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 31 

Abstract 32 

With the continuing changes in the structure of plant and cultivation patterns, new diseases 33 

are constantly appearing on the leaves of plant, exacerbating the threat to food security and 34 

agricultural production in many areas of the world. Thus, a rapid and accurate recognition 35 

of various diseases in plant will not only significantly reduce unnecessary planting costs, 36 

but also alleviate the economic losses and environmental pollution caused by incorrect 37 

disease diagnosis. Recent advances in deep learning have improved the performance in 38 

recognizing plant leaf diseases. In this paper, we present a general framework for 39 

recognizing plant diseases. Firstly, we propose a deep feature descriptor based on transfer 40 

learning to obtain a high-level latent feature representation. Then, we integrate the deep 41 

features with traditional handcrafted features by feature fusion to capture the local texture 42 

information in plant leaf images. In addition, centre loss is incorporated to further enhance 43 

the discriminative ability of the fused feature. The centre loss simultaneously minimizes 44 

intra-class distance and maximizes inter-class distance to learn both compact and separate 45 

features. Extensive experiments have been conducted on three publicly available datasets 46 

(two Apple Leaf datasets and one Coffee Leaf dataset) to validate the effectiveness of 47 

proposed method. The propose method achieves 99.79%, 92.59% and 97.12% 48 

classification accuracies on the three datasets, respectively. The experiment results 49 

demonstrate that the proposed method effectively captures the discriminative feature 50 

representation for distinguishing plant leaf diseases. 51 

 52 

Keywords：plant disease; transfer learning; feature fusion; convolutional neural network 53 
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1. Introduction 54 

In recent years, there has been an increased number of plant diseases, that heavily 55 

influenced the agricultural production and food security. Early detection of plant 56 

diseases is thus of great importance for full-blown disease prevention and plant 57 

treatment at a later stage. It also plays a vital role in the management and decision-58 

making of agricultural production (Liu et al., 2018). Disease-infected plants tend to 59 

show obvious marks or lesions on leaves, flowers or fruits. Generally, each disease 60 

presents a unique visible pattern that can be used to diagnose plant abnormalities. The 61 

leaves of plants are the primary source for identifying plant diseases, and most of the 62 

symptoms of diseases appear on the leaves (Ebrahimi et al., 2017). 63 

There are two main traditional methods for identifying diseases in a plant via its 64 

leaves: visual inspection of plant tissues by trained experts; and machine detection 65 

based on image processing (Dutot et al., 2013). The visual inspection by agricultural 66 

and forestry experts requires observing the morphology of the leaf surface and 67 

analyzing the condition of the lesion one at a time to identify the diseased leaves. Such 68 

manual process is time consuming which leads to high cost and low efficiency. In 69 

addition, there exists the risk of errors due to the subjective perception in the process 70 

(Mahlein et al., 2013; Yuan et al., 2014).  71 

The state-of-the-art machine detection methods generally use low-level image 72 

processing techniques, i.e., noise removal, morphological operations and image 73 

enhancement, to pre-process the images of the diseased leaves (Qin et al. 2016, Rumpf 74 

et al. 2010, Padol et al. 2016). This is followed by applying handcrafted feature 75 

extraction techniques to capture low-level information of the leaves, e.g., colour, shape 76 

and texture. Patil et al. (2017) proposed a content-based image retrieval system that 77 

uses colour, shape and texture features of leaf for identifying diseased leaves of soybean. 78 
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Sandika et al. (2016) developed a method for disease identification of grape leaves 79 

with complex background. They compared the identification performance using 80 

different features, e.g., local binary pattern (LBP) feature, and some statistical features 81 

in RGB planes, and different machine learning algorithms, e.g., Support Vector 82 

Machine (SVM) and Random Forest. Sharif et al (2018) proposed a texture-feature 83 

based approach for identifying citrus fruit plant diseases. They employed a hybrid 84 

feature selection technique based on principal component analysis and feature statistics. 85 

A statistical method based on scale-invariant feature transform (SIFT) for the 86 

classification of plant diseases (Hlaing et al. 2017) reduces the computation cost in 87 

using SIFT feature. However, such handcraft techniques merely extract shallow feature 88 

representations, which fails to mine the inner relation information within the same 89 

disease classes. Moreover, such techniques require researchers to possess the relevant 90 

domain knowledge for obtaining good features, that cannot be generalized well in 91 

different environments. 92 

In recent years, deep learning-based methods have made a significant advance in 93 

the field of computer vision (Krizhevsky et al., 2012; He et al., 2016; Szegedy et al., 94 

2015; Ye et al., 2019; Chen et al., 2014; Badrinarayanan et al., 2017, Wang et al. 95 

