Se and PPV of 0.7 and 0.3 were obtained. These results, however, 
should be interpreted with caution as they were also obtained on the 
same 33 calving events used to train the model. A better comparison can 
therefore be made with the 6 h and 12 h models presented by Rutten 
et al., 2017, as they did use a separate test set to evaluate the predictive 
performance. For the 6 h prediction interval, the model proposed by 
Rutten et al., 2017 obtained a Se and PPV of 0.49 and 0.11 respectively, 
while for a window of 12 h, a Se of 0.51 and a PPV of 0.13 was reported. 
For a threshold of 0.8, the 6 h model proposed in this study achieved a 
similar level of Se of 0.43, but at a much higher PPV, i.e. 0.66. Likewise, 
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the CNN model trained on the imputed data was much more accurate in 
predicting the start calving within 12 h. In particular, 89% of the posi-
tive cases could be detected at a predictive accuracy of 81% for a 
threshold of 0.5. Finally, the model proposed in this study that predicted 
calving within 24 h obtained a Se of 0.65 with a PPV of 0.77 given a 
threshold of 0.8. The model proposed by Rutten et al., 2017 obtained 
lower values for both the Se as well as PPV, namely a Se of 0.36 and a 
PPV of 0.6. Borchers et al., 2017 on the other hand, presented an MLP 
that was able to detect every single positive calving event with a PPV of 
0.4. Better performance scores were even reported by Keceli et al., 2020 
who used an LSTM architecture on the same dataset. In particular, they 
reported a Se and PPV of 1.0. However, while the results in this study are 
obtained on a test set comprising 115 calvings coming from 8 different 
herds, the results reported by Borchers et al., 2017 and Keceli et al., 
2020 were obtained on only 10 calving events coming from the same 
herd. Additionally, while in this research the results are obtained on test 
observations containing missing values, observations with missing 
values were removed from the analysis conducted by the two afore-
mentioned studies. This is also true for the frameworks proposed by 
Fadul et al., 2017 and Ouellet et al., 2016. In practice, however, sensor 
sequences often contain missing values. The prediction errors reported 
by these studies will therefore be underestimates of the true errors ob-
tained on new observations containing missing values. Finally, the 
models presented by Borchers et al., 2017 and Keceli et al., 2020 are 
categorical classification algorithms that predict the number of days 
until calving during the two weeks preceding calving. In order to predict 
the number of days until calving, a fixed window of 14 days of observed 
data was used as feature by Keceli et al., 2020. As a result, the model can 
correctly predict the number of days until calving by solely counting the 
number of available features, regardless of the values of these features. 
For unseen calving events, however, the days until calving are unknown 
and therefore also the number of features. As a result, it is much more 
difficult to generalize these results towards other calving events than the 
results obtained by the present study. 

5. Conclusion 

Dystocia is a major problem for the dairy cattle industry as it 
significantly affects the animal welfare as well as the farm economics. 
Accurately predicting the moment of calving is, therefore, a valuable 
tool for dairy farmers as it allows them to provide timely supervision. In 
this study, we propose a framework to predict the moment of calving by 
using sensor data measuring behavioral activities such as eating, rumi-
nating, walking and lying. The present study shows that leveraging the 
sequential patterns from the sensor data increases the performance of 
calving prediction models. More specifically, we show how deep 
learning models are able to accurately infer missing values by using all 
the behavioral activities observed by the sensors. In addition to 
increasing the overall predictive performance, using the missing value 
imputations also significantly improves the performance on observa-
tions containing up to 60% of missing values. Additionally, we show 
how using sequential deep learning algorithms are better able to predict 
the moment of parturition than more traditional machine learning al-
gorithms, which are not able to exploit the sequential patterns hidden in 
the sensor data. In particular, the presented models could detect 65% of 
the calvings within 24 h with a precision of 77%, while 57% of calvings 
occurring within 3 h could be identified with a precision equal to 49%. 
Hence, the framework proposed in this study can be used to enhance 
calving predictions, and therefore facilitate timely supervision as well as 
improve animal welfare. 
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Appendix A. Hyperparameters 

Table A.6. 

Table A.6 
Hyperparameters of the models.  

Predictive 
Model 

Hyperparameter Settings 

Logistic 
Regression 

Number of iterations 1000, 2000, …, 5000  

Regularization method None, L1, L2, Elastic Net  
Regularization strength 0.001, 0.01, 0.1, 0.2, 0.5, 1, 

10, 100  
Balancing method None, Downsample, 

Upsample, Weighted 
Random Forest Number of trees 100, 200, …, 1000  

Maximum depth of a tree 10, 20, …, 100  
Minimum number of samples 
per split 

2, 5, 10  

Minimum number of samples 
per leave 

1, 2, 4  

Maximum features per split sqrt(number of features)  
Use static features True, False  
Balancing method None, Downsample, 

Upsample, Weighted 
LSTM Number of LSTM layers 1, 2  

Size of hidden state 50, 100, 200  
Activation function ReLU, Leaky ReLU  
Dropout Rate 0.0, 0.1, …, 0.5  
Use batch normalization True, False  
Number of MLP layers 0, 1, 2  
Size of MLP layers 50, 100  
Use static features True, False  
Balancing method None, Downsample, 

Upsample, Weighted 
CNN Number of CNN layers 2, 4, 6, 8  

Number of filters 16, 32, 64, 128  
Size of filter 3  
Downsample layer None, Stride, MaxPool  
Stride or MaxPool size 2  
Activation function ReLU, Leaky ReLU  
Dropout Rate 0.0, 0.1, …, 0.5  
Use batch normalization True, False  
Number of MLP layers 0, 1, 2  
Size of MLP layers 50, 100  
Use static features True, False  
Balancing method None, Downsample, 

Upsample, Weighted 
C-LSTM Number of CNN layers 1, 2  

Number of filters 16, 32, 64  
Size of filter 3  
Downsample layer None, Stride, MaxPool  
Stride or MaxPool size 2  
Number of LSTM layers 1, 2  
Size of hidden state 50, 100  
Activation function ReLU, Leaky ReLU  
Dropout Rate 0.0, 0.1, …, 0.5  
Use batch normalization True, False  
Number of MLP layers 0, 1, 2  
Size of MLP layers 50, 100  
Use static features True, False  
Balancing method None, Downsample, 

Upsample, Weighted  
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