2021). Due to its ability to capture meaningful feature representation, deep learning 96 

methods have also been applied to plant disease recognition and detection (Sladojevic 97 

et al. 2016; Nachtigall et al., 2016; Mohanty et al. 2016; Jalal et al. 2020; Bi et al. 98 

2020, Shrivastava et al. 2021a, Shrivastava et al. 2021b). Sladojevic et al. (2016) 99 

proposed a plant disease classification model using deep convolutional networks. This 100 

is the first deep learning-based plant disease recognition method. Mohanty et al. (2016) 101 

presented a Convolution Neural Network (CNN) based model for detecting 26 diseases 102 

and 14 crop species, achieving promising results. Yu et al. (2020) proposed the 103 
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attention mechanism to highlight the leaf area, which helps to capture more 104 

discriminative feature in diseased leaves. Tetila et al. (2019) utilized data augmentation 105 

and fine-tuning to train a deep network model to automatically identify soybean leaf 106 

disease. Yu et al. (2020) developed a region-of-interest based two-stream network for 107 

recognizing the apple leaf disease, enhancing the diseased areas of leaf while separating 108 

the background. Jalal et al. (2020) applied deep neural network (DNN) to detect apple 109 

leaf diseases by using SURF for feature extraction and an evolutionary algorithm for 110 

feature optimization to create a plant disease detection system. Bi et al. (2020) proposed 111 

a leaf disease model based on MobileNet model and compared it with ResNet152 and 112 

InceptionV3 models. However, the recognition of leaf diseases remains difficult as the 113 

following two exclusive key properties need to be considered: 1) Coarse local spatial 114 

properties: most spots of leaf diseases are very small in size and tend to vary; and 2) 115 

Fine-grained properties: some factors such as complex background and uneven 116 

illumination resulted in low inter-class and high intra-class variation of diseased 117 

samples.  118 

Although deep learning methods have been shown to be very capable in depicting 119 

both high-level and low-level features, they are less reliable than handcrafted features 120 

in representing local spatial characteristic (Cai et al. 2018). Thus, to better capture local 121 

characteristics that exclusively exist in plant leaf image, we propose to fuse the 122 

handcrafted and deep features, with the handcrafted features complementing the deep 123 

features. We further impose discriminative constraint to uncover the fine-grained 124 

properties in diseased leaf image. 125 

The main objectives of this study are to propose a more powerful and robust 126 

framework to address the problems using deep learning methods to improve the 127 

recognition performance of different plant diseases. The proposed framework combines 128 
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the deep learning features and handcrafted features based on feature fusion and transfer 129 

learning, where the handcrafted features effectively capture the coarse local information, 130 

as complementary to deep features. The combined features are capable of extracting 131 

not only the distinctive texture and shape patterns existing in diseased leaves, but also 132 

the high-level semantics corresponding to the leaves with different types of diseases. 133 

Furthermore, the study aims to further enhance the representation ability for different 134 

diseased plant leaves. To this end, the study adopted the auxiliary discriminative 135 

constraint, i.e., centre loss during the deep feature training, where the discriminative 136 

features are simultaneously learned under the joint supervision of softmax loss and 137 

centre loss. 138 

In summary, the main contributions of this study are as follows:  139 

1) We proposed to learn a deep model based on transfer learning, where an adapted 140 

CNN network is adopted to accelerate model training and extract the semantic 141 

information of different categories of diseased leaf images. 142 

2) We constructed an integrated model by fusing deep features and traditional 143 

handcrafted feature, which effectively captures the local spatial texture information 144 

widely existing in plant leaf images. 145 

3) We introduced the centre loss constraint to simultaneously optimize the learning 146 

process of the fused features, which further enhances the discriminative power of the 147 

extracted deep features.  148 

2. Materials and Methods 149 

The proposed method combines deep discriminative features with handcrafted 150 

feature for plant disease recognition which includes three main modules: preprocessing; 151 

feature extraction including fusion; and classification. Specifically, the proposed 152 

framework first extracts the deep features of plant disease samples based on transfer 153 
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learning, where the pre-trained CNN is utilized to accelerate the training process. To 154 

improve the discriminative ability, centre loss is introduced together with softmax loss 155 

to jointly supervise the learning of the deep feature. The framework then further fuses 156 

the handcrafted feature in the form of oriented histogram of gradient (HOG) and 157 

discriminative deeply learned features to obtain the final characteristic feature of a 158 

disease sample for plant disease recognition. Figure 1 shows the proposed method. 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

Figure 1. The proposed method for plant leaf disease recognition. 167 

2.1. Deep Features Extraction 168 

CNN is mainly composed of a convolutional layer, a pooling layer and a fully 169 

connection (FC) layer. An important research direction of CNN is to build a network 170 

model with deeper and more complex layers. However, with the increase in deep layer 171 

of a network model, the computational efficiency of the model reduces. In addition, 172 

there is limited availability in training samples for plant disease recognition. For these 173 

reasons, we employ transfer learning which uses a pre-trained CNN model to estimate 174 

the various semantics associated with different plant leaf diseases. InceptionV3 (Wang 175 

et al 2012, Szegedy et al. 2016) is selected as the backbone network of our transfer 176 

learning model due to its two advantages: 1) the use of convolution decomposition 177 
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reduces the amount of convolution computation; and 2) the use of the label smoothing 178 

regularization module avoids the occurrence of over-fitting. 179 

The core idea of Inception based network model is factorizing convolutions by 180 

reducing the size of convolution kernel, thus increasing the computational efficiency 181 

without much or any loss in representational power. For example, let us consider the 182 

decomposition of a 5 × 5 convolution into two 3 × 3 convolutions (as illustrated in 183 

Figure 2). The number of parameters in the case of 5 × 5 convolution and 3 × 3 184 

convolutions are respectively 5 × 5 = 25 and 3 × 3 + 3 × 3 = 18. Thus, the number 185 

of parameters is reduced by 28%. Figure 3 shows the factorized Inception Block A. 186 

 187 

Figure 2. Use of two 3 × 3 convolutions to replace a 5 × 5 convolution.  188 

 189 

 190 

Figure 3. Transformation of a 5 × 5 convolution in Inception block into two 3 × 3 191 
convolutions (enclosed within red rectangle). 192 
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In addition, a 𝑛 × 𝑛  convolution kernel in the InceptionV3 network can be 193 

decomposed into 1 × 𝑛  and 𝑛 × 1  convolution. For example, the 3 × 3 194 

convolution of one is equivalent to the 1 × 3 convolution of one and then the 3 × 1 195 

convolution of one. In the case of 3 × 3 convolution the number of parameters is 196 

3 × 3 = 9 , while in the case of convolution 1 × 3  and 3 × 1  the number of 197 

parameters is 1 × 3 + 3 × 1 = 6. Thus, the number of parameters is 33% fewer than 198 

that of a single 3 × 3 convolution. The factorised Inception Block B is shown in 199 

Figure 4. However, this structure is not suitable for the earlier layers, but suitable only 200 

for middle-sized features of the middle layer (for features of size 𝑚 ×𝑚, the value of 201 

m is between 12	~	20 ). Following another principle of CNN design that higher 202 

dimensional representations are easier to process locally within a network, the 203 

convolution can be decomposed into a sequence of expanded filter banks including 204 

1 × 1, 1 × 3 and 3 × 3 convolutions. The factorized Inception Block C is shown in 205 

Figure 5.  The overall architecture of InceptionV3 is shown in Figure 6. 206 

 207 

Figure 4. Transforming the n × n convolution in Module B into 1 × n and n × 1 208 
convolutions. 209 
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 210 

Figure 5. Transforming the n × n convolution in Module C into 1 × n and n × 1 211 
convolutions. 212 

 213 

Figure 6. Structure of the learning model based on InceptionV3. Different colours 214 
denote different layer including convolution (Conv) layer, pooling layer, Inception 215 
block, fully connected layer and dropout layer. 216 

The label smoothing mechanism is designed to regularise the classifier layer in the 217 

InceptionV3 model, which effectively avoids the occurrence of over-fitting to a certain 218 

extent. For example, given each training plant disease sample 𝑥, the probability of 219 

marking the corresponding label of each sample is 220 

          		𝑘 ∈ {1. . . 𝐾}: 𝑝(𝑘|𝑥) = <=>(?@)
∑ <=>(?B)C
BDE

	,             (1) 221 

where 𝑍G denotes the logits probability. 222 
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The ground-truth distribution of the sample 𝑥  is denoted by 𝑞(𝑘|𝑥) , where 223 

∑ 𝑞(𝑘|𝑥)I = 1 for normalization. Thus, the cross entropy of the training sample is 224 

defined as 225 

              ℓ = −∑ log( p(k))q(k)R
STU ,                   (2) 226 

where the minimization of cross entropy is approximately equivalent to the 227 

maximization of the logarithmic likelihood expectation of the label. Consider a 228 

distribution over labels 𝑢(𝑘), independent of the training example 𝑥, and a smoothing 229 

parameter 𝜀, the label distribution 𝑞(𝑘) can be replaced with 230 

                 	𝑞′( 𝑘 | 𝑥) = (1 − 𝜀)𝑞𝑘 + 𝜀 𝑢( 𝑘),               (3) 231 

which is a mixture of the original ground-truth distribution 𝑞(𝑘)  and the fixed 232 

distribution 𝑢(𝑘), with weights 1-𝜀 and 𝜀, respectively. For easy implementation, a 233 

uniform distribution of 𝑢(𝑘), i.e., 𝑢(𝑘) = 1/𝐾, is used. Thus, Eq. 3 can be rewritten 234 

as  235 

                   𝑞′(𝑘) = (1 − 𝜀)𝛿I,\ +
]
^

 ,                   (4) 236 

where this change in ground-truth label distribution is label smoothing regularization 237 

(LSR). Such smoothing operation avoids the largest logit from getting much larger than 238 

all the others. We use smoothed ground-truth label to estimate the cross-entropy, i.e., 239 

 𝐿<` = 𝐻(𝑞′, 𝑝′) = −∑ 𝑙𝑜𝑔 𝑝 (𝑘)𝑞e(𝑘) = (1 − 𝜀)𝐻(𝑞, 𝑝) + 𝜀𝐻(𝑢, 𝑝)	.^
ITU    (5) 240 

It can be seen from Eq. 5 that the loss penalizes the deviation of the predicted label 𝑝 241 

from the prior 𝑢, which supervises the learning of deep feature. 242 

Transfer learning is a method which applies the structure and weight of the pre-243 

trained model trained on a large dataset to other training models (Pan et al. 2009, 244 

Neyshabur et al. 2020). The simplest approach to transfer learning is to fine-tune the 245 

network using a pre-trained model. In this paper, transfer learning is specifically 246 

performed as follows. First, we download the pre-training weight of InceptionV3 on 247 
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ImageNet as the initialization of our network parameters. We then train the network 248 

model with the plant dataset used. The final deep feature is obtained from the output of 249 

the fully connected layer, which is for further fusion process. Figure 7 shows the block 250 

diagram of the transfer learning method. 251 

 252 

Figure 7. The transfer-learning based model. 253 

2.2. Handcrafted Descriptors 254 

HOG is one of the feature descriptors widely used in computer vision tasks, which 255 

is capable of capturing local texture and appearance information of an image by 256 

computing statistical histograms (Dalal et al. 2005). As there exist various local texture 257 

information in different types of diseased leave, HOG is effective for capturing such 258 

local leaf properties and thus improve the performance of apple leaf disease recognition. 259 

The specific process of HOG feature extraction is as follows: 260 

1) The RGB image is converted into greyscale image 𝐼(𝑚, 𝑛) . The image is 261 

normalized by Gamma correction to reduce the impact of illumination variation in the 262 

image using 263 

 																														𝐼(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)U/g. (6) 

2) The gradient direction and amplitude of each pixel in the cell are calculated. 264 

Specifically, the gradient in the horizontal and vertical directions of the image 265 

(𝐺i(𝑚, 𝑛), 𝐺`(𝑚, 𝑛))  are calculated. The gradient value 𝐺(𝑚, 𝑛)  and gradient 266 

direction value 𝜃(𝑚, 𝑛) of each pixel position are computed using 267 
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𝐺i(𝑚, 𝑛) = 𝐼(𝑚 + 1, 𝑛) − 𝐼(𝑚 − 1, 𝑛)	

𝐺`(𝑚, 𝑛) = 𝐼(𝑚, 𝑛 + 1) − 𝐼(𝑚, 𝑛 − 1), 
(7) 

 

𝐺(𝑚, 𝑛) = k𝐺ig (𝑚, 𝑛) + 𝐺`g(𝑚, 𝑛)	

𝜃(𝑚, 𝑛) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐺\`(𝑚, 𝑛)
𝐺i(𝑚, 𝑛)

. 
(8) 

3) The resulting image is divided into several cells, the size of which is set as 268 

10 × 10 pixels, and the direction 0p − 180p  is divided into 9 bins as histogram 269 

channels to construct the cell histogram. 270 

4) The feature vectors of all cells are concatenated to form the features of the block, 271 

and normalization is employed to obtain the final HOG features 𝐹  i.e.,  272 

               		𝐹 = r

s||r||ttu]v
 ,                        (9) 273 

where 𝑣 is the non-normalized vector containing all histograms in a given block and 274 

𝜀e is some small constant. 275 

In order to make the feature dimension fit for classification, the size of the block 276 

and cell in our proposed method are set to 20 × 20 and 10 × 10, respectively. The 9-277 

bins histogram is adopted, resulting in a 36-dimension feature vector for each image. 278 

The HOG feature extraction of a single image is illustrated in Figure 8. 279 

 280 

Figure 8. Illustration of HOG feature extraction: input image (left) and the extracted 281 
HOG (right). 282 
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2.3. Feature fusion with Centre Loss 283 

A deep feature based on CNN captures the semantic information which is robust 284 

to environmental factors (e.g., variation in scene illumination), while HOG effectively 285 

extracts the local texture information. We fuse these two different types of feature to 286 

obtain the final feature of plant disease samples. In this paper, we directly integrate the 287 

extracted HOG with deep feature via the first fully connected layer in InceptionV3 288 

model. The integrated feature is then fed to the second fully connected layer and 289 

softmax for classification. 290 

To deal with the fine-grained characteristics in plant disease images, i.e., 291 

mitigating the intra-class variations while retaining the features of different classes 292 

separable, we introduce the auxiliary constraint, i.e., center loss, to increase the 293 

discriminative ability, i.e., 294 

              𝐿x =
U
g
∑ y𝑥G − 𝐶\Byg

gi
GTU  ,                   (10) 295 

where 𝑥G denotes the fused features belonging to each image sample, and 𝐶\B ∈ 𝑅
| 296 

denotes the 𝑦Gth class centre of fused features. In our experiments, instead of updating 297 

the centres of the entire training set, we perform the update based on mini batch. In each 298 

epoch, the centres are computed by averaging the features of the corresponding class. 299 

(In this case, some of the centres may not be updated). Eq. 10 effectively characterizes 300 

the intra-class variations. We adopt the joint supervision of softmax loss and centre loss 301 

to train the CNN based transfer learning model for discriminative feature learning, i.e., 302 

          											𝐿 = 𝐿<` + λ𝐿x = 𝐿<` +
�
g
∑ y𝑥G − 𝐶\Byg

gi
GTU  ,        (11) 303 

where 𝐿<`  is cross-entropy loss and a scalar λ is used for balancing the two loss 304 

functions. In each epoch, the centres are computed by averaging the features of the 305 

related classes. We use standard stochastic gradient decent (SGD) to optimize Eq. 11. 306 
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The gradient of 𝐿x  with respect to 𝑥G and update equation of 𝐶\B are computed as 307 

                   				���
�=B

= 𝑥G − 𝐶\B                          (12) 308 

              			Δ𝑐� =
∑  �
BDE �(\BT�)⋅����=B�
Uu∑  �

BDE �(\BT�)
 ,                       (13) 309 

where 	𝛿(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = 1  if the condition is satisfied, and 𝛿(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = 0 310 

otherwise. It is clear that the CNN based model supervised by centre loss is trainable 311 

using the standard SGD. 312 

Feature fusion is used to directly combine the smoothed vector of the 313 

convolutional layer and the traditional handcrafted feature vector. The fused feature is 314 

then fed to the fully connected layer as an input. During the classification, the more 315 

discriminative and meaningful features are learned under the joint supervision of cross-316 

entropy and centre loss, that effectively capture the discriminative semantic information 317 

associated with plant leaves with various diseases. 318 

2.4. Data Preparation  319 

To evaluate the efficacy of the proposed method, we used the two public Apple Leaf 320 

dataset. The first is provided by the Plant Pathology Challenge (PPC) held at the CVPR 321 

FGVC (Fine-Grained Visual Classification) workshop in 2020 (Thapa et al. 2020). 322 

This is referred as Apple Leaf Dataset 1 in our paper. The dataset consists of 1821 apple 323 

leaf images, and each image is labelled as heathy or three disease patterns (i.e., rust, 324 

scab, or with both diseases), with a ratio of approximately 6:6:6:1 for each of these four 325 

categories. The samples from each category are shown in Figure 9, and the number of 326 

images for each category are shown in Table 1. The second Apple Leaf dataset was 327 

presented by the Apple Research Institute in Korea (Yu et al., 2020), which includes 328 

three classes: the diseased leaf with marssonia blotch; the diseased leaf with alternaria 329 

leaf spot; and the normal health leaf. The total numbers of samples belonging to three 330 
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classes are 120, 166 and 118, respectively. We referred this dataset as Apple Leaf 331 

Dataset 2 in our paper.      332 

 333 

Figure 9. Sample images of the Apple Leaf dataset 1. 334 

 335 

Table 1. The	number	of	images	for	each	category	in	two	Apple	Leaf	datasets. 336 

 Apple Leaf Dataset 1 (Thapa et al. 2020) 

Category Health Apple 

rust 

Apple 

scab 

Both Total 

Samples 516 622 592 91 1821 

 Apple Leaf Dataset 2 (Yu et al., 2020) 

Category Normal Marssonia 

blotch 

Alternaria leaf 

spot 

Total 

Samples 118 120 166 404 

 337 

We also used Coffee Leaf dataset (Esgario et al. 2020). The dataset contains 1747 338 
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images of arabica coffee leaves captured using different mobile phones. It includes 339 

healthy leaves and leaves affected by one or multiple diseases, e.g., leaf miner, rust, 340 

brown leaf spot and cercospora leaf spot. The samples from each category are shown 341 

in Figure 10, and the number of images for each category are presented in Table 2. 342 

 343 

 344 
 345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 

Figure 10. Sample images of the Coffee Leaf dataset. 357 

Table 2. The	number	of	images	for	each	category	in	the	Coffee	Leaf	dataset.	  358 

Category Samples 

healthy 272 

Leaf Miner 387 

Rust 531 

Brown leaf spot 348 

Cercospora leaf spot 147 

Total 1685 

 359 

To avoid the problem of over-fitting during the training of the deep learning 360 
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algorithm, data augmentation techniques have been used to increase the size of a 361 

training set by applying geometric and photometric transformations to the original data 362 

such that their distribution transformation remains unchanged. Such a technique helps 363 

in adding more varieties to the training set, and effectively addresses the over-fitting 364 

problem in the deep network training process for improved accuracy (Zhong et al. 365 

2020). 366 

In this work, we apply data augmentation to the three datasets used in our 367 

experiments, increasing the size of the datasets without changing their biological 368 

characteristics. We focus only on the most common geometric transformation 369 

techniques, e.g., decentralization, standardization, rotation, translation, horizontal 370 

projections, flipping, scaling and vertical translation. The augmented results of a sample 371 

image are illustrated in Figure 11. 372 

 373 

Figure 11. Illustration of different augmented results of an original sample image. 374 

 375 
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3.  Results 376 

3.1. Experimental setting 377 

The experiments were conducted under the following hardware configuration: 378 

Intel(R) Core(TM) i7-9750h CPU, 16GB memory, and graphics card NVIDIA GeForce 379 

GTX 1080Ti. During the training of the networks, we used SGM to jointly optimize the 380 

cross-entropy and centre loss. The batch size, learning rate, momentum and weight 381 

decay were set to 32, 0.01, 0.9, 0.0005, respectively. For each dataset, we randomly 382 

allocated 80% samples for training, and the remaining 20% data are used for testing.  383 

3.2. Experimental Results  384 

The first experiment focused on investigating the effectiveness of transfer learning 385 

on different CNN backbone networks. DenseNet, VGG16, VGG19, ResNet50 and 386 

InceptionV3 were selected for comparison, where the final classification layer of each 387 

was modified according to the apple leaf disease dataset used. In this paper, we used 388 

the classification accuracy as the metric for evaluating the performance of the leaf 389 

disease recognition using transfer learning. The classification accuracy is measured by 390 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ��������
����

× 100%,  (8) 

where 𝑇correct  denotes the number of correctly classified samples for each type of 391 

diseased leaves, and 𝑇sum denotes the total number of samples of this type of diseased 392 

leaves. 393 

The results for leaf disease recognition are presented in Table 3. The table shows 394 

that the classification accuracy using InceptionV3 model performs better than the other 395 

networks, showing that InceptionV3 effectively extracts the useful information in plant 396 

disease images. 397 

Table 3. The classification accuracy of transfer learning model using different 398 
networks. 399 



 20 

Backbone network Val_acc 

DenseNet 78.52% 

VGG16 73.79% 

VGG19 81.49% 

InceptionV3 91.28% 

 400 

The curves of testing loss and testing accuracy are shown in Figure 12. The loss is 401 

consistently low, and the accuracy remains stably high, which shows the effectiveness 402 

of IncepetionV3 on the feature learning of plant disease images. 403 

 404 

Figure 12. Line graph of classification loss (a) and accuracy (b) of different transfer 405 
networks. 406 

To better demonstrate the efficacy of the proposed discriminative feature fusion 407 

methods, an ablation study is conducted on the two datasets (where the results are 408 

shown in Table 4). By combining the deep feature and HOG, the proposed method using 409 

feature fusion yields better performance than the individual features. Furthermore, the 410 

combination of deep feature and HOG is more effective than the combination of deep 411 

feature and other popular handcrafted features, i.e., SIFT and LBP. In addition, a 412 

significant increase in accuracy is obtained by incorporating the auxiliary 413 

discriminative constraint. As can be seen from Table 4, the proposed method provides 414 

the most discriminative for distinguishing two apple leaf and one coffee leaf diseases.   415 
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Table 4. Comparison of experimental results for individual initial diseased leaf 416 
images. 417 

Task Method Accuracy(%) 

Apple Leaf 
dataset 1 

(Thapa et al. 
2020) 

HOG+SVM 82.53 

Deep feature only 91.27 

Deep feature + SIFT 92.30 

Deep feature + LBP 92.50 

Deep feature + HOG 93.19 

Deep feature + HOG + 
Discriminative constraint 94.02 

Apple Leaf 
dataset 2 

 (Yu et al., 
2020) 

HOG+SVM 72.84 

Deep feature only  81.48 

Deep feature + SIFT 83.95 

Deep feature + LBP 82.72 

Deep feature + HOG 83.95 

Deep feature + HOG + 
Discriminative constraint 85.19 

Coffee leaf 
dataset 

(Esgario et al. 
2020) 

HOG+SVM 78.68 

Deep feature only  90.00 

Deep feature + SIFT 92.89 

Deep feature + LBP 92.54 

Deep feature + HOG 93.39 

Deep feature + HOG + 
Discriminative constraint 

94.07 

 418 
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The third experiment was conducted to demonstrate the effect of the proposed 419 

method using data augmentation, and the recognition results are shown in Table 5. The 420 

results show that the data augmentation increases the recognition accuracy of all 421 

methods, where the recognition rate of the proposed method obtain an accuracy 99.79%, 422 

82.59% and 97.12% on the two apple leaf datasets and one coffee leaf dataset, 423 

respectively. These demonstrate that data augmentation effectively solved the problems 424 

of over-fitting and sample imbalance in plant leaf disease images. The confusion matrix 425 

of the proposed method on the three datasets are shown in Table 6, Table 7 and Table 426 

8, where the leading diagonal entries represent the recognition accuracy for each disease 427 

category. Tables 6 to 8 show the proposed method perform consistently well in each 428 

disease category. However, confusion frequently occurs in recognizing the leaves 429 

affected by multiple diseases because the leaves of this category contain pattern similar 430 

to other categories, and there were limited samples for this category. 431 

Table 5. Comparison of experimental results for individual initial diseased leaf using 432 

data augmentation 433 

Task Method Accuracy (%) 

 HOG+SVM 83.43 

 Deep feature only 96.77 

Apple Leaf dataset 1  Deep feature + SIFT 98.01 

 Deep feature + LBP 98.49 

 Deep feature + HOG 98.97 

 
Deep feature + HOG + Discriminative 

constraint 
99.79 

Apple Leaf dataset 2  HOG+SVM 76.54 
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Deep feature only 88.90 

Deep feature + SIFT 87.65 

Deep feature + LBP 87.65 

Deep feature + HOG 91.36 

Deep feature + HOG + Discriminative 
constraint 

92.59 

 HOG+SVM 85.08 

 Deep feature only  94.92 

Coffee leaf dataset  Deep feature + SIFT 96.10 

 Deep feature + LBP 96.61 

 Deep feature + HOG 96.95 

 
Deep feature + HOG + Discriminative 

constraint 97.12 

Table 6. Confusion matrix for the recognition results (%) for the proposed method 434 
using the Apple Leaf dataset 1. 435 

 Heath Rust Scab 
Multiple 
Diseases 

Heath 𝟏𝟎𝟎 0 0 0 

Rust 0 𝟏𝟎𝟎 0 0 

Scab 0 0 𝟏𝟎𝟎 0 

Multiple Diseases 0 1.39 2.78 𝟗𝟓. 𝟖𝟑 

Table 7. Confusion matrix for the recognition results (%) for the proposed method 436 
using the Coffee Leaf dataset.  437 
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 Heath Miner Rust 
Brown 
leaf 
spot 

Cercosp
ora leaf 
spot 

Heath 𝟗𝟓. 𝟕𝟗 1.58 1.05 1.58 0 

Miner 0.74 𝟗𝟔. 𝟑𝟏 1.11 1.11 0.74 

Rust 0 0.54 𝟗𝟖. 𝟗𝟐 0.27 0.27 

Brown 
leaf spot 

0 0.82 0.82 𝟗𝟖. 𝟑𝟔 0 

Cercospo
ra leaf 
spot 

0.97 0.97 2.91 2.91 𝟗𝟐. 𝟐𝟑 

Table 8. Confusion matrix for the recognition results (%) for the proposed method 438 
using the Apple Leaf dataset 2. 439 

 Heath 
Marssonia  

blotch 

Alternaria 

Leaf spot 

Normal 𝟏𝟎𝟎 0 0 

Marssonia blotch 0 𝟖𝟑. 𝟑𝟑 12.5 

Alternaria leaf spot 0 6.06 𝟗𝟑. 𝟗𝟒 

 440 

4. Discussion 441 

    As expected, the experimental results show that using fine-tuned Inceptionv3 442 

achieves high accuracy and reduces the error rate (Table 3), which shows that 443 

InceptionV3 model is suitable for the identification of the plant disease. This is because 444 

InceptionV3 network employs multi size convolution to capture the disease spots with 445 

different size and shape, and performs the label smoothing to deal with the problem of 446 
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limited samples in plant datasets. 447 

The results also show that fusing the deep learned feature and handcrafted feature 448 

increase the identification performance on all three datasets (Table 4). Among the 449 

handcrafted features, HOG feature is more suitable for supplementing the deep feature 450 

due to its ability in depicting the local texture information. We also visualized the 451 

feature maps of HOG feature and Deep features, which are shown in Figure 13. From 452 

the figure, we can see that the HOG feature and deep features capture different spatial 453 

properties of diseased leaf images. These spatial properties are beneficial and increase 454 

the recognition performance. Therefore, this motivates us to fuse two types of features 455 

for better performance in recognizing diseased leaves. Our experiment results validate 456 

the effectiveness of fusing two types of features.   457 

 458 

 459 

 460 

Figure 13. Visualization of HOG feature maps and Deep features low-level feature 461 

maps. From left to right are the original image, HOG feature map, feature map of the 462 

2nd Convolutional layer, and feature map of the 3rd Convolutional layer. 463 

 464 

In addition, the introduction of the centre loss is beneficial to the learning of the 465 

fused feature, where the accuracy increases from 93.19% to 94.02% and from 83.85% 466 

to 85.19% for Apple Leaf Dataset 1 and 2, respectively, and from 93.39% to 94.07% 467 

for Coffee Leaf dataset. It shows more discriminative feature are learned by the joint 468 

supervision of the center loss and cross-entropy loss. 469 

To deal with the problem of insufficient training samples and image imbalance, 470 

we increase the size of the training set using image augmentation. Such technique helps 471 
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in adding more varieties to the training set and avoid the over-fitting. The experiment 472 

result shows the effectiveness of image augmentation (see Table 5). Note that we only 473 

use the simple strategy of image augmentation in this work. There are a few promising 474 

augmentation methods (e.g., Cubuk et al. 2019, Shorten et al. 2019) that have been 475 

proposed. An investigation of such methods is left for future research.   476 

We use confusion matrix to explore the recognition performance for different leaf 477 

diseases (Tables 6, 7 and 8). For the Apple Leaf dataset 1, the leaves affected by multiple 478 

diseases are relatively hard to identify (with the accuracy of 95.83%) because the leaves 479 

of this category contain pattern similar to other categories. Moreover, there are limited 480 

samples for this category. For the Apple Leaf dataset 2, the recognition accuracy is 481 

lower than for the other apple leaf dataset. The main reason is the insufficient number 482 

of diseased samples despite the use of data augmentation. Thus, the representation that 483 

can distinguish the two diseases are not well learnt. Similarly, for the Coffee dataset, 484 

Cercospora leaf spot is hard to be accurately classified. This is because cercospora leaf 485 

spots are not restricted to the small local regions. Instead, the spots are located all over 486 

the whole leaf, which could confuse the classification of algorithms.  487 

5. Conclusion 488 

In this paper, a feature-fusion based method for identifying apple tree diseased 489 

leaves is proposed. The classical InceptionV3 network was improved and its 490 

corresponding features extracted by transfer learning. This enables such features to be 491 

fused with those extracted by traditional feature extraction method, e.g., HOG, speeding 492 

up the convergence speed and reducing the training parameters. The model was trained 493 

on 1821 images of apple leaves for identifying apple leaf diseases. The experiment 494 

results show that the accuracy of the model after integrating the traditional feature 495 

extraction method reached 93.19%, which is 1.91% higher than the model without the 496 
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fusion. After data augmentation in the training, the accuracy of the recognition on the 497 

data set reaches 99.83%. 498 

The CNN model proposed in this paper is able to quickly and accurately identify 499 

apple leaf diseases, providing a feasible scheme for the identifying apple leaf diseases. 500 

It is widely acknowledged that deep learning methods tend to require more data for 501 

their training. Generally, increasing the size and variety of training samples could 502 

increase the capability to represent the images for the recognition methods. How to 503 

acquire more useful samples is also our future focus.  504 

 505 
